1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/log2.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_btree.h" 18 #include "xfs_bmap_btree.h" 19 #include "xfs_bmap.h" 20 #include "xfs_error.h" 21 #include "xfs_trace.h" 22 #include "xfs_attr_sf.h" 23 #include "xfs_da_format.h" 24 #include "xfs_da_btree.h" 25 #include "xfs_dir2_priv.h" 26 #include "xfs_attr_leaf.h" 27 #include "xfs_shared.h" 28 29 kmem_zone_t *xfs_ifork_zone; 30 31 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 32 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 33 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 34 35 /* 36 * Copy inode type and data and attr format specific information from the 37 * on-disk inode to the in-core inode and fork structures. For fifos, devices, 38 * and sockets this means set i_rdev to the proper value. For files, 39 * directories, and symlinks this means to bring in the in-line data or extent 40 * pointers as well as the attribute fork. For a fork in B-tree format, only 41 * the root is immediately brought in-core. The rest will be read in later when 42 * first referenced (see xfs_iread_extents()). 43 */ 44 int 45 xfs_iformat_fork( 46 struct xfs_inode *ip, 47 struct xfs_dinode *dip) 48 { 49 struct inode *inode = VFS_I(ip); 50 struct xfs_attr_shortform *atp; 51 int size; 52 int error = 0; 53 xfs_fsize_t di_size; 54 55 switch (inode->i_mode & S_IFMT) { 56 case S_IFIFO: 57 case S_IFCHR: 58 case S_IFBLK: 59 case S_IFSOCK: 60 ip->i_d.di_size = 0; 61 inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip)); 62 break; 63 64 case S_IFREG: 65 case S_IFLNK: 66 case S_IFDIR: 67 switch (dip->di_format) { 68 case XFS_DINODE_FMT_LOCAL: 69 di_size = be64_to_cpu(dip->di_size); 70 size = (int)di_size; 71 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 72 break; 73 case XFS_DINODE_FMT_EXTENTS: 74 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 75 break; 76 case XFS_DINODE_FMT_BTREE: 77 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 78 break; 79 default: 80 return -EFSCORRUPTED; 81 } 82 break; 83 84 default: 85 return -EFSCORRUPTED; 86 } 87 if (error) 88 return error; 89 90 if (xfs_is_reflink_inode(ip)) { 91 ASSERT(ip->i_cowfp == NULL); 92 xfs_ifork_init_cow(ip); 93 } 94 95 if (!XFS_DFORK_Q(dip)) 96 return 0; 97 98 ASSERT(ip->i_afp == NULL); 99 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS); 100 101 switch (dip->di_aformat) { 102 case XFS_DINODE_FMT_LOCAL: 103 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 104 size = be16_to_cpu(atp->hdr.totsize); 105 106 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 107 break; 108 case XFS_DINODE_FMT_EXTENTS: 109 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 110 break; 111 case XFS_DINODE_FMT_BTREE: 112 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 113 break; 114 default: 115 error = -EFSCORRUPTED; 116 break; 117 } 118 if (error) { 119 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 120 ip->i_afp = NULL; 121 if (ip->i_cowfp) 122 kmem_zone_free(xfs_ifork_zone, ip->i_cowfp); 123 ip->i_cowfp = NULL; 124 xfs_idestroy_fork(ip, XFS_DATA_FORK); 125 } 126 return error; 127 } 128 129 void 130 xfs_init_local_fork( 131 struct xfs_inode *ip, 132 int whichfork, 133 const void *data, 134 int size) 135 { 136 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 137 int mem_size = size, real_size = 0; 138 bool zero_terminate; 139 140 /* 141 * If we are using the local fork to store a symlink body we need to 142 * zero-terminate it so that we can pass it back to the VFS directly. 143 * Overallocate the in-memory fork by one for that and add a zero 144 * to terminate it below. 145 */ 146 zero_terminate = S_ISLNK(VFS_I(ip)->i_mode); 147 if (zero_terminate) 148 mem_size++; 149 150 if (size) { 151 real_size = roundup(mem_size, 4); 152 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS); 153 memcpy(ifp->if_u1.if_data, data, size); 154 if (zero_terminate) 155 ifp->if_u1.if_data[size] = '\0'; 156 } else { 157 ifp->if_u1.if_data = NULL; 158 } 159 160 ifp->if_bytes = size; 161 ifp->if_flags &= ~(XFS_IFEXTENTS | XFS_IFBROOT); 162 ifp->if_flags |= XFS_IFINLINE; 163 } 164 165 /* 166 * The file is in-lined in the on-disk inode. 