1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_error.h" 20 #include "xfs_trace.h" 21 #include "xfs_cksum.h" 22 #include "xfs_trans.h" 23 #include "xfs_buf_item.h" 24 #include "xfs_bmap_btree.h" 25 #include "xfs_alloc_btree.h" 26 #include "xfs_ialloc_btree.h" 27 #include "xfs_log.h" 28 #include "xfs_rmap_btree.h" 29 #include "xfs_bmap.h" 30 #include "xfs_refcount_btree.h" 31 #include "xfs_da_format.h" 32 #include "xfs_da_btree.h" 33 34 /* 35 * Physical superblock buffer manipulations. Shared with libxfs in userspace. 36 */ 37 38 /* 39 * Reference counting access wrappers to the perag structures. 40 * Because we never free per-ag structures, the only thing we 41 * have to protect against changes is the tree structure itself. 42 */ 43 struct xfs_perag * 44 xfs_perag_get( 45 struct xfs_mount *mp, 46 xfs_agnumber_t agno) 47 { 48 struct xfs_perag *pag; 49 int ref = 0; 50 51 rcu_read_lock(); 52 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 53 if (pag) { 54 ASSERT(atomic_read(&pag->pag_ref) >= 0); 55 ref = atomic_inc_return(&pag->pag_ref); 56 } 57 rcu_read_unlock(); 58 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 59 return pag; 60 } 61 62 /* 63 * search from @first to find the next perag with the given tag set. 64 */ 65 struct xfs_perag * 66 xfs_perag_get_tag( 67 struct xfs_mount *mp, 68 xfs_agnumber_t first, 69 int tag) 70 { 71 struct xfs_perag *pag; 72 int found; 73 int ref; 74 75 rcu_read_lock(); 76 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 77 (void **)&pag, first, 1, tag); 78 if (found <= 0) { 79 rcu_read_unlock(); 80 return NULL; 81 } 82 ref = atomic_inc_return(&pag->pag_ref); 83 rcu_read_unlock(); 84 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); 85 return pag; 86 } 87 88 void 89 xfs_perag_put( 90 struct xfs_perag *pag) 91 { 92 int ref; 93 94 ASSERT(atomic_read(&pag->pag_ref) > 0); 95 ref = atomic_dec_return(&pag->pag_ref); 96 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 97 } 98 99 /* Check all the superblock fields we care about when reading one in. */ 100 STATIC int 101 xfs_validate_sb_read( 102 struct xfs_mount *mp, 103 struct xfs_sb *sbp) 104 { 105 if (XFS_SB_VERSION_NUM(sbp) != XFS_SB_VERSION_5) 106 return 0; 107 108 /* 109 * Version 5 superblock feature mask validation. Reject combinations 110 * the kernel cannot support up front before checking anything else. 111 */ 112 if (xfs_sb_has_compat_feature(sbp, XFS_SB_FEAT_COMPAT_UNKNOWN)) { 113 xfs_warn(mp, 114 "Superblock has unknown compatible features (0x%x) enabled.", 115 (sbp->sb_features_compat & XFS_SB_FEAT_COMPAT_UNKNOWN)); 116 xfs_warn(mp, 117 "Using a more recent kernel is recommended."); 118 } 119 120 if (xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 121 xfs_alert(mp, 122 "Superblock has unknown read-only compatible features (0x%x) enabled.", 123 (sbp->sb_features_ro_compat & 124 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 125 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 126 xfs_warn(mp, 127 "Attempted to mount read-only compatible filesystem read-write."); 128 xfs_warn(mp, 129 "Filesystem can only be safely mounted read only."); 130 131 return -EINVAL; 132 } 133 } 134 if (xfs_sb_has_incompat_feature(sbp, XFS_SB_FEAT_INCOMPAT_UNKNOWN)) { 135 xfs_warn(mp, 136 "Superblock has unknown incompatible features (0x%x) enabled.", 137 (sbp->sb_features_incompat & 138 XFS_SB_FEAT_INCOMPAT_UNKNOWN)); 139 xfs_warn(mp, 140 "Filesystem cannot be safely mounted by this kernel."); 141 return -EINVAL; 142 } 143 144 return 0; 145 } 146 147 /* Check all the superblock fields we care about when writing one out. */ 148 STATIC int 149 xfs_validate_sb_write( 150 struct xfs_mount *mp, 151 struct xfs_buf *bp, 152 struct xfs_sb *sbp) 153 { 154 /* 155 * Carry out additional sb summary counter sanity checks when we write 156 * the superblock. We skip this in the read validator because there 157 * could be newer superblocks in the log and if the values are garbage 158 * even after replay we'll recalculate them at the end of log mount. 159 * 160 * mkfs has traditionally written zeroed counters to inprogress and 161 * secondary superblocks, so allow this usage to continue because 162 * we never read counters from such superblocks. 163 */ 164 if (XFS_BUF_ADDR(bp) == XFS_SB_DADDR && !sbp->sb_inprogress && 165 (sbp->sb_fdblocks > sbp->sb_dblocks || 166 !xfs_verify_icount(mp, sbp->sb_icount) || 167 sbp->sb_ifree > sbp->sb_icount)) { 168 xfs_warn(mp, "SB summary counter sanity check failed"); 169 return -EFSCORRUPTED; 170 } 171 172 if (XFS_SB_VERSION_NUM(sbp) != XFS_SB_VERSION_5) 173 return 0; 174 175 /* 176 * Version 5 superblock feature mask validation. Reject combinations 177 * the kernel cannot support since we checked for unsupported bits in 178 * the read verifier, which means that memory is corrupt. 