1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/log2.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_btree.h" 18 #include "xfs_bmap_btree.h" 19 #include "xfs_bmap.h" 20 #include "xfs_error.h" 21 #include "xfs_trace.h" 22 #include "xfs_attr_sf.h" 23 #include "xfs_da_format.h" 24 #include "xfs_da_btree.h" 25 #include "xfs_dir2_priv.h" 26 #include "xfs_attr_leaf.h" 27 #include "xfs_shared.h" 28 29 kmem_zone_t *xfs_ifork_zone; 30 31 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 32 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 33 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 34 35 /* 36 * Copy inode type and data and attr format specific information from the 37 * on-disk inode to the in-core inode and fork structures. For fifos, devices, 38 * and sockets this means set i_rdev to the proper value. For files, 39 * directories, and symlinks this means to bring in the in-line data or extent 40 * pointers as well as the attribute fork. For a fork in B-tree format, only 41 * the root is immediately brought in-core. The rest will be read in later when 42 * first referenced (see xfs_iread_extents()). 43 */ 44 int 45 xfs_iformat_fork( 46 struct xfs_inode *ip, 47 struct xfs_dinode *dip) 48 { 49 struct inode *inode = VFS_I(ip); 50 struct xfs_attr_shortform *atp; 51 int size; 52 int error = 0; 53 xfs_fsize_t di_size; 54 55 switch (inode->i_mode & S_IFMT) { 56 case S_IFIFO: 57 case S_IFCHR: 58 case S_IFBLK: 59 case S_IFSOCK: 60 ip->i_d.di_size = 0; 61 inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip)); 62 break; 63 64 case S_IFREG: 65 case S_IFLNK: 66 case S_IFDIR: 67 switch (dip->di_format) { 68 case XFS_DINODE_FMT_LOCAL: 69 di_size = be64_to_cpu(dip->di_size); 70 size = (int)di_size; 71 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 72 break; 73 case XFS_DINODE_FMT_EXTENTS: 74 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 75 break; 76 case XFS_DINODE_FMT_BTREE: 77 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 78 break; 79 default: 80 return -EFSCORRUPTED; 81 } 82 break; 83 84 default: 85 return -EFSCORRUPTED; 86 } 87 if (error) 88 return error; 89 90 if (xfs_is_reflink_inode(ip)) { 91 ASSERT(ip->i_cowfp == NULL); 92 xfs_ifork_init_cow(ip); 93 } 94 95 if (!XFS_DFORK_Q(dip)) 96 return 0; 97 98 ASSERT(ip->i_afp == NULL); 99 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS); 100 101 switch (dip->di_aformat) { 102 case XFS_DINODE_FMT_LOCAL: 103 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 104 size = be16_to_cpu(atp->hdr.totsize); 105 106 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 107 break; 108 case XFS_DINODE_FMT_EXTENTS: 109 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 110 break; 111 case XFS_DINODE_FMT_BTREE: 112 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 113 break; 114 default: 115 error = -EFSCORRUPTED; 116 break; 117 } 118 if (error) { 119 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 120 ip->i_afp = NULL; 121 if (ip->i_cowfp) 122 kmem_zone_free(xfs_ifork_zone, ip->i_cowfp); 123 ip->i_cowfp = NULL; 124 xfs_idestroy_fork(ip, XFS_DATA_FORK); 125 } 126 return error; 127 } 128 129 void 130 xfs_init_local_fork( 131 struct xfs_inode *ip, 132 int whichfork, 133 const void *data, 134 int size) 135 { 136 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 137 int mem_size = size, real_size = 0; 138 bool zero_terminate; 139 140 /* 141 * If we are using the local fork to store a symlink body we need to 142 * zero-terminate it so that we can pass it back to the VFS directly. 143 * Overallocate the in-memory fork by one for that and add a zero 144 * to terminate it below. 