1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_btree.h" 14 #include "xfs_btree_staging.h" 15 #include "xfs_refcount_btree.h" 16 #include "xfs_alloc.h" 17 #include "xfs_error.h" 18 #include "xfs_trace.h" 19 #include "xfs_trans.h" 20 #include "xfs_bit.h" 21 #include "xfs_rmap.h" 22 #include "xfs_ag.h" 23 24 static struct xfs_btree_cur * 25 xfs_refcountbt_dup_cursor( 26 struct xfs_btree_cur *cur) 27 { 28 return xfs_refcountbt_init_cursor(cur->bc_mp, cur->bc_tp, 29 cur->bc_ag.agbp, cur->bc_ag.pag); 30 } 31 32 STATIC void 33 xfs_refcountbt_set_root( 34 struct xfs_btree_cur *cur, 35 const union xfs_btree_ptr *ptr, 36 int inc) 37 { 38 struct xfs_buf *agbp = cur->bc_ag.agbp; 39 struct xfs_agf *agf = agbp->b_addr; 40 struct xfs_perag *pag = agbp->b_pag; 41 42 ASSERT(ptr->s != 0); 43 44 agf->agf_refcount_root = ptr->s; 45 be32_add_cpu(&agf->agf_refcount_level, inc); 46 pag->pagf_refcount_level += inc; 47 48 xfs_alloc_log_agf(cur->bc_tp, agbp, 49 XFS_AGF_REFCOUNT_ROOT | XFS_AGF_REFCOUNT_LEVEL); 50 } 51 52 STATIC int 53 xfs_refcountbt_alloc_block( 54 struct xfs_btree_cur *cur, 55 const union xfs_btree_ptr *start, 56 union xfs_btree_ptr *new, 57 int *stat) 58 { 59 struct xfs_buf *agbp = cur->bc_ag.agbp; 60 struct xfs_agf *agf = agbp->b_addr; 61 struct xfs_alloc_arg args; /* block allocation args */ 62 int error; /* error return value */ 63 64 memset(&args, 0, sizeof(args)); 65 args.tp = cur->bc_tp; 66 args.mp = cur->bc_mp; 67 args.type = XFS_ALLOCTYPE_NEAR_BNO; 68 args.fsbno = XFS_AGB_TO_FSB(cur->bc_mp, cur->bc_ag.pag->pag_agno, 69 xfs_refc_block(args.mp)); 70 args.oinfo = XFS_RMAP_OINFO_REFC; 71 args.minlen = args.maxlen = args.prod = 1; 72 args.resv = XFS_AG_RESV_METADATA; 73 74 error = xfs_alloc_vextent(&args); 75 if (error) 76 goto out_error; 77 trace_xfs_refcountbt_alloc_block(cur->bc_mp, cur->bc_ag.pag->pag_agno, 78 args.agbno, 1); 79 if (args.fsbno == NULLFSBLOCK) { 80 *stat = 0; 81 return 0; 82 } 83 ASSERT(args.agno == cur->bc_ag.pag->pag_agno); 84 ASSERT(args.len == 1); 85 86 new->s = cpu_to_be32(args.agbno); 87 be32_add_cpu(&agf->agf_refcount_blocks, 1); 88 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_REFCOUNT_BLOCKS); 89 90 *stat = 1; 91 return 0; 92 93 out_error: 94 return error; 95 } 96 97 STATIC int 98 xfs_refcountbt_free_block( 99 struct xfs_btree_cur *cur, 100 struct xfs_buf *bp) 101 { 102 struct xfs_mount *mp = cur->bc_mp; 103 struct xfs_buf *agbp = cur->bc_ag.agbp; 104 struct xfs_agf *agf = agbp->b_addr; 105 xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp)); 106 int error; 107 108 trace_xfs_refcountbt_free_block(cur->bc_mp, cur->bc_ag.pag->pag_agno, 109 XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno), 1); 110 be32_add_cpu(&agf->agf_refcount_blocks, -1); 111 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_REFCOUNT_BLOCKS); 112 error = xfs_free_extent(cur->bc_tp, fsbno, 1, &XFS_RMAP_OINFO_REFC, 113 XFS_AG_RESV_METADATA); 114 if (error) 115 return error; 116 117 return error; 118 } 119 120 STATIC int 121 xfs_refcountbt_get_minrecs( 122 struct xfs_btree_cur *cur, 123 int level) 124 { 125 return cur->bc_mp->m_refc_mnr[level != 0]; 126 } 127 128 STATIC int 129 xfs_refcountbt_get_maxrecs( 130 struct xfs_btree_cur *cur, 131 int level) 132 { 133 return cur->bc_mp->m_refc_mxr[level != 0]; 134 } 135 