xref: /openbmc/linux/fs/xfs/libxfs/xfs_rmap_btree.c (revision f2a89d3b)
1 /*
2  * Copyright (c) 2014 Red Hat, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_trans.h"
30 #include "xfs_alloc.h"
31 #include "xfs_btree.h"
32 #include "xfs_rmap.h"
33 #include "xfs_rmap_btree.h"
34 #include "xfs_trace.h"
35 #include "xfs_cksum.h"
36 #include "xfs_error.h"
37 #include "xfs_extent_busy.h"
38 
39 /*
40  * Reverse map btree.
41  *
42  * This is a per-ag tree used to track the owner(s) of a given extent. With
43  * reflink it is possible for there to be multiple owners, which is a departure
44  * from classic XFS. Owner records for data extents are inserted when the
45  * extent is mapped and removed when an extent is unmapped.  Owner records for
46  * all other block types (i.e. metadata) are inserted when an extent is
47  * allocated and removed when an extent is freed. There can only be one owner
48  * of a metadata extent, usually an inode or some other metadata structure like
49  * an AG btree.
50  *
51  * The rmap btree is part of the free space management, so blocks for the tree
52  * are sourced from the agfl. Hence we need transaction reservation support for
53  * this tree so that the freelist is always large enough. This also impacts on
54  * the minimum space we need to leave free in the AG.
55  *
56  * The tree is ordered by [ag block, owner, offset]. This is a large key size,
57  * but it is the only way to enforce unique keys when a block can be owned by
58  * multiple files at any offset. There's no need to order/search by extent
59  * size for online updating/management of the tree. It is intended that most
60  * reverse lookups will be to find the owner(s) of a particular block, or to
61  * try to recover tree and file data from corrupt primary metadata.
62  */
63 
64 static struct xfs_btree_cur *
65 xfs_rmapbt_dup_cursor(
66 	struct xfs_btree_cur	*cur)
67 {
68 	return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
69 			cur->bc_private.a.agbp, cur->bc_private.a.agno);
70 }
71 
72 STATIC void
73 xfs_rmapbt_set_root(
74 	struct xfs_btree_cur	*cur,
75 	union xfs_btree_ptr	*ptr,
76 	int			inc)
77 {
78 	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
79 	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
80 	xfs_agnumber_t		seqno = be32_to_cpu(agf->agf_seqno);
81 	int			btnum = cur->bc_btnum;
82 	struct xfs_perag	*pag = xfs_perag_get(cur->bc_mp, seqno);
83 
84 	ASSERT(ptr->s != 0);
85 
86 	agf->agf_roots[btnum] = ptr->s;
87 	be32_add_cpu(&agf->agf_levels[btnum], inc);
88 	pag->pagf_levels[btnum] += inc;
89 	xfs_perag_put(pag);
90 
91 	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
92 }
93 
94 STATIC int
95 xfs_rmapbt_alloc_block(
96 	struct xfs_btree_cur	*cur,
97 	union xfs_btree_ptr	*start,
98 	union xfs_btree_ptr	*new,
99 	int			*stat)
100 {
101 	int			error;
102 	xfs_agblock_t		bno;
103 
104 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
105 
106 	/* Allocate the new block from the freelist. If we can't, give up.  */
107 	error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
108 				       &bno, 1);
109 	if (error) {
110 		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
111 		return error;
112 	}
113 
114 	trace_xfs_rmapbt_alloc_block(cur->bc_mp, cur->bc_private.a.agno,
115 			bno, 1);
116 	if (bno == NULLAGBLOCK) {
117 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
118 		*stat = 0;
119 		return 0;
120 	}
121 
122 	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1,
123 			false);
124 
125 	xfs_trans_agbtree_delta(cur->bc_tp, 1);
126 	new->s = cpu_to_be32(bno);
127 
