1 /* 2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 3 * Copyright (C) 2010 Red Hat, Inc. 4 * All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it would be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include "xfs.h" 20 #include "xfs_fs.h" 21 #include "xfs_shared.h" 22 #include "xfs_format.h" 23 #include "xfs_log_format.h" 24 #include "xfs_trans_resv.h" 25 #include "xfs_mount.h" 26 #include "xfs_da_format.h" 27 #include "xfs_da_btree.h" 28 #include "xfs_inode.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_ialloc.h" 31 #include "xfs_quota.h" 32 #include "xfs_trans.h" 33 #include "xfs_qm.h" 34 #include "xfs_trans_space.h" 35 #include "xfs_trace.h" 36 37 #define _ALLOC true 38 #define _FREE false 39 40 /* 41 * A buffer has a format structure overhead in the log in addition 42 * to the data, so we need to take this into account when reserving 43 * space in a transaction for a buffer. Round the space required up 44 * to a multiple of 128 bytes so that we don't change the historical 45 * reservation that has been used for this overhead. 46 */ 47 STATIC uint 48 xfs_buf_log_overhead(void) 49 { 50 return round_up(sizeof(struct xlog_op_header) + 51 sizeof(struct xfs_buf_log_format), 128); 52 } 53 54 /* 55 * Calculate out transaction log reservation per item in bytes. 56 * 57 * The nbufs argument is used to indicate the number of items that 58 * will be changed in a transaction. size is used to tell how many 59 * bytes should be reserved per item. 60 */ 61 STATIC uint 62 xfs_calc_buf_res( 63 uint nbufs, 64 uint size) 65 { 66 return nbufs * (size + xfs_buf_log_overhead()); 67 } 68 69 /* 70 * Per-extent log reservation for the btree changes involved in freeing or 71 * allocating an extent. In classic XFS there were two trees that will be 72 * modified (bnobt + cntbt). With rmap enabled, there are three trees 73 * (rmapbt). With reflink, there are four trees (refcountbt). The number of 74 * blocks reserved is based on the formula: 75 * 76 * num trees * ((2 blocks/level * max depth) - 1) 77 * 78 * Keep in mind that max depth is calculated separately for each type of tree. 79 */ 80 uint 81 xfs_allocfree_log_count( 82 struct xfs_mount *mp, 83 uint num_ops) 84 { 85 uint blocks; 86 87 blocks = num_ops * 2 * (2 * mp->m_ag_maxlevels - 1); 88 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) 89 blocks += num_ops * (2 * mp->m_rmap_maxlevels - 1); 90 if (xfs_sb_version_hasreflink(&mp->m_sb)) 91 blocks += num_ops * (2 * mp->m_refc_maxlevels - 1); 92 93 return blocks; 94 } 95 96 /* 97 * Logging inodes is really tricksy. They are logged in memory format, 98 * which means that what we write into the log doesn't directly translate into 99 * the amount of space they use on disk. 100 * 101 * Case in point - btree format forks in memory format use more space than the 102 * on-disk format. In memory, the buffer contains a normal btree block header so 103 * the btree code can treat it as though it is just another generic buffer. 104 * However, when we write it to the inode fork, we don't write all of this 105 * header as it isn't needed. e.g. the root is only ever in the inode, so 106 * there's no need for sibling pointers which would waste 16 bytes of space. 107 * 108 * Hence when we have an inode with a maximally sized btree format fork, then 109 * amount of information we actually log is greater than the size of the inode 110 * on disk. Hence we need an inode reservation function that calculates all this 111 * correctly. So, we log: 112 * 113 * - 4 log op headers for object 114 * - for the ilf, the inode core and 2 forks 115 * - inode log format object 116 * - the inode core 117 * - two inode forks containing bmap btree root blocks. 118 * - the btree data contained by both forks will fit into the inode size, 119 * hence when combined with the inode core above, we have a total of the 120 * actual inode size. 121 * - the BMBT headers need to be accounted separately, as they are 122 * additional to the records and pointers that fit inside the inode 123 * forks. 