1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_ialloc.h" 15 #include "xfs_alloc.h" 16 #include "xfs_error.h" 17 #include "xfs_trace.h" 18 #include "xfs_trans.h" 19 #include "xfs_buf_item.h" 20 #include "xfs_bmap_btree.h" 21 #include "xfs_alloc_btree.h" 22 #include "xfs_log.h" 23 #include "xfs_rmap_btree.h" 24 #include "xfs_refcount_btree.h" 25 #include "xfs_da_format.h" 26 #include "xfs_health.h" 27 28 /* 29 * Physical superblock buffer manipulations. Shared with libxfs in userspace. 30 */ 31 32 /* 33 * Reference counting access wrappers to the perag structures. 34 * Because we never free per-ag structures, the only thing we 35 * have to protect against changes is the tree structure itself. 36 */ 37 struct xfs_perag * 38 xfs_perag_get( 39 struct xfs_mount *mp, 40 xfs_agnumber_t agno) 41 { 42 struct xfs_perag *pag; 43 int ref = 0; 44 45 rcu_read_lock(); 46 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 47 if (pag) { 48 ASSERT(atomic_read(&pag->pag_ref) >= 0); 49 ref = atomic_inc_return(&pag->pag_ref); 50 } 51 rcu_read_unlock(); 52 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 53 return pag; 54 } 55 56 /* 57 * search from @first to find the next perag with the given tag set. 58 */ 59 struct xfs_perag * 60 xfs_perag_get_tag( 61 struct xfs_mount *mp, 62 xfs_agnumber_t first, 63 int tag) 64 { 65 struct xfs_perag *pag; 66 int found; 67 int ref; 68 69 rcu_read_lock(); 70 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 71 (void **)&pag, first, 1, tag); 72 if (found <= 0) { 73 rcu_read_unlock(); 74 return NULL; 75 } 76 ref = atomic_inc_return(&pag->pag_ref); 77 rcu_read_unlock(); 78 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); 79 return pag; 80 } 81 82 void 83 xfs_perag_put( 84 struct xfs_perag *pag) 85 { 86 int ref; 87 88 ASSERT(atomic_read(&pag->pag_ref) > 0); 89 ref = atomic_dec_return(&pag->pag_ref); 90 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 91 } 92 93 /* Check all the superblock fields we care about when reading one in. */ 94 STATIC int 95 xfs_validate_sb_read( 96 struct xfs_mount *mp, 97 struct xfs_sb *sbp) 98 { 99 if (XFS_SB_VERSION_NUM(sbp) != XFS_SB_VERSION_5) 100 return 0; 101 102 /* 103 * Version 5 superblock feature mask validation. Reject combinations 104 * the kernel cannot support up front before checking anything else. 105 */ 106 if (xfs_sb_has_compat_feature(sbp, XFS_SB_FEAT_COMPAT_UNKNOWN)) { 107 xfs_warn(mp, 108 "Superblock has unknown compatible features (0x%x) enabled.", 109 (sbp->sb_features_compat & XFS_SB_FEAT_COMPAT_UNKNOWN)); 110 xfs_warn(mp, 111 "Using a more recent kernel is recommended."); 112 } 113 114 if (xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 115 xfs_alert(mp, 116 "Superblock has unknown read-only compatible features (0x%x) enabled.", 117 (sbp->sb_features_ro_compat & 118 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 119 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 120 xfs_warn(mp, 121 "Attempted to mount read-only compatible filesystem read-write."); 122 xfs_warn(mp, 123 "Filesystem can only be safely mounted read only."); 124 125 return -EINVAL; 126 } 127 } 128 if (xfs_sb_has_incompat_feature(sbp, XFS_SB_FEAT_INCOMPAT_UNKNOWN)) { 129 xfs_warn(mp, 130 "Superblock has unknown incompatible features (0x%x) enabled.", 131 (sbp->sb_features_incompat & 132 XFS_SB_FEAT_INCOMPAT_UNKNOWN)); 133 xfs_warn(mp, 134 "Filesystem cannot be safely mounted by this kernel."); 135 return -EINVAL; 136 } 137 138 return 0; 139 } 140 141 /* Check all the superblock fields we care about when writing one out. */ 142 STATIC int 143 xfs_validate_sb_write( 144 struct xfs_mount *mp, 145 struct xfs_buf *bp, 146 struct xfs_sb *sbp) 147 { 148 /* 149 * Carry out additional sb summary counter sanity checks when we write 150 * the superblock. We skip this in the read validator because there 151 * could be newer superblocks in the log and if the values are garbage 152 * even after replay we'll recalculate them at the end of log mount. 153 * 154 * mkfs has traditionally written zeroed counters to inprogress and 155 * secondary superblocks, so allow this usage to continue because 156 * we never read counters from such superblocks. 157 */ 158 if (XFS_BUF_ADDR(bp) == XFS_SB_DADDR && !sbp->sb_inprogress && 159 (sbp->sb_fdblocks > sbp->sb_dblocks || 160 !xfs_verify_icount(mp, sbp->sb_icount) || 161 sbp->sb_ifree > sbp->sb_icount)) { 162 xfs_warn(mp, "SB summary counter sanity check failed"); 163 return -EFSCORRUPTED; 164 } 165 166 if (XFS_SB_VERSION_NUM(sbp) != XFS_SB_VERSION_5) 167 return 0; 168 169 /* 170 * Version 5 superblock feature mask validation. Reject combinations 171 * the kernel cannot support since we checked for unsupported bits in 172 * the read verifier, which means that memory is corrupt. 