1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_format.h" 23 #include "xfs_log_format.h" 24 #include "xfs_trans_resv.h" 25 #include "xfs_mount.h" 26 #include "xfs_inode.h" 27 #include "xfs_trans.h" 28 #include "xfs_inode_item.h" 29 #include "xfs_btree.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_bmap.h" 32 #include "xfs_error.h" 33 #include "xfs_trace.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_da_format.h" 36 #include "xfs_da_btree.h" 37 #include "xfs_dir2_priv.h" 38 #include "xfs_attr_leaf.h" 39 #include "xfs_shared.h" 40 41 kmem_zone_t *xfs_ifork_zone; 42 43 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 44 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 45 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 46 47 /* 48 * Copy inode type and data and attr format specific information from the 49 * on-disk inode to the in-core inode and fork structures. For fifos, devices, 50 * and sockets this means set i_rdev to the proper value. For files, 51 * directories, and symlinks this means to bring in the in-line data or extent 52 * pointers as well as the attribute fork. For a fork in B-tree format, only 53 * the root is immediately brought in-core. The rest will be read in later when 54 * first referenced (see xfs_iread_extents()). 55 */ 56 int 57 xfs_iformat_fork( 58 struct xfs_inode *ip, 59 struct xfs_dinode *dip) 60 { 61 struct inode *inode = VFS_I(ip); 62 struct xfs_attr_shortform *atp; 63 int size; 64 int error = 0; 65 xfs_fsize_t di_size; 66 67 switch (inode->i_mode & S_IFMT) { 68 case S_IFIFO: 69 case S_IFCHR: 70 case S_IFBLK: 71 case S_IFSOCK: 72 ip->i_d.di_size = 0; 73 inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip)); 74 break; 75 76 case S_IFREG: 77 case S_IFLNK: 78 case S_IFDIR: 79 switch (dip->di_format) { 80 case XFS_DINODE_FMT_LOCAL: 81 di_size = be64_to_cpu(dip->di_size); 82 size = (int)di_size; 83 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 84 break; 85 case XFS_DINODE_FMT_EXTENTS: 86 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 87 break; 88 case XFS_DINODE_FMT_BTREE: 89 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 90 break; 91 default: 92 return -EFSCORRUPTED; 93 } 94 break; 95 96 default: 97 return -EFSCORRUPTED; 98 } 99 if (error) 100 return error; 101 102 if (xfs_is_reflink_inode(ip)) { 103 ASSERT(ip->i_cowfp == NULL); 104 xfs_ifork_init_cow(ip); 105 } 106 107 if (!XFS_DFORK_Q(dip)) 108 return 0; 109 110 ASSERT(ip->i_afp == NULL); 111 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS); 112 113 switch (dip->di_aformat) { 114 case XFS_DINODE_FMT_LOCAL: 115 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 116 size = be16_to_cpu(atp->hdr.totsize); 117 118 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 119 break; 120 case XFS_DINODE_FMT_EXTENTS: 121 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 122 break; 123 case XFS_DINODE_FMT_BTREE: 124 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 125 break; 126 default: 127 error = -EFSCORRUPTED; 128 break; 129 } 130 if (error) { 131 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 132 ip->i_afp = NULL; 133 if (ip->i_cowfp) 134 kmem_zone_free(xfs_ifork_zone, ip->i_cowfp); 135 ip->i_cowfp = NULL; 136 xfs_idestroy_fork(ip, XFS_DATA_FORK); 137 } 138 return error; 139 } 140 141 void 142 xfs_init_local_fork( 143 struct xfs_inode *ip, 144 int whichfork, 145 const void *data, 146 int size) 147 { 148 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 149 int mem_size = size, real_size = 0; 150 bool zero_terminate; 151 152 /* 153 * If we are using the local fork to store a symlink body we need to 154 * zero-terminate it so that we can pass it back to the VFS directly. 155 * Overallocate the in-memory fork by one for that and add a zero 156 * to terminate it below. 157 */ 158 zero_terminate = S_ISLNK(VFS_I(ip)->i_mode); 159 if (zero_terminate) 160 mem_size++; 161 162 if (size) { 163 real_size = roundup(mem_size, 4); 164 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS); 165 memcpy(ifp->if_u1.if_data, data, size); 166 if (zero_terminate) 167 ifp->if_u1.if_data[size] = '\0'; 168 } else { 169 ifp->if_u1.if_data = NULL; 170 } 171 172 ifp->if_bytes = size; 173 ifp->if_real_bytes = real_size; 174 ifp->if_flags &= ~(XFS_IFEXTENTS | XFS_IFBROOT); 175 ifp->if_flags |= XFS_IFINLINE; 176 } 177 178 /* 179 * The file is in-lined in the on-disk inode. 