145 */ 146 zero_terminate = S_ISLNK(VFS_I(ip)->i_mode); 147 if (zero_terminate) 148 mem_size++; 149 150 if (size) { 151 real_size = roundup(mem_size, 4); 152 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS); 153 memcpy(ifp->if_u1.if_data, data, size); 154 if (zero_terminate) 155 ifp->if_u1.if_data[size] = '\0'; 156 } else { 157 ifp->if_u1.if_data = NULL; 158 } 159 160 ifp->if_bytes = size; 161 ifp->if_real_bytes = real_size; 162 ifp->if_flags &= ~(XFS_IFEXTENTS | XFS_IFBROOT); 163 ifp->if_flags |= XFS_IFINLINE; 164 } 165 166 /* 167 * The file is in-lined in the on-disk inode. 168 */ 169 STATIC int 170 xfs_iformat_local( 171 xfs_inode_t *ip, 172 xfs_dinode_t *dip, 173 int whichfork, 174 int size) 175 { 176 /* 177 * If the size is unreasonable, then something 178 * is wrong and we just bail out rather than crash in 179 * kmem_alloc() or memcpy() below. 180 */ 181 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 182 xfs_warn(ip->i_mount, 183 "corrupt inode %Lu (bad size %d for local fork, size = %d).", 184 (unsigned long long) ip->i_ino, size, 185 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 186 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 187 "xfs_iformat_local", dip, sizeof(*dip), 188 __this_address); 189 return -EFSCORRUPTED; 190 } 191 192 xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size); 193 return 0; 194 } 195 196 /* 197 * The file consists of a set of extents all of which fit into the on-disk 198 * inode. 199 */ 200 STATIC int 201 xfs_iformat_extents( 202 struct xfs_inode *ip, 203 struct xfs_dinode *dip, 204 int whichfork) 205 { 206 struct xfs_mount *mp = ip->i_mount; 207 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 208 int state = xfs_bmap_fork_to_state(whichfork); 209 int nex = XFS_DFORK_NEXTENTS(dip, whichfork); 210 int size = nex * sizeof(xfs_bmbt_rec_t); 211 struct xfs_iext_cursor icur; 212 struct xfs_bmbt_rec *dp; 213 struct xfs_bmbt_irec new; 214 int i; 215 216 /* 217 * If the number of extents is unreasonable, then something is wrong and 218 * we just bail out rather than crash in kmem_alloc() or memcpy() below. 219 */ 220 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) { 221 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).", 222 (unsigned long long) ip->i_ino, nex); 223 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 224 "xfs_iformat_extents(1)", dip, sizeof(*dip), 225 __this_address); 226 return -EFSCORRUPTED; 227 } 228 229 ifp->if_real_bytes = 0; 230 ifp->if_bytes = 0; 231 ifp->if_u1.if_root = NULL; 232 ifp->if_height = 0; 233 if (size) { 234 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 235 236 xfs_iext_first(ifp, &icur); 237 for (i = 0; i < nex; i++, dp++) { 238 xfs_failaddr_t fa; 239 240 xfs_bmbt_disk_get_all(dp, &new); 241 fa = xfs_bmap_validate_extent(ip, whichfork, &new); 242 if (fa) { 243 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 244 "xfs_iformat_extents(2)", 245 dp, sizeof(*dp), fa); 246 return -EFSCORRUPTED; 247 } 248 249 xfs_iext_insert(ip, &icur, &new, state); 250 trace_xfs_read_extent(ip, &icur, state, _THIS_IP_); 251 xfs_iext_next(ifp, &icur); 252 } 253 } 254 ifp->if_flags |= XFS_IFEXTENTS; 255 return 0; 256 } 257 258 /* 259 * The file has too many extents to fit into 260 * the inode, so they are in B-tree format. 261 * Allocate a buffer for the root of the B-tree 262 * and copy the root into it. The i_extents 263 * field will remain NULL until all of the 264 * extents are read in (when they are needed). 