1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_error.h" 20 #include "xfs_trace.h" 21 #include "xfs_cksum.h" 22 #include "xfs_trans.h" 23 #include "xfs_buf_item.h" 24 #include "xfs_bmap_btree.h" 25 #include "xfs_alloc_btree.h" 26 #include "xfs_ialloc_btree.h" 27 #include "xfs_log.h" 28 #include "xfs_rmap_btree.h" 29 #include "xfs_bmap.h" 30 #include "xfs_refcount_btree.h" 31 #include "xfs_da_format.h" 32 #include "xfs_da_btree.h" 33 #include "xfs_health.h" 34 35 /* 36 * Physical superblock buffer manipulations. Shared with libxfs in userspace. 37 */ 38 39 /* 40 * Reference counting access wrappers to the perag structures. 41 * Because we never free per-ag structures, the only thing we 42 * have to protect against changes is the tree structure itself. 43 */ 44 struct xfs_perag * 45 xfs_perag_get( 46 struct xfs_mount *mp, 47 xfs_agnumber_t agno) 48 { 49 struct xfs_perag *pag; 50 int ref = 0; 51 52 rcu_read_lock(); 53 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 54 if (pag) { 55 ASSERT(atomic_read(&pag->pag_ref) >= 0); 56 ref = atomic_inc_return(&pag->pag_ref); 57 } 58 rcu_read_unlock(); 59 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 60 return pag; 61 } 62 63 /* 64 * search from @first to find the next perag with the given tag set. 65 */ 66 struct xfs_perag * 67 xfs_perag_get_tag( 68 struct xfs_mount *mp, 69 xfs_agnumber_t first, 70 int tag) 71 { 72 struct xfs_perag *pag; 73 int found; 74 int ref; 75 76 rcu_read_lock(); 77 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 78 (void **)&pag, first, 1, tag); 79 if (found <= 0) { 80 rcu_read_unlock(); 81 return NULL; 82 } 83 ref = atomic_inc_return(&pag->pag_ref); 84 rcu_read_unlock(); 85 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); 86 return pag; 87 } 88 89 void 90 xfs_perag_put( 91 struct xfs_perag *pag) 92 { 93 int ref; 94 95 ASSERT(atomic_read(&pag->pag_ref) > 0); 96 ref = atomic_dec_return(&pag->pag_ref); 97 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 98 } 99 100 /* Check all the superblock fields we care about when reading one in. */ 101 STATIC int 102 xfs_validate_sb_read( 103 struct xfs_mount *mp, 104 struct xfs_sb *sbp) 105 { 106 if (XFS_SB_VERSION_NUM(sbp) != XFS_SB_VERSION_5) 107 return 0; 108 109 /* 110 * Version 5 superblock feature mask validation. Reject combinations 111 * the kernel cannot support up front before checking anything else. 112 */ 113 if (xfs_sb_has_compat_feature(sbp, XFS_SB_FEAT_COMPAT_UNKNOWN)) { 114 xfs_warn(mp, 115 "Superblock has unknown compatible features (0x%x) enabled.", 116 (sbp->sb_features_compat & XFS_SB_FEAT_COMPAT_UNKNOWN)); 117 xfs_warn(mp, 118 "Using a more recent kernel is recommended."); 119 } 120 121 if (xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 122 xfs_alert(mp, 123 "Superblock has unknown read-only compatible features (0x%x) enabled.", 124 (sbp->sb_features_ro_compat & 125 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 126 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 127 xfs_warn(mp, 128 "Attempted to mount read-only compatible filesystem read-write."); 129 xfs_warn(mp, 130 "Filesystem can only be safely mounted read only."); 131 132 return -EINVAL; 133 } 134 } 135 if (xfs_sb_has_incompat_feature(sbp, XFS_SB_FEAT_INCOMPAT_UNKNOWN)) { 136 xfs_warn(mp, 137 "Superblock has unknown incompatible features (0x%x) enabled.", 138 (sbp->sb_features_incompat & 139 XFS_SB_FEAT_INCOMPAT_UNKNOWN)); 140 xfs_warn(mp, 141 "Filesystem cannot be safely mounted by this kernel."); 142 return -EINVAL; 143 } 144 145 return 0; 146 } 147 148 /* Check all the superblock fields we care about when writing one out. */ 149 STATIC int 150 xfs_validate_sb_write( 151 struct xfs_mount *mp, 152 struct xfs_buf *bp, 153 struct xfs_sb *sbp) 154 { 155 /* 156 * Carry out additional sb summary counter sanity checks when we write 157 * the superblock. We skip this in the read validator because there 158 * could be newer superblocks in the log and if the values are garbage 159 * even after replay we'll recalculate them at the end of log mount. 160 * 161 * mkfs has traditionally written zeroed counters to inprogress and 162 * secondary superblocks, so allow this usage to continue because 163 * we never read counters from such superblocks. 164 */ 165 if (XFS_BUF_ADDR(bp) == XFS_SB_DADDR && !sbp->sb_inprogress && 166 (sbp->sb_fdblocks > sbp->sb_dblocks || 167 !xfs_verify_icount(mp, sbp->sb_icount) || 168 sbp->sb_ifree > sbp->sb_icount)) { 169 xfs_warn(mp, "SB summary counter sanity check failed"); 170 return -EFSCORRUPTED; 171 } 172 173 if (XFS_SB_VERSION_NUM(sbp) != XFS_SB_VERSION_5) 174 return 0; 175 176 /* 177 * Version 5 superblock feature mask validation. Reject combinations 178 * the kernel cannot support since we checked for unsupported bits in 179 * the read verifier, which means that memory is corrupt. 