173 */ 174 if (xfs_sb_has_compat_feature(sbp, XFS_SB_FEAT_COMPAT_UNKNOWN)) { 175 xfs_warn(mp, 176 "Corruption detected in superblock compatible features (0x%x)!", 177 (sbp->sb_features_compat & XFS_SB_FEAT_COMPAT_UNKNOWN)); 178 return -EFSCORRUPTED; 179 } 180 181 if (xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 182 xfs_alert(mp, 183 "Corruption detected in superblock read-only compatible features (0x%x)!", 184 (sbp->sb_features_ro_compat & 185 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 186 return -EFSCORRUPTED; 187 } 188 if (xfs_sb_has_incompat_feature(sbp, XFS_SB_FEAT_INCOMPAT_UNKNOWN)) { 189 xfs_warn(mp, 190 "Corruption detected in superblock incompatible features (0x%x)!", 191 (sbp->sb_features_incompat & 192 XFS_SB_FEAT_INCOMPAT_UNKNOWN)); 193 return -EFSCORRUPTED; 194 } 195 if (xfs_sb_has_incompat_log_feature(sbp, 196 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 197 xfs_warn(mp, 198 "Corruption detected in superblock incompatible log features (0x%x)!", 199 (sbp->sb_features_log_incompat & 200 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 201 return -EFSCORRUPTED; 202 } 203 204 /* 205 * We can't read verify the sb LSN because the read verifier is called 206 * before the log is allocated and processed. We know the log is set up 207 * before write verifier calls, so check it here. 208 */ 209 if (!xfs_log_check_lsn(mp, sbp->sb_lsn)) 210 return -EFSCORRUPTED; 211 212 return 0; 213 } 214 215 /* Check the validity of the SB. */ 216 STATIC int 217 xfs_validate_sb_common( 218 struct xfs_mount *mp, 219 struct xfs_buf *bp, 220 struct xfs_sb *sbp) 221 { 222 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 223 uint32_t agcount = 0; 224 uint32_t rem; 225 226 if (!xfs_verify_magic(bp, dsb->sb_magicnum)) { 227 xfs_warn(mp, "bad magic number"); 228 return -EWRONGFS; 229 } 230 231 if (!xfs_sb_good_version(sbp)) { 232 xfs_warn(mp, "bad version"); 233 return -EWRONGFS; 234 } 235 236 if (xfs_sb_version_has_pquotino(sbp)) { 237 if (sbp->sb_qflags & (XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD)) { 238 xfs_notice(mp, 239 "Version 5 of Super block has XFS_OQUOTA bits."); 240 return -EFSCORRUPTED; 241 } 242 } else if (sbp->sb_qflags & (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD | 243 XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) { 244 xfs_notice(mp, 245 "Superblock earlier than Version 5 has XFS_[PQ]UOTA_{ENFD|CHKD} bits."); 246 return -EFSCORRUPTED; 247 } 248 249 /* 250 * Full inode chunks must be aligned to inode chunk size when 251 * sparse inodes are enabled to support the sparse chunk 252 * allocation algorithm and prevent overlapping inode records. 253 */ 254 if (xfs_sb_version_hassparseinodes(sbp)) { 255 uint32_t align; 256 257 align = XFS_INODES_PER_CHUNK * sbp->sb_inodesize 258 >> sbp->sb_blocklog; 259 if (sbp->sb_inoalignmt != align) { 260 xfs_warn(mp, 261 "Inode block alignment (%u) must match chunk size (%u) for sparse inodes.", 262 sbp->sb_inoalignmt, align); 263 return -EINVAL; 264 } 265 } 266 267 if (unlikely( 268 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 269 xfs_warn(mp, 270 "filesystem is marked as having an external log; " 271 "specify logdev on the mount command line."); 272 return -EINVAL; 273 } 274 275 if (unlikely( 276 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 277 xfs_warn(mp, 278 "filesystem is marked as having an internal log; " 279 "do not specify logdev on the mount command line."); 280 return -EINVAL; 281 } 282 283 /* Compute agcount for this number of dblocks and agblocks */ 284 if (sbp->sb_agblocks) { 285 agcount = div_u64_rem(sbp->sb_dblocks, sbp->sb_agblocks, &rem); 286 if (rem) 287 agcount++; 288 } 289 290 /* 291 * More sanity checking. Most of these were stolen directly from 292 * xfs_repair. 293 */ 294 if (unlikely( 295 sbp->sb_agcount <= 0 || 296 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 297 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 298 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 299 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 300 sbp->sb_sectsize != (1 << sbp->sb_sectlog) || 301 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 302 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 303 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 304 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 305 sbp->sb_blocksize != (1 << sbp->sb_blocklog) || 306 sbp->sb_dirblklog + sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 307 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 308 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 309 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 310 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 311 sbp->sb_inodesize != (1 << sbp->sb_inodelog) || 312 sbp->sb_logsunit > XLOG_MAX_RECORD_BSIZE || 313 sbp->sb_inopblock != howmany(sbp->sb_blocksize,sbp->sb_inodesize) || 314 XFS_FSB_TO_B(mp, sbp->sb_agblocks) < XFS_MIN_AG_BYTES || 315 XFS_FSB_TO_B(mp, sbp->sb_agblocks) > XFS_MAX_AG_BYTES || 316 sbp->sb_agblklog != xfs_highbit32(sbp->sb_agblocks - 1) + 1 || 317 agcount == 0 || agcount != sbp->sb_agcount || 318 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 319 