136 STATIC void 137 xfs_refcountbt_init_key_from_rec( 138 union xfs_btree_key *key, 139 const union xfs_btree_rec *rec) 140 { 141 key->refc.rc_startblock = rec->refc.rc_startblock; 142 } 143 144 STATIC void 145 xfs_refcountbt_init_high_key_from_rec( 146 union xfs_btree_key *key, 147 const union xfs_btree_rec *rec) 148 { 149 __u32 x; 150 151 x = be32_to_cpu(rec->refc.rc_startblock); 152 x += be32_to_cpu(rec->refc.rc_blockcount) - 1; 153 key->refc.rc_startblock = cpu_to_be32(x); 154 } 155 156 STATIC void 157 xfs_refcountbt_init_rec_from_cur( 158 struct xfs_btree_cur *cur, 159 union xfs_btree_rec *rec) 160 { 161 rec->refc.rc_startblock = cpu_to_be32(cur->bc_rec.rc.rc_startblock); 162 rec->refc.rc_blockcount = cpu_to_be32(cur->bc_rec.rc.rc_blockcount); 163 rec->refc.rc_refcount = cpu_to_be32(cur->bc_rec.rc.rc_refcount); 164 } 165 166 STATIC void 167 xfs_refcountbt_init_ptr_from_cur( 168 struct xfs_btree_cur *cur, 169 union xfs_btree_ptr *ptr) 170 { 171 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr; 172 173 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno)); 174 175 ptr->s = agf->agf_refcount_root; 176 } 177 178 STATIC int64_t 179 xfs_refcountbt_key_diff( 180 struct xfs_btree_cur *cur, 181 const union xfs_btree_key *key) 182 { 183 struct xfs_refcount_irec *rec = &cur->bc_rec.rc; 184 const struct xfs_refcount_key *kp = &key->refc; 185 186 return (int64_t)be32_to_cpu(kp->rc_startblock) - rec->rc_startblock; 187 } 188 189 STATIC int64_t 190 xfs_refcountbt_diff_two_keys( 191 struct xfs_btree_cur *cur, 192 const union xfs_btree_key *k1, 193 const union xfs_btree_key *k2) 194 { 195 return (int64_t)be32_to_cpu(k1->refc.rc_startblock) - 196 be32_to_cpu(k2->refc.rc_startblock); 197 } 198 199 STATIC xfs_failaddr_t 200 xfs_refcountbt_verify( 201 struct xfs_buf *bp) 202 { 203 struct xfs_mount *mp = bp->b_mount; 204 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 205 struct xfs_perag *pag = bp->b_pag; 206 xfs_failaddr_t fa; 207 unsigned int level; 208 209 if (!xfs_verify_magic(bp, block->bb_magic)) 210 return __this_address; 211 212 if (!xfs_has_reflink(mp)) 213 return __this_address; 214 fa = xfs_btree_sblock_v5hdr_verify(bp); 215 if (fa) 216 return fa; 217 218 level = be16_to_cpu(block->bb_level); 219 if (pag && pag->pagf_init) { 220 if (level >= pag->pagf_refcount_level) 221 return __this_address; 222 } else if (level >= mp->m_refc_maxlevels) 223 return __this_address; 224 225 return xfs_btree_sblock_verify(bp, mp->m_refc_mxr[level != 0]); 226 } 227 228 STATIC void 229 xfs_refcountbt_read_verify( 230 struct xfs_buf *bp) 231 { 232 xfs_failaddr_t fa; 233 234 if (!xfs_btree_sblock_verify_crc(bp)) 235 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 236 else { 237 fa = xfs_refcountbt_verify(bp); 238 if (fa) 239 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 240 } 241 242 if (bp->b_error) 243 trace_xfs_btree_corrupt(bp, _RET_IP_); 244 } 245 246 STATIC void 247 xfs_refcountbt_write_verify( 248 struct xfs_buf *bp) 249 { 250 xfs_failaddr_t fa; 251 252 fa = xfs_refcountbt_verify(bp); 253 if (fa) { 254 trace_xfs_btree_corrupt(bp, _RET_IP_); 255 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 256 return; 257 } 258 xfs_btree_sblock_calc_crc(bp); 259 260 } 261 262 const struct xfs_buf_ops xfs_refcountbt_buf_ops = { 263 .name = "xfs_refcountbt", 264 .magic = { 0, cpu_to_be32(XFS_REFC_CRC_MAGIC) }, 265 .verify_read = xfs_refcountbt_read_verify, 266 .verify_write = xfs_refcountbt_write_verify, 267 .verify_struct = xfs_refcountbt_verify, 268 }; 269 270 STATIC int 271 xfs_refcountbt_keys_inorder( 272 struct xfs_btree_cur *cur, 273 const union xfs_btree_key *k1, 274 const union xfs_btree_key *k2) 275 { 276 return be32_to_cpu(k1->refc.rc_startblock) < 277 be32_to_cpu(k2->refc.rc_startblock); 278 } 279 280 STATIC int 281 xfs_refcountbt_recs_inorder( 282 struct xfs_btree_cur *cur, 283 const union xfs_btree_rec *r1, 284 const union xfs_btree_rec *r2) 285 { 286 return be32_to_cpu(r1->refc.rc_startblock) + 287 be32_to_cpu(r1->refc.rc_blockcount) <= 288 be32_to_cpu(r2->refc.rc_startblock); 289 } 290 291 static const struct xfs_btree_ops xfs_refcountbt_ops = { 292 .rec_len = sizeof(struct xfs_refcount_rec), 293 .key_len = sizeof(struct xfs_refcount_key), 294 295 .dup_cursor = xfs_refcountbt_dup_cursor, 296 .set_root = xfs_refcountbt_set_root, 297 .alloc_block = xfs_refcountbt_alloc_block, 298 .free_block = xfs_refcountbt_free_block, 299 .get_minrecs = xfs_refcountbt_get_minrecs, 300 .get_maxrecs = xfs_refcountbt_get_maxrecs, 301 .init_key_from_rec = xfs_refcountbt_init_key_from_rec, 302 .init_high_key_from_rec = xfs_refcountbt_init_high_key_from_rec, 303 .init_rec_from_cur = xfs_refcountbt_init_rec_from_cur, 304 .init_ptr_from_cur = xfs_refcountbt_init_ptr_from_cur, 305 .key_diff = xfs_refcountbt_key_diff, 306 .buf_ops = &xfs_refcountbt_buf_ops, 307 .diff_two_keys = xfs_refcountbt_diff_two_keys, 308 .keys_inorder = xfs_refcountbt_keys_inorder, 309 .recs_inorder = xfs_refcountbt_recs_inorder, 310 }; 311 312 /* 313 * Initialize a new refcount btree cursor. 314 */ 315 static struct xfs_btree_cur * 316 xfs_refcountbt_init_common( 317 struct xfs_mount *mp, 318 struct xfs_trans *tp, 319 struct xfs_perag *pag) 320 { 321 struct xfs_btree_cur *cur; 322 323 ASSERT(pag->pag_agno < mp->m_sb.sb_agcount); 324 325 cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL); 326 cur->bc_tp = tp; 327 cur->bc_mp = mp; 328 cur->bc_btnum = XFS_BTNUM_REFC; 329 cur->bc_blocklog = mp->m_sb.sb_blocklog; 330 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_refcbt_2); 331 332 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; 333 334 /* take a reference for the cursor */ 335 atomic_inc(&pag->pag_ref); 336 cur->bc_ag.pag = pag; 337 338 cur->bc_ag.refc.nr_ops = 0; 339 cur->bc_ag.refc.shape_changes = 0; 340 cur->bc_ops = &xfs_refcountbt_ops; 341 return cur; 342 } 343 344 /* Create a btree cursor. */ 345 struct xfs_btree_cur * 346 xfs_refcountbt_init_cursor( 347 struct xfs_mount *mp, 348 struct xfs_trans *tp, 349 struct xfs_buf *agbp, 350 struct xfs_perag *pag) 351 { 352 struct xfs_agf *agf = agbp->b_addr; 353 struct xfs_btree_cur *cur; 354 355 cur = xfs_refcountbt_init_common(mp, tp, pag); 356 cur->bc_nlevels = be32_to_cpu(agf->agf_refcount_level); 357 cur->bc_ag.agbp = agbp; 358 return cur; 359 } 360 361 /* Create a btree cursor with a fake root for staging. */ 362 struct xfs_btree_cur * 363 xfs_refcountbt_stage_cursor( 364 struct xfs_mount *mp, 365 struct xbtree_afakeroot *afake, 366 struct xfs_perag *pag) 367 { 368 struct xfs_btree_cur *cur; 369 370 cur = xfs_refcountbt_init_common(mp, NULL, pag); 371 xfs_btree_stage_afakeroot(cur, afake); 372 return cur; 373 } 374 375 /* 376 * Swap in the new btree root. Once we pass this point the newly rebuilt btree 377 * is in place and we have to kill off all the old btree blocks. 