xref: /openbmc/linux/fs/xfs/scrub/bitmap.c (revision f052febd)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "scrub/bitmap.h"
14 
15 /*
16  * Set a range of this bitmap.  Caller must ensure the range is not set.
17  *
18  * This is the logical equivalent of bitmap |= mask(start, len).
19  */
20 int
21 xbitmap_set(
22 	struct xbitmap		*bitmap,
23 	uint64_t		start,
24 	uint64_t		len)
25 {
26 	struct xbitmap_range	*bmr;
27 
28 	bmr = kmem_alloc(sizeof(struct xbitmap_range), KM_MAYFAIL);
29 	if (!bmr)
30 		return -ENOMEM;
31 
32 	INIT_LIST_HEAD(&bmr->list);
33 	bmr->start = start;
34 	bmr->len = len;
35 	list_add_tail(&bmr->list, &bitmap->list);
36 
37 	return 0;
38 }
39 
40 /* Free everything related to this bitmap. */
41 void
42 xbitmap_destroy(
43 	struct xbitmap		*bitmap)
44 {
45 	struct xbitmap_range	*bmr;
46 	struct xbitmap_range	*n;
47 
48 	for_each_xbitmap_extent(bmr, n, bitmap) {
49 		list_del(&bmr->list);
50 		kmem_free(bmr);
51 	}
52 }
53 
54 /* Set up a per-AG block bitmap. */
55 void
56 xbitmap_init(
57 	struct xbitmap		*bitmap)
58 {
59 	INIT_LIST_HEAD(&bitmap->list);
60 }
61 
62 /* Compare two btree extents. */
63 static int
64 xbitmap_range_cmp(
65 	void			*priv,
66 	const struct list_head	*a,
67 	const struct list_head	*b)
68 {
69 	struct xbitmap_range	*ap;
70 	struct xbitmap_range	*bp;
71 
72 	ap = container_of(a, struct xbitmap_range, list);
73 	bp = container_of(b, struct xbitmap_range, list);
74 
75 	if (ap->start > bp->start)
76 		return 1;
77 	if (ap->start < bp->start)
78 		return -1;
79 	return 0;
80 }
81 
82 /*
83  * Remove all the blocks mentioned in @sub from the extents in @bitmap.
84  *
85  * The intent is that callers will iterate the rmapbt for all of its records
86  * for a given owner to generate @bitmap; and iterate all the blocks of the
87  * metadata structures that are not being rebuilt and have the same rmapbt
88  * owner to generate @sub.  This routine subtracts all the extents
89  * mentioned in sub from all the extents linked in @bitmap, which leaves
90  * @bitmap as the list of blocks that are not accounted for, which we assume
91  * are the dead blocks of the old metadata structure.  The blocks mentioned in
92  * @bitmap can be reaped.
93  *
94  * This is the logical equivalent of bitmap &= ~sub.
95  */
96 #define LEFT_ALIGNED	(1 << 0)
97 #define RIGHT_ALIGNED	(1 << 1)
98 int
99 xbitmap_disunion(
100 	struct xbitmap		*bitmap,
101 	struct xbitmap		*sub)
102 {
103 	struct list_head	*lp;
104 	struct xbitmap_range	*br;
105 	struct xbitmap_range	*new_br;
106 	struct xbitmap_range	*sub_br;
107 	uint64_t		sub_start;
108 	uint64_t		sub_len;
109 	int			state;
110 	int			error = 0;
111 
112 	if (list_empty(&bitmap->list) || list_empty(&sub->list))
113 		return 0;
114 	ASSERT(!list_empty(&sub->list));
115 
116 	list_sort(NULL, &bitmap->list, xbitmap_range_cmp);
117 	list_sort(NULL, &sub->list, xbitmap_range_cmp);
118 
119 	/*
120 	 * Now that we've sorted both lists, we iterate bitmap once, rolling
121 	 * forward through sub and/or bitmap as necessary until we find an
122 	 * overlap or reach the end of either list.  We do not reset lp to the
123 	 * head of bitmap nor do we reset sub_br to the head of sub.  The
124 	 * list traversal is similar to merge sort, but we're deleting
125 	 * instead.  In this manner we avoid O(n^2) operations.
126 	 */
127 	sub_br = list_first_entry(&sub->list, struct xbitmap_range,
128 			list);
129 	lp = bitmap->list.next;
130 	while (lp != &bitmap->list) {
131 		br = list_entry(lp, struct xbitmap_range, list);
132 
133 		/*
134 		 * Advance sub_br and/or br until we find a pair that
135 		 * intersect or we run out of extents.
136 		 */
137 		while (sub_br->start + sub_br->len <= br->start) {
138 			if (list_is_last(&sub_br->list, &sub->list))
139 				goto out;
140 			sub_br = list_next_entry(sub_br, list);
141 		}
142 		if (sub_br->start >= br->start + br->len) {
143 			lp = lp->next;
144 			continue;
145 		}
146 
147 		/* trim sub_br to fit the extent we have */
148 		sub_start = sub_br->start;
149 		sub_len = sub_br->len;
150 		if (sub_br->start < br->start) {
151 			sub_len -= br->start - sub_br->start;
152 			sub_start = br->start;
153 		}
154 		if (sub_len > br->len)
155 			sub_len = br->len;
156 
157 		state = 0;
158 		if (sub_start == br->start)
159 			state |= LEFT_ALIGNED;
160 		if (sub_start + sub_len == br->start + br->len)
161 			state |= RIGHT_ALIGNED;
162 		switch (state) {
163 		case LEFT_ALIGNED:
164 			/* Coincides with only the left. */
165 			br->start += sub_len;
166 			br->len -= sub_len;
167 			break;
168 		case RIGHT_ALIGNED:
169 			/* Coincides with only the right. */
170 			br->len -= sub_len;
171 			lp = lp->next;
172 			break;
173 		case LEFT_ALIGNED | RIGHT_ALIGNED:
174 			/* Total overlap, just delete ex. */
175 			lp = lp->next;
176 			list_del(&br->list);
177 			kmem_free(br);
178 			break;
179 		case 0:
180 			/*
181 			 * Deleting from the middle: add the new right extent
182 			 * and then shrink the left extent.