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 320 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 321 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) || 322 sbp->sb_dblocks == 0 || 323 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) || 324 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp) || 325 sbp->sb_shared_vn != 0)) { 326 xfs_notice(mp, "SB sanity check failed"); 327 return -EFSCORRUPTED; 328 } 329 330 if (sbp->sb_unit) { 331 if (!xfs_sb_version_hasdalign(sbp) || 332 sbp->sb_unit > sbp->sb_width || 333 (sbp->sb_width % sbp->sb_unit) != 0) { 334 xfs_notice(mp, "SB stripe unit sanity check failed"); 335 return -EFSCORRUPTED; 336 } 337 } else if (xfs_sb_version_hasdalign(sbp)) { 338 xfs_notice(mp, "SB stripe alignment sanity check failed"); 339 return -EFSCORRUPTED; 340 } else if (sbp->sb_width) { 341 xfs_notice(mp, "SB stripe width sanity check failed"); 342 return -EFSCORRUPTED; 343 } 344 345 346 if (xfs_sb_version_hascrc(&mp->m_sb) && 347 sbp->sb_blocksize < XFS_MIN_CRC_BLOCKSIZE) { 348 xfs_notice(mp, "v5 SB sanity check failed"); 349 return -EFSCORRUPTED; 350 } 351 352 /* 353 * Until this is fixed only page-sized or smaller data blocks work. 354 */ 355 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 356 xfs_warn(mp, 357 "File system with blocksize %d bytes. " 358 "Only pagesize (%ld) or less will currently work.", 359 sbp->sb_blocksize, PAGE_SIZE); 360 return -ENOSYS; 361 } 362 363 /* 364 * Currently only very few inode sizes are supported. 365 */ 366 switch (sbp->sb_inodesize) { 367 case 256: 368 case 512: 369 case 1024: 370 case 2048: 371 break; 372 default: 373 xfs_warn(mp, "inode size of %d bytes not supported", 374 sbp->sb_inodesize); 375 return -ENOSYS; 376 } 377 378 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 379 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 380 xfs_warn(mp, 381 "file system too large to be mounted on this system."); 382 return -EFBIG; 383 } 384 385 /* 386 * Don't touch the filesystem if a user tool thinks it owns the primary 387 * superblock. mkfs doesn't clear the flag from secondary supers, so 388 * we don't check them at all. 389 */ 390 if (XFS_BUF_ADDR(bp) == XFS_SB_DADDR && sbp->sb_inprogress) { 391 xfs_warn(mp, "Offline file system operation in progress!"); 392 return -EFSCORRUPTED; 393 } 394 return 0; 395 } 396 397 void 398 xfs_sb_quota_from_disk(struct xfs_sb *sbp) 399 { 400 /* 401 * older mkfs doesn't initialize quota inodes to NULLFSINO. This 402 * leads to in-core values having two different values for a quota 403 * inode to be invalid: 0 and NULLFSINO. Change it to a single value 404 * NULLFSINO. 405 * 406 * Note that this change affect only the in-core values. These 407 * values are not written back to disk unless any quota information 408 * is written to the disk. Even in that case, sb_pquotino field is 409 * not written to disk unless the superblock supports pquotino. 410 */ 411 if (sbp->sb_uquotino == 0) 412 sbp->sb_uquotino = NULLFSINO; 413 if (sbp->sb_gquotino == 0) 414 sbp->sb_gquotino = NULLFSINO; 415 if (sbp->sb_pquotino == 0) 416 sbp->sb_pquotino = NULLFSINO; 417 418 /* 419 * We need to do these manipilations only if we are working 420 * with an older version of on-disk superblock. 421 */ 422 if (xfs_sb_version_has_pquotino(sbp)) 423 return; 424 425 if (sbp->sb_qflags & XFS_OQUOTA_ENFD) 426 sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ? 427 XFS_PQUOTA_ENFD : XFS_GQUOTA_ENFD; 428 if (sbp->sb_qflags & XFS_OQUOTA_CHKD) 429 sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ? 430 XFS_PQUOTA_CHKD : XFS_GQUOTA_CHKD; 431 sbp->sb_qflags &= ~(XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD); 432 433 if (sbp->sb_qflags & XFS_PQUOTA_ACCT && 434 sbp->sb_gquotino != NULLFSINO) { 435 /* 436 * In older version of superblock, on-disk superblock only 437 * has sb_gquotino, and in-core superblock has both sb_gquotino 438 * and sb_pquotino. But, only one of them is supported at any 439 * point of time. So, if PQUOTA is set in disk superblock, 440 * copy over sb_gquotino to sb_pquotino. The NULLFSINO test 441 * above is to make sure we don't do this twice and wipe them 442 * both out! 443 */ 444 sbp->sb_pquotino = sbp->sb_gquotino; 445 sbp->sb_gquotino = NULLFSINO; 446 } 447 } 448 449 static void 450 __xfs_sb_from_disk( 451 struct xfs_sb *to, 452 xfs_dsb_t *from, 453 bool convert_xquota) 454 { 455 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 456 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 457 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 458 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 459 to->sb_rextents = be64_to_cpu(from->sb_rextents); 460 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 461 to->sb_logstart = be64_to_cpu(from->sb_logstart); 462 to->sb_rootino = be64_to_cpu(from->sb_rootino); 463 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 464 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 465 