180 */ 181 if (xfs_sb_has_compat_feature(sbp, XFS_SB_FEAT_COMPAT_UNKNOWN)) { 182 xfs_warn(mp, 183 "Corruption detected in superblock compatible features (0x%x)!", 184 (sbp->sb_features_compat & XFS_SB_FEAT_COMPAT_UNKNOWN)); 185 return -EFSCORRUPTED; 186 } 187 188 if (xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 189 xfs_alert(mp, 190 "Corruption detected in superblock read-only compatible features (0x%x)!", 191 (sbp->sb_features_ro_compat & 192 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 193 return -EFSCORRUPTED; 194 } 195 if (xfs_sb_has_incompat_feature(sbp, XFS_SB_FEAT_INCOMPAT_UNKNOWN)) { 196 xfs_warn(mp, 197 "Corruption detected in superblock incompatible features (0x%x)!", 198 (sbp->sb_features_incompat & 199 XFS_SB_FEAT_INCOMPAT_UNKNOWN)); 200 return -EFSCORRUPTED; 201 } 202 if (xfs_sb_has_incompat_log_feature(sbp, 203 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 204 xfs_warn(mp, 205 "Corruption detected in superblock incompatible log features (0x%x)!", 206 (sbp->sb_features_log_incompat & 207 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 208 return -EFSCORRUPTED; 209 } 210 211 /* 212 * We can't read verify the sb LSN because the read verifier is called 213 * before the log is allocated and processed. We know the log is set up 214 * before write verifier calls, so check it here. 215 */ 216 if (!xfs_log_check_lsn(mp, sbp->sb_lsn)) 217 return -EFSCORRUPTED; 218 219 return 0; 220 } 221 222 /* Check the validity of the SB. */ 223 STATIC int 224 xfs_validate_sb_common( 225 struct xfs_mount *mp, 226 struct xfs_buf *bp, 227 struct xfs_sb *sbp) 228 { 229 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 230 uint32_t agcount = 0; 231 uint32_t rem; 232 233 if (!xfs_verify_magic(bp, dsb->sb_magicnum)) { 234 xfs_warn(mp, "bad magic number"); 235 return -EWRONGFS; 236 } 237 238 if (!xfs_sb_good_version(sbp)) { 239 xfs_warn(mp, "bad version"); 240 return -EWRONGFS; 241 } 242 243 if (xfs_sb_version_has_pquotino(sbp)) { 244 if (sbp->sb_qflags & (XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD)) { 245 xfs_notice(mp, 246 "Version 5 of Super block has XFS_OQUOTA bits."); 247 return -EFSCORRUPTED; 248 } 249 } else if (sbp->sb_qflags & (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD | 250 XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) { 251 xfs_notice(mp, 252 "Superblock earlier than Version 5 has XFS_[PQ]UOTA_{ENFD|CHKD} bits."); 253 return -EFSCORRUPTED; 254 } 255 256 /* 257 * Full inode chunks must be aligned to inode chunk size when 258 * sparse inodes are enabled to support the sparse chunk 259 * allocation algorithm and prevent overlapping inode records. 260 */ 261 if (xfs_sb_version_hassparseinodes(sbp)) { 262 uint32_t align; 263 264 align = XFS_INODES_PER_CHUNK * sbp->sb_inodesize 265 >> sbp->sb_blocklog; 266 if (sbp->sb_inoalignmt != align) { 267 xfs_warn(mp, 268 "Inode block alignment (%u) must match chunk size (%u) for sparse inodes.", 269 sbp->sb_inoalignmt, align); 270 return -EINVAL; 271 } 272 } 273 274 if (unlikely( 275 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 276 xfs_warn(mp, 277 "filesystem is marked as having an external log; " 278 "specify logdev on the mount command line."); 279 return -EINVAL; 280 } 281 282 if (unlikely( 283 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 284 xfs_warn(mp, 285 "filesystem is marked as having an internal log; " 286 "do not specify logdev on the mount command line."); 287 return -EINVAL; 288 } 289 290 /* Compute agcount for this number of dblocks and agblocks */ 291 if (sbp->sb_agblocks) { 292 agcount = div_u64_rem(sbp->sb_dblocks, sbp->sb_agblocks, &rem); 293 if (rem) 294 agcount++; 295 } 296 297 /* 298 * More sanity checking. Most of these were stolen directly from 299 * xfs_repair. 300 */ 301 if (unlikely( 302 sbp->sb_agcount <= 0 || 303 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 304 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 305 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 306 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 307 sbp->sb_sectsize != (1 << sbp->sb_sectlog) || 308 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 309 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 310 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 311 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 312 sbp->sb_blocksize != (1 << sbp->sb_blocklog) || 313 sbp->sb_dirblklog + sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 314 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 315 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 316 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 317 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 318 sbp->sb_inodesize != (1 << sbp->sb_inodelog) || 319 sbp->sb_logsunit > XLOG_MAX_RECORD_BSIZE || 320 sbp->sb_inopblock != howmany(sbp->sb_blocksize,sbp->sb_inodesize) || 321 XFS_FSB_TO_B(mp, sbp->sb_agblocks) < XFS_MIN_AG_BYTES || 322 XFS_FSB_TO_B(mp, sbp->sb_agblocks) > XFS_MAX_AG_BYTES || 323 sbp->sb_agblklog != xfs_highbit32(sbp->sb_agblocks - 1) + 1 || 324 agcount == 0 || agcount != sbp->sb_agcount || 325 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 326 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 327 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 