128 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
129 	*stat = 1;
130 	return 0;
131 }
132 
133 STATIC int
134 xfs_rmapbt_free_block(
135 	struct xfs_btree_cur	*cur,
136 	struct xfs_buf		*bp)
137 {
138 	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
139 	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
140 	xfs_agblock_t		bno;
141 	int			error;
142 
143 	bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
144 	trace_xfs_rmapbt_free_block(cur->bc_mp, cur->bc_private.a.agno,
145 			bno, 1);
146 	error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
147 	if (error)
148 		return error;
149 
150 	xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
151 			      XFS_EXTENT_BUSY_SKIP_DISCARD);
152 	xfs_trans_agbtree_delta(cur->bc_tp, -1);
153 
154 	return 0;
155 }
156 
157 STATIC int
158 xfs_rmapbt_get_minrecs(
159 	struct xfs_btree_cur	*cur,
160 	int			level)
161 {
162 	return cur->bc_mp->m_rmap_mnr[level != 0];
163 }
164 
165 STATIC int
166 xfs_rmapbt_get_maxrecs(
167 	struct xfs_btree_cur	*cur,
168 	int			level)
169 {
170 	return cur->bc_mp->m_rmap_mxr[level != 0];
171 }
172 
173 STATIC void
174 xfs_rmapbt_init_key_from_rec(
175 	union xfs_btree_key	*key,
176 	union xfs_btree_rec	*rec)
177 {
178 	key->rmap.rm_startblock = rec->rmap.rm_startblock;
179 	key->rmap.rm_owner = rec->rmap.rm_owner;
180 	key->rmap.rm_offset = rec->rmap.rm_offset;
181 }
182 
183 /*
184  * The high key for a reverse mapping record can be computed by shifting
185  * the startblock and offset to the highest value that would still map
186  * to that record.  In practice this means that we add blockcount-1 to
187  * the startblock for all records, and if the record is for a data/attr
188  * fork mapping, we add blockcount-1 to the offset too.
189  */
190 STATIC void
191 xfs_rmapbt_init_high_key_from_rec(
192 	union xfs_btree_key	*key,
193 	union xfs_btree_rec	*rec)
194 {
195 	__uint64_t		off;
196 	int			adj;
197 
198 	adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
199 
200 	key->rmap.rm_startblock = rec->rmap.rm_startblock;
201 	be32_add_cpu(&key->rmap.rm_startblock, adj);
202 	key->rmap.rm_owner = rec->rmap.rm_owner;
203 	key->rmap.rm_offset = rec->rmap.rm_offset;
204 	if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
205 	    XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
206 		return;
207 	off = be64_to_cpu(key->rmap.rm_offset);
208 	off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
209 	key->rmap.rm_offset = cpu_to_be64(off);
210 }
211 
212 STATIC void
213 xfs_rmapbt_init_rec_from_cur(
214 	struct xfs_btree_cur	*cur,
215 	union xfs_btree_rec	*rec)
216 {
217 	rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
218 	rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
219 	rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
220 	rec->rmap.rm_offset = cpu_to_be64(
221 			xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
222 }
223 
224 STATIC void
225 xfs_rmapbt_init_ptr_from_cur(
226 	struct xfs_btree_cur	*cur,
227 	union xfs_btree_ptr	*ptr)
228 {
229 	struct xfs_agf		*agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
230 
231 	ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
232 	ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
233 
234 	ptr->s = agf->agf_roots[cur->bc_btnum];
235 }
236 
237 STATIC __int64_t
238 xfs_rmapbt_key_diff(
239 	struct xfs_btree_cur	*cur,
240 	union xfs_btree_key	*key)
241 {
242 	struct xfs_rmap_irec	*rec = &cur->bc_rec.r;
243 	struct xfs_rmap_key	*kp = &key->rmap;
244 	__u64			x, y;
245 	__int64_t		d;
246 
247 	d = (__int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
248 	if (d)
249 		return d;