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 466 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 467 to->sb_agcount = be32_to_cpu(from->sb_agcount); 468 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 469 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 470 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 471 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 472 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 473 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 474 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 475 to->sb_blocklog = from->sb_blocklog; 476 to->sb_sectlog = from->sb_sectlog; 477 to->sb_inodelog = from->sb_inodelog; 478 to->sb_inopblog = from->sb_inopblog; 479 to->sb_agblklog = from->sb_agblklog; 480 to->sb_rextslog = from->sb_rextslog; 481 to->sb_inprogress = from->sb_inprogress; 482 to->sb_imax_pct = from->sb_imax_pct; 483 to->sb_icount = be64_to_cpu(from->sb_icount); 484 to->sb_ifree = be64_to_cpu(from->sb_ifree); 485 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 486 to->sb_frextents = be64_to_cpu(from->sb_frextents); 487 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 488 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 489 to->sb_qflags = be16_to_cpu(from->sb_qflags); 490 to->sb_flags = from->sb_flags; 491 to->sb_shared_vn = from->sb_shared_vn; 492 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 493 to->sb_unit = be32_to_cpu(from->sb_unit); 494 to->sb_width = be32_to_cpu(from->sb_width); 495 to->sb_dirblklog = from->sb_dirblklog; 496 to->sb_logsectlog = from->sb_logsectlog; 497 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 498 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 499 to->sb_features2 = be32_to_cpu(from->sb_features2); 500 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 501 to->sb_features_compat = be32_to_cpu(from->sb_features_compat); 502 to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat); 503 to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat); 504 to->sb_features_log_incompat = 505 be32_to_cpu(from->sb_features_log_incompat); 506 /* crc is only used on disk, not in memory; just init to 0 here. */ 507 to->sb_crc = 0; 508 to->sb_spino_align = be32_to_cpu(from->sb_spino_align); 509 to->sb_pquotino = be64_to_cpu(from->sb_pquotino); 510 to->sb_lsn = be64_to_cpu(from->sb_lsn); 511 /* 512 * sb_meta_uuid is only on disk if it differs from sb_uuid and the 513 * feature flag is set; if not set we keep it only in memory. 514 */ 515 if (xfs_sb_version_hasmetauuid(to)) 516 uuid_copy(&to->sb_meta_uuid, &from->sb_meta_uuid); 517 else 518 uuid_copy(&to->sb_meta_uuid, &from->sb_uuid); 519 /* Convert on-disk flags to in-memory flags? */ 520 if (convert_xquota) 521 xfs_sb_quota_from_disk(to); 522 } 523 524 void 525 xfs_sb_from_disk( 526 struct xfs_sb *to, 527 xfs_dsb_t *from) 528 { 529 __xfs_sb_from_disk(to, from, true); 530 } 531 532 static void 533 xfs_sb_quota_to_disk( 534 struct xfs_dsb *to, 535 struct xfs_sb *from) 536 { 537 uint16_t qflags = from->sb_qflags; 538 539 to->sb_uquotino = cpu_to_be64(from->sb_uquotino); 540 if (xfs_sb_version_has_pquotino(from)) { 541 to->sb_qflags = cpu_to_be16(from->sb_qflags); 542 to->sb_gquotino = cpu_to_be64(from->sb_gquotino); 543 to->sb_pquotino = cpu_to_be64(from->sb_pquotino); 544 return; 545 } 546 547 /* 548 * The in-core version of sb_qflags do not have XFS_OQUOTA_* 549 * flags, whereas the on-disk version does. So, convert incore 550 * XFS_{PG}QUOTA_* flags to on-disk XFS_OQUOTA_* flags. 551 */ 552 qflags &= ~(XFS_PQUOTA_ENFD | XFS_PQUOTA_CHKD | 553 XFS_GQUOTA_ENFD | XFS_GQUOTA_CHKD); 554 555 if (from->sb_qflags & 556 (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD)) 557 qflags |= XFS_OQUOTA_ENFD; 558 if (from->sb_qflags & 559 (XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) 560 qflags |= XFS_OQUOTA_CHKD; 561 to->sb_qflags = cpu_to_be16(qflags); 562 563 /* 564 * GQUOTINO and PQUOTINO cannot be used together in versions 565 * of superblock that do not have pquotino. from->sb_flags 566 * tells us which quota is active and should be copied to 567 * disk. If neither are active, we should NULL the inode. 568 * 569 * In all cases, the separate pquotino must remain 0 because it 570 * it beyond the "end" of the valid non-pquotino superblock. 