167 */ 168 STATIC int 169 xfs_iformat_local( 170 xfs_inode_t *ip, 171 xfs_dinode_t *dip, 172 int whichfork, 173 int size) 174 { 175 /* 176 * If the size is unreasonable, then something 177 * is wrong and we just bail out rather than crash in 178 * kmem_alloc() or memcpy() below. 179 */ 180 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 181 xfs_warn(ip->i_mount, 182 "corrupt inode %Lu (bad size %d for local fork, size = %d).", 183 (unsigned long long) ip->i_ino, size, 184 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 185 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 186 "xfs_iformat_local", dip, sizeof(*dip), 187 __this_address); 188 return -EFSCORRUPTED; 189 } 190 191 xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size); 192 return 0; 193 } 194 195 /* 196 * The file consists of a set of extents all of which fit into the on-disk 197 * inode. 198 */ 199 STATIC int 200 xfs_iformat_extents( 201 struct xfs_inode *ip, 202 struct xfs_dinode *dip, 203 int whichfork) 204 { 205 struct xfs_mount *mp = ip->i_mount; 206 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 207 int state = xfs_bmap_fork_to_state(whichfork); 208 int nex = XFS_DFORK_NEXTENTS(dip, whichfork); 209 int size = nex * sizeof(xfs_bmbt_rec_t); 210 struct xfs_iext_cursor icur; 211 struct xfs_bmbt_rec *dp; 212 struct xfs_bmbt_irec new; 213 int i; 214 215 /* 216 * If the number of extents is unreasonable, then something is wrong and 217 * we just bail out rather than crash in kmem_alloc() or memcpy() below. 218 */ 219 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) { 220 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).", 221 (unsigned long long) ip->i_ino, nex); 222 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 223 "xfs_iformat_extents(1)", dip, sizeof(*dip), 224 __this_address); 225 return -EFSCORRUPTED; 226 } 227 228 ifp->if_bytes = 0; 229 ifp->if_u1.if_root = NULL; 230 ifp->if_height = 0; 231 if (size) { 232 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 233 234 xfs_iext_first(ifp, &icur); 235 for (i = 0; i < nex; i++, dp++) { 236 xfs_failaddr_t fa; 237 238 xfs_bmbt_disk_get_all(dp, &new); 239 fa = xfs_bmap_validate_extent(ip, whichfork, &new); 240 if (fa) { 241 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 242 "xfs_iformat_extents(2)", 243 dp, sizeof(*dp), fa); 244 return -EFSCORRUPTED; 245 } 246 247 xfs_iext_insert(ip, &icur, &new, state); 248 trace_xfs_read_extent(ip, &icur, state, _THIS_IP_); 249 xfs_iext_next(ifp, &icur); 250 } 251 } 252 ifp->if_flags |= XFS_IFEXTENTS; 253 return 0; 254 } 255 256 /* 257 * The file has too many extents to fit into 258 * the inode, so they are in B-tree format. 259 * Allocate a buffer for the root of the B-tree 260 * and copy the root into it. The i_extents 261 * field will remain NULL until all of the 262 * extents are read in (when they are needed). 263 */ 264 STATIC int 265 xfs_iformat_btree( 266 xfs_inode_t *ip, 267 xfs_dinode_t *dip, 268 int whichfork) 269 { 270 struct xfs_mount *mp = ip->i_mount; 271 xfs_bmdr_block_t *dfp; 272 struct xfs_ifork *ifp; 273 /* REFERENCED */ 274 int nrecs; 275 int size; 276 int level; 277 278 ifp = XFS_IFORK_PTR(ip, whichfork); 279 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 280 size = XFS_BMAP_BROOT_SPACE(mp, dfp); 281 nrecs = be16_to_cpu(dfp->bb_numrecs); 282 level = be16_to_cpu(dfp->bb_level); 283 284 /* 285 * blow out if -- fork has less extents than can fit in 286 * fork (fork shouldn't be a btree format), root btree 287 * block has more records than can fit into the fork, 288 * or the number of extents is greater than the number of 289 * blocks. 290 */ 291 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= 292 XFS_IFORK_MAXEXT(ip, whichfork) || 293 nrecs == 0 || 294 XFS_BMDR_SPACE_CALC(nrecs) > 295 XFS_DFORK_SIZE(dip, mp, whichfork) || 296 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks) || 297 level == 0 || level > XFS_BTREE_MAXLEVELS) { 298 xfs_warn(mp, "corrupt inode %Lu (btree).", 299 (unsigned long long) ip->i_ino); 300 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 301 "xfs_iformat_btree", dfp, size, 302 __this_address); 303 return -EFSCORRUPTED; 304 } 305 306 ifp->if_broot_bytes = size; 307 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS); 308 ASSERT(ifp->if_broot != NULL); 309 /* 310 * Copy and convert from the on-disk structure 311 * to the in-memory structure. 