328 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) || 329 sbp->sb_dblocks == 0 || 330 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) || 331 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp) || 332 sbp->sb_shared_vn != 0)) { 333 xfs_notice(mp, "SB sanity check failed"); 334 return -EFSCORRUPTED; 335 } 336 337 if (sbp->sb_unit) { 338 if (!xfs_sb_version_hasdalign(sbp) || 339 sbp->sb_unit > sbp->sb_width || 340 (sbp->sb_width % sbp->sb_unit) != 0) { 341 xfs_notice(mp, "SB stripe unit sanity check failed"); 342 return -EFSCORRUPTED; 343 } 344 } else if (xfs_sb_version_hasdalign(sbp)) { 345 xfs_notice(mp, "SB stripe alignment sanity check failed"); 346 return -EFSCORRUPTED; 347 } else if (sbp->sb_width) { 348 xfs_notice(mp, "SB stripe width sanity check failed"); 349 return -EFSCORRUPTED; 350 } 351 352 353 if (xfs_sb_version_hascrc(&mp->m_sb) && 354 sbp->sb_blocksize < XFS_MIN_CRC_BLOCKSIZE) { 355 xfs_notice(mp, "v5 SB sanity check failed"); 356 return -EFSCORRUPTED; 357 } 358 359 /* 360 * Until this is fixed only page-sized or smaller data blocks work. 361 */ 362 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 363 xfs_warn(mp, 364 "File system with blocksize %d bytes. " 365 "Only pagesize (%ld) or less will currently work.", 366 sbp->sb_blocksize, PAGE_SIZE); 367 return -ENOSYS; 368 } 369 370 /* 371 * Currently only very few inode sizes are supported. 372 */ 373 switch (sbp->sb_inodesize) { 374 case 256: 375 case 512: 376 case 1024: 377 case 2048: 378 break; 379 default: 380 xfs_warn(mp, "inode size of %d bytes not supported", 381 sbp->sb_inodesize); 382 return -ENOSYS; 383 } 384 385 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 386 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 387 xfs_warn(mp, 388 "file system too large to be mounted on this system."); 389 return -EFBIG; 390 } 391 392 /* 393 * Don't touch the filesystem if a user tool thinks it owns the primary 394 * superblock. mkfs doesn't clear the flag from secondary supers, so 395 * we don't check them at all. 396 */ 397 if (XFS_BUF_ADDR(bp) == XFS_SB_DADDR && sbp->sb_inprogress) { 398 xfs_warn(mp, "Offline file system operation in progress!"); 399 return -EFSCORRUPTED; 400 } 401 return 0; 402 } 403 404 void 405 xfs_sb_quota_from_disk(struct xfs_sb *sbp) 406 { 407 /* 408 * older mkfs doesn't initialize quota inodes to NULLFSINO. This 409 * leads to in-core values having two different values for a quota 410 * inode to be invalid: 0 and NULLFSINO. Change it to a single value 411 * NULLFSINO. 412 * 413 * Note that this change affect only the in-core values. These 414 * values are not written back to disk unless any quota information 415 * is written to the disk. Even in that case, sb_pquotino field is 416 * not written to disk unless the superblock supports pquotino. 417 */ 418 if (sbp->sb_uquotino == 0) 419 sbp->sb_uquotino = NULLFSINO; 420 if (sbp->sb_gquotino == 0) 421 sbp->sb_gquotino = NULLFSINO; 422 if (sbp->sb_pquotino == 0) 423 sbp->sb_pquotino = NULLFSINO; 424 425 /* 426 * We need to do these manipilations only if we are working 427 * with an older version of on-disk superblock. 428 */ 429 if (xfs_sb_version_has_pquotino(sbp)) 430 return; 431 432 if (sbp->sb_qflags & XFS_OQUOTA_ENFD) 433 sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ? 434 XFS_PQUOTA_ENFD : XFS_GQUOTA_ENFD; 435 if (sbp->sb_qflags & XFS_OQUOTA_CHKD) 436 sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ? 437 XFS_PQUOTA_CHKD : XFS_GQUOTA_CHKD; 438 sbp->sb_qflags &= ~(XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD); 439 440 if (sbp->sb_qflags & XFS_PQUOTA_ACCT && 441 sbp->sb_gquotino != NULLFSINO) { 442 /* 443 * In older version of superblock, on-disk superblock only 444 * has sb_gquotino, and in-core superblock has both sb_gquotino 445 * and sb_pquotino. But, only one of them is supported at any 446 * point of time. So, if PQUOTA is set in disk superblock, 447 * copy over sb_gquotino to sb_pquotino. The NULLFSINO test 448 * above is to make sure we don't do this twice and wipe them 449 * both out! 450 */ 451 sbp->sb_pquotino = sbp->sb_gquotino; 452 sbp->sb_gquotino = NULLFSINO; 453 } 454 } 455 456 static void 457 __xfs_sb_from_disk( 458 struct xfs_sb *to, 459 xfs_dsb_t *from, 460 bool convert_xquota) 461 { 462 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 463 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 464 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 465 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 466 to->sb_rextents = be64_to_cpu(from->sb_rextents); 467 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 468 to->sb_logstart = be64_to_cpu(from->sb_logstart); 469 to->sb_rootino = be64_to_cpu(from->sb_rootino); 470 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 471 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 472 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 473 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 474 to->sb_agcount = be32_to_cpu(from->sb_agcount); 475 