571 */ 572 if (from->sb_qflags & XFS_GQUOTA_ACCT) 573 to->sb_gquotino = cpu_to_be64(from->sb_gquotino); 574 else if (from->sb_qflags & XFS_PQUOTA_ACCT) 575 to->sb_gquotino = cpu_to_be64(from->sb_pquotino); 576 else { 577 /* 578 * We can't rely on just the fields being logged to tell us 579 * that it is safe to write NULLFSINO - we should only do that 580 * if quotas are not actually enabled. Hence only write 581 * NULLFSINO if both in-core quota inodes are NULL. 582 */ 583 if (from->sb_gquotino == NULLFSINO && 584 from->sb_pquotino == NULLFSINO) 585 to->sb_gquotino = cpu_to_be64(NULLFSINO); 586 } 587 588 to->sb_pquotino = 0; 589 } 590 591 void 592 xfs_sb_to_disk( 593 struct xfs_dsb *to, 594 struct xfs_sb *from) 595 { 596 xfs_sb_quota_to_disk(to, from); 597 598 to->sb_magicnum = cpu_to_be32(from->sb_magicnum); 599 to->sb_blocksize = cpu_to_be32(from->sb_blocksize); 600 to->sb_dblocks = cpu_to_be64(from->sb_dblocks); 601 to->sb_rblocks = cpu_to_be64(from->sb_rblocks); 602 to->sb_rextents = cpu_to_be64(from->sb_rextents); 603 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 604 to->sb_logstart = cpu_to_be64(from->sb_logstart); 605 to->sb_rootino = cpu_to_be64(from->sb_rootino); 606 to->sb_rbmino = cpu_to_be64(from->sb_rbmino); 607 to->sb_rsumino = cpu_to_be64(from->sb_rsumino); 608 to->sb_rextsize = cpu_to_be32(from->sb_rextsize); 609 to->sb_agblocks = cpu_to_be32(from->sb_agblocks); 610 to->sb_agcount = cpu_to_be32(from->sb_agcount); 611 to->sb_rbmblocks = cpu_to_be32(from->sb_rbmblocks); 612 to->sb_logblocks = cpu_to_be32(from->sb_logblocks); 613 to->sb_versionnum = cpu_to_be16(from->sb_versionnum); 614 to->sb_sectsize = cpu_to_be16(from->sb_sectsize); 615 to->sb_inodesize = cpu_to_be16(from->sb_inodesize); 616 to->sb_inopblock = cpu_to_be16(from->sb_inopblock); 617 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 618 to->sb_blocklog = from->sb_blocklog; 619 to->sb_sectlog = from->sb_sectlog; 620 to->sb_inodelog = from->sb_inodelog; 621 to->sb_inopblog = from->sb_inopblog; 622 to->sb_agblklog = from->sb_agblklog; 623 to->sb_rextslog = from->sb_rextslog; 624 to->sb_inprogress = from->sb_inprogress; 625 to->sb_imax_pct = from->sb_imax_pct; 626 to->sb_icount = cpu_to_be64(from->sb_icount); 627 to->sb_ifree = cpu_to_be64(from->sb_ifree); 628 to->sb_fdblocks = cpu_to_be64(from->sb_fdblocks); 629 to->sb_frextents = cpu_to_be64(from->sb_frextents); 630 631 to->sb_flags = from->sb_flags; 632 to->sb_shared_vn = from->sb_shared_vn; 633 to->sb_inoalignmt = cpu_to_be32(from->sb_inoalignmt); 634 to->sb_unit = cpu_to_be32(from->sb_unit); 635 to->sb_width = cpu_to_be32(from->sb_width); 636 to->sb_dirblklog = from->sb_dirblklog; 637 to->sb_logsectlog = from->sb_logsectlog; 638 to->sb_logsectsize = cpu_to_be16(from->sb_logsectsize); 639 to->sb_logsunit = cpu_to_be32(from->sb_logsunit); 640 641 /* 642 * We need to ensure that bad_features2 always matches features2. 643 * Hence we enforce that here rather than having to remember to do it 644 * everywhere else that updates features2. 645 */ 646 from->sb_bad_features2 = from->sb_features2; 647 to->sb_features2 = cpu_to_be32(from->sb_features2); 648 to->sb_bad_features2 = cpu_to_be32(from->sb_bad_features2); 649 650 if (xfs_sb_version_hascrc(from)) { 651 to->sb_features_compat = cpu_to_be32(from->sb_features_compat); 652 to->sb_features_ro_compat = 653 cpu_to_be32(from->sb_features_ro_compat); 654 to->sb_features_incompat = 655 cpu_to_be32(from->sb_features_incompat); 656 to->sb_features_log_incompat = 657 cpu_to_be32(from->sb_features_log_incompat); 658 to->sb_spino_align = cpu_to_be32(from->sb_spino_align); 659 to->sb_lsn = cpu_to_be64(from->sb_lsn); 660 if (xfs_sb_version_hasmetauuid(from)) 661 uuid_copy(&to->sb_meta_uuid, &from->sb_meta_uuid); 662 } 663 } 664 665 /* 666 * If the superblock has the CRC feature bit set or the CRC field is non-null, 667 * check that the CRC is valid. We check the CRC field is non-null because a 668 * single bit error could clear the feature bit and unused parts of the 669 * superblock are supposed to be zero. Hence a non-null crc field indicates that 670 * we've potentially lost a feature bit and we should check it anyway. 671 * 672 * However, past bugs (i.e. in growfs) left non-zeroed regions beyond the 673 * last field in V4 secondary superblocks. So for secondary superblocks, 674 * we are more forgiving, and ignore CRC failures if the primary doesn't 675 * indicate that the fs version is V5. 676 */ 677 static void 678 xfs_sb_read_verify( 679 struct xfs_buf *bp) 680 { 681 struct xfs_sb sb; 682 struct xfs_mount *mp = bp->b_mount; 683 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 684 int error; 685 686 /* 687 * open code the version check to avoid needing to convert the entire 688 * superblock from disk order just to check the version number 689 */ 690 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) && 691 (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) == 692 XFS_SB_VERSION_5) || 693 dsb->sb_crc != 0)) { 694 695 if (!xfs_buf_verify_cksum(bp, XFS_SB_CRC_OFF)) { 696 /* Only fail bad secondaries on a known V5 filesystem */ 697 if (bp->b_bn == XFS_SB_DADDR || 698 xfs_sb_version_hascrc(&mp->m_sb)) { 699 error = -EFSBADCRC; 700 goto out_error; 701 } 702 } 703 } 704 705 /* 706 * Check all the superblock fields. Don't byteswap the xquota flags 707 * because _verify_common checks the on-disk values. 708 */ 709 __xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp), false); 710 error = xfs_validate_sb_common(mp, bp, &sb); 711 if (error) 712 goto out_error; 713 error = xfs_validate_sb_read(mp, &sb); 714 715 out_error: 716 if (error == -EFSCORRUPTED || error == -EFSBADCRC) 717 xfs_verifier_error(bp, error, __this_address); 718 else if (error) 719 xfs_buf_ioerror(bp, error); 720 } 721 722 /* 723 * We may be probed for a filesystem match, so we may not want to emit 724 * messages when the superblock buffer is not actually an XFS superblock. 