312 */ 313 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 314 ifp->if_broot, size); 315 ifp->if_flags &= ~XFS_IFEXTENTS; 316 ifp->if_flags |= XFS_IFBROOT; 317 318 ifp->if_bytes = 0; 319 ifp->if_u1.if_root = NULL; 320 ifp->if_height = 0; 321 return 0; 322 } 323 324 /* 325 * Reallocate the space for if_broot based on the number of records 326 * being added or deleted as indicated in rec_diff. Move the records 327 * and pointers in if_broot to fit the new size. When shrinking this 328 * will eliminate holes between the records and pointers created by 329 * the caller. When growing this will create holes to be filled in 330 * by the caller. 331 * 332 * The caller must not request to add more records than would fit in 333 * the on-disk inode root. If the if_broot is currently NULL, then 334 * if we are adding records, one will be allocated. The caller must also 335 * not request that the number of records go below zero, although 336 * it can go to zero. 337 * 338 * ip -- the inode whose if_broot area is changing 339 * ext_diff -- the change in the number of records, positive or negative, 340 * requested for the if_broot array. 341 */ 342 void 343 xfs_iroot_realloc( 344 xfs_inode_t *ip, 345 int rec_diff, 346 int whichfork) 347 { 348 struct xfs_mount *mp = ip->i_mount; 349 int cur_max; 350 struct xfs_ifork *ifp; 351 struct xfs_btree_block *new_broot; 352 int new_max; 353 size_t new_size; 354 char *np; 355 char *op; 356 357 /* 358 * Handle the degenerate case quietly. 359 */ 360 if (rec_diff == 0) { 361 return; 362 } 363 364 ifp = XFS_IFORK_PTR(ip, whichfork); 365 if (rec_diff > 0) { 366 /* 367 * If there wasn't any memory allocated before, just 368 * allocate it now and get out. 369 */ 370 if (ifp->if_broot_bytes == 0) { 371 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff); 372 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 373 ifp->if_broot_bytes = (int)new_size; 374 return; 375 } 376 377 /* 378 * If there is already an existing if_broot, then we need 379 * to realloc() it and shift the pointers to their new 380 * location. The records don't change location because 381 * they are kept butted up against the btree block header. 382 */ 383 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 384 new_max = cur_max + rec_diff; 385 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 386 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, 387 KM_SLEEP | KM_NOFS); 388 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 389 ifp->if_broot_bytes); 390 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 391 (int)new_size); 392 ifp->if_broot_bytes = (int)new_size; 393 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 394 XFS_IFORK_SIZE(ip, whichfork)); 395 memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t)); 396 return; 397 } 398 399 /* 400 * rec_diff is less than 0. In this case, we are shrinking the 401 * if_broot buffer. It must already exist. If we go to zero 402 * records, just get rid of the root and clear the status bit. 403 */ 404 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 405 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 406 new_max = cur_max + rec_diff; 407 ASSERT(new_max >= 0); 408 if (new_max > 0) 409 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 410 else 411 new_size = 0; 412 if (new_size > 0) { 413 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 414 /* 415 * First copy over the btree block header. 416 */ 417 memcpy(new_broot, ifp->if_broot, 418 XFS_BMBT_BLOCK_LEN(ip->i_mount)); 419 } else { 420 new_broot = NULL; 421 ifp->if_flags &= ~XFS_IFBROOT; 422 } 423 424 /* 425 * Only copy the records and pointers if there are any. 426 */ 427 if (new_max > 0) { 428 /* 429 * First copy the records. 430 */ 431 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 432 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 433 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 434 435 /* 436 * Then copy the pointers. 