180 */ 181 STATIC int 182 xfs_iformat_local( 183 xfs_inode_t *ip, 184 xfs_dinode_t *dip, 185 int whichfork, 186 int size) 187 { 188 /* 189 * If the size is unreasonable, then something 190 * is wrong and we just bail out rather than crash in 191 * kmem_alloc() or memcpy() below. 192 */ 193 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 194 xfs_warn(ip->i_mount, 195 "corrupt inode %Lu (bad size %d for local fork, size = %d).", 196 (unsigned long long) ip->i_ino, size, 197 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 198 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 199 "xfs_iformat_local", dip, sizeof(*dip), 200 __this_address); 201 return -EFSCORRUPTED; 202 } 203 204 xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size); 205 return 0; 206 } 207 208 /* 209 * The file consists of a set of extents all of which fit into the on-disk 210 * inode. 211 */ 212 STATIC int 213 xfs_iformat_extents( 214 struct xfs_inode *ip, 215 struct xfs_dinode *dip, 216 int whichfork) 217 { 218 struct xfs_mount *mp = ip->i_mount; 219 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 220 int state = xfs_bmap_fork_to_state(whichfork); 221 int nex = XFS_DFORK_NEXTENTS(dip, whichfork); 222 int size = nex * sizeof(xfs_bmbt_rec_t); 223 struct xfs_iext_cursor icur; 224 struct xfs_bmbt_rec *dp; 225 struct xfs_bmbt_irec new; 226 int i; 227 228 /* 229 * If the number of extents is unreasonable, then something is wrong and 230 * we just bail out rather than crash in kmem_alloc() or memcpy() below. 231 */ 232 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) { 233 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).", 234 (unsigned long long) ip->i_ino, nex); 235 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 236 "xfs_iformat_extents(1)", dip, sizeof(*dip), 237 __this_address); 238 return -EFSCORRUPTED; 239 } 240 241 ifp->if_real_bytes = 0; 242 ifp->if_bytes = 0; 243 ifp->if_u1.if_root = NULL; 244 ifp->if_height = 0; 245 if (size) { 246 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 247 248 xfs_iext_first(ifp, &icur); 249 for (i = 0; i < nex; i++, dp++) { 250 xfs_failaddr_t fa; 251 252 xfs_bmbt_disk_get_all(dp, &new); 253 fa = xfs_bmap_validate_extent(ip, whichfork, &new); 254 if (fa) { 255 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 256 "xfs_iformat_extents(2)", 257 dp, sizeof(*dp), fa); 258 return -EFSCORRUPTED; 259 } 260 261 xfs_iext_insert(ip, &icur, &new, state); 262 trace_xfs_read_extent(ip, &icur, state, _THIS_IP_); 263 xfs_iext_next(ifp, &icur); 264 } 265 } 266 ifp->if_flags |= XFS_IFEXTENTS; 267 return 0; 268 } 269 270 /* 271 * The file has too many extents to fit into 272 * the inode, so they are in B-tree format. 273 * Allocate a buffer for the root of the B-tree 274 * and copy the root into it. The i_extents 275 * field will remain NULL until all of the 276 * extents are read in (when they are needed). 277 */ 278 STATIC int 279 xfs_iformat_btree( 280 xfs_inode_t *ip, 281 xfs_dinode_t *dip, 282 int whichfork) 283 { 284 struct xfs_mount *mp = ip->i_mount; 285 xfs_bmdr_block_t *dfp; 286 xfs_ifork_t *ifp; 287 /* REFERENCED */ 288 int nrecs; 289 int size; 290 int level; 291 292 ifp = XFS_IFORK_PTR(ip, whichfork); 293 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 294 size = XFS_BMAP_BROOT_SPACE(mp, dfp); 295 nrecs = be16_to_cpu(dfp->bb_numrecs); 296 level = be16_to_cpu(dfp->bb_level); 297 298 /* 299 * blow out if -- fork has less extents than can fit in 300 * fork (fork shouldn't be a btree format), root btree 301 * block has more records than can fit into the fork, 302 * or the number of extents is greater than the number of 303 * blocks. 304 */ 305 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= 306 XFS_IFORK_MAXEXT(ip, whichfork) || 307 nrecs == 0 || 308 XFS_BMDR_SPACE_CALC(nrecs) > 309 XFS_DFORK_SIZE(dip, mp, whichfork) || 310 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks) || 311 level == 0 || level > XFS_BTREE_MAXLEVELS) { 312 xfs_warn(mp, "corrupt inode %Lu (btree).", 313 (unsigned long long) ip->i_ino); 314 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 315 "xfs_iformat_btree", dfp, size, 316 __this_address); 317 return -EFSCORRUPTED; 318 } 319 320 ifp->if_broot_bytes = size; 321 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS); 322 ASSERT(ifp->if_broot != NULL); 323 /* 324 * Copy and convert from the on-disk structure 325 * to the in-memory structure. 