179 */ 180 if (xfs_sb_has_compat_feature(sbp, XFS_SB_FEAT_COMPAT_UNKNOWN)) { 181 xfs_warn(mp, 182 "Corruption detected in superblock compatible features (0x%x)!", 183 (sbp->sb_features_compat & XFS_SB_FEAT_COMPAT_UNKNOWN)); 184 return -EFSCORRUPTED; 185 } 186 187 if (xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 188 xfs_alert(mp, 189 "Corruption detected in superblock read-only compatible features (0x%x)!", 190 (sbp->sb_features_ro_compat & 191 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 192 return -EFSCORRUPTED; 193 } 194 if (xfs_sb_has_incompat_feature(sbp, XFS_SB_FEAT_INCOMPAT_UNKNOWN)) { 195 xfs_warn(mp, 196 "Corruption detected in superblock incompatible features (0x%x)!", 197 (sbp->sb_features_incompat & 198 XFS_SB_FEAT_INCOMPAT_UNKNOWN)); 199 return -EFSCORRUPTED; 200 } 201 if (xfs_sb_has_incompat_log_feature(sbp, 202 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 203 xfs_warn(mp, 204 "Corruption detected in superblock incompatible log features (0x%x)!", 205 (sbp->sb_features_log_incompat & 206 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 207 return -EFSCORRUPTED; 208 } 209 210 /* 211 * We can't read verify the sb LSN because the read verifier is called 212 * before the log is allocated and processed. We know the log is set up 213 * before write verifier calls, so check it here. 214 */ 215 if (!xfs_log_check_lsn(mp, sbp->sb_lsn)) 216 return -EFSCORRUPTED; 217 218 return 0; 219 } 220 221 /* Check the validity of the SB. */ 222 STATIC int 223 xfs_validate_sb_common( 224 struct xfs_mount *mp, 225 struct xfs_buf *bp, 226 struct xfs_sb *sbp) 227 { 228 uint32_t agcount = 0; 229 uint32_t rem; 230 231 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 232 xfs_warn(mp, "bad magic number"); 233 return -EWRONGFS; 234 } 235 236 if (!xfs_sb_good_version(sbp)) { 237 xfs_warn(mp, "bad version"); 238 return -EWRONGFS; 239 } 240 241 if (xfs_sb_version_has_pquotino(sbp)) { 242 if (sbp->sb_qflags & (XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD)) { 243 xfs_notice(mp, 244 "Version 5 of Super block has XFS_OQUOTA bits."); 245 return -EFSCORRUPTED; 246 } 247 } else if (sbp->sb_qflags & (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD | 248 XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) { 249 xfs_notice(mp, 250 "Superblock earlier than Version 5 has XFS_[PQ]UOTA_{ENFD|CHKD} bits."); 251 return -EFSCORRUPTED; 252 } 253 254 /* 255 * Full inode chunks must be aligned to inode chunk size when 256 * sparse inodes are enabled to support the sparse chunk 257 * allocation algorithm and prevent overlapping inode records. 258 */ 259 if (xfs_sb_version_hassparseinodes(sbp)) { 260 uint32_t align; 261 262 align = XFS_INODES_PER_CHUNK * sbp->sb_inodesize 263 >> sbp->sb_blocklog; 264 if (sbp->sb_inoalignmt != align) { 265 xfs_warn(mp, 266 "Inode block alignment (%u) must match chunk size (%u) for sparse inodes.", 267 sbp->sb_inoalignmt, align); 268 return -EINVAL; 269 } 270 } 271 272 if (unlikely( 273 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 274 xfs_warn(mp, 275 "filesystem is marked as having an external log; " 276 "specify logdev on the mount command line."); 277 return -EINVAL; 278 } 279 280 if (unlikely( 281 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 282 xfs_warn(mp, 283 "filesystem is marked as having an internal log; " 284 "do not specify logdev on the mount command line."); 285 return -EINVAL; 286 } 287 288 /* Compute agcount for this number of dblocks and agblocks */ 289 if (sbp->sb_agblocks) { 290 agcount = div_u64_rem(sbp->sb_dblocks, sbp->sb_agblocks, &rem); 291 if (rem) 292 agcount++; 293 } 294 295 /* 296 * More sanity checking. Most of these were stolen directly from 297 * xfs_repair. 298 */ 299 if (unlikely( 300 sbp->sb_agcount <= 0 || 301 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 302 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 303 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 304 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 305 sbp->sb_sectsize != (1 << sbp->sb_sectlog) || 306 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 307 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 308 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 309 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 310 sbp->sb_blocksize != (1 << sbp->sb_blocklog) || 311 sbp->sb_dirblklog + sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 312 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 313 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 314 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 315 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 316 sbp->sb_inodesize != (1 << sbp->sb_inodelog) || 317 sbp->sb_logsunit > XLOG_MAX_RECORD_BSIZE || 318 sbp->sb_inopblock != howmany(sbp->sb_blocksize,sbp->sb_inodesize) || 319 XFS_FSB_TO_B(mp, sbp->sb_agblocks) < XFS_MIN_AG_BYTES || 320 XFS_FSB_TO_B(mp, sbp->sb_agblocks) > XFS_MAX_AG_BYTES || 321 sbp->sb_agblklog != xfs_highbit32(sbp->sb_agblocks - 1) + 1 || 322 agcount == 0 || agcount != sbp->sb_agcount || 323 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 324 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 325 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 