437 */ 438 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 439 ifp->if_broot_bytes); 440 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 441 (int)new_size); 442 memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t)); 443 } 444 kmem_free(ifp->if_broot); 445 ifp->if_broot = new_broot; 446 ifp->if_broot_bytes = (int)new_size; 447 if (ifp->if_broot) 448 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 449 XFS_IFORK_SIZE(ip, whichfork)); 450 return; 451 } 452 453 454 /* 455 * This is called when the amount of space needed for if_data 456 * is increased or decreased. The change in size is indicated by 457 * the number of bytes that need to be added or deleted in the 458 * byte_diff parameter. 459 * 460 * If the amount of space needed has decreased below the size of the 461 * inline buffer, then switch to using the inline buffer. Otherwise, 462 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 463 * to what is needed. 464 * 465 * ip -- the inode whose if_data area is changing 466 * byte_diff -- the change in the number of bytes, positive or negative, 467 * requested for the if_data array. 468 */ 469 void 470 xfs_idata_realloc( 471 struct xfs_inode *ip, 472 int byte_diff, 473 int whichfork) 474 { 475 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 476 int new_size = (int)ifp->if_bytes + byte_diff; 477 478 ASSERT(new_size >= 0); 479 ASSERT(new_size <= XFS_IFORK_SIZE(ip, whichfork)); 480 481 if (byte_diff == 0) 482 return; 483 484 if (new_size == 0) { 485 kmem_free(ifp->if_u1.if_data); 486 ifp->if_u1.if_data = NULL; 487 ifp->if_bytes = 0; 488 return; 489 } 490 491 /* 492 * For inline data, the underlying buffer must be a multiple of 4 bytes 493 * in size so that it can be logged and stay on word boundaries. 494 * We enforce that here. 495 */ 496 ifp->if_u1.if_data = kmem_realloc(ifp->if_u1.if_data, 497 roundup(new_size, 4), KM_SLEEP | KM_NOFS); 498 ifp->if_bytes = new_size; 499 } 500 501 void 502 xfs_idestroy_fork( 503 xfs_inode_t *ip, 504 int whichfork) 505 { 506 struct xfs_ifork *ifp; 507 508 ifp = XFS_IFORK_PTR(ip, whichfork); 509 if (ifp->if_broot != NULL) { 510 kmem_free(ifp->if_broot); 511 ifp->if_broot = NULL; 512 } 513 514 /* 515 * If the format is local, then we can't have an extents 516 * array so just look for an inline data array. If we're 517 * not local then we may or may not have an extents list, 518 * so check and free it up if we do. 519 */ 520 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 521 if (ifp->if_u1.if_data != NULL) { 522 kmem_free(ifp->if_u1.if_data); 523 ifp->if_u1.if_data = NULL; 524 } 525 } else if ((ifp->if_flags & XFS_IFEXTENTS) && ifp->if_height) { 526 xfs_iext_destroy(ifp); 527 } 528 529 if (whichfork == XFS_ATTR_FORK) { 530 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 531 ip->i_afp = NULL; 532 } else if (whichfork == XFS_COW_FORK) { 533 kmem_zone_free(xfs_ifork_zone, ip->i_cowfp); 534 ip->i_cowfp = NULL; 535 } 536 } 537 538 /* 539 * Convert in-core extents to on-disk form 540 * 541 * In the case of the data fork, the in-core and on-disk fork sizes can be 542 * different due to delayed allocation extents. We only copy on-disk extents 543 * here, so callers must always use the physical fork size to determine the 544 * size of the buffer passed to this routine. We will return the size actually 545 * used. 546 */ 547 int 548 xfs_iextents_copy( 549 struct xfs_inode *ip, 550 struct xfs_bmbt_rec *dp, 551 int whichfork) 552 { 553 int state = xfs_bmap_fork_to_state(whichfork); 554 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 555 struct xfs_iext_cursor icur; 556 struct xfs_bmbt_irec rec; 557 int copied = 0; 558 559 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED)); 560 ASSERT(ifp->if_bytes > 0); 561 562 for_each_xfs_iext(ifp, &icur, &rec) { 563 if (isnullstartblock(rec.br_startblock)) 564 continue; 565 ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL); 566 xfs_bmbt_disk_set_all(dp, &rec); 567 trace_xfs_write_extent(ip, &icur, state, _RET_IP_); 568 copied += sizeof(struct xfs_bmbt_rec); 569 dp++; 570 } 571 572 ASSERT(copied > 0); 573 ASSERT(copied <= ifp->if_bytes); 574 return copied; 575 } 576 577 /* 578 * Each of the following cases stores data into the same region 579 * of the on-disk inode, so only one of them can be valid at 580 * any given time. While it is possible to have conflicting formats 581 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 582 * in EXTENTS format, this can only happen when the fork has 583 * changed formats after being modified but before being flushed. 