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 476 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 477 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 478 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 479 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 480 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 481 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 482 to->sb_blocklog = from->sb_blocklog; 483 to->sb_sectlog = from->sb_sectlog; 484 to->sb_inodelog = from->sb_inodelog; 485 to->sb_inopblog = from->sb_inopblog; 486 to->sb_agblklog = from->sb_agblklog; 487 to->sb_rextslog = from->sb_rextslog; 488 to->sb_inprogress = from->sb_inprogress; 489 to->sb_imax_pct = from->sb_imax_pct; 490 to->sb_icount = be64_to_cpu(from->sb_icount); 491 to->sb_ifree = be64_to_cpu(from->sb_ifree); 492 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 493 to->sb_frextents = be64_to_cpu(from->sb_frextents); 494 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 495 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 496 to->sb_qflags = be16_to_cpu(from->sb_qflags); 497 to->sb_flags = from->sb_flags; 498 to->sb_shared_vn = from->sb_shared_vn; 499 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 500 to->sb_unit = be32_to_cpu(from->sb_unit); 501 to->sb_width = be32_to_cpu(from->sb_width); 502 to->sb_dirblklog = from->sb_dirblklog; 503 to->sb_logsectlog = from->sb_logsectlog; 504 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 505 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 506 to->sb_features2 = be32_to_cpu(from->sb_features2); 507 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 508 to->sb_features_compat = be32_to_cpu(from->sb_features_compat); 509 to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat); 510 to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat); 511 to->sb_features_log_incompat = 512 be32_to_cpu(from->sb_features_log_incompat); 513 /* crc is only used on disk, not in memory; just init to 0 here. */ 514 to->sb_crc = 0; 515 to->sb_spino_align = be32_to_cpu(from->sb_spino_align); 516 to->sb_pquotino = be64_to_cpu(from->sb_pquotino); 517 to->sb_lsn = be64_to_cpu(from->sb_lsn); 518 /* 519 * sb_meta_uuid is only on disk if it differs from sb_uuid and the 520 * feature flag is set; if not set we keep it only in memory. 521 */ 522 if (xfs_sb_version_hasmetauuid(to)) 523 uuid_copy(&to->sb_meta_uuid, &from->sb_meta_uuid); 524 else 525 uuid_copy(&to->sb_meta_uuid, &from->sb_uuid); 526 /* Convert on-disk flags to in-memory flags? */ 527 if (convert_xquota) 528 xfs_sb_quota_from_disk(to); 529 } 530 531 void 532 xfs_sb_from_disk( 533 struct xfs_sb *to, 534 xfs_dsb_t *from) 535 { 536 __xfs_sb_from_disk(to, from, true); 537 } 538 539 static void 540 xfs_sb_quota_to_disk( 541 struct xfs_dsb *to, 542 struct xfs_sb *from) 543 { 544 uint16_t qflags = from->sb_qflags; 545 546 to->sb_uquotino = cpu_to_be64(from->sb_uquotino); 547 if (xfs_sb_version_has_pquotino(from)) { 548 to->sb_qflags = cpu_to_be16(from->sb_qflags); 549 to->sb_gquotino = cpu_to_be64(from->sb_gquotino); 550 to->sb_pquotino = cpu_to_be64(from->sb_pquotino); 551 return; 552 } 553 554 /* 555 * The in-core version of sb_qflags do not have XFS_OQUOTA_* 556 * flags, whereas the on-disk version does. So, convert incore 557 * XFS_{PG}QUOTA_* flags to on-disk XFS_OQUOTA_* flags. 558 */ 559 qflags &= ~(XFS_PQUOTA_ENFD | XFS_PQUOTA_CHKD | 560 XFS_GQUOTA_ENFD | XFS_GQUOTA_CHKD); 561 562 if (from->sb_qflags & 563 (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD)) 564 qflags |= XFS_OQUOTA_ENFD; 565 if (from->sb_qflags & 566 (XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) 567 qflags |= XFS_OQUOTA_CHKD; 568 to->sb_qflags = cpu_to_be16(qflags); 569 570 /* 571 * GQUOTINO and PQUOTINO cannot be used together in versions 572 * of superblock that do not have pquotino. from->sb_flags 573 * tells us which quota is active and should be copied to 574 * disk. If neither are active, we should NULL the inode. 575 * 576 * In all cases, the separate pquotino must remain 0 because it 577 * it beyond the "end" of the valid non-pquotino superblock. 578 */ 579 if (from->sb_qflags & XFS_GQUOTA_ACCT) 580 to->sb_gquotino = cpu_to_be64(from->sb_gquotino); 581 else if (from->sb_qflags & XFS_PQUOTA_ACCT) 582 to->sb_gquotino = cpu_to_be64(from->sb_pquotino); 583 else { 584 /* 585 * We can't rely on just the fields being logged to tell us 586 * that it is safe to write NULLFSINO - we should only do that 587 * if quotas are not actually enabled. Hence only write 588 * NULLFSINO if both in-core quota inodes are NULL. 589 */ 590 if (from->sb_gquotino == NULLFSINO && 591 from->sb_pquotino == NULLFSINO) 592 to->sb_gquotino = cpu_to_be64(NULLFSINO); 593 } 594 595 to->sb_pquotino = 0; 596 } 597 598 void 599 xfs_sb_to_disk( 600 struct xfs_dsb *to, 601 struct xfs_sb *from) 602 { 603 xfs_sb_quota_to_disk(to, from); 604 605 to->sb_magicnum = cpu_to_be32(from->sb_magicnum); 606 to->sb_blocksize = cpu_to_be32(from->sb_blocksize); 607 to->sb_dblocks = cpu_to_be64(from->sb_dblocks); 608 to->sb_rblocks = cpu_to_be64(from->sb_rblocks); 609 to->sb_rextents = cpu_to_be64(from->sb_rextents); 610 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 611 to->sb_logstart = cpu_to_be64(from->sb_logstart); 612 to->sb_rootino = cpu_to_be64(from->sb_rootino); 613 to->sb_rbmino = cpu_to_be64(from->sb_rbmino); 614 to->sb_rsumino = cpu_to_be64(from->sb_rsumino); 615 to->sb_rextsize = cpu_to_be32(from->sb_rextsize); 616 to->sb_agblocks = cpu_to_be32(from->sb_agblocks); 617 to->sb_agcount = cpu_to_be32(from->sb_agcount); 618 to->sb_rbmblocks = cpu_to_be32(from->sb_rbmblocks); 619 to->sb_logblocks = cpu_to_be32(from->sb_logblocks); 620 to->sb_versionnum = cpu_to_be16(from->sb_versionnum); 621 to->sb_sectsize = cpu_to_be16(from->sb_sectsize); 622 to->sb_inodesize = cpu_to_be16(from->sb_inodesize); 623 to->sb_inopblock = cpu_to_be16(from->sb_inopblock); 624 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 625 to->sb_blocklog = from->sb_blocklog; 626 to->sb_sectlog = from->sb_sectlog; 627 to->sb_inodelog = from->sb_inodelog; 628 to->sb_inopblog = from->sb_inopblog; 629 to->sb_agblklog = from->sb_agblklog; 630 to->sb_rextslog = from->sb_rextslog; 631 to->sb_inprogress = from->sb_inprogress; 632 to->sb_imax_pct = from->sb_imax_pct; 633 to->sb_icount = cpu_to_be64(from->sb_icount); 634 to->sb_ifree = cpu_to_be64(from->sb_ifree); 635 to->sb_fdblocks = cpu_to_be64(from->sb_fdblocks); 636 to->sb_frextents = cpu_to_be64(from->sb_frextents); 637 638 to->sb_flags = from->sb_flags; 639 to->sb_shared_vn = from->sb_shared_vn; 640 to->sb_inoalignmt = cpu_to_be32(from->sb_inoalignmt); 641 to->sb_unit = cpu_to_be32(from->sb_unit); 642 to->sb_width = cpu_to_be32(from->sb_width); 643 to->sb_dirblklog = from->sb_dirblklog; 644 to->sb_logsectlog = from->sb_logsectlog; 645 to->sb_logsectsize = cpu_to_be16(from->sb_logsectsize); 646 to->sb_logsunit = cpu_to_be32(from->sb_logsunit); 647 648 /* 649 * We need to ensure that bad_features2 always matches features2. 650 * Hence we enforce that here rather than having to remember to do it 651 * everywhere else that updates features2. 652 */ 653 from->sb_bad_features2 = from->sb_features2; 654 to->sb_features2 = cpu_to_be32(from->sb_features2); 655 to->sb_bad_features2 = cpu_to_be32(from->sb_bad_features2); 656 657 if (xfs_sb_version_hascrc(from)) { 658 to->sb_features_compat = cpu_to_be32(from->sb_features_compat); 659 to->sb_features_ro_compat = 660 cpu_to_be32(from->sb_features_ro_compat); 661 to->sb_features_incompat = 662 cpu_to_be32(from->sb_features_incompat); 663 to->sb_features_log_incompat = 664 cpu_to_be32(from->sb_features_log_incompat); 665 to->sb_spino_align = cpu_to_be32(from->sb_spino_align); 666 to->sb_lsn = cpu_to_be64(from->sb_lsn); 667 if (xfs_sb_version_hasmetauuid(from)) 668 uuid_copy(&to->sb_meta_uuid, &from->sb_meta_uuid); 669 } 670 } 671 672 /* 673 * If the superblock has the CRC feature bit set or the CRC field is non-null, 674 * check that the CRC is valid. We check the CRC field is non-null because a 675 * single bit error could clear the feature bit and unused parts of the 676 * superblock are supposed to be zero. Hence a non-null crc field indicates that 677 * we've potentially lost a feature bit and we should check it anyway. 678 * 679 * However, past bugs (i.e. in growfs) left non-zeroed regions beyond the 680 * last field in V4 secondary superblocks. So for secondary superblocks, 681 * we are more forgiving, and ignore CRC failures if the primary doesn't 682 * indicate that the fs version is V5. 683 */ 684 static void 685 xfs_sb_read_verify( 686 struct xfs_buf *bp) 687 { 688 struct xfs_sb sb; 689 struct xfs_mount *mp = bp->b_target->bt_mount; 690 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 691 int error; 692 693 /* 694 * open code the version check to avoid needing to convert the entire 695 * superblock from disk order just to check the version number 696 */ 697 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) && 698 (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) == 699 XFS_SB_VERSION_5) || 700 dsb->sb_crc != 0)) { 701 702 if (!xfs_buf_verify_cksum(bp, XFS_SB_CRC_OFF)) { 703 /* Only fail bad secondaries on a known V5 filesystem */ 704 if (bp->b_bn == XFS_SB_DADDR || 705 xfs_sb_version_hascrc(&mp->m_sb)) { 706 error = -EFSBADCRC; 707 goto out_error; 708 } 709 } 710 } 711 712 /* 713 * Check all the superblock fields. Don't byteswap the xquota flags 714 * because _verify_common checks the on-disk values. 715 */ 716 __xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp), false); 717 error = xfs_validate_sb_common(mp, bp, &sb); 718 if (error) 719 goto out_error; 720 error = xfs_validate_sb_read(mp, &sb); 721 722 out_error: 723 if (error == -EFSCORRUPTED || error == -EFSBADCRC) 724 xfs_verifier_error(bp, error, __this_address); 725 else if (error) 726 xfs_buf_ioerror(bp, error); 727 } 728 729 /* 730 * We may be probed for a filesystem match, so we may not want to emit 731 * messages when the superblock buffer is not actually an XFS superblock. 