326 */ 327 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 328 ifp->if_broot, size); 329 ifp->if_flags &= ~XFS_IFEXTENTS; 330 ifp->if_flags |= XFS_IFBROOT; 331 332 ifp->if_real_bytes = 0; 333 ifp->if_bytes = 0; 334 ifp->if_u1.if_root = NULL; 335 ifp->if_height = 0; 336 return 0; 337 } 338 339 /* 340 * Reallocate the space for if_broot based on the number of records 341 * being added or deleted as indicated in rec_diff. Move the records 342 * and pointers in if_broot to fit the new size. When shrinking this 343 * will eliminate holes between the records and pointers created by 344 * the caller. When growing this will create holes to be filled in 345 * by the caller. 346 * 347 * The caller must not request to add more records than would fit in 348 * the on-disk inode root. If the if_broot is currently NULL, then 349 * if we are adding records, one will be allocated. The caller must also 350 * not request that the number of records go below zero, although 351 * it can go to zero. 352 * 353 * ip -- the inode whose if_broot area is changing 354 * ext_diff -- the change in the number of records, positive or negative, 355 * requested for the if_broot array. 356 */ 357 void 358 xfs_iroot_realloc( 359 xfs_inode_t *ip, 360 int rec_diff, 361 int whichfork) 362 { 363 struct xfs_mount *mp = ip->i_mount; 364 int cur_max; 365 xfs_ifork_t *ifp; 366 struct xfs_btree_block *new_broot; 367 int new_max; 368 size_t new_size; 369 char *np; 370 char *op; 371 372 /* 373 * Handle the degenerate case quietly. 374 */ 375 if (rec_diff == 0) { 376 return; 377 } 378 379 ifp = XFS_IFORK_PTR(ip, whichfork); 380 if (rec_diff > 0) { 381 /* 382 * If there wasn't any memory allocated before, just 383 * allocate it now and get out. 384 */ 385 if (ifp->if_broot_bytes == 0) { 386 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff); 387 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 388 ifp->if_broot_bytes = (int)new_size; 389 return; 390 } 391 392 /* 393 * If there is already an existing if_broot, then we need 394 * to realloc() it and shift the pointers to their new 395 * location. The records don't change location because 396 * they are kept butted up against the btree block header. 397 */ 398 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 399 new_max = cur_max + rec_diff; 400 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 401 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, 402 KM_SLEEP | KM_NOFS); 403 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 404 ifp->if_broot_bytes); 405 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 406 (int)new_size); 407 ifp->if_broot_bytes = (int)new_size; 408 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 409 XFS_IFORK_SIZE(ip, whichfork)); 410 memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t)); 411 return; 412 } 413 414 /* 415 * rec_diff is less than 0. In this case, we are shrinking the 416 * if_broot buffer. It must already exist. If we go to zero 417 * records, just get rid of the root and clear the status bit. 418 */ 419 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 420 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 421 new_max = cur_max + rec_diff; 422 ASSERT(new_max >= 0); 423 if (new_max > 0) 424 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 425 else 426 new_size = 0; 427 if (new_size > 0) { 428 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 429 /* 430 * First copy over the btree block header. 431 */ 432 memcpy(new_broot, ifp->if_broot, 433 XFS_BMBT_BLOCK_LEN(ip->i_mount)); 434 } else { 435 new_broot = NULL; 436 ifp->if_flags &= ~XFS_IFBROOT; 437 } 438 439 /* 440 * Only copy the records and pointers if there are any. 441 */ 442 if (new_max > 0) { 443 /* 444 * First copy the records. 445 */ 446 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 447 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 448 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 449 450 /* 451 * Then copy the pointers. 