584 * In these cases, the format always takes precedence, because the 585 * format indicates the current state of the fork. 586 */ 587 void 588 xfs_iflush_fork( 589 xfs_inode_t *ip, 590 xfs_dinode_t *dip, 591 xfs_inode_log_item_t *iip, 592 int whichfork) 593 { 594 char *cp; 595 struct xfs_ifork *ifp; 596 xfs_mount_t *mp; 597 static const short brootflag[2] = 598 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 599 static const short dataflag[2] = 600 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 601 static const short extflag[2] = 602 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 603 604 if (!iip) 605 return; 606 ifp = XFS_IFORK_PTR(ip, whichfork); 607 /* 608 * This can happen if we gave up in iformat in an error path, 609 * for the attribute fork. 610 */ 611 if (!ifp) { 612 ASSERT(whichfork == XFS_ATTR_FORK); 613 return; 614 } 615 cp = XFS_DFORK_PTR(dip, whichfork); 616 mp = ip->i_mount; 617 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 618 case XFS_DINODE_FMT_LOCAL: 619 if ((iip->ili_fields & dataflag[whichfork]) && 620 (ifp->if_bytes > 0)) { 621 ASSERT(ifp->if_u1.if_data != NULL); 622 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 623 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 624 } 625 break; 626 627 case XFS_DINODE_FMT_EXTENTS: 628 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 629 !(iip->ili_fields & extflag[whichfork])); 630 if ((iip->ili_fields & extflag[whichfork]) && 631 (ifp->if_bytes > 0)) { 632 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 633 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 634 whichfork); 635 } 636 break; 637 638 case XFS_DINODE_FMT_BTREE: 639 if ((iip->ili_fields & brootflag[whichfork]) && 640 (ifp->if_broot_bytes > 0)) { 641 ASSERT(ifp->if_broot != NULL); 642 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 643 XFS_IFORK_SIZE(ip, whichfork)); 644 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 645 (xfs_bmdr_block_t *)cp, 646 XFS_DFORK_SIZE(dip, mp, whichfork)); 647 } 648 break; 649 650 case XFS_DINODE_FMT_DEV: 651 if (iip->ili_fields & XFS_ILOG_DEV) { 652 ASSERT(whichfork == XFS_DATA_FORK); 653 xfs_dinode_put_rdev(dip, 654 linux_to_xfs_dev_t(VFS_I(ip)->i_rdev)); 655 } 656 break; 657 658 default: 659 ASSERT(0); 660 break; 661 } 662 } 663 664 /* Convert bmap state flags to an inode fork. */ 665 struct xfs_ifork * 666 xfs_iext_state_to_fork( 667 struct xfs_inode *ip, 668 int state) 669 { 670 if (state & BMAP_COWFORK) 671 return ip->i_cowfp; 672 else if (state & BMAP_ATTRFORK) 673 return ip->i_afp; 674 return &ip->i_df; 675 } 676 677 /* 678 * Initialize an inode's copy-on-write fork. 679 */ 680 void 681 xfs_ifork_init_cow( 682 struct xfs_inode *ip) 683 { 684 if (ip->i_cowfp) 685 return; 686 687 ip->i_cowfp = kmem_zone_zalloc(xfs_ifork_zone, 688 KM_SLEEP | KM_NOFS); 689 ip->i_cowfp->if_flags = XFS_IFEXTENTS; 690 ip->i_cformat = XFS_DINODE_FMT_EXTENTS; 691 ip->i_cnextents = 0; 692 } 693 694 /* Default fork content verifiers. */ 695 struct xfs_ifork_ops xfs_default_ifork_ops = { 696 .verify_attr = xfs_attr_shortform_verify, 697 .verify_dir = xfs_dir2_sf_verify, 698 .verify_symlink = xfs_symlink_shortform_verify, 699 }; 700 701 /* Verify the inline contents of the data fork of an inode. */ 702 xfs_failaddr_t 703 xfs_ifork_verify_data( 704 struct xfs_inode *ip, 705 struct xfs_ifork_ops *ops) 706 { 707 /* Non-local data fork, we're done. */ 708 if (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL) 709 return NULL; 710 711 /* Check the inline data fork if there is one. */ 712 switch (VFS_I(ip)->i_mode & S_IFMT) { 713 case S_IFDIR: 714 return ops->verify_dir(ip); 715 case S_IFLNK: 716 return ops->verify_symlink(ip); 717 default: 718 return NULL; 719 } 720 } 721 722 /* Verify the inline contents of the attr fork of an inode. */ 723 xfs_failaddr_t 724 xfs_ifork_verify_attr( 725 struct xfs_inode *ip, 726 struct xfs_ifork_ops *ops) 727 { 728 /* There has to be an attr fork allocated if aformat is local. */ 729 if (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL) 730 return NULL; 731 if (!XFS_IFORK_PTR(ip, XFS_ATTR_FORK)) 732 return __this_address; 733 return ops->verify_attr(ip); 734 } 735