732 * If we find an XFS superblock, then run a normal, noisy mount because we are 733 * really going to mount it and want to know about errors. 734 */ 735 static void 736 xfs_sb_quiet_read_verify( 737 struct xfs_buf *bp) 738 { 739 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 740 741 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) { 742 /* XFS filesystem, verify noisily! */ 743 xfs_sb_read_verify(bp); 744 return; 745 } 746 /* quietly fail */ 747 xfs_buf_ioerror(bp, -EWRONGFS); 748 } 749 750 static void 751 xfs_sb_write_verify( 752 struct xfs_buf *bp) 753 { 754 struct xfs_sb sb; 755 struct xfs_mount *mp = bp->b_target->bt_mount; 756 struct xfs_buf_log_item *bip = bp->b_log_item; 757 int error; 758 759 /* 760 * Check all the superblock fields. Don't byteswap the xquota flags 761 * because _verify_common checks the on-disk values. 762 */ 763 __xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp), false); 764 error = xfs_validate_sb_common(mp, bp, &sb); 765 if (error) 766 goto out_error; 767 error = xfs_validate_sb_write(mp, bp, &sb); 768 if (error) 769 goto out_error; 770 771 if (!xfs_sb_version_hascrc(&mp->m_sb)) 772 return; 773 774 if (bip) 775 XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 776 777 xfs_buf_update_cksum(bp, XFS_SB_CRC_OFF); 778 return; 779 780 out_error: 781 xfs_verifier_error(bp, error, __this_address); 782 } 783 784 const struct xfs_buf_ops xfs_sb_buf_ops = { 785 .name = "xfs_sb", 786 .magic = { cpu_to_be32(XFS_SB_MAGIC), cpu_to_be32(XFS_SB_MAGIC) }, 787 .verify_read = xfs_sb_read_verify, 788 .verify_write = xfs_sb_write_verify, 789 }; 790 791 const struct xfs_buf_ops xfs_sb_quiet_buf_ops = { 792 .name = "xfs_sb_quiet", 793 .magic = { cpu_to_be32(XFS_SB_MAGIC), cpu_to_be32(XFS_SB_MAGIC) }, 794 .verify_read = xfs_sb_quiet_read_verify, 795 .verify_write = xfs_sb_write_verify, 796 }; 797 798 /* 799 * xfs_mount_common 800 * 801 * Mount initialization code establishing various mount 802 * fields from the superblock associated with the given 803 * mount structure 804 */ 805 void 806 xfs_sb_mount_common( 807 struct xfs_mount *mp, 808 struct xfs_sb *sbp) 809 { 810 mp->m_agfrotor = mp->m_agirotor = 0; 811 mp->m_maxagi = mp->m_sb.sb_agcount; 812 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 813 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 814 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 815 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 816 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 817 mp->m_blockmask = sbp->sb_blocksize - 1; 818 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 819 mp->m_blockwmask = mp->m_blockwsize - 1; 820 821 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 822 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 823 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 824 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 825 826 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 827 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 828 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 829 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 830 831 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 832 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 833 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 834 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 835 836 mp->m_rmap_mxr[0] = xfs_rmapbt_maxrecs(sbp->sb_blocksize, 1); 837 mp->m_rmap_mxr[1] = xfs_rmapbt_maxrecs(sbp->sb_blocksize, 0); 838 mp->m_rmap_mnr[0] = mp->m_rmap_mxr[0] / 2; 839 mp->m_rmap_mnr[1] = mp->m_rmap_mxr[1] / 2; 840 841 mp->m_refc_mxr[0] = xfs_refcountbt_maxrecs(sbp->sb_blocksize, true); 842 mp->m_refc_mxr[1] = xfs_refcountbt_maxrecs(sbp->sb_blocksize, false); 843 mp->m_refc_mnr[0] = mp->m_refc_mxr[0] / 2; 844 mp->m_refc_mnr[1] = mp->m_refc_mxr[1] / 2; 845 846 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 847 mp->m_ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK, 848 sbp->sb_inopblock); 849 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 850 851 if (sbp->sb_spino_align) 852 mp->m_ialloc_min_blks = sbp->sb_spino_align; 853 else 854 mp->m_ialloc_min_blks = mp->m_ialloc_blks; 855 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 856 mp->m_ag_max_usable = xfs_alloc_ag_max_usable(mp); 857 } 858 859 /* 860 * xfs_initialize_perag_data 861 * 862 * Read in each per-ag structure so we can count up the number of 863 * allocated inodes, free inodes and used filesystem blocks as this 864 * information is no longer persistent in the superblock. Once we have 865 * this information, write it into the in-core superblock structure. 