326 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) || 327 sbp->sb_dblocks == 0 || 328 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) || 329 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp) || 330 sbp->sb_shared_vn != 0)) { 331 xfs_notice(mp, "SB sanity check failed"); 332 return -EFSCORRUPTED; 333 } 334 335 if (sbp->sb_unit) { 336 if (!xfs_sb_version_hasdalign(sbp) || 337 sbp->sb_unit > sbp->sb_width || 338 (sbp->sb_width % sbp->sb_unit) != 0) { 339 xfs_notice(mp, "SB stripe unit sanity check failed"); 340 return -EFSCORRUPTED; 341 } 342 } else if (xfs_sb_version_hasdalign(sbp)) { 343 xfs_notice(mp, "SB stripe alignment sanity check failed"); 344 return -EFSCORRUPTED; 345 } else if (sbp->sb_width) { 346 xfs_notice(mp, "SB stripe width sanity check failed"); 347 return -EFSCORRUPTED; 348 } 349 350 351 if (xfs_sb_version_hascrc(&mp->m_sb) && 352 sbp->sb_blocksize < XFS_MIN_CRC_BLOCKSIZE) { 353 xfs_notice(mp, "v5 SB sanity check failed"); 354 return -EFSCORRUPTED; 355 } 356 357 /* 358 * Until this is fixed only page-sized or smaller data blocks work. 359 */ 360 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 361 xfs_warn(mp, 362 "File system with blocksize %d bytes. " 363 "Only pagesize (%ld) or less will currently work.", 364 sbp->sb_blocksize, PAGE_SIZE); 365 return -ENOSYS; 366 } 367 368 /* 369 * Currently only very few inode sizes are supported. 370 */ 371 switch (sbp->sb_inodesize) { 372 case 256: 373 case 512: 374 case 1024: 375 case 2048: 376 break; 377 default: 378 xfs_warn(mp, "inode size of %d bytes not supported", 379 sbp->sb_inodesize); 380 return -ENOSYS; 381 } 382 383 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 384 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 385 xfs_warn(mp, 386 "file system too large to be mounted on this system."); 387 return -EFBIG; 388 } 389 390 /* 391 * Don't touch the filesystem if a user tool thinks it owns the primary 392 * superblock. mkfs doesn't clear the flag from secondary supers, so 393 * we don't check them at all. 394 */ 395 if (XFS_BUF_ADDR(bp) == XFS_SB_DADDR && sbp->sb_inprogress) { 396 xfs_warn(mp, "Offline file system operation in progress!"); 397 return -EFSCORRUPTED; 398 } 399 return 0; 400 } 401 402 void 403 xfs_sb_quota_from_disk(struct xfs_sb *sbp) 404 { 405 /* 406 * older mkfs doesn't initialize quota inodes to NULLFSINO. This 407 * leads to in-core values having two different values for a quota 408 * inode to be invalid: 0 and NULLFSINO. Change it to a single value 409 * NULLFSINO. 410 * 411 * Note that this change affect only the in-core values. These 412 * values are not written back to disk unless any quota information 413 * is written to the disk. Even in that case, sb_pquotino field is 414 * not written to disk unless the superblock supports pquotino. 415 */ 416 if (sbp->sb_uquotino == 0) 417 sbp->sb_uquotino = NULLFSINO; 418 if (sbp->sb_gquotino == 0) 419 sbp->sb_gquotino = NULLFSINO; 420 if (sbp->sb_pquotino == 0) 421 sbp->sb_pquotino = NULLFSINO; 422 423 /* 424 * We need to do these manipilations only if we are working 425 * with an older version of on-disk superblock. 426 */ 427 if (xfs_sb_version_has_pquotino(sbp)) 428 return; 429 430 if (sbp->sb_qflags & XFS_OQUOTA_ENFD) 431 sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ? 432 XFS_PQUOTA_ENFD : XFS_GQUOTA_ENFD; 433 if (sbp->sb_qflags & XFS_OQUOTA_CHKD) 434 sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ? 435 XFS_PQUOTA_CHKD : XFS_GQUOTA_CHKD; 436 sbp->sb_qflags &= ~(XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD); 437 438 if (sbp->sb_qflags & XFS_PQUOTA_ACCT && 439 sbp->sb_gquotino != NULLFSINO) { 440 /* 441 * In older version of superblock, on-disk superblock only 442 * has sb_gquotino, and in-core superblock has both sb_gquotino 443 * and sb_pquotino. But, only one of them is supported at any 444 * point of time. So, if PQUOTA is set in disk superblock, 445 * copy over sb_gquotino to sb_pquotino. The NULLFSINO test 446 * above is to make sure we don't do this twice and wipe them 447 * both out! 448 */ 449 sbp->sb_pquotino = sbp->sb_gquotino; 450 sbp->sb_gquotino = NULLFSINO; 451 } 452 } 453 454 static void 455 __xfs_sb_from_disk( 456 struct xfs_sb *to, 457 xfs_dsb_t *from, 458 bool convert_xquota) 459 { 460 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 461 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 462 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 463 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 464 to->sb_rextents = be64_to_cpu(from->sb_rextents); 465 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 466 to->sb_logstart = be64_to_cpu(from->sb_logstart); 467 to->sb_rootino = be64_to_cpu(from->sb_rootino); 468 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 469 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 470 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 471 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 472 to->sb_agcount = be32_to_cpu(from->sb_agcount); 473 