725 * If we find an XFS superblock, then run a normal, noisy mount because we are 726 * really going to mount it and want to know about errors. 727 */ 728 static void 729 xfs_sb_quiet_read_verify( 730 struct xfs_buf *bp) 731 { 732 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 733 734 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) { 735 /* XFS filesystem, verify noisily! */ 736 xfs_sb_read_verify(bp); 737 return; 738 } 739 /* quietly fail */ 740 xfs_buf_ioerror(bp, -EWRONGFS); 741 } 742 743 static void 744 xfs_sb_write_verify( 745 struct xfs_buf *bp) 746 { 747 struct xfs_sb sb; 748 struct xfs_mount *mp = bp->b_mount; 749 struct xfs_buf_log_item *bip = bp->b_log_item; 750 int error; 751 752 /* 753 * Check all the superblock fields. Don't byteswap the xquota flags 754 * because _verify_common checks the on-disk values. 755 */ 756 __xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp), false); 757 error = xfs_validate_sb_common(mp, bp, &sb); 758 if (error) 759 goto out_error; 760 error = xfs_validate_sb_write(mp, bp, &sb); 761 if (error) 762 goto out_error; 763 764 if (!xfs_sb_version_hascrc(&mp->m_sb)) 765 return; 766 767 if (bip) 768 XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 769 770 xfs_buf_update_cksum(bp, XFS_SB_CRC_OFF); 771 return; 772 773 out_error: 774 xfs_verifier_error(bp, error, __this_address); 775 } 776 777 const struct xfs_buf_ops xfs_sb_buf_ops = { 778 .name = "xfs_sb", 779 .magic = { cpu_to_be32(XFS_SB_MAGIC), cpu_to_be32(XFS_SB_MAGIC) }, 780 .verify_read = xfs_sb_read_verify, 781 .verify_write = xfs_sb_write_verify, 782 }; 783 784 const struct xfs_buf_ops xfs_sb_quiet_buf_ops = { 785 .name = "xfs_sb_quiet", 786 .magic = { cpu_to_be32(XFS_SB_MAGIC), cpu_to_be32(XFS_SB_MAGIC) }, 787 .verify_read = xfs_sb_quiet_read_verify, 788 .verify_write = xfs_sb_write_verify, 789 }; 790 791 /* 792 * xfs_mount_common 793 * 794 * Mount initialization code establishing various mount 795 * fields from the superblock associated with the given 796 * mount structure. 797 * 798 * Inode geometry are calculated in xfs_ialloc_setup_geometry. 799 */ 800 void 801 xfs_sb_mount_common( 802 struct xfs_mount *mp, 803 struct xfs_sb *sbp) 804 { 805 mp->m_agfrotor = mp->m_agirotor = 0; 806 mp->m_maxagi = mp->m_sb.sb_agcount; 807 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 808 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 809 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 810 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 811 mp->m_blockmask = sbp->sb_blocksize - 1; 812 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 813 mp->m_blockwmask = mp->m_blockwsize - 1; 814 815 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 816 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 817 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 818 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 819 820 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 821 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 822 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 823 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 824 825 mp->m_rmap_mxr[0] = xfs_rmapbt_maxrecs(sbp->sb_blocksize, 1); 826 mp->m_rmap_mxr[1] = xfs_rmapbt_maxrecs(sbp->sb_blocksize, 0); 827 mp->m_rmap_mnr[0] = mp->m_rmap_mxr[0] / 2; 828 mp->m_rmap_mnr[1] = mp->m_rmap_mxr[1] / 2; 829 830 mp->m_refc_mxr[0] = xfs_refcountbt_maxrecs(sbp->sb_blocksize, true); 831 mp->m_refc_mxr[1] = xfs_refcountbt_maxrecs(sbp->sb_blocksize, false); 832 mp->m_refc_mnr[0] = mp->m_refc_mxr[0] / 2; 833 mp->m_refc_mnr[1] = mp->m_refc_mxr[1] / 2; 834 835 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 836 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 837 mp->m_ag_max_usable = xfs_alloc_ag_max_usable(mp); 838 } 839 840 /* 841 * xfs_initialize_perag_data 842 * 843 * Read in each per-ag structure so we can count up the number of 844 * allocated inodes, free inodes and used filesystem blocks as this 845 * information is no longer persistent in the superblock. Once we have 846 * this information, write it into the in-core superblock structure. 847 */ 848 int 849 xfs_initialize_perag_data( 850 struct xfs_mount *mp, 851 xfs_agnumber_t agcount) 852 { 853 xfs_agnumber_t index; 854 xfs_perag_t *pag; 855 xfs_sb_t *sbp = &mp->m_sb; 856 uint64_t ifree = 0; 857 uint64_t ialloc = 0; 858 uint64_t bfree = 0; 859 uint64_t bfreelst = 0; 860 uint64_t btree = 0; 861 uint64_t fdblocks; 862 int error = 0; 863 864 for (index = 0; index < agcount; index++) { 865 /* 866 * read the agf, then the agi. This gets us 867 * all the information we need and populates the 868 * per-ag structures for us. 869 */ 870 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 871 if (error) 872 return error; 873 874 error = xfs_ialloc_pagi_init(mp, NULL, index); 875 if (error) 876 return error; 877 pag = xfs_perag_get(mp, index); 878 ifree += pag->pagi_freecount; 879 ialloc += pag->pagi_count; 880 bfree += pag->pagf_freeblks; 881 bfreelst += pag->pagf_flcount; 882 btree += pag->pagf_btreeblks; 883 xfs_perag_put(pag); 884 } 885 fdblocks = bfree + bfreelst + btree; 886 887 /* 888 * If the new summary counts are obviously incorrect, fail the 889 * mount operation because that implies the AGFs are also corrupt. 