265 */ 266 STATIC int 267 xfs_iformat_btree( 268 xfs_inode_t *ip, 269 xfs_dinode_t *dip, 270 int whichfork) 271 { 272 struct xfs_mount *mp = ip->i_mount; 273 xfs_bmdr_block_t *dfp; 274 xfs_ifork_t *ifp; 275 /* REFERENCED */ 276 int nrecs; 277 int size; 278 int level; 279 280 ifp = XFS_IFORK_PTR(ip, whichfork); 281 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 282 size = XFS_BMAP_BROOT_SPACE(mp, dfp); 283 nrecs = be16_to_cpu(dfp->bb_numrecs); 284 level = be16_to_cpu(dfp->bb_level); 285 286 /* 287 * blow out if -- fork has less extents than can fit in 288 * fork (fork shouldn't be a btree format), root btree 289 * block has more records than can fit into the fork, 290 * or the number of extents is greater than the number of 291 * blocks. 292 */ 293 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= 294 XFS_IFORK_MAXEXT(ip, whichfork) || 295 nrecs == 0 || 296 XFS_BMDR_SPACE_CALC(nrecs) > 297 XFS_DFORK_SIZE(dip, mp, whichfork) || 298 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks) || 299 level == 0 || level > XFS_BTREE_MAXLEVELS) { 300 xfs_warn(mp, "corrupt inode %Lu (btree).", 301 (unsigned long long) ip->i_ino); 302 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 303 "xfs_iformat_btree", dfp, size, 304 __this_address); 305 return -EFSCORRUPTED; 306 } 307 308 ifp->if_broot_bytes = size; 309 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS); 310 ASSERT(ifp->if_broot != NULL); 311 /* 312 * Copy and convert from the on-disk structure 313 * to the in-memory structure. 314 */ 315 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 316 ifp->if_broot, size); 317 ifp->if_flags &= ~XFS_IFEXTENTS; 318 ifp->if_flags |= XFS_IFBROOT; 319 320 ifp->if_real_bytes = 0; 321 ifp->if_bytes = 0; 322 ifp->if_u1.if_root = NULL; 323 ifp->if_height = 0; 324 return 0; 325 } 326 327 /* 328 * Reallocate the space for if_broot based on the number of records 329 * being added or deleted as indicated in rec_diff. Move the records 330 * and pointers in if_broot to fit the new size. When shrinking this 331 * will eliminate holes between the records and pointers created by 332 * the caller. When growing this will create holes to be filled in 333 * by the caller. 334 * 335 * The caller must not request to add more records than would fit in 336 * the on-disk inode root. If the if_broot is currently NULL, then 337 * if we are adding records, one will be allocated. The caller must also 338 * not request that the number of records go below zero, although 339 * it can go to zero. 340 * 341 * ip -- the inode whose if_broot area is changing 342 * ext_diff -- the change in the number of records, positive or negative, 343 * requested for the if_broot array. 344 */ 345 void 346 xfs_iroot_realloc( 347 xfs_inode_t *ip, 348 int rec_diff, 349 int whichfork) 350 { 351 struct xfs_mount *mp = ip->i_mount; 352 int cur_max; 353 xfs_ifork_t *ifp; 354 struct xfs_btree_block *new_broot; 355 int new_max; 356 size_t new_size; 357 char *np; 358 char *op; 359 360 /* 361 * Handle the degenerate case quietly. 362 */ 363 if (rec_diff == 0) { 364 return; 365 } 366 367 ifp = XFS_IFORK_PTR(ip, whichfork); 368 if (rec_diff > 0) { 369 /* 370 * If there wasn't any memory allocated before, just 371 * allocate it now and get out. 372 */ 373 if (ifp->if_broot_bytes == 0) { 374 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff); 375 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 376 ifp->if_broot_bytes = (int)new_size; 377 return; 378 } 379 380 /* 381 * If there is already an existing if_broot, then we need 382 * to realloc() it and shift the pointers to their new 383 * location. The records don't change location because 384 * they are kept butted up against the btree block header. 