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 474 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 475 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 476 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 477 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 478 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 479 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 480 to->sb_blocklog = from->sb_blocklog; 481 to->sb_sectlog = from->sb_sectlog; 482 to->sb_inodelog = from->sb_inodelog; 483 to->sb_inopblog = from->sb_inopblog; 484 to->sb_agblklog = from->sb_agblklog; 485 to->sb_rextslog = from->sb_rextslog; 486 to->sb_inprogress = from->sb_inprogress; 487 to->sb_imax_pct = from->sb_imax_pct; 488 to->sb_icount = be64_to_cpu(from->sb_icount); 489 to->sb_ifree = be64_to_cpu(from->sb_ifree); 490 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 491 to->sb_frextents = be64_to_cpu(from->sb_frextents); 492 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 493 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 494 to->sb_qflags = be16_to_cpu(from->sb_qflags); 495 to->sb_flags = from->sb_flags; 496 to->sb_shared_vn = from->sb_shared_vn; 497 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 498 to->sb_unit = be32_to_cpu(from->sb_unit); 499 to->sb_width = be32_to_cpu(from->sb_width); 500 to->sb_dirblklog = from->sb_dirblklog; 501 to->sb_logsectlog = from->sb_logsectlog; 502 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 503 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 504 to->sb_features2 = be32_to_cpu(from->sb_features2); 505 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 506 to->sb_features_compat = be32_to_cpu(from->sb_features_compat); 507 to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat); 508 to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat); 509 to->sb_features_log_incompat = 510 be32_to_cpu(from->sb_features_log_incompat); 511 /* crc is only used on disk, not in memory; just init to 0 here. */ 512 to->sb_crc = 0; 513 to->sb_spino_align = be32_to_cpu(from->sb_spino_align); 514 to->sb_pquotino = be64_to_cpu(from->sb_pquotino); 515 to->sb_lsn = be64_to_cpu(from->sb_lsn); 516 /* 517 * sb_meta_uuid is only on disk if it differs from sb_uuid and the 518 * feature flag is set; if not set we keep it only in memory. 519 */ 520 if (xfs_sb_version_hasmetauuid(to)) 521 uuid_copy(&to->sb_meta_uuid, &from->sb_meta_uuid); 522 else 523 uuid_copy(&to->sb_meta_uuid, &from->sb_uuid); 524 /* Convert on-disk flags to in-memory flags? */ 525 if (convert_xquota) 526 xfs_sb_quota_from_disk(to); 527 } 528 529 void 530 xfs_sb_from_disk( 531 struct xfs_sb *to, 532 xfs_dsb_t *from) 533 { 534 __xfs_sb_from_disk(to, from, true); 535 } 536 537 static void 538 xfs_sb_quota_to_disk( 539 struct xfs_dsb *to, 540 struct xfs_sb *from) 541 { 542 uint16_t qflags = from->sb_qflags; 543 544 to->sb_uquotino = cpu_to_be64(from->sb_uquotino); 545 if (xfs_sb_version_has_pquotino(from)) { 546 to->sb_qflags = cpu_to_be16(from->sb_qflags); 547 to->sb_gquotino = cpu_to_be64(from->sb_gquotino); 548 to->sb_pquotino = cpu_to_be64(from->sb_pquotino); 549 return; 550 } 551 552 /* 553 * The in-core version of sb_qflags do not have XFS_OQUOTA_* 554 * flags, whereas the on-disk version does. So, convert incore 555 * XFS_{PG}QUOTA_* flags to on-disk XFS_OQUOTA_* flags. 556 */ 557 qflags &= ~(XFS_PQUOTA_ENFD | XFS_PQUOTA_CHKD | 558 XFS_GQUOTA_ENFD | XFS_GQUOTA_CHKD); 559 560 if (from->sb_qflags & 561 (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD)) 562 qflags |= XFS_OQUOTA_ENFD; 563 if (from->sb_qflags & 564 (XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) 565 qflags |= XFS_OQUOTA_CHKD; 566 to->sb_qflags = cpu_to_be16(qflags); 567 568 /* 569 * GQUOTINO and PQUOTINO cannot be used together in versions 570 * of superblock that do not have pquotino. from->sb_flags 571 * tells us which quota is active and should be copied to 572 * disk. If neither are active, we should NULL the inode. 573 * 574 * In all cases, the separate pquotino must remain 0 because it 575 * it beyond the "end" of the valid non-pquotino superblock. 576 */ 577 if (from->sb_qflags & XFS_GQUOTA_ACCT) 578 to->sb_gquotino = cpu_to_be64(from->sb_gquotino); 579 else if (from->sb_qflags & XFS_PQUOTA_ACCT) 580 to->sb_gquotino = cpu_to_be64(from->sb_pquotino); 581 else { 582 /* 583 * We can't rely on just the fields being logged to tell us 584 * that it is safe to write NULLFSINO - we should only do that 585 * if quotas are not actually enabled. Hence only write 586 * NULLFSINO if both in-core quota inodes are NULL. 587 */ 588 if (from->sb_gquotino == NULLFSINO && 589 from->sb_pquotino == NULLFSINO) 590 to->sb_gquotino = cpu_to_be64(NULLFSINO); 591 } 592 593 to->sb_pquotino = 0; 594 } 595 596 void 597 xfs_sb_to_disk( 598 struct xfs_dsb *to, 599 struct xfs_sb *from) 600 { 601 xfs_sb_quota_to_disk(to, from); 602 603 to->sb_magicnum = cpu_to_be32(from->sb_magicnum); 604 to->sb_blocksize = cpu_to_be32(from->sb_blocksize); 605 to->sb_dblocks = cpu_to_be64(from->sb_dblocks); 606 to->sb_rblocks = cpu_to_be64(from->sb_rblocks); 607 to->sb_rextents = cpu_to_be64(from->sb_rextents); 608 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 609 to->sb_logstart = cpu_to_be64(from->sb_logstart); 610 to->sb_rootino = cpu_to_be64(from->sb_rootino); 611 to->sb_rbmino = cpu_to_be64(from->sb_rbmino); 612 to->sb_rsumino = cpu_to_be64(from->sb_rsumino); 613 to->sb_rextsize = cpu_to_be32(from->sb_rextsize); 614 to->sb_agblocks = cpu_to_be32(from->sb_agblocks); 615 to->sb_agcount = cpu_to_be32(from->sb_agcount); 616 to->sb_rbmblocks = cpu_to_be32(from->sb_rbmblocks); 617 to->sb_logblocks = cpu_to_be32(from->sb_logblocks); 618 to->sb_versionnum = cpu_to_be16(from->sb_versionnum); 619 to->sb_sectsize = cpu_to_be16(from->sb_sectsize); 620 to->sb_inodesize = cpu_to_be16(from->sb_inodesize); 621 to->sb_inopblock = cpu_to_be16(from->sb_inopblock); 622 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 623 to->sb_blocklog = from->sb_blocklog; 624 to->sb_sectlog = from->sb_sectlog; 625 to->sb_inodelog = from->sb_inodelog; 626 to->sb_inopblog = from->sb_inopblog; 627 to->sb_agblklog = from->sb_agblklog; 628 to->sb_rextslog = from->sb_rextslog; 629 to->sb_inprogress = from->sb_inprogress; 630 to->sb_imax_pct = from->sb_imax_pct; 631 to->sb_icount = cpu_to_be64(from->sb_icount); 632 to->sb_ifree = cpu_to_be64(from->sb_ifree); 633 to->sb_fdblocks = cpu_to_be64(from->sb_fdblocks); 634 to->sb_frextents = cpu_to_be64(from->sb_frextents); 635 636 to->sb_flags = from->sb_flags; 637 to->sb_shared_vn = from->sb_shared_vn; 638 to->sb_inoalignmt = cpu_to_be32(from->sb_inoalignmt); 639 to->sb_unit = cpu_to_be32(from->sb_unit); 640 to->sb_width = cpu_to_be32(from->sb_width); 641 to->sb_dirblklog = from->sb_dirblklog; 642 to->sb_logsectlog = from->sb_logsectlog; 643 to->sb_logsectsize = cpu_to_be16(from->sb_logsectsize); 644 to->sb_logsunit = cpu_to_be32(from->sb_logsunit); 645 646 /* 647 * We need to ensure that bad_features2 always matches features2. 648 * Hence we enforce that here rather than having to remember to do it 649 * everywhere else that updates features2. 650 */ 651 from->sb_bad_features2 = from->sb_features2; 652 to->sb_features2 = cpu_to_be32(from->sb_features2); 653 to->sb_bad_features2 = cpu_to_be32(from->sb_bad_features2); 654 655 if (xfs_sb_version_hascrc(from)) { 656 to->sb_features_compat = cpu_to_be32(from->sb_features_compat); 657 to->sb_features_ro_compat = 658 cpu_to_be32(from->sb_features_ro_compat); 659 to->sb_features_incompat = 660 cpu_to_be32(from->sb_features_incompat); 661 to->sb_features_log_incompat = 662 cpu_to_be32(from->sb_features_log_incompat); 663 to->sb_spino_align = cpu_to_be32(from->sb_spino_align); 664 to->sb_lsn = cpu_to_be64(from->sb_lsn); 665 if (xfs_sb_version_hasmetauuid(from)) 666 uuid_copy(&to->sb_meta_uuid, &from->sb_meta_uuid); 667 } 668 } 669 670 /* 671 * If the superblock has the CRC feature bit set or the CRC field is non-null, 672 * check that the CRC is valid. We check the CRC field is non-null because a 673 * single bit error could clear the feature bit and unused parts of the 674 * superblock are supposed to be zero. Hence a non-null crc field indicates that 675 * we've potentially lost a feature bit and we should check it anyway. 676 * 677 * However, past bugs (i.e. in growfs) left non-zeroed regions beyond the 678 * last field in V4 secondary superblocks. So for secondary superblocks, 679 * we are more forgiving, and ignore CRC failures if the primary doesn't 680 * indicate that the fs version is V5. 681 */ 682 static void 683 xfs_sb_read_verify( 684 struct xfs_buf *bp) 685 { 686 struct xfs_sb sb; 687 struct xfs_mount *mp = bp->b_target->bt_mount; 688 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 689 int error; 690 691 /* 692 * open code the version check to avoid needing to convert the entire 693 * superblock from disk order just to check the version number 694 */ 695 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) && 696 (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) == 697 XFS_SB_VERSION_5) || 698 dsb->sb_crc != 0)) { 699 700 if (!xfs_buf_verify_cksum(bp, XFS_SB_CRC_OFF)) { 701 /* Only fail bad secondaries on a known V5 filesystem */ 702 if (bp->b_bn == XFS_SB_DADDR || 703 xfs_sb_version_hascrc(&mp->m_sb)) { 704 error = -EFSBADCRC; 705 goto out_error; 706 } 707 } 708 } 709 710 /* 711 * Check all the superblock fields. Don't byteswap the xquota flags 712 * because _verify_common checks the on-disk values. 713 */ 714 __xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp), false); 715 error = xfs_validate_sb_common(mp, bp, &sb); 716 if (error) 717 goto out_error; 718 error = xfs_validate_sb_read(mp, &sb); 719 720 out_error: 721 if (error == -EFSCORRUPTED || error == -EFSBADCRC) 722 xfs_verifier_error(bp, error, __this_address); 723 else if (error) 724 xfs_buf_ioerror(bp, error); 725 } 726 727 /* 728 * We may be probed for a filesystem match, so we may not want to emit 729 * messages when the superblock buffer is not actually an XFS superblock. 