250 
251 	x = be64_to_cpu(kp->rm_owner);
252 	y = rec->rm_owner;
253 	if (x > y)
254 		return 1;
255 	else if (y > x)
256 		return -1;
257 
258 	x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
259 	y = rec->rm_offset;
260 	if (x > y)
261 		return 1;
262 	else if (y > x)
263 		return -1;
264 	return 0;
265 }
266 
267 STATIC __int64_t
268 xfs_rmapbt_diff_two_keys(
269 	struct xfs_btree_cur	*cur,
270 	union xfs_btree_key	*k1,
271 	union xfs_btree_key	*k2)
272 {
273 	struct xfs_rmap_key	*kp1 = &k1->rmap;
274 	struct xfs_rmap_key	*kp2 = &k2->rmap;
275 	__int64_t		d;
276 	__u64			x, y;
277 
278 	d = (__int64_t)be32_to_cpu(kp1->rm_startblock) -
279 		       be32_to_cpu(kp2->rm_startblock);
280 	if (d)
281 		return d;
282 
283 	x = be64_to_cpu(kp1->rm_owner);
284 	y = be64_to_cpu(kp2->rm_owner);
285 	if (x > y)
286 		return 1;
287 	else if (y > x)
288 		return -1;
289 
290 	x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
291 	y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
292 	if (x > y)
293 		return 1;
294 	else if (y > x)
295 		return -1;
296 	return 0;
297 }
298 
299 static bool
300 xfs_rmapbt_verify(
301 	struct xfs_buf		*bp)
302 {
303 	struct xfs_mount	*mp = bp->b_target->bt_mount;
304 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
305 	struct xfs_perag	*pag = bp->b_pag;
306 	unsigned int		level;
307 
308 	/*
309 	 * magic number and level verification
310 	 *
311 	 * During growfs operations, we can't verify the exact level or owner as
312 	 * the perag is not fully initialised and hence not attached to the
313 	 * buffer.  In this case, check against the maximum tree depth.
314 	 *
315 	 * Similarly, during log recovery we will have a perag structure
316 	 * attached, but the agf information will not yet have been initialised
317 	 * from the on disk AGF. Again, we can only check against maximum limits
318 	 * in this case.
319 	 */
320 	if (block->bb_magic != cpu_to_be32(XFS_RMAP_CRC_MAGIC))
321 		return false;
322 
323 	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
324 		return false;
325 	if (!xfs_btree_sblock_v5hdr_verify(bp))
326 		return false;
327 
328 	level = be16_to_cpu(block->bb_level);
329 	if (pag && pag->pagf_init) {
330 		if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
331 			return false;
332 	} else if (level >= mp->m_rmap_maxlevels)
333 		return false;
334 
335 	return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
336 }
337 
338 static void
339 xfs_rmapbt_read_verify(
340 	struct xfs_buf	*bp)
341 {
342 	if (!xfs_btree_sblock_verify_crc(bp))
343 		xfs_buf_ioerror(bp, -EFSBADCRC);
344 	else if (!xfs_rmapbt_verify(bp))
345 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
346 
347 	if (bp->b_error) {
348 		trace_xfs_btree_corrupt(bp, _RET_IP_);
349 		xfs_verifier_error(bp);
350 	}
351 }
352 
353 static void
354 xfs_rmapbt_write_verify(
355 	struct xfs_buf	*bp)
356 {
357 	if (!xfs_rmapbt_verify(bp)) {
358 		trace_xfs_btree_corrupt(bp, _RET_IP_);
359 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
360 		xfs_verifier_error(bp);
361 		return;
362 	}
363 	xfs_btree_sblock_calc_crc(bp);
364 
365 }
366 
367 const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
368 	.name			= "xfs_rmapbt",
369 	.verify_read		= xfs_rmapbt_read_verify,
370 	.verify_write		= xfs_rmapbt_write_verify,
371 };
372 
373 #if defined(DEBUG) || defined(XFS_WARN)
374 STATIC int
375 xfs_rmapbt_keys_inorder(
376 	struct xfs_btree_cur	*cur,
377 	union xfs_btree_key	*k1,
378 	union xfs_btree_key	*k2)
379 {
380 	__uint32_t		x;
381 	__uint32_t		y;
382 	__uint64_t		a;
383 	__uint64_t		b;
384 