124 */ 125 STATIC uint 126 xfs_calc_inode_res( 127 struct xfs_mount *mp, 128 uint ninodes) 129 { 130 return ninodes * 131 (4 * sizeof(struct xlog_op_header) + 132 sizeof(struct xfs_inode_log_format) + 133 mp->m_sb.sb_inodesize + 134 2 * XFS_BMBT_BLOCK_LEN(mp)); 135 } 136 137 /* 138 * Inode btree record insertion/removal modifies the inode btree and free space 139 * btrees (since the inobt does not use the agfl). This requires the following 140 * reservation: 141 * 142 * the inode btree: max depth * blocksize 143 * the allocation btrees: 2 trees * (max depth - 1) * block size 144 * 145 * The caller must account for SB and AG header modifications, etc. 146 */ 147 STATIC uint 148 xfs_calc_inobt_res( 149 struct xfs_mount *mp) 150 { 151 return xfs_calc_buf_res(mp->m_in_maxlevels, XFS_FSB_TO_B(mp, 1)) + 152 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1), 153 XFS_FSB_TO_B(mp, 1)); 154 } 155 156 /* 157 * The free inode btree is a conditional feature. The behavior differs slightly 158 * from that of the traditional inode btree in that the finobt tracks records 159 * for inode chunks with at least one free inode. A record can be removed from 160 * the tree during individual inode allocation. Therefore the finobt 161 * reservation is unconditional for both the inode chunk allocation and 162 * individual inode allocation (modify) cases. 163 * 164 * Behavior aside, the reservation for finobt modification is equivalent to the 165 * traditional inobt: cover a full finobt shape change plus block allocation. 166 */ 167 STATIC uint 168 xfs_calc_finobt_res( 169 struct xfs_mount *mp) 170 { 171 if (!xfs_sb_version_hasfinobt(&mp->m_sb)) 172 return 0; 173 174 return xfs_calc_inobt_res(mp); 175 } 176 177 /* 178 * Calculate the reservation required to allocate or free an inode chunk. This 179 * includes: 180 * 181 * the allocation btrees: 2 trees * (max depth - 1) * block size 182 * the inode chunk: m_ialloc_blks * N 183 * 184 * The size N of the inode chunk reservation depends on whether it is for 185 * allocation or free and which type of create transaction is in use. An inode 186 * chunk free always invalidates the buffers and only requires reservation for 187 * headers (N == 0). An inode chunk allocation requires a chunk sized 188 * reservation on v4 and older superblocks to initialize the chunk. No chunk 189 * reservation is required for allocation on v5 supers, which use ordered 190 * buffers to initialize. 191 */ 192 STATIC uint 193 xfs_calc_inode_chunk_res( 194 struct xfs_mount *mp, 195 bool alloc) 196 { 197 uint res, size = 0; 198 199 res = xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1), 200 XFS_FSB_TO_B(mp, 1)); 201 if (alloc) { 202 /* icreate tx uses ordered buffers */ 203 if (xfs_sb_version_hascrc(&mp->m_sb)) 204 return res; 205 size = XFS_FSB_TO_B(mp, 1); 206 } 207 208 res += xfs_calc_buf_res(mp->m_ialloc_blks, size); 209 return res; 210 } 211 212 /* 213 * Various log reservation values. 214 * 215 * These are based on the size of the file system block because that is what 216 * most transactions manipulate. Each adds in an additional 128 bytes per 217 * item logged to try to account for the overhead of the transaction mechanism. 218 * 219 * Note: Most of the reservations underestimate the number of allocation 220 * groups into which they could free extents in the xfs_defer_finish() call. 221 * This is because the number in the worst case is quite high and quite 222 * unusual. In order to fix this we need to change xfs_defer_finish() to free 223 * extents in only a single AG at a time. This will require changes to the 224 * EFI code as well, however, so that the EFI for the extents not freed is 225 * logged again in each transaction. See SGI PV #261917. 226 * 227 * Reservation functions here avoid a huge stack in xfs_trans_init due to 228 * register overflow from temporaries in the calculations. 