730 * If we find an XFS superblock, then run a normal, noisy mount because we are 731 * really going to mount it and want to know about errors. 732 */ 733 static void 734 xfs_sb_quiet_read_verify( 735 struct xfs_buf *bp) 736 { 737 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 738 739 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) { 740 /* XFS filesystem, verify noisily! */ 741 xfs_sb_read_verify(bp); 742 return; 743 } 744 /* quietly fail */ 745 xfs_buf_ioerror(bp, -EWRONGFS); 746 } 747 748 static void 749 xfs_sb_write_verify( 750 struct xfs_buf *bp) 751 { 752 struct xfs_sb sb; 753 struct xfs_mount *mp = bp->b_target->bt_mount; 754 struct xfs_buf_log_item *bip = bp->b_log_item; 755 int error; 756 757 /* 758 * Check all the superblock fields. Don't byteswap the xquota flags 759 * because _verify_common checks the on-disk values. 760 */ 761 __xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp), false); 762 error = xfs_validate_sb_common(mp, bp, &sb); 763 if (error) 764 goto out_error; 765 error = xfs_validate_sb_write(mp, bp, &sb); 766 if (error) 767 goto out_error; 768 769 if (!xfs_sb_version_hascrc(&mp->m_sb)) 770 return; 771 772 if (bip) 773 XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 774 775 xfs_buf_update_cksum(bp, XFS_SB_CRC_OFF); 776 return; 777 778 out_error: 779 xfs_verifier_error(bp, error, __this_address); 780 } 781 782 const struct xfs_buf_ops xfs_sb_buf_ops = { 783 .name = "xfs_sb", 784 .verify_read = xfs_sb_read_verify, 785 .verify_write = xfs_sb_write_verify, 786 }; 787 788 const struct xfs_buf_ops xfs_sb_quiet_buf_ops = { 789 .name = "xfs_sb_quiet", 790 .verify_read = xfs_sb_quiet_read_verify, 791 .verify_write = xfs_sb_write_verify, 792 }; 793 794 /* 795 * xfs_mount_common 796 * 797 * Mount initialization code establishing various mount 798 * fields from the superblock associated with the given 799 * mount structure 800 */ 801 void 802 xfs_sb_mount_common( 803 struct xfs_mount *mp, 804 struct xfs_sb *sbp) 805 { 806 mp->m_agfrotor = mp->m_agirotor = 0; 807 mp->m_maxagi = mp->m_sb.sb_agcount; 808 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 809 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 810 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 811 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 812 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 813 mp->m_blockmask = sbp->sb_blocksize - 1; 814 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 815 mp->m_blockwmask = mp->m_blockwsize - 1; 816 817 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 818 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 819 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 820 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 821 822 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 823 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 824 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 825 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 826 827 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 828 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 829 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 830 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 831 832 mp->m_rmap_mxr[0] = xfs_rmapbt_maxrecs(sbp->sb_blocksize, 1); 833 mp->m_rmap_mxr[1] = xfs_rmapbt_maxrecs(sbp->sb_blocksize, 0); 834 mp->m_rmap_mnr[0] = mp->m_rmap_mxr[0] / 2; 835 mp->m_rmap_mnr[1] = mp->m_rmap_mxr[1] / 2; 836 837 mp->m_refc_mxr[0] = xfs_refcountbt_maxrecs(sbp->sb_blocksize, true); 838 mp->m_refc_mxr[1] = xfs_refcountbt_maxrecs(sbp->sb_blocksize, false); 839 mp->m_refc_mnr[0] = mp->m_refc_mxr[0] / 2; 840 mp->m_refc_mnr[1] = mp->m_refc_mxr[1] / 2; 841 842 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 843 mp->m_ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK, 844 sbp->sb_inopblock); 845 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 846 847 if (sbp->sb_spino_align) 848 mp->m_ialloc_min_blks = sbp->sb_spino_align; 849 else 850 mp->m_ialloc_min_blks = mp->m_ialloc_blks; 851 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 852 mp->m_ag_max_usable = xfs_alloc_ag_max_usable(mp); 853 } 854 855 /* 856 * xfs_initialize_perag_data 857 * 858 * Read in each per-ag structure so we can count up the number of 859 * allocated inodes, free inodes and used filesystem blocks as this 860 * information is no longer persistent in the superblock. Once we have 861 * this information, write it into the in-core superblock structure. 