866 */ 867 int 868 xfs_initialize_perag_data( 869 struct xfs_mount *mp, 870 xfs_agnumber_t agcount) 871 { 872 xfs_agnumber_t index; 873 xfs_perag_t *pag; 874 xfs_sb_t *sbp = &mp->m_sb; 875 uint64_t ifree = 0; 876 uint64_t ialloc = 0; 877 uint64_t bfree = 0; 878 uint64_t bfreelst = 0; 879 uint64_t btree = 0; 880 uint64_t fdblocks; 881 int error = 0; 882 883 for (index = 0; index < agcount; index++) { 884 /* 885 * read the agf, then the agi. This gets us 886 * all the information we need and populates the 887 * per-ag structures for us. 888 */ 889 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 890 if (error) 891 return error; 892 893 error = xfs_ialloc_pagi_init(mp, NULL, index); 894 if (error) 895 return error; 896 pag = xfs_perag_get(mp, index); 897 ifree += pag->pagi_freecount; 898 ialloc += pag->pagi_count; 899 bfree += pag->pagf_freeblks; 900 bfreelst += pag->pagf_flcount; 901 btree += pag->pagf_btreeblks; 902 xfs_perag_put(pag); 903 } 904 fdblocks = bfree + bfreelst + btree; 905 906 /* 907 * If the new summary counts are obviously incorrect, fail the 908 * mount operation because that implies the AGFs are also corrupt. 909 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which 910 * will prevent xfs_repair from fixing anything. 911 */ 912 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) { 913 xfs_alert(mp, "AGF corruption. Please run xfs_repair."); 914 error = -EFSCORRUPTED; 915 goto out; 916 } 917 918 /* Overwrite incore superblock counters with just-read data */ 919 spin_lock(&mp->m_sb_lock); 920 sbp->sb_ifree = ifree; 921 sbp->sb_icount = ialloc; 922 sbp->sb_fdblocks = fdblocks; 923 spin_unlock(&mp->m_sb_lock); 924 925 xfs_reinit_percpu_counters(mp); 926 out: 927 xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS); 928 return error; 929 } 930 931 /* 932 * xfs_log_sb() can be used to copy arbitrary changes to the in-core superblock 933 * into the superblock buffer to be logged. It does not provide the higher 934 * level of locking that is needed to protect the in-core superblock from 935 * concurrent access. 936 */ 937 void 938 xfs_log_sb( 939 struct xfs_trans *tp) 940 { 941 struct xfs_mount *mp = tp->t_mountp; 942 struct xfs_buf *bp = xfs_trans_getsb(tp, mp, 0); 943 944 mp->m_sb.sb_icount = percpu_counter_sum(&mp->m_icount); 945 mp->m_sb.sb_ifree = percpu_counter_sum(&mp->m_ifree); 946 mp->m_sb.sb_fdblocks = percpu_counter_sum(&mp->m_fdblocks); 947 948 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb); 949 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); 950 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb)); 951 } 952 953 /* 954 * xfs_sync_sb 955 * 956 * Sync the superblock to disk. 957 * 958 * Note that the caller is responsible for checking the frozen state of the 959 * filesystem. This procedure uses the non-blocking transaction allocator and 960 * thus will allow modifications to a frozen fs. This is required because this 961 * code can be called during the process of freezing where use of the high-level 962 * allocator would deadlock. 963 */ 964 int 965 xfs_sync_sb( 966 struct xfs_mount *mp, 967 bool wait) 968 { 969 struct xfs_trans *tp; 970 int error; 971 972 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_sb, 0, 0, 973 XFS_TRANS_NO_WRITECOUNT, &tp); 974 if (error) 975 return error; 976 977 xfs_log_sb(tp); 978 if (wait) 979 xfs_trans_set_sync(tp); 980 return xfs_trans_commit(tp); 981 } 982 983 /* 984 * Update all the secondary superblocks to match the new state of the primary. 985 * Because we are completely overwriting all the existing fields in the 986 * secondary superblock buffers, there is no need to read them in from disk. 987 * Just get a new buffer, stamp it and write it. 988 * 989 * The sb buffers need to be cached here so that we serialise against other 990 * operations that access the secondary superblocks, but we don't want to keep 991 * them in memory once it is written so we mark it as a one-shot buffer. 992 */ 993 int 994 xfs_update_secondary_sbs( 995 struct xfs_mount *mp) 996 { 997 xfs_agnumber_t agno; 998 int saved_error = 0; 999 int error = 0; 1000 LIST_HEAD (buffer_list); 1001 1002 /* update secondary superblocks. */ 1003 for (agno = 1; agno < mp->m_sb.sb_agcount; agno++) { 1004 struct xfs_buf *bp; 1005 1006 bp = xfs_buf_get(mp->m_ddev_targp, 1007 XFS_AG_DADDR(mp, agno, XFS_SB_DADDR), 1008 XFS_FSS_TO_BB(mp, 1), 0); 1009 /* 1010 * If we get an error reading or writing alternate superblocks, 1011 * continue. xfs_repair chooses the "best" superblock based 1012 * on most matches; if we break early, we'll leave more 1013 * superblocks un-updated than updated, and xfs_repair may 1014 * pick them over the properly-updated primary. 1015 */ 1016 if (!bp) { 1017 xfs_warn(mp, 1018 "error allocating secondary superblock for ag %d", 1019 agno); 1020 if (!saved_error) 1021 saved_error = -ENOMEM; 1022 continue; 1023 } 1024 1025 bp->b_ops = &xfs_sb_buf_ops; 1026 xfs_buf_oneshot(bp); 1027 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 1028 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb); 1029 xfs_buf_delwri_queue(bp, &buffer_list); 1030 xfs_buf_relse(bp); 1031 1032 /* don't hold too many buffers at once */ 1033 if (agno % 16) 1034 continue; 1035 1036 error = xfs_buf_delwri_submit(&buffer_list); 1037 if (error) { 1038 xfs_warn(mp, 1039 "write error %d updating a secondary superblock near ag %d", 1040 error, agno); 1041 if (!saved_error) 1042 saved_error = error; 1043 continue; 1044 } 1045 } 1046 error = xfs_buf_delwri_submit(&buffer_list); 1047 if (error) { 1048 xfs_warn(mp, 1049 "write error %d updating a secondary superblock near ag %d", 1050 error, agno); 1051 } 1052 1053 return saved_error ? saved_error : error; 1054 } 1055 1056 /* 1057 * Same behavior as xfs_sync_sb, except that it is always synchronous and it 1058 * also writes the superblock buffer to disk sector 0 immediately. 