229 */ 230 231 232 /* 233 * In a write transaction we can allocate a maximum of 2 234 * extents. This gives: 235 * the inode getting the new extents: inode size 236 * the inode's bmap btree: max depth * block size 237 * the agfs of the ags from which the extents are allocated: 2 * sector 238 * the superblock free block counter: sector size 239 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size 240 * And the bmap_finish transaction can free bmap blocks in a join: 241 * the agfs of the ags containing the blocks: 2 * sector size 242 * the agfls of the ags containing the blocks: 2 * sector size 243 * the super block free block counter: sector size 244 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size 245 */ 246 STATIC uint 247 xfs_calc_write_reservation( 248 struct xfs_mount *mp) 249 { 250 return XFS_DQUOT_LOGRES(mp) + 251 MAX((xfs_calc_inode_res(mp, 1) + 252 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 253 XFS_FSB_TO_B(mp, 1)) + 254 xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) + 255 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 2), 256 XFS_FSB_TO_B(mp, 1))), 257 (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) + 258 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 2), 259 XFS_FSB_TO_B(mp, 1)))); 260 } 261 262 /* 263 * In truncating a file we free up to two extents at once. We can modify: 264 * the inode being truncated: inode size 265 * the inode's bmap btree: (max depth + 1) * block size 266 * And the bmap_finish transaction can free the blocks and bmap blocks: 267 * the agf for each of the ags: 4 * sector size 268 * the agfl for each of the ags: 4 * sector size 269 * the super block to reflect the freed blocks: sector size 270 * worst case split in allocation btrees per extent assuming 4 extents: 271 * 4 exts * 2 trees * (2 * max depth - 1) * block size 272 */ 273 STATIC uint 274 xfs_calc_itruncate_reservation( 275 struct xfs_mount *mp) 276 { 277 return XFS_DQUOT_LOGRES(mp) + 278 MAX((xfs_calc_inode_res(mp, 1) + 279 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1, 280 XFS_FSB_TO_B(mp, 1))), 281 (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) + 282 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 4), 283 XFS_FSB_TO_B(mp, 1)))); 284 } 285 286 /* 287 * In renaming a files we can modify: 288 * the four inodes involved: 4 * inode size 289 * the two directory btrees: 2 * (max depth + v2) * dir block size 290 * the two directory bmap btrees: 2 * max depth * block size 291 * And the bmap_finish transaction can free dir and bmap blocks (two sets 292 * of bmap blocks) giving: 293 * the agf for the ags in which the blocks live: 3 * sector size 294 * the agfl for the ags in which the blocks live: 3 * sector size 295 * the superblock for the free block count: sector size 296 * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size 297 */ 298 STATIC uint 299 xfs_calc_rename_reservation( 300 struct xfs_mount *mp) 301 { 302 return XFS_DQUOT_LOGRES(mp) + 303 MAX((xfs_calc_inode_res(mp, 4) + 304 xfs_calc_buf_res(2 * XFS_DIROP_LOG_COUNT(mp), 305 XFS_FSB_TO_B(mp, 1))), 306 (xfs_calc_buf_res(7, mp->m_sb.sb_sectsize) + 307 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 3), 308 XFS_FSB_TO_B(mp, 1)))); 309 } 310 311 /* 312 * For removing an inode from unlinked list at first, we can modify: 313 * the agi hash list and counters: sector size 314 * the on disk inode before ours in the agi hash list: inode cluster size 315 * the on disk inode in the agi hash list: inode cluster size 316 */ 317 STATIC uint 318 xfs_calc_iunlink_remove_reservation( 319 struct xfs_mount *mp) 320 { 321 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) + 322 2 * max_t(uint, XFS_FSB_TO_B(mp, 1), mp->m_inode_cluster_size); 323 } 324 325 /* 326 * For creating a link to an inode: 327 * the parent directory inode: inode size 328 * the linked inode: inode size 329 * the directory btree could split: (max depth + v2) * dir block size 330 * the directory bmap btree could join or split: (max depth + v2) * blocksize 