385 */ 386 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 387 new_max = cur_max + rec_diff; 388 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 389 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, 390 KM_SLEEP | KM_NOFS); 391 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 392 ifp->if_broot_bytes); 393 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 394 (int)new_size); 395 ifp->if_broot_bytes = (int)new_size; 396 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 397 XFS_IFORK_SIZE(ip, whichfork)); 398 memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t)); 399 return; 400 } 401 402 /* 403 * rec_diff is less than 0. In this case, we are shrinking the 404 * if_broot buffer. It must already exist. If we go to zero 405 * records, just get rid of the root and clear the status bit. 406 */ 407 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 408 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 409 new_max = cur_max + rec_diff; 410 ASSERT(new_max >= 0); 411 if (new_max > 0) 412 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 413 else 414 new_size = 0; 415 if (new_size > 0) { 416 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 417 /* 418 * First copy over the btree block header. 419 */ 420 memcpy(new_broot, ifp->if_broot, 421 XFS_BMBT_BLOCK_LEN(ip->i_mount)); 422 } else { 423 new_broot = NULL; 424 ifp->if_flags &= ~XFS_IFBROOT; 425 } 426 427 /* 428 * Only copy the records and pointers if there are any. 429 */ 430 if (new_max > 0) { 431 /* 432 * First copy the records. 433 */ 434 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 435 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 436 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 437 438 /* 439 * Then copy the pointers. 440 */ 441 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 442 ifp->if_broot_bytes); 443 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 444 (int)new_size); 445 memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t)); 446 } 447 kmem_free(ifp->if_broot); 448 ifp->if_broot = new_broot; 449 ifp->if_broot_bytes = (int)new_size; 450 if (ifp->if_broot) 451 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 452 XFS_IFORK_SIZE(ip, whichfork)); 453 return; 454 } 455 456 457 /* 458 * This is called when the amount of space needed for if_data 459 * is increased or decreased. The change in size is indicated by 460 * the number of bytes that need to be added or deleted in the 461 * byte_diff parameter. 462 * 463 * If the amount of space needed has decreased below the size of the 464 * inline buffer, then switch to using the inline buffer. Otherwise, 465 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 466 * to what is needed. 467 * 468 * ip -- the inode whose if_data area is changing 469 * byte_diff -- the change in the number of bytes, positive or negative, 470 * requested for the if_data array. 471 */ 472 void 473 xfs_idata_realloc( 474 xfs_inode_t *ip, 475 int byte_diff, 476 int whichfork) 477 { 478 xfs_ifork_t *ifp; 479 int new_size; 480 int real_size; 481 482 if (byte_diff == 0) { 483 return; 484 } 485 486 ifp = XFS_IFORK_PTR(ip, whichfork); 487 new_size = (int)ifp->if_bytes + byte_diff; 488 ASSERT(new_size >= 0); 489 490 if (new_size == 0) { 491 kmem_free(ifp->if_u1.if_data); 492 ifp->if_u1.if_data = NULL; 493 real_size = 0; 494 } else { 495 /* 496 * Stuck with malloc/realloc. 497 * For inline data, the underlying buffer must be 498 * a multiple of 4 bytes in size so that it can be 499 * logged and stay on word boundaries. We enforce 500 * that here. 501 */ 502 real_size = roundup(new_size, 4); 503 if (ifp->if_u1.if_data == NULL) { 504 ASSERT(ifp->if_real_bytes == 0); 505 ifp->if_u1.if_data = kmem_alloc(real_size, 506 KM_SLEEP | KM_NOFS); 507 } else { 508 /* 509 * Only do the realloc if the underlying size 510 * is really changing. 