385 	x = be32_to_cpu(k1->rmap.rm_startblock);
386 	y = be32_to_cpu(k2->rmap.rm_startblock);
387 	if (x < y)
388 		return 1;
389 	else if (x > y)
390 		return 0;
391 	a = be64_to_cpu(k1->rmap.rm_owner);
392 	b = be64_to_cpu(k2->rmap.rm_owner);
393 	if (a < b)
394 		return 1;
395 	else if (a > b)
396 		return 0;
397 	a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
398 	b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
399 	if (a <= b)
400 		return 1;
401 	return 0;
402 }
403 
404 STATIC int
405 xfs_rmapbt_recs_inorder(
406 	struct xfs_btree_cur	*cur,
407 	union xfs_btree_rec	*r1,
408 	union xfs_btree_rec	*r2)
409 {
410 	__uint32_t		x;
411 	__uint32_t		y;
412 	__uint64_t		a;
413 	__uint64_t		b;
414 
415 	x = be32_to_cpu(r1->rmap.rm_startblock);
416 	y = be32_to_cpu(r2->rmap.rm_startblock);
417 	if (x < y)
418 		return 1;
419 	else if (x > y)
420 		return 0;
421 	a = be64_to_cpu(r1->rmap.rm_owner);
422 	b = be64_to_cpu(r2->rmap.rm_owner);
423 	if (a < b)
424 		return 1;
425 	else if (a > b)
426 		return 0;
427 	a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
428 	b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
429 	if (a <= b)
430 		return 1;
431 	return 0;
432 }
433 #endif	/* DEBUG */
434 
435 static const struct xfs_btree_ops xfs_rmapbt_ops = {
436 	.rec_len		= sizeof(struct xfs_rmap_rec),
437 	.key_len		= 2 * sizeof(struct xfs_rmap_key),
438 
439 	.dup_cursor		= xfs_rmapbt_dup_cursor,
440 	.set_root		= xfs_rmapbt_set_root,
441 	.alloc_block		= xfs_rmapbt_alloc_block,
442 	.free_block		= xfs_rmapbt_free_block,
443 	.get_minrecs		= xfs_rmapbt_get_minrecs,
444 	.get_maxrecs		= xfs_rmapbt_get_maxrecs,
445 	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
446 	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
447 	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
448 	.init_ptr_from_cur	= xfs_rmapbt_init_ptr_from_cur,
449 	.key_diff		= xfs_rmapbt_key_diff,
450 	.buf_ops		= &xfs_rmapbt_buf_ops,
451 	.diff_two_keys		= xfs_rmapbt_diff_two_keys,
452 #if defined(DEBUG) || defined(XFS_WARN)
453 	.keys_inorder		= xfs_rmapbt_keys_inorder,
454 	.recs_inorder		= xfs_rmapbt_recs_inorder,
455 #endif
456 };
457 
458 /*
459  * Allocate a new allocation btree cursor.
460  */
461 struct xfs_btree_cur *
462 xfs_rmapbt_init_cursor(
463 	struct xfs_mount	*mp,
464 	struct xfs_trans	*tp,
465 	struct xfs_buf		*agbp,
466 	xfs_agnumber_t		agno)
467 {
468 	struct xfs_agf		*agf = XFS_BUF_TO_AGF(agbp);
469 	struct xfs_btree_cur	*cur;
470 
471 	cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
472 	cur->bc_tp = tp;
473 	cur->bc_mp = mp;
474 	/* Overlapping btree; 2 keys per pointer. */
475 	cur->bc_btnum = XFS_BTNUM_RMAP;
476 	cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
477 	cur->bc_blocklog = mp->m_sb.sb_blocklog;
478 	cur->bc_ops = &xfs_rmapbt_ops;
479 	cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
480 
481 	cur->bc_private.a.agbp = agbp;
482 	cur->bc_private.a.agno = agno;
483 
484 	return cur;
485 }
486 
487 /*
488  * Calculate number of records in an rmap btree block.
489  */
490 int
491 xfs_rmapbt_maxrecs(
492 	struct xfs_mount	*mp,
493 	int			blocklen,
494 	int			leaf)
495 {
496 	blocklen -= XFS_RMAP_BLOCK_LEN;
497 
498 	if (leaf)
499 		return blocklen / sizeof(struct xfs_rmap_rec);
500 	return blocklen /
501 		(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
502 }
503 
504 /* Compute the maximum height of an rmap btree. */
505 void
506 xfs_rmapbt_compute_maxlevels(
507 	struct xfs_mount		*mp)
508 {
509 	mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(mp,
510 			mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
511 }
512