331 * And the bmap_finish transaction can free some bmap blocks giving: 332 * the agf for the ag in which the blocks live: sector size 333 * the agfl for the ag in which the blocks live: sector size 334 * the superblock for the free block count: sector size 335 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size 336 */ 337 STATIC uint 338 xfs_calc_link_reservation( 339 struct xfs_mount *mp) 340 { 341 return XFS_DQUOT_LOGRES(mp) + 342 xfs_calc_iunlink_remove_reservation(mp) + 343 MAX((xfs_calc_inode_res(mp, 2) + 344 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp), 345 XFS_FSB_TO_B(mp, 1))), 346 (xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) + 347 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1), 348 XFS_FSB_TO_B(mp, 1)))); 349 } 350 351 /* 352 * For adding an inode to unlinked list we can modify: 353 * the agi hash list: sector size 354 * the on disk inode: inode cluster size 355 */ 356 STATIC uint 357 xfs_calc_iunlink_add_reservation(xfs_mount_t *mp) 358 { 359 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) + 360 max_t(uint, XFS_FSB_TO_B(mp, 1), mp->m_inode_cluster_size); 361 } 362 363 /* 364 * For removing a directory entry we can modify: 365 * the parent directory inode: inode size 366 * the removed inode: inode size 367 * the directory btree could join: (max depth + v2) * dir block size 368 * the directory bmap btree could join or split: (max depth + v2) * blocksize 369 * And the bmap_finish transaction can free the dir and bmap blocks giving: 370 * the agf for the ag in which the blocks live: 2 * sector size 371 * the agfl for the ag in which the blocks live: 2 * sector size 372 * the superblock for the free block count: sector size 373 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size 374 */ 375 STATIC uint 376 xfs_calc_remove_reservation( 377 struct xfs_mount *mp) 378 { 379 return XFS_DQUOT_LOGRES(mp) + 380 xfs_calc_iunlink_add_reservation(mp) + 381 MAX((xfs_calc_inode_res(mp, 1) + 382 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp), 383 XFS_FSB_TO_B(mp, 1))), 384 (xfs_calc_buf_res(4, mp->m_sb.sb_sectsize) + 385 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 2), 386 XFS_FSB_TO_B(mp, 1)))); 387 } 388 389 /* 390 * For create, break it in to the two cases that the transaction 391 * covers. We start with the modify case - allocation done by modification 392 * of the state of existing inodes - and the allocation case. 393 */ 394 395 /* 396 * For create we can modify: 397 * the parent directory inode: inode size 398 * the new inode: inode size 399 * the inode btree entry: block size 400 * the superblock for the nlink flag: sector size 401 * the directory btree: (max depth + v2) * dir block size 402 * the directory inode's bmap btree: (max depth + v2) * block size 403 * the finobt (record modification and allocation btrees) 404 */ 405 STATIC uint 406 xfs_calc_create_resv_modify( 407 struct xfs_mount *mp) 408 { 409 return xfs_calc_inode_res(mp, 2) + 410 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) + 411 (uint)XFS_FSB_TO_B(mp, 1) + 412 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp), XFS_FSB_TO_B(mp, 1)) + 413 xfs_calc_finobt_res(mp); 414 } 415 416 /* 417 * For icreate we can allocate some inodes giving: 418 * the agi and agf of the ag getting the new inodes: 2 * sectorsize 419 * the superblock for the nlink flag: sector size 420 * the inode chunk (allocation, optional init) 421 * the inobt (record insertion) 422 * the finobt (optional, record insertion) 423 */ 424 STATIC uint 425 xfs_calc_icreate_resv_alloc( 426 struct xfs_mount *mp) 427 { 428 return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) + 429 mp->m_sb.sb_sectsize + 430 xfs_calc_inode_chunk_res(mp, _ALLOC) + 431 xfs_calc_inobt_res(mp) + 432 xfs_calc_finobt_res(mp); 433 } 434 435 STATIC uint 436 xfs_calc_icreate_reservation(xfs_mount_t *mp) 437 { 438 return XFS_DQUOT_LOGRES(mp) + 439 MAX(xfs_calc_icreate_resv_alloc(mp), 440 xfs_calc_create_resv_modify(mp)); 