511 */ 512 if (ifp->if_real_bytes != real_size) { 513 ifp->if_u1.if_data = 514 kmem_realloc(ifp->if_u1.if_data, 515 real_size, 516 KM_SLEEP | KM_NOFS); 517 } 518 } 519 } 520 ifp->if_real_bytes = real_size; 521 ifp->if_bytes = new_size; 522 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 523 } 524 525 void 526 xfs_idestroy_fork( 527 xfs_inode_t *ip, 528 int whichfork) 529 { 530 xfs_ifork_t *ifp; 531 532 ifp = XFS_IFORK_PTR(ip, whichfork); 533 if (ifp->if_broot != NULL) { 534 kmem_free(ifp->if_broot); 535 ifp->if_broot = NULL; 536 } 537 538 /* 539 * If the format is local, then we can't have an extents 540 * array so just look for an inline data array. If we're 541 * not local then we may or may not have an extents list, 542 * so check and free it up if we do. 543 */ 544 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 545 if (ifp->if_u1.if_data != NULL) { 546 ASSERT(ifp->if_real_bytes != 0); 547 kmem_free(ifp->if_u1.if_data); 548 ifp->if_u1.if_data = NULL; 549 ifp->if_real_bytes = 0; 550 } 551 } else if ((ifp->if_flags & XFS_IFEXTENTS) && ifp->if_height) { 552 xfs_iext_destroy(ifp); 553 } 554 555 ASSERT(ifp->if_real_bytes == 0); 556 557 if (whichfork == XFS_ATTR_FORK) { 558 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 559 ip->i_afp = NULL; 560 } else if (whichfork == XFS_COW_FORK) { 561 kmem_zone_free(xfs_ifork_zone, ip->i_cowfp); 562 ip->i_cowfp = NULL; 563 } 564 } 565 566 /* 567 * Convert in-core extents to on-disk form 568 * 569 * In the case of the data fork, the in-core and on-disk fork sizes can be 570 * different due to delayed allocation extents. We only copy on-disk extents 571 * here, so callers must always use the physical fork size to determine the 572 * size of the buffer passed to this routine. We will return the size actually 573 * used. 574 */ 575 int 576 xfs_iextents_copy( 577 struct xfs_inode *ip, 578 struct xfs_bmbt_rec *dp, 579 int whichfork) 580 { 581 int state = xfs_bmap_fork_to_state(whichfork); 582 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 583 struct xfs_iext_cursor icur; 584 struct xfs_bmbt_irec rec; 585 int copied = 0; 586 587 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED)); 588 ASSERT(ifp->if_bytes > 0); 589 590 for_each_xfs_iext(ifp, &icur, &rec) { 591 if (isnullstartblock(rec.br_startblock)) 592 continue; 593 ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL); 594 xfs_bmbt_disk_set_all(dp, &rec); 595 trace_xfs_write_extent(ip, &icur, state, _RET_IP_); 596 copied += sizeof(struct xfs_bmbt_rec); 597 dp++; 598 } 599 600 ASSERT(copied > 0); 601 ASSERT(copied <= ifp->if_bytes); 602 return copied; 603 } 604 605 /* 606 * Each of the following cases stores data into the same region 607 * of the on-disk inode, so only one of them can be valid at 608 * any given time. While it is possible to have conflicting formats 609 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 610 * in EXTENTS format, this can only happen when the fork has 611 * changed formats after being modified but before being flushed. 