862 */ 863 int 864 xfs_initialize_perag_data( 865 struct xfs_mount *mp, 866 xfs_agnumber_t agcount) 867 { 868 xfs_agnumber_t index; 869 xfs_perag_t *pag; 870 xfs_sb_t *sbp = &mp->m_sb; 871 uint64_t ifree = 0; 872 uint64_t ialloc = 0; 873 uint64_t bfree = 0; 874 uint64_t bfreelst = 0; 875 uint64_t btree = 0; 876 uint64_t fdblocks; 877 int error; 878 879 for (index = 0; index < agcount; index++) { 880 /* 881 * read the agf, then the agi. This gets us 882 * all the information we need and populates the 883 * per-ag structures for us. 884 */ 885 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 886 if (error) 887 return error; 888 889 error = xfs_ialloc_pagi_init(mp, NULL, index); 890 if (error) 891 return error; 892 pag = xfs_perag_get(mp, index); 893 ifree += pag->pagi_freecount; 894 ialloc += pag->pagi_count; 895 bfree += pag->pagf_freeblks; 896 bfreelst += pag->pagf_flcount; 897 btree += pag->pagf_btreeblks; 898 xfs_perag_put(pag); 899 } 900 fdblocks = bfree + bfreelst + btree; 901 902 /* 903 * If the new summary counts are obviously incorrect, fail the 904 * mount operation because that implies the AGFs are also corrupt. 905 * Clear BAD_SUMMARY so that we don't unmount with a dirty log, which 906 * will prevent xfs_repair from fixing anything. 907 */ 908 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) { 909 xfs_alert(mp, "AGF corruption. Please run xfs_repair."); 910 error = -EFSCORRUPTED; 911 goto out; 912 } 913 914 /* Overwrite incore superblock counters with just-read data */ 915 spin_lock(&mp->m_sb_lock); 916 sbp->sb_ifree = ifree; 917 sbp->sb_icount = ialloc; 918 sbp->sb_fdblocks = fdblocks; 919 spin_unlock(&mp->m_sb_lock); 920 921 xfs_reinit_percpu_counters(mp); 922 out: 923 mp->m_flags &= ~XFS_MOUNT_BAD_SUMMARY; 924 return error; 925 } 926 927 /* 928 * xfs_log_sb() can be used to copy arbitrary changes to the in-core superblock 929 * into the superblock buffer to be logged. It does not provide the higher 930 * level of locking that is needed to protect the in-core superblock from 931 * concurrent access. 932 */ 933 void 934 xfs_log_sb( 935 struct xfs_trans *tp) 936 { 937 struct xfs_mount *mp = tp->t_mountp; 938 struct xfs_buf *bp = xfs_trans_getsb(tp, mp, 0); 939 940 mp->m_sb.sb_icount = percpu_counter_sum(&mp->m_icount); 941 mp->m_sb.sb_ifree = percpu_counter_sum(&mp->m_ifree); 942 mp->m_sb.sb_fdblocks = percpu_counter_sum(&mp->m_fdblocks); 943 944 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb); 945 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); 946 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb)); 947 } 948 949 /* 950 * xfs_sync_sb 951 * 952 * Sync the superblock to disk. 953 * 954 * Note that the caller is responsible for checking the frozen state of the 955 * filesystem. This procedure uses the non-blocking transaction allocator and 956 * thus will allow modifications to a frozen fs. This is required because this 957 * code can be called during the process of freezing where use of the high-level 958 * allocator would deadlock. 959 */ 960 int 961 xfs_sync_sb( 962 struct xfs_mount *mp, 963 bool wait) 964 { 965 struct xfs_trans *tp; 966 int error; 967 968 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_sb, 0, 0, 969 XFS_TRANS_NO_WRITECOUNT, &tp); 970 if (error) 971 return error; 972 973 xfs_log_sb(tp); 974 if (wait) 975 xfs_trans_set_sync(tp); 976 return xfs_trans_commit(tp); 977 } 978 979 /* 980 * Update all the secondary superblocks to match the new state of the primary. 981 * Because we are completely overwriting all the existing fields in the 982 * secondary superblock buffers, there is no need to read them in from disk. 983 * Just get a new buffer, stamp it and write it. 984 * 985 * The sb buffers need to be cached here so that we serialise against other 986 * operations that access the secondary superblocks, but we don't want to keep 987 * them in memory once it is written so we mark it as a one-shot buffer. 988 */ 989 int 990 xfs_update_secondary_sbs( 991 struct xfs_mount *mp) 992 { 993 xfs_agnumber_t agno; 994 int saved_error = 0; 995 int error = 0; 996 LIST_HEAD (buffer_list); 997 998 /* update secondary superblocks. */ 999 for (agno = 1; agno < mp->m_sb.sb_agcount; agno++) { 1000 struct xfs_buf *bp; 1001 1002 bp = xfs_buf_get(mp->m_ddev_targp, 1003 XFS_AG_DADDR(mp, agno, XFS_SB_DADDR), 1004 XFS_FSS_TO_BB(mp, 1), 0); 1005 /* 1006 * If we get an error reading or writing alternate superblocks, 1007 * continue. xfs_repair chooses the "best" superblock based 1008 * on most matches; if we break early, we'll leave more 1009 * superblocks un-updated than updated, and xfs_repair may 1010 * pick them over the properly-updated primary. 1011 */ 1012 if (!bp) { 1013 xfs_warn(mp, 1014 "error allocating secondary superblock for ag %d", 1015 agno); 1016 if (!saved_error) 1017 saved_error = -ENOMEM; 1018 continue; 1019 } 1020 1021 bp->b_ops = &xfs_sb_buf_ops; 1022 xfs_buf_oneshot(bp); 1023 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 1024 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb); 1025 xfs_buf_delwri_queue(bp, &buffer_list); 1026 xfs_buf_relse(bp); 1027 1028 /* don't hold too many buffers at once */ 1029 if (agno % 16) 1030 continue; 1031 1032 error = xfs_buf_delwri_submit(&buffer_list); 1033 if (error) { 1034 xfs_warn(mp, 1035 "write error %d updating a secondary superblock near ag %d", 1036 error, agno); 1037 if (!saved_error) 1038 saved_error = error; 1039 continue; 1040 } 1041 } 1042 error = xfs_buf_delwri_submit(&buffer_list); 1043 if (error) { 1044 xfs_warn(mp, 1045 "write error %d updating a secondary superblock near ag %d", 1046 error, agno); 1047 } 1048 1049 return saved_error ? saved_error : error; 1050 } 1051 1052 /* 1053 * Same behavior as xfs_sync_sb, except that it is always synchronous and it 1054 * also writes the superblock buffer to disk sector 0 immediately. 