441 } 442 443 STATIC uint 444 xfs_calc_create_tmpfile_reservation( 445 struct xfs_mount *mp) 446 { 447 uint res = XFS_DQUOT_LOGRES(mp); 448 449 res += xfs_calc_icreate_resv_alloc(mp); 450 return res + xfs_calc_iunlink_add_reservation(mp); 451 } 452 453 /* 454 * Making a new directory is the same as creating a new file. 455 */ 456 STATIC uint 457 xfs_calc_mkdir_reservation( 458 struct xfs_mount *mp) 459 { 460 return xfs_calc_icreate_reservation(mp); 461 } 462 463 464 /* 465 * Making a new symplink is the same as creating a new file, but 466 * with the added blocks for remote symlink data which can be up to 1kB in 467 * length (XFS_SYMLINK_MAXLEN). 468 */ 469 STATIC uint 470 xfs_calc_symlink_reservation( 471 struct xfs_mount *mp) 472 { 473 return xfs_calc_icreate_reservation(mp) + 474 xfs_calc_buf_res(1, XFS_SYMLINK_MAXLEN); 475 } 476 477 /* 478 * In freeing an inode we can modify: 479 * the inode being freed: inode size 480 * the super block free inode counter, AGF and AGFL: sector size 481 * the on disk inode (agi unlinked list removal) 482 * the inode chunk (invalidated, headers only) 483 * the inode btree 484 * the finobt (record insertion, removal or modification) 485 * 486 * Note that the inode chunk res. includes an allocfree res. for freeing of the 487 * inode chunk. This is technically extraneous because the inode chunk free is 488 * deferred (it occurs after a transaction roll). Include the extra reservation 489 * anyways since we've had reports of ifree transaction overruns due to too many 490 * agfl fixups during inode chunk frees. 491 */ 492 STATIC uint 493 xfs_calc_ifree_reservation( 494 struct xfs_mount *mp) 495 { 496 return XFS_DQUOT_LOGRES(mp) + 497 xfs_calc_inode_res(mp, 1) + 498 xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) + 499 xfs_calc_iunlink_remove_reservation(mp) + 500 xfs_calc_inode_chunk_res(mp, _FREE) + 501 xfs_calc_inobt_res(mp) + 502 xfs_calc_finobt_res(mp); 503 } 504 505 /* 506 * When only changing the inode we log the inode and possibly the superblock 507 * We also add a bit of slop for the transaction stuff. 508 */ 509 STATIC uint 510 xfs_calc_ichange_reservation( 511 struct xfs_mount *mp) 512 { 513 return XFS_DQUOT_LOGRES(mp) + 514 xfs_calc_inode_res(mp, 1) + 515 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize); 516 517 } 518 519 /* 520 * Growing the data section of the filesystem. 521 * superblock 522 * agi and agf 523 * allocation btrees 524 */ 525 STATIC uint 526 xfs_calc_growdata_reservation( 527 struct xfs_mount *mp) 528 { 529 return xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) + 530 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1), 531 XFS_FSB_TO_B(mp, 1)); 532 } 533 534 /* 535 * Growing the rt section of the filesystem. 536 * In the first set of transactions (ALLOC) we allocate space to the 537 * bitmap or summary files. 538 * superblock: sector size 539 * agf of the ag from which the extent is allocated: sector size 540 * bmap btree for bitmap/summary inode: max depth * blocksize 541 * bitmap/summary inode: inode size 542 * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize 543 */ 544 STATIC uint 545 xfs_calc_growrtalloc_reservation( 546 struct xfs_mount *mp) 547 { 548 return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) + 549 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 550 XFS_FSB_TO_B(mp, 1)) + 551 xfs_calc_inode_res(mp, 1) + 552 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1), 553 XFS_FSB_TO_B(mp, 1)); 554 } 555 556 /* 557 * Growing the rt section of the filesystem. 558 * In the second set of transactions (ZERO) we zero the new metadata blocks. 559 * one bitmap/summary block: blocksize 560 */ 561 STATIC uint 562 xfs_calc_growrtzero_reservation( 563 struct xfs_mount *mp) 564 { 565 return xfs_calc_buf_res(1, mp->m_sb.sb_blocksize); 566 } 567 568 /* 569 * Growing the rt section of the filesystem. 570 * In the third set of transactions (FREE) we update metadata without 571 * allocating any new blocks. 