183 			 */
184 			new_br = kmem_alloc(sizeof(struct xbitmap_range),
185 					KM_MAYFAIL);
186 			if (!new_br) {
187 				error = -ENOMEM;
188 				goto out;
189 			}
190 			INIT_LIST_HEAD(&new_br->list);
191 			new_br->start = sub_start + sub_len;
192 			new_br->len = br->start + br->len - new_br->start;
193 			list_add(&new_br->list, &br->list);
194 			br->len = sub_start - br->start;
195 			lp = lp->next;
196 			break;
197 		default:
198 			ASSERT(0);
199 			break;
200 		}
201 	}
202 
203 out:
204 	return error;
205 }
206 #undef LEFT_ALIGNED
207 #undef RIGHT_ALIGNED
208 
209 /*
210  * Record all btree blocks seen while iterating all records of a btree.
211  *
212  * We know that the btree query_all function starts at the left edge and walks
213  * towards the right edge of the tree.  Therefore, we know that we can walk up
214  * the btree cursor towards the root; if the pointer for a given level points
215  * to the first record/key in that block, we haven't seen this block before;
216  * and therefore we need to remember that we saw this block in the btree.
217  *
218  * So if our btree is:
219  *
220  *    4
221  *  / | \
222  * 1  2  3
223  *
224  * Pretend for this example that each leaf block has 100 btree records.  For
225  * the first btree record, we'll observe that bc_levels[0].ptr == 1, so we
226  * record that we saw block 1.  Then we observe that bc_levels[1].ptr == 1, so
227  * we record block 4.  The list is [1, 4].
228  *
229  * For the second btree record, we see that bc_levels[0].ptr == 2, so we exit
230  * the loop.  The list remains [1, 4].
231  *
232  * For the 101st btree record, we've moved onto leaf block 2.  Now
233  * bc_levels[0].ptr == 1 again, so we record that we saw block 2.  We see that
234  * bc_levels[1].ptr == 2, so we exit the loop.  The list is now [1, 4, 2].
235  *
236  * For the 102nd record, bc_levels[0].ptr == 2, so we continue.
237  *
238  * For the 201st record, we've moved on to leaf block 3.
239  * bc_levels[0].ptr == 1, so we add 3 to the list.  Now it is [1, 4, 2, 3].
240  *
241  * For the 300th record we just exit, with the list being [1, 4, 2, 3].
242  */
243 
244 /*
245  * Record all the buffers pointed to by the btree cursor.  Callers already
246  * engaged in a btree walk should call this function to capture the list of
247  * blocks going from the leaf towards the root.
248  */
249 int
250 xbitmap_set_btcur_path(
251 	struct xbitmap		*bitmap,
252 	struct xfs_btree_cur	*cur)
253 {
254 	struct xfs_buf		*bp;
255 	xfs_fsblock_t		fsb;
256 	int			i;
257 	int			error;
258 
259 	for (i = 0; i < cur->bc_nlevels && cur->bc_levels[i].ptr == 1; i++) {
260 		xfs_btree_get_block(cur, i, &bp);
261 		if (!bp)
262 			continue;
263 		fsb = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
264 		error = xbitmap_set(bitmap, fsb, 1);
265 		if (error)
266 			return error;
267 	}
268 
269 	return 0;
270 }
271 
272 /* Collect a btree's block in the bitmap. */
273 STATIC int
274 xbitmap_collect_btblock(
275 	struct xfs_btree_cur	*cur,
276 	int			level,
277 	void			*priv)
278 {
279 	struct xbitmap		*bitmap = priv;
280 	struct xfs_buf		*bp;
281 	xfs_fsblock_t		fsbno;
282 
283 	xfs_btree_get_block(cur, level, &bp);
284 	if (!bp)
285 		return 0;
286 
287 	fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
288 	return xbitmap_set(bitmap, fsbno, 1);
289 }
290 
291 /* Walk the btree and mark the bitmap wherever a btree block is found. */
292 int
293 xbitmap_set_btblocks(
294 	struct xbitmap		*bitmap,
295 	struct xfs_btree_cur	*cur)
296 {
297 	return xfs_btree_visit_blocks(cur, xbitmap_collect_btblock,
298 			XFS_BTREE_VISIT_ALL, bitmap);
299 }
300 
301 /* How many bits are set in this bitmap? */
302 uint64_t
303 xbitmap_hweight(
304 	struct xbitmap		*bitmap)
305 {
306 	struct xbitmap_range	*bmr;
307 	struct xbitmap_range	*n;
308 	uint64_t		ret = 0;
309 
310 	for_each_xbitmap_extent(bmr, n, bitmap)
311 		ret += bmr->len;
312 
313 	return ret;
314 }
315