890 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which 891 * will prevent xfs_repair from fixing anything. 892 */ 893 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) { 894 xfs_alert(mp, "AGF corruption. Please run xfs_repair."); 895 error = -EFSCORRUPTED; 896 goto out; 897 } 898 899 /* Overwrite incore superblock counters with just-read data */ 900 spin_lock(&mp->m_sb_lock); 901 sbp->sb_ifree = ifree; 902 sbp->sb_icount = ialloc; 903 sbp->sb_fdblocks = fdblocks; 904 spin_unlock(&mp->m_sb_lock); 905 906 xfs_reinit_percpu_counters(mp); 907 out: 908 xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS); 909 return error; 910 } 911 912 /* 913 * xfs_log_sb() can be used to copy arbitrary changes to the in-core superblock 914 * into the superblock buffer to be logged. It does not provide the higher 915 * level of locking that is needed to protect the in-core superblock from 916 * concurrent access. 917 */ 918 void 919 xfs_log_sb( 920 struct xfs_trans *tp) 921 { 922 struct xfs_mount *mp = tp->t_mountp; 923 struct xfs_buf *bp = xfs_trans_getsb(tp, mp); 924 925 mp->m_sb.sb_icount = percpu_counter_sum(&mp->m_icount); 926 mp->m_sb.sb_ifree = percpu_counter_sum(&mp->m_ifree); 927 mp->m_sb.sb_fdblocks = percpu_counter_sum(&mp->m_fdblocks); 928 929 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb); 930 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); 931 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb)); 932 } 933 934 /* 935 * xfs_sync_sb 936 * 937 * Sync the superblock to disk. 938 * 939 * Note that the caller is responsible for checking the frozen state of the 940 * filesystem. This procedure uses the non-blocking transaction allocator and 941 * thus will allow modifications to a frozen fs. This is required because this 942 * code can be called during the process of freezing where use of the high-level 943 * allocator would deadlock. 944 */ 945 int 946 xfs_sync_sb( 947 struct xfs_mount *mp, 948 bool wait) 949 { 950 struct xfs_trans *tp; 951 int error; 952 953 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_sb, 0, 0, 954 XFS_TRANS_NO_WRITECOUNT, &tp); 955 if (error) 956 return error; 957 958 xfs_log_sb(tp); 959 if (wait) 960 xfs_trans_set_sync(tp); 961 return xfs_trans_commit(tp); 962 } 963 964 /* 965 * Update all the secondary superblocks to match the new state of the primary. 966 * Because we are completely overwriting all the existing fields in the 967 * secondary superblock buffers, there is no need to read them in from disk. 968 * Just get a new buffer, stamp it and write it. 969 * 970 * The sb buffers need to be cached here so that we serialise against other 971 * operations that access the secondary superblocks, but we don't want to keep 972 * them in memory once it is written so we mark it as a one-shot buffer. 973 */ 974 int 975 xfs_update_secondary_sbs( 976 struct xfs_mount *mp) 977 { 978 xfs_agnumber_t agno; 979 int saved_error = 0; 980 int error = 0; 981 LIST_HEAD (buffer_list); 982 983 /* update secondary superblocks. */ 984 for (agno = 1; agno < mp->m_sb.sb_agcount; agno++) { 985 struct xfs_buf *bp; 986 987 bp = xfs_buf_get(mp->m_ddev_targp, 988 XFS_AG_DADDR(mp, agno, XFS_SB_DADDR), 989 XFS_FSS_TO_BB(mp, 1)); 990 /* 991 * If we get an error reading or writing alternate superblocks, 992 * continue. xfs_repair chooses the "best" superblock based 993 * on most matches; if we break early, we'll leave more 994 * superblocks un-updated than updated, and xfs_repair may 995 * pick them over the properly-updated primary. 996 */ 997 if (!bp) { 998 xfs_warn(mp, 999 "error allocating secondary superblock for ag %d", 1000 agno); 1001 if (!saved_error) 1002 saved_error = -ENOMEM; 1003 continue; 1004 } 1005 1006 bp->b_ops = &xfs_sb_buf_ops; 1007 xfs_buf_oneshot(bp); 1008 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 1009 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb); 1010 xfs_buf_delwri_queue(bp, &buffer_list); 1011 xfs_buf_relse(bp); 1012 1013 /* don't hold too many buffers at once */ 1014 if (agno % 16) 1015 continue; 1016 1017 error = xfs_buf_delwri_submit(&buffer_list); 1018 if (error) { 1019 xfs_warn(mp, 1020 "write error %d updating a secondary superblock near ag %d", 1021 error, agno); 1022 if (!saved_error) 1023 saved_error = error; 1024 continue; 1025 } 1026 } 1027 error = xfs_buf_delwri_submit(&buffer_list); 1028 if (error) { 1029 xfs_warn(mp, 1030 "write error %d updating a secondary superblock near ag %d", 1031 error, agno); 1032 } 1033 1034 return saved_error ? saved_error : error; 1035 } 1036 1037 /* 1038 * Same behavior as xfs_sync_sb, except that it is always synchronous and it 1039 * also writes the superblock buffer to disk sector 0 immediately. 