572 * superblock: sector size 573 * bitmap inode: inode size 574 * summary inode: inode size 575 * one bitmap block: blocksize 576 * summary blocks: new summary size 577 */ 578 STATIC uint 579 xfs_calc_growrtfree_reservation( 580 struct xfs_mount *mp) 581 { 582 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) + 583 xfs_calc_inode_res(mp, 2) + 584 xfs_calc_buf_res(1, mp->m_sb.sb_blocksize) + 585 xfs_calc_buf_res(1, mp->m_rsumsize); 586 } 587 588 /* 589 * Logging the inode modification timestamp on a synchronous write. 590 * inode 591 */ 592 STATIC uint 593 xfs_calc_swrite_reservation( 594 struct xfs_mount *mp) 595 { 596 return xfs_calc_inode_res(mp, 1); 597 } 598 599 /* 600 * Logging the inode mode bits when writing a setuid/setgid file 601 * inode 602 */ 603 STATIC uint 604 xfs_calc_writeid_reservation( 605 struct xfs_mount *mp) 606 { 607 return xfs_calc_inode_res(mp, 1); 608 } 609 610 /* 611 * Converting the inode from non-attributed to attributed. 612 * the inode being converted: inode size 613 * agf block and superblock (for block allocation) 614 * the new block (directory sized) 615 * bmap blocks for the new directory block 616 * allocation btrees 617 */ 618 STATIC uint 619 xfs_calc_addafork_reservation( 620 struct xfs_mount *mp) 621 { 622 return XFS_DQUOT_LOGRES(mp) + 623 xfs_calc_inode_res(mp, 1) + 624 xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) + 625 xfs_calc_buf_res(1, mp->m_dir_geo->blksize) + 626 xfs_calc_buf_res(XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1, 627 XFS_FSB_TO_B(mp, 1)) + 628 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1), 629 XFS_FSB_TO_B(mp, 1)); 630 } 631 632 /* 633 * Removing the attribute fork of a file 634 * the inode being truncated: inode size 635 * the inode's bmap btree: max depth * block size 636 * And the bmap_finish transaction can free the blocks and bmap blocks: 637 * the agf for each of the ags: 4 * sector size 638 * the agfl for each of the ags: 4 * sector size 639 * the super block to reflect the freed blocks: sector size 640 * worst case split in allocation btrees per extent assuming 4 extents: 641 * 4 exts * 2 trees * (2 * max depth - 1) * block size 642 */ 643 STATIC uint 644 xfs_calc_attrinval_reservation( 645 struct xfs_mount *mp) 646 { 647 return MAX((xfs_calc_inode_res(mp, 1) + 648 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK), 649 XFS_FSB_TO_B(mp, 1))), 650 (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) + 651 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 4), 652 XFS_FSB_TO_B(mp, 1)))); 653 } 654 655 /* 656 * Setting an attribute at mount time. 657 * the inode getting the attribute 658 * the superblock for allocations 659 * the agfs extents are allocated from 660 * the attribute btree * max depth 661 * the inode allocation btree 662 * Since attribute transaction space is dependent on the size of the attribute, 663 * the calculation is done partially at mount time and partially at runtime(see 664 * below). 665 */ 666 STATIC uint 667 xfs_calc_attrsetm_reservation( 668 struct xfs_mount *mp) 669 { 670 return XFS_DQUOT_LOGRES(mp) + 671 xfs_calc_inode_res(mp, 1) + 672 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) + 673 xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH, XFS_FSB_TO_B(mp, 1)); 674 } 675 676 /* 677 * Setting an attribute at runtime, transaction space unit per block. 678 * the superblock for allocations: sector size 679 * the inode bmap btree could join or split: max depth * block size 680 * Since the runtime attribute transaction space is dependent on the total 681 * blocks needed for the 1st bmap, here we calculate out the space unit for 682 * one block so that the caller could figure out the total space according 683 * to the attibute extent length in blocks by: 684 * ext * M_RES(mp)->tr_attrsetrt.tr_logres 685 */ 686 STATIC uint 687 xfs_calc_attrsetrt_reservation( 688 struct xfs_mount *mp) 689 { 690 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) + 691 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK), 692 XFS_FSB_TO_B(mp, 1)); 693 } 694 695 /* 696 * Removing an attribute. 