1055 */ 1056 int 1057 xfs_sync_sb_buf( 1058 struct xfs_mount *mp) 1059 { 1060 struct xfs_trans *tp; 1061 struct xfs_buf *bp; 1062 int error; 1063 1064 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_sb, 0, 0, 0, &tp); 1065 if (error) 1066 return error; 1067 1068 bp = xfs_trans_getsb(tp, mp, 0); 1069 xfs_log_sb(tp); 1070 xfs_trans_bhold(tp, bp); 1071 xfs_trans_set_sync(tp); 1072 error = xfs_trans_commit(tp); 1073 if (error) 1074 goto out; 1075 /* 1076 * write out the sb buffer to get the changes to disk 1077 */ 1078 error = xfs_bwrite(bp); 1079 out: 1080 xfs_buf_relse(bp); 1081 return error; 1082 } 1083 1084 int 1085 xfs_fs_geometry( 1086 struct xfs_sb *sbp, 1087 struct xfs_fsop_geom *geo, 1088 int struct_version) 1089 { 1090 memset(geo, 0, sizeof(struct xfs_fsop_geom)); 1091 1092 geo->blocksize = sbp->sb_blocksize; 1093 geo->rtextsize = sbp->sb_rextsize; 1094 geo->agblocks = sbp->sb_agblocks; 1095 geo->agcount = sbp->sb_agcount; 1096 geo->logblocks = sbp->sb_logblocks; 1097 geo->sectsize = sbp->sb_sectsize; 1098 geo->inodesize = sbp->sb_inodesize; 1099 geo->imaxpct = sbp->sb_imax_pct; 1100 geo->datablocks = sbp->sb_dblocks; 1101 geo->rtblocks = sbp->sb_rblocks; 1102 geo->rtextents = sbp->sb_rextents; 1103 geo->logstart = sbp->sb_logstart; 1104 BUILD_BUG_ON(sizeof(geo->uuid) != sizeof(sbp->sb_uuid)); 1105 memcpy(geo->uuid, &sbp->sb_uuid, sizeof(sbp->sb_uuid)); 1106 1107 if (struct_version < 2) 1108 return 0; 1109 1110 geo->sunit = sbp->sb_unit; 1111 geo->swidth = sbp->sb_width; 1112 1113 if (struct_version < 3) 1114 return 0; 1115 1116 geo->version = XFS_FSOP_GEOM_VERSION; 1117 geo->flags = XFS_FSOP_GEOM_FLAGS_NLINK | 1118 XFS_FSOP_GEOM_FLAGS_DIRV2; 1119 if (xfs_sb_version_hasattr(sbp)) 1120 geo->flags |= XFS_FSOP_GEOM_FLAGS_ATTR; 1121 if (xfs_sb_version_hasquota(sbp)) 1122 geo->flags |= XFS_FSOP_GEOM_FLAGS_QUOTA; 1123 if (xfs_sb_version_hasalign(sbp)) 1124 geo->flags |= XFS_FSOP_GEOM_FLAGS_IALIGN; 1125 if (xfs_sb_version_hasdalign(sbp)) 1126 geo->flags |= XFS_FSOP_GEOM_FLAGS_DALIGN; 1127 if (xfs_sb_version_hasextflgbit(sbp)) 1128 geo->flags |= XFS_FSOP_GEOM_FLAGS_EXTFLG; 1129 if (xfs_sb_version_hassector(sbp)) 1130 geo->flags |= XFS_FSOP_GEOM_FLAGS_SECTOR; 1131 if (xfs_sb_version_hasasciici(sbp)) 1132 geo->flags |= XFS_FSOP_GEOM_FLAGS_DIRV2CI; 1133 if (xfs_sb_version_haslazysbcount(sbp)) 1134 geo->flags |= XFS_FSOP_GEOM_FLAGS_LAZYSB; 1135 if (xfs_sb_version_hasattr2(sbp)) 1136 geo->flags |= XFS_FSOP_GEOM_FLAGS_ATTR2; 1137 if (xfs_sb_version_hasprojid32bit(sbp)) 1138 geo->flags |= XFS_FSOP_GEOM_FLAGS_PROJID32; 1139 if (xfs_sb_version_hascrc(sbp)) 1140 geo->flags |= XFS_FSOP_GEOM_FLAGS_V5SB; 1141 if (xfs_sb_version_hasftype(sbp)) 1142 geo->flags |= XFS_FSOP_GEOM_FLAGS_FTYPE; 1143 if (xfs_sb_version_hasfinobt(sbp)) 1144 geo->flags |= XFS_FSOP_GEOM_FLAGS_FINOBT; 1145 if (xfs_sb_version_hassparseinodes(sbp)) 1146 geo->flags |= XFS_FSOP_GEOM_FLAGS_SPINODES; 1147 if (xfs_sb_version_hasrmapbt(sbp)) 1148 geo->flags |= XFS_FSOP_GEOM_FLAGS_RMAPBT; 1149 if (xfs_sb_version_hasreflink(sbp)) 1150 geo->flags |= XFS_FSOP_GEOM_FLAGS_REFLINK; 1151 if (xfs_sb_version_hassector(sbp)) 1152 geo->logsectsize = sbp->sb_logsectsize; 1153 else 1154 geo->logsectsize = BBSIZE; 1155 geo->rtsectsize = sbp->sb_blocksize; 1156 geo->dirblocksize = xfs_dir2_dirblock_bytes(sbp); 1157 1158 if (struct_version < 4) 1159 return 0; 1160 1161 if (xfs_sb_version_haslogv2(sbp)) 1162 geo->flags |= XFS_FSOP_GEOM_FLAGS_LOGV2; 1163 1164 geo->logsunit = sbp->sb_logsunit; 1165 1166 return 0; 1167 } 1168 1169 /* Read a secondary superblock. */ 1170 int 1171 xfs_sb_read_secondary( 1172 struct xfs_mount *mp, 1173 struct xfs_trans *tp, 1174 xfs_agnumber_t agno, 1175 struct xfs_buf **bpp) 1176 { 1177 struct xfs_buf *bp; 1178 int error; 1179 1180 ASSERT(agno != 0 && agno != NULLAGNUMBER); 1181 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 1182 XFS_AG_DADDR(mp, agno, XFS_SB_BLOCK(mp)), 1183 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_sb_buf_ops); 1184 if (error) 1185 return error; 1186 xfs_buf_set_ref(bp, XFS_SSB_REF); 1187 *bpp = bp; 1188 return 0; 1189 } 1190 1191 /* Get an uninitialised secondary superblock buffer. */ 1192 int 1193 xfs_sb_get_secondary( 1194 struct xfs_mount *mp, 1195 struct xfs_trans *tp, 1196 xfs_agnumber_t agno, 1197 struct xfs_buf **bpp) 1198 { 1199 struct xfs_buf *bp; 1200 1201 ASSERT(agno != 0 && agno != NULLAGNUMBER); 1202 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, 1203 XFS_AG_DADDR(mp, agno, XFS_SB_BLOCK(mp)), 1204 XFS_FSS_TO_BB(mp, 1), 0); 1205 if (!bp) 1206 return -ENOMEM; 1207 bp->b_ops = &xfs_sb_buf_ops; 1208 xfs_buf_oneshot(bp); 1209 *bpp = bp; 1210 return 0; 1211 } 1212