378 */ 379 void 380 xfs_refcountbt_commit_staged_btree( 381 struct xfs_btree_cur *cur, 382 struct xfs_trans *tp, 383 struct xfs_buf *agbp) 384 { 385 struct xfs_agf *agf = agbp->b_addr; 386 struct xbtree_afakeroot *afake = cur->bc_ag.afake; 387 388 ASSERT(cur->bc_flags & XFS_BTREE_STAGING); 389 390 agf->agf_refcount_root = cpu_to_be32(afake->af_root); 391 agf->agf_refcount_level = cpu_to_be32(afake->af_levels); 392 agf->agf_refcount_blocks = cpu_to_be32(afake->af_blocks); 393 xfs_alloc_log_agf(tp, agbp, XFS_AGF_REFCOUNT_BLOCKS | 394 XFS_AGF_REFCOUNT_ROOT | 395 XFS_AGF_REFCOUNT_LEVEL); 396 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_refcountbt_ops); 397 } 398 399 /* 400 * Calculate the number of records in a refcount btree block. 401 */ 402 int 403 xfs_refcountbt_maxrecs( 404 int blocklen, 405 bool leaf) 406 { 407 blocklen -= XFS_REFCOUNT_BLOCK_LEN; 408 409 if (leaf) 410 return blocklen / sizeof(struct xfs_refcount_rec); 411 return blocklen / (sizeof(struct xfs_refcount_key) + 412 sizeof(xfs_refcount_ptr_t)); 413 } 414 415 /* Compute the maximum height of a refcount btree. */ 416 void 417 xfs_refcountbt_compute_maxlevels( 418 struct xfs_mount *mp) 419 { 420 mp->m_refc_maxlevels = xfs_btree_compute_maxlevels( 421 mp->m_refc_mnr, mp->m_sb.sb_agblocks); 422 } 423 424 /* Calculate the refcount btree size for some records. */ 425 xfs_extlen_t 426 xfs_refcountbt_calc_size( 427 struct xfs_mount *mp, 428 unsigned long long len) 429 { 430 return xfs_btree_calc_size(mp->m_refc_mnr, len); 431 } 432 433 /* 434 * Calculate the maximum refcount btree size. 435 */ 436 xfs_extlen_t 437 xfs_refcountbt_max_size( 438 struct xfs_mount *mp, 439 xfs_agblock_t agblocks) 440 { 441 /* Bail out if we're uninitialized, which can happen in mkfs. */ 442 if (mp->m_refc_mxr[0] == 0) 443 return 0; 444 445 return xfs_refcountbt_calc_size(mp, agblocks); 446 } 447 448 /* 449 * Figure out how many blocks to reserve and how many are used by this btree. 450 */ 451 int 452 xfs_refcountbt_calc_reserves( 453 struct xfs_mount *mp, 454 struct xfs_trans *tp, 455 struct xfs_perag *pag, 456 xfs_extlen_t *ask, 457 xfs_extlen_t *used) 458 { 459 struct xfs_buf *agbp; 460 struct xfs_agf *agf; 461 xfs_agblock_t agblocks; 462 xfs_extlen_t tree_len; 463 int error; 464 465 if (!xfs_has_reflink(mp)) 466 return 0; 467 468 error = xfs_alloc_read_agf(mp, tp, pag->pag_agno, 0, &agbp); 469 if (error) 470 return error; 471 472 agf = agbp->b_addr; 473 agblocks = be32_to_cpu(agf->agf_length); 474 tree_len = be32_to_cpu(agf->agf_refcount_blocks); 475 xfs_trans_brelse(tp, agbp); 476 477 /* 478 * The log is permanently allocated, so the space it occupies will 479 * never be available for the kinds of things that would require btree 480 * expansion. We therefore can pretend the space isn't there. 481 */ 482 if (mp->m_sb.sb_logstart && 483 XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == pag->pag_agno) 484 agblocks -= mp->m_sb.sb_logblocks; 485 486 *ask += xfs_refcountbt_max_size(mp, agblocks); 487 *used += tree_len; 488 489 return error; 490 } 491