1059 */ 1060 int 1061 xfs_sync_sb_buf( 1062 struct xfs_mount *mp) 1063 { 1064 struct xfs_trans *tp; 1065 struct xfs_buf *bp; 1066 int error; 1067 1068 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_sb, 0, 0, 0, &tp); 1069 if (error) 1070 return error; 1071 1072 bp = xfs_trans_getsb(tp, mp, 0); 1073 xfs_log_sb(tp); 1074 xfs_trans_bhold(tp, bp); 1075 xfs_trans_set_sync(tp); 1076 error = xfs_trans_commit(tp); 1077 if (error) 1078 goto out; 1079 /* 1080 * write out the sb buffer to get the changes to disk 1081 */ 1082 error = xfs_bwrite(bp); 1083 out: 1084 xfs_buf_relse(bp); 1085 return error; 1086 } 1087 1088 void 1089 xfs_fs_geometry( 1090 struct xfs_sb *sbp, 1091 struct xfs_fsop_geom *geo, 1092 int struct_version) 1093 { 1094 memset(geo, 0, sizeof(struct xfs_fsop_geom)); 1095 1096 geo->blocksize = sbp->sb_blocksize; 1097 geo->rtextsize = sbp->sb_rextsize; 1098 geo->agblocks = sbp->sb_agblocks; 1099 geo->agcount = sbp->sb_agcount; 1100 geo->logblocks = sbp->sb_logblocks; 1101 geo->sectsize = sbp->sb_sectsize; 1102 geo->inodesize = sbp->sb_inodesize; 1103 geo->imaxpct = sbp->sb_imax_pct; 1104 geo->datablocks = sbp->sb_dblocks; 1105 geo->rtblocks = sbp->sb_rblocks; 1106 geo->rtextents = sbp->sb_rextents; 1107 geo->logstart = sbp->sb_logstart; 1108 BUILD_BUG_ON(sizeof(geo->uuid) != sizeof(sbp->sb_uuid)); 1109 memcpy(geo->uuid, &sbp->sb_uuid, sizeof(sbp->sb_uuid)); 1110 1111 if (struct_version < 2) 1112 return; 1113 1114 geo->sunit = sbp->sb_unit; 1115 geo->swidth = sbp->sb_width; 1116 1117 if (struct_version < 3) 1118 return; 1119 1120 geo->version = XFS_FSOP_GEOM_VERSION; 1121 geo->flags = XFS_FSOP_GEOM_FLAGS_NLINK | 1122 XFS_FSOP_GEOM_FLAGS_DIRV2 | 1123 XFS_FSOP_GEOM_FLAGS_EXTFLG; 1124 if (xfs_sb_version_hasattr(sbp)) 1125 geo->flags |= XFS_FSOP_GEOM_FLAGS_ATTR; 1126 if (xfs_sb_version_hasquota(sbp)) 1127 geo->flags |= XFS_FSOP_GEOM_FLAGS_QUOTA; 1128 if (xfs_sb_version_hasalign(sbp)) 1129 geo->flags |= XFS_FSOP_GEOM_FLAGS_IALIGN; 1130 if (xfs_sb_version_hasdalign(sbp)) 1131 geo->flags |= XFS_FSOP_GEOM_FLAGS_DALIGN; 1132 if (xfs_sb_version_hassector(sbp)) 1133 geo->flags |= XFS_FSOP_GEOM_FLAGS_SECTOR; 1134 if (xfs_sb_version_hasasciici(sbp)) 1135 geo->flags |= XFS_FSOP_GEOM_FLAGS_DIRV2CI; 1136 if (xfs_sb_version_haslazysbcount(sbp)) 1137 geo->flags |= XFS_FSOP_GEOM_FLAGS_LAZYSB; 1138 if (xfs_sb_version_hasattr2(sbp)) 1139 geo->flags |= XFS_FSOP_GEOM_FLAGS_ATTR2; 1140 if (xfs_sb_version_hasprojid32bit(sbp)) 1141 geo->flags |= XFS_FSOP_GEOM_FLAGS_PROJID32; 1142 if (xfs_sb_version_hascrc(sbp)) 1143 geo->flags |= XFS_FSOP_GEOM_FLAGS_V5SB; 1144 if (xfs_sb_version_hasftype(sbp)) 1145 geo->flags |= XFS_FSOP_GEOM_FLAGS_FTYPE; 1146 if (xfs_sb_version_hasfinobt(sbp)) 1147 geo->flags |= XFS_FSOP_GEOM_FLAGS_FINOBT; 1148 if (xfs_sb_version_hassparseinodes(sbp)) 1149 geo->flags |= XFS_FSOP_GEOM_FLAGS_SPINODES; 1150 if (xfs_sb_version_hasrmapbt(sbp)) 1151 geo->flags |= XFS_FSOP_GEOM_FLAGS_RMAPBT; 1152 if (xfs_sb_version_hasreflink(sbp)) 1153 geo->flags |= XFS_FSOP_GEOM_FLAGS_REFLINK; 1154 if (xfs_sb_version_hassector(sbp)) 1155 geo->logsectsize = sbp->sb_logsectsize; 1156 else 1157 geo->logsectsize = BBSIZE; 1158 geo->rtsectsize = sbp->sb_blocksize; 1159 geo->dirblocksize = xfs_dir2_dirblock_bytes(sbp); 1160 1161 if (struct_version < 4) 1162 return; 1163 1164 if (xfs_sb_version_haslogv2(sbp)) 1165 geo->flags |= XFS_FSOP_GEOM_FLAGS_LOGV2; 1166 1167 geo->logsunit = sbp->sb_logsunit; 1168 1169 if (struct_version < 5) 1170 return; 1171 1172 geo->version = XFS_FSOP_GEOM_VERSION_V5; 1173 } 1174 1175 /* Read a secondary superblock. */ 1176 int 1177 xfs_sb_read_secondary( 1178 struct xfs_mount *mp, 1179 struct xfs_trans *tp, 1180 xfs_agnumber_t agno, 1181 struct xfs_buf **bpp) 1182 { 1183 struct xfs_buf *bp; 1184 int error; 1185 1186 ASSERT(agno != 0 && agno != NULLAGNUMBER); 1187 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 1188 XFS_AG_DADDR(mp, agno, XFS_SB_BLOCK(mp)), 1189 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_sb_buf_ops); 1190 if (error) 1191 return error; 1192 xfs_buf_set_ref(bp, XFS_SSB_REF); 1193 *bpp = bp; 1194 return 0; 1195 } 1196 1197 /* Get an uninitialised secondary superblock buffer. */ 1198 int 1199 xfs_sb_get_secondary( 1200 struct xfs_mount *mp, 1201 struct xfs_trans *tp, 1202 xfs_agnumber_t agno, 1203 struct xfs_buf **bpp) 1204 { 1205 struct xfs_buf *bp; 1206 1207 ASSERT(agno != 0 && agno != NULLAGNUMBER); 1208 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, 1209 XFS_AG_DADDR(mp, agno, XFS_SB_BLOCK(mp)), 1210 XFS_FSS_TO_BB(mp, 1), 0); 1211 if (!bp) 1212 return -ENOMEM; 1213 bp->b_ops = &xfs_sb_buf_ops; 1214 xfs_buf_oneshot(bp); 1215 *bpp = bp; 1216 return 0; 1217 } 1218