697 * the inode: inode size 698 * the attribute btree could join: max depth * block size 699 * the inode bmap btree could join or split: max depth * block size 700 * And the bmap_finish transaction can free the attr blocks freed giving: 701 * the agf for the ag in which the blocks live: 2 * sector size 702 * the agfl for the ag in which the blocks live: 2 * sector size 703 * the superblock for the free block count: sector size 704 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size 705 */ 706 STATIC uint 707 xfs_calc_attrrm_reservation( 708 struct xfs_mount *mp) 709 { 710 return XFS_DQUOT_LOGRES(mp) + 711 MAX((xfs_calc_inode_res(mp, 1) + 712 xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH, 713 XFS_FSB_TO_B(mp, 1)) + 714 (uint)XFS_FSB_TO_B(mp, 715 XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) + 716 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 0)), 717 (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) + 718 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 2), 719 XFS_FSB_TO_B(mp, 1)))); 720 } 721 722 /* 723 * Clearing a bad agino number in an agi hash bucket. 724 */ 725 STATIC uint 726 xfs_calc_clear_agi_bucket_reservation( 727 struct xfs_mount *mp) 728 { 729 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize); 730 } 731 732 /* 733 * Adjusting quota limits. 734 * the xfs_disk_dquot_t: sizeof(struct xfs_disk_dquot) 735 */ 736 STATIC uint 737 xfs_calc_qm_setqlim_reservation( 738 struct xfs_mount *mp) 739 { 740 return xfs_calc_buf_res(1, sizeof(struct xfs_disk_dquot)); 741 } 742 743 /* 744 * Allocating quota on disk if needed. 745 * the write transaction log space for quota file extent allocation 746 * the unit of quota allocation: one system block size 747 */ 748 STATIC uint 749 xfs_calc_qm_dqalloc_reservation( 750 struct xfs_mount *mp) 751 { 752 return xfs_calc_write_reservation(mp) + 753 xfs_calc_buf_res(1, 754 XFS_FSB_TO_B(mp, XFS_DQUOT_CLUSTER_SIZE_FSB) - 1); 755 } 756 757 /* 758 * Turning off quotas. 759 * the xfs_qoff_logitem_t: sizeof(struct xfs_qoff_logitem) * 2 760 * the superblock for the quota flags: sector size 761 */ 762 STATIC uint 763 xfs_calc_qm_quotaoff_reservation( 764 struct xfs_mount *mp) 765 { 766 return sizeof(struct xfs_qoff_logitem) * 2 + 767 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize); 768 } 769 770 /* 771 * End of turning off quotas. 772 * the xfs_qoff_logitem_t: sizeof(struct xfs_qoff_logitem) * 2 773 */ 774 STATIC uint 775 xfs_calc_qm_quotaoff_end_reservation( 776 struct xfs_mount *mp) 777 { 778 return sizeof(struct xfs_qoff_logitem) * 2; 779 } 780 781 /* 782 * Syncing the incore super block changes to disk. 783 * the super block to reflect the changes: sector size 784 */ 785 STATIC uint 786 xfs_calc_sb_reservation( 787 struct xfs_mount *mp) 788 { 789 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize); 790 } 791 792 void 793 xfs_trans_resv_calc( 794 struct xfs_mount *mp, 795 struct xfs_trans_resv *resp) 796 { 797 /* 798 * The following transactions are logged in physical format and 799 * require a permanent reservation on space. 800 */ 801 resp->tr_write.tr_logres = xfs_calc_write_reservation(mp); 802 if (xfs_sb_version_hasreflink(&mp->m_sb)) 803 resp->tr_write.tr_logcount = XFS_WRITE_LOG_COUNT_REFLINK; 804 else 805 resp->tr_write.tr_logcount = XFS_WRITE_LOG_COUNT; 806 resp->tr_write.tr_logflags |= XFS_TRANS_PERM_LOG_RES; 807 808 resp->tr_itruncate.tr_logres = xfs_calc_itruncate_reservation(mp); 809 if (xfs_sb_version_hasreflink(&mp->m_sb)) 810 resp->tr_itruncate.tr_logcount = 811 XFS_ITRUNCATE_LOG_COUNT_REFLINK; 812 else 813 resp->tr_itruncate.tr_logcount = XFS_ITRUNCATE_LOG_COUNT; 814 resp->tr_itruncate.tr_logflags |= XFS_TRANS_PERM_LOG_RES; 815 816 resp->tr_rename.tr_logres = xfs_calc_rename_reservation(mp); 817 resp->tr_rename.tr_logcount = XFS_RENAME_LOG_COUNT; 818 