612 * In these cases, the format always takes precedence, because the 613 * format indicates the current state of the fork. 614 */ 615 void 616 xfs_iflush_fork( 617 xfs_inode_t *ip, 618 xfs_dinode_t *dip, 619 xfs_inode_log_item_t *iip, 620 int whichfork) 621 { 622 char *cp; 623 xfs_ifork_t *ifp; 624 xfs_mount_t *mp; 625 static const short brootflag[2] = 626 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 627 static const short dataflag[2] = 628 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 629 static const short extflag[2] = 630 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 631 632 if (!iip) 633 return; 634 ifp = XFS_IFORK_PTR(ip, whichfork); 635 /* 636 * This can happen if we gave up in iformat in an error path, 637 * for the attribute fork. 638 */ 639 if (!ifp) { 640 ASSERT(whichfork == XFS_ATTR_FORK); 641 return; 642 } 643 cp = XFS_DFORK_PTR(dip, whichfork); 644 mp = ip->i_mount; 645 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 646 case XFS_DINODE_FMT_LOCAL: 647 if ((iip->ili_fields & dataflag[whichfork]) && 648 (ifp->if_bytes > 0)) { 649 ASSERT(ifp->if_u1.if_data != NULL); 650 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 651 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 652 } 653 break; 654 655 case XFS_DINODE_FMT_EXTENTS: 656 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 657 !(iip->ili_fields & extflag[whichfork])); 658 if ((iip->ili_fields & extflag[whichfork]) && 659 (ifp->if_bytes > 0)) { 660 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 661 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 662 whichfork); 663 } 664 break; 665 666 case XFS_DINODE_FMT_BTREE: 667 if ((iip->ili_fields & brootflag[whichfork]) && 668 (ifp->if_broot_bytes > 0)) { 669 ASSERT(ifp->if_broot != NULL); 670 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 671 XFS_IFORK_SIZE(ip, whichfork)); 672 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 673 (xfs_bmdr_block_t *)cp, 674 XFS_DFORK_SIZE(dip, mp, whichfork)); 675 } 676 break; 677 678 case XFS_DINODE_FMT_DEV: 679 if (iip->ili_fields & XFS_ILOG_DEV) { 680 ASSERT(whichfork == XFS_DATA_FORK); 681 xfs_dinode_put_rdev(dip, 682 linux_to_xfs_dev_t(VFS_I(ip)->i_rdev)); 683 } 684 break; 685 686 default: 687 ASSERT(0); 688 break; 689 } 690 } 691 692 /* Convert bmap state flags to an inode fork. */ 693 struct xfs_ifork * 694 xfs_iext_state_to_fork( 695 struct xfs_inode *ip, 696 int state) 697 { 698 if (state & BMAP_COWFORK) 699 return ip->i_cowfp; 700 else if (state & BMAP_ATTRFORK) 701 return ip->i_afp; 702 return &ip->i_df; 703 } 704 705 /* 706 * Initialize an inode's copy-on-write fork. 707 */ 708 void 709 xfs_ifork_init_cow( 710 struct xfs_inode *ip) 711 { 712 if (ip->i_cowfp) 713 return; 714 715 ip->i_cowfp = kmem_zone_zalloc(xfs_ifork_zone, 716 KM_SLEEP | KM_NOFS); 717 ip->i_cowfp->if_flags = XFS_IFEXTENTS; 718 ip->i_cformat = XFS_DINODE_FMT_EXTENTS; 719 ip->i_cnextents = 0; 720 } 721 722 /* Default fork content verifiers. */ 723 struct xfs_ifork_ops xfs_default_ifork_ops = { 724 .verify_attr = xfs_attr_shortform_verify, 725 .verify_dir = xfs_dir2_sf_verify, 726 .verify_symlink = xfs_symlink_shortform_verify, 727 }; 728 729 /* Verify the inline contents of the data fork of an inode. */ 730 xfs_failaddr_t 731 xfs_ifork_verify_data( 732 struct xfs_inode *ip, 733 struct xfs_ifork_ops *ops) 734 { 735 /* Non-local data fork, we're done. */ 736 if (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL) 737 return NULL; 738 739 /* Check the inline data fork if there is one. */ 740 switch (VFS_I(ip)->i_mode & S_IFMT) { 741 case S_IFDIR: 742 return ops->verify_dir(ip); 743 case S_IFLNK: 744 return ops->verify_symlink(ip); 745 default: 746 return NULL; 747 } 748 } 749 750 /* Verify the inline contents of the attr fork of an inode. */ 751 xfs_failaddr_t 752 xfs_ifork_verify_attr( 753 struct xfs_inode *ip, 754 struct xfs_ifork_ops *ops) 755 { 756 /* There has to be an attr fork allocated if aformat is local. */ 757 if (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL) 758 return NULL; 759 if (!XFS_IFORK_PTR(ip, XFS_ATTR_FORK)) 760 return __this_address; 761 return ops->verify_attr(ip); 762 } 763