1040 */ 1041 int 1042 xfs_sync_sb_buf( 1043 struct xfs_mount *mp) 1044 { 1045 struct xfs_trans *tp; 1046 struct xfs_buf *bp; 1047 int error; 1048 1049 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_sb, 0, 0, 0, &tp); 1050 if (error) 1051 return error; 1052 1053 bp = xfs_trans_getsb(tp, mp); 1054 xfs_log_sb(tp); 1055 xfs_trans_bhold(tp, bp); 1056 xfs_trans_set_sync(tp); 1057 error = xfs_trans_commit(tp); 1058 if (error) 1059 goto out; 1060 /* 1061 * write out the sb buffer to get the changes to disk 1062 */ 1063 error = xfs_bwrite(bp); 1064 out: 1065 xfs_buf_relse(bp); 1066 return error; 1067 } 1068 1069 void 1070 xfs_fs_geometry( 1071 struct xfs_sb *sbp, 1072 struct xfs_fsop_geom *geo, 1073 int struct_version) 1074 { 1075 memset(geo, 0, sizeof(struct xfs_fsop_geom)); 1076 1077 geo->blocksize = sbp->sb_blocksize; 1078 geo->rtextsize = sbp->sb_rextsize; 1079 geo->agblocks = sbp->sb_agblocks; 1080 geo->agcount = sbp->sb_agcount; 1081 geo->logblocks = sbp->sb_logblocks; 1082 geo->sectsize = sbp->sb_sectsize; 1083 geo->inodesize = sbp->sb_inodesize; 1084 geo->imaxpct = sbp->sb_imax_pct; 1085 geo->datablocks = sbp->sb_dblocks; 1086 geo->rtblocks = sbp->sb_rblocks; 1087 geo->rtextents = sbp->sb_rextents; 1088 geo->logstart = sbp->sb_logstart; 1089 BUILD_BUG_ON(sizeof(geo->uuid) != sizeof(sbp->sb_uuid)); 1090 memcpy(geo->uuid, &sbp->sb_uuid, sizeof(sbp->sb_uuid)); 1091 1092 if (struct_version < 2) 1093 return; 1094 1095 geo->sunit = sbp->sb_unit; 1096 geo->swidth = sbp->sb_width; 1097 1098 if (struct_version < 3) 1099 return; 1100 1101 geo->version = XFS_FSOP_GEOM_VERSION; 1102 geo->flags = XFS_FSOP_GEOM_FLAGS_NLINK | 1103 XFS_FSOP_GEOM_FLAGS_DIRV2 | 1104 XFS_FSOP_GEOM_FLAGS_EXTFLG; 1105 if (xfs_sb_version_hasattr(sbp)) 1106 geo->flags |= XFS_FSOP_GEOM_FLAGS_ATTR; 1107 if (xfs_sb_version_hasquota(sbp)) 1108 geo->flags |= XFS_FSOP_GEOM_FLAGS_QUOTA; 1109 if (xfs_sb_version_hasalign(sbp)) 1110 geo->flags |= XFS_FSOP_GEOM_FLAGS_IALIGN; 1111 if (xfs_sb_version_hasdalign(sbp)) 1112 geo->flags |= XFS_FSOP_GEOM_FLAGS_DALIGN; 1113 if (xfs_sb_version_hassector(sbp)) 1114 geo->flags |= XFS_FSOP_GEOM_FLAGS_SECTOR; 1115 if (xfs_sb_version_hasasciici(sbp)) 1116 geo->flags |= XFS_FSOP_GEOM_FLAGS_DIRV2CI; 1117 if (xfs_sb_version_haslazysbcount(sbp)) 1118 geo->flags |= XFS_FSOP_GEOM_FLAGS_LAZYSB; 1119 if (xfs_sb_version_hasattr2(sbp)) 1120 geo->flags |= XFS_FSOP_GEOM_FLAGS_ATTR2; 1121 if (xfs_sb_version_hasprojid32bit(sbp)) 1122 geo->flags |= XFS_FSOP_GEOM_FLAGS_PROJID32; 1123 if (xfs_sb_version_hascrc(sbp)) 1124 geo->flags |= XFS_FSOP_GEOM_FLAGS_V5SB; 1125 if (xfs_sb_version_hasftype(sbp)) 1126 geo->flags |= XFS_FSOP_GEOM_FLAGS_FTYPE; 1127 if (xfs_sb_version_hasfinobt(sbp)) 1128 geo->flags |= XFS_FSOP_GEOM_FLAGS_FINOBT; 1129 if (xfs_sb_version_hassparseinodes(sbp)) 1130 geo->flags |= XFS_FSOP_GEOM_FLAGS_SPINODES; 1131 if (xfs_sb_version_hasrmapbt(sbp)) 1132 geo->flags |= XFS_FSOP_GEOM_FLAGS_RMAPBT; 1133 if (xfs_sb_version_hasreflink(sbp)) 1134 geo->flags |= XFS_FSOP_GEOM_FLAGS_REFLINK; 1135 if (xfs_sb_version_hassector(sbp)) 1136 geo->logsectsize = sbp->sb_logsectsize; 1137 else 1138 geo->logsectsize = BBSIZE; 1139 geo->rtsectsize = sbp->sb_blocksize; 1140 geo->dirblocksize = xfs_dir2_dirblock_bytes(sbp); 1141 1142 if (struct_version < 4) 1143 return; 1144 1145 if (xfs_sb_version_haslogv2(sbp)) 1146 geo->flags |= XFS_FSOP_GEOM_FLAGS_LOGV2; 1147 1148 geo->logsunit = sbp->sb_logsunit; 1149 1150 if (struct_version < 5) 1151 return; 1152 1153 geo->version = XFS_FSOP_GEOM_VERSION_V5; 1154 } 1155 1156 /* Read a secondary superblock. */ 1157 int 1158 xfs_sb_read_secondary( 1159 struct xfs_mount *mp, 1160 struct xfs_trans *tp, 1161 xfs_agnumber_t agno, 1162 struct xfs_buf **bpp) 1163 { 1164 struct xfs_buf *bp; 1165 int error; 1166 1167 ASSERT(agno != 0 && agno != NULLAGNUMBER); 1168 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 1169 XFS_AG_DADDR(mp, agno, XFS_SB_BLOCK(mp)), 1170 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_sb_buf_ops); 1171 if (error) 1172 return error; 1173 xfs_buf_set_ref(bp, XFS_SSB_REF); 1174 *bpp = bp; 1175 return 0; 1176 } 1177 1178 /* Get an uninitialised secondary superblock buffer. */ 1179 int 1180 xfs_sb_get_secondary( 1181 struct xfs_mount *mp, 1182 struct xfs_trans *tp, 1183 xfs_agnumber_t agno, 1184 struct xfs_buf **bpp) 1185 { 1186 struct xfs_buf *bp; 1187 1188 ASSERT(agno != 0 && agno != NULLAGNUMBER); 1189 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, 1190 XFS_AG_DADDR(mp, agno, XFS_SB_BLOCK(mp)), 1191 XFS_FSS_TO_BB(mp, 1), 0); 1192 if (!bp) 1193 return -ENOMEM; 1194 bp->b_ops = &xfs_sb_buf_ops; 1195 xfs_buf_oneshot(bp); 1196 *bpp = bp; 1197 return 0; 1198 } 1199