resp->tr_rename.tr_logflags |= XFS_TRANS_PERM_LOG_RES; 819 820 resp->tr_link.tr_logres = xfs_calc_link_reservation(mp); 821 resp->tr_link.tr_logcount = XFS_LINK_LOG_COUNT; 822 resp->tr_link.tr_logflags |= XFS_TRANS_PERM_LOG_RES; 823 824 resp->tr_remove.tr_logres = xfs_calc_remove_reservation(mp); 825 resp->tr_remove.tr_logcount = XFS_REMOVE_LOG_COUNT; 826 resp->tr_remove.tr_logflags |= XFS_TRANS_PERM_LOG_RES; 827 828 resp->tr_symlink.tr_logres = xfs_calc_symlink_reservation(mp); 829 resp->tr_symlink.tr_logcount = XFS_SYMLINK_LOG_COUNT; 830 resp->tr_symlink.tr_logflags |= XFS_TRANS_PERM_LOG_RES; 831 832 resp->tr_create.tr_logres = xfs_calc_icreate_reservation(mp); 833 resp->tr_create.tr_logcount = XFS_CREATE_LOG_COUNT; 834 resp->tr_create.tr_logflags |= XFS_TRANS_PERM_LOG_RES; 835 836 resp->tr_create_tmpfile.tr_logres = 837 xfs_calc_create_tmpfile_reservation(mp); 838 resp->tr_create_tmpfile.tr_logcount = XFS_CREATE_TMPFILE_LOG_COUNT; 839 resp->tr_create_tmpfile.tr_logflags |= XFS_TRANS_PERM_LOG_RES; 840 841 resp->tr_mkdir.tr_logres = xfs_calc_mkdir_reservation(mp); 842 resp->tr_mkdir.tr_logcount = XFS_MKDIR_LOG_COUNT; 843 resp->tr_mkdir.tr_logflags |= XFS_TRANS_PERM_LOG_RES; 844 845 resp->tr_ifree.tr_logres = xfs_calc_ifree_reservation(mp); 846 resp->tr_ifree.tr_logcount = XFS_INACTIVE_LOG_COUNT; 847 resp->tr_ifree.tr_logflags |= XFS_TRANS_PERM_LOG_RES; 848 849 resp->tr_addafork.tr_logres = xfs_calc_addafork_reservation(mp); 850 resp->tr_addafork.tr_logcount = XFS_ADDAFORK_LOG_COUNT; 851 resp->tr_addafork.tr_logflags |= XFS_TRANS_PERM_LOG_RES; 852 853 resp->tr_attrinval.tr_logres = xfs_calc_attrinval_reservation(mp); 854 resp->tr_attrinval.tr_logcount = XFS_ATTRINVAL_LOG_COUNT; 855 resp->tr_attrinval.tr_logflags |= XFS_TRANS_PERM_LOG_RES; 856 857 resp->tr_attrsetm.tr_logres = xfs_calc_attrsetm_reservation(mp); 858 resp->tr_attrsetm.tr_logcount = XFS_ATTRSET_LOG_COUNT; 859 resp->tr_attrsetm.tr_logflags |= XFS_TRANS_PERM_LOG_RES; 860 861 resp->tr_attrrm.tr_logres = xfs_calc_attrrm_reservation(mp); 862 resp->tr_attrrm.tr_logcount = XFS_ATTRRM_LOG_COUNT; 863 resp->tr_attrrm.tr_logflags |= XFS_TRANS_PERM_LOG_RES; 864 865 resp->tr_growrtalloc.tr_logres = xfs_calc_growrtalloc_reservation(mp); 866 resp->tr_growrtalloc.tr_logcount = XFS_DEFAULT_PERM_LOG_COUNT; 867 resp->tr_growrtalloc.tr_logflags |= XFS_TRANS_PERM_LOG_RES; 868 869 resp->tr_qm_dqalloc.tr_logres = xfs_calc_qm_dqalloc_reservation(mp); 870 if (xfs_sb_version_hasreflink(&mp->m_sb)) 871 resp->tr_qm_dqalloc.tr_logcount = XFS_WRITE_LOG_COUNT_REFLINK; 872 else 873 resp->tr_qm_dqalloc.tr_logcount = XFS_WRITE_LOG_COUNT; 874 resp->tr_qm_dqalloc.tr_logflags |= XFS_TRANS_PERM_LOG_RES; 875 876 /* 877 * The following transactions are logged in logical format with 878 * a default log count. 879 */ 880 resp->tr_qm_setqlim.tr_logres = xfs_calc_qm_setqlim_reservation(mp); 881 resp->tr_qm_setqlim.tr_logcount = XFS_DEFAULT_LOG_COUNT; 882 883 resp->tr_qm_quotaoff.tr_logres = xfs_calc_qm_quotaoff_reservation(mp); 884 resp->tr_qm_quotaoff.tr_logcount = XFS_DEFAULT_LOG_COUNT; 885 886 resp->tr_qm_equotaoff.tr_logres = 887 xfs_calc_qm_quotaoff_end_reservation(mp); 888 resp->tr_qm_equotaoff.tr_logcount = XFS_DEFAULT_LOG_COUNT; 889 890 resp->tr_sb.tr_logres = xfs_calc_sb_reservation(mp); 891 resp->tr_sb.tr_logcount = XFS_DEFAULT_LOG_COUNT; 892 893 /* The following transaction are logged in logical format */ 894 resp->tr_ichange.tr_logres = xfs_calc_ichange_reservation(mp); 895 resp->tr_growdata.tr_logres = xfs_calc_growdata_reservation(mp); 896 resp->tr_fsyncts.tr_logres = xfs_calc_swrite_reservation(mp); 897 resp->tr_writeid.tr_logres = xfs_calc_writeid_reservation(mp); 898 resp->tr_attrsetrt.tr_logres = xfs_calc_attrsetrt_reservation(mp); 899 resp->tr_clearagi.tr_logres = xfs_calc_clear_agi_bucket_reservation(mp); 900 resp->tr_growrtzero.tr_logres = xfs_calc_growrtzero_reservation(mp); 901 resp->tr_growrtfree.tr_logres = xfs_calc_growrtfree_reservation(mp); 902 } 903