452 */ 453 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 454 ifp->if_broot_bytes); 455 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 456 (int)new_size); 457 memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t)); 458 } 459 kmem_free(ifp->if_broot); 460 ifp->if_broot = new_broot; 461 ifp->if_broot_bytes = (int)new_size; 462 if (ifp->if_broot) 463 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 464 XFS_IFORK_SIZE(ip, whichfork)); 465 return; 466 } 467 468 469 /* 470 * This is called when the amount of space needed for if_data 471 * is increased or decreased. The change in size is indicated by 472 * the number of bytes that need to be added or deleted in the 473 * byte_diff parameter. 474 * 475 * If the amount of space needed has decreased below the size of the 476 * inline buffer, then switch to using the inline buffer. Otherwise, 477 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 478 * to what is needed. 479 * 480 * ip -- the inode whose if_data area is changing 481 * byte_diff -- the change in the number of bytes, positive or negative, 482 * requested for the if_data array. 483 */ 484 void 485 xfs_idata_realloc( 486 xfs_inode_t *ip, 487 int byte_diff, 488 int whichfork) 489 { 490 xfs_ifork_t *ifp; 491 int new_size; 492 int real_size; 493 494 if (byte_diff == 0) { 495 return; 496 } 497 498 ifp = XFS_IFORK_PTR(ip, whichfork); 499 new_size = (int)ifp->if_bytes + byte_diff; 500 ASSERT(new_size >= 0); 501 502 if (new_size == 0) { 503 kmem_free(ifp->if_u1.if_data); 504 ifp->if_u1.if_data = NULL; 505 real_size = 0; 506 } else { 507 /* 508 * Stuck with malloc/realloc. 509 * For inline data, the underlying buffer must be 510 * a multiple of 4 bytes in size so that it can be 511 * logged and stay on word boundaries. We enforce 512 * that here. 513 */ 514 real_size = roundup(new_size, 4); 515 if (ifp->if_u1.if_data == NULL) { 516 ASSERT(ifp->if_real_bytes == 0); 517 ifp->if_u1.if_data = kmem_alloc(real_size, 518 KM_SLEEP | KM_NOFS); 519 } else { 520 /* 521 * Only do the realloc if the underlying size 522 * is really changing. 523 */ 524 if (ifp->if_real_bytes != real_size) { 525 ifp->if_u1.if_data = 526 kmem_realloc(ifp->if_u1.if_data, 527 real_size, 528 KM_SLEEP | KM_NOFS); 529 } 530 } 531 } 532 ifp->if_real_bytes = real_size; 533 ifp->if_bytes = new_size; 534 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 535 } 536 537 void 538 xfs_idestroy_fork( 539 xfs_inode_t *ip, 540 int whichfork) 541 { 542 xfs_ifork_t *ifp; 543 544 ifp = XFS_IFORK_PTR(ip, whichfork); 545 if (ifp->if_broot != NULL) { 546 kmem_free(ifp->if_broot); 547 ifp->if_broot = NULL; 548 } 549 550 /* 551 * If the format is local, then we can't have an extents 552 * array so just look for an inline data array. If we're 553 * not local then we may or may not have an extents list, 554 * so check and free it up if we do. 555 */ 556 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 557 if (ifp->if_u1.if_data != NULL) { 558 ASSERT(ifp->if_real_bytes != 0); 559 kmem_free(ifp->if_u1.if_data); 560 ifp->if_u1.if_data = NULL; 561 ifp->if_real_bytes = 0; 562 } 563 } else if ((ifp->if_flags & XFS_IFEXTENTS) && ifp->if_height) { 564 xfs_iext_destroy(ifp); 565 } 566 567 ASSERT(ifp->if_real_bytes == 0); 568 569 if (whichfork == XFS_ATTR_FORK) { 570 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 571 ip->i_afp = NULL; 572 } else if (whichfork == XFS_COW_FORK) { 573 kmem_zone_free(xfs_ifork_zone, ip->i_cowfp); 574 ip->i_cowfp = NULL; 575 } 576 } 577 578 /* 579 * Convert in-core extents to on-disk form 580 * 581 * In the case of the data fork, the in-core and on-disk fork sizes can be 582 * different due to delayed allocation extents. We only copy on-disk extents 583 * here, so callers must always use the physical fork size to determine the 584 * size of the buffer passed to this routine. We will return the size actually 585 * used. 586 */ 587 int 588 xfs_iextents_copy( 589 struct xfs_inode *ip, 590 struct xfs_bmbt_rec *dp, 591 int whichfork) 592 { 593 int state = xfs_bmap_fork_to_state(whichfork); 594 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 595 struct xfs_iext_cursor icur; 596 struct xfs_bmbt_irec rec; 597 int copied = 0; 598 599 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED)); 600 ASSERT(ifp->if_bytes > 0); 601 602 for_each_xfs_iext(ifp, &icur, &rec) { 603 if (isnullstartblock(rec.br_startblock)) 604 continue; 605 ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL); 606 xfs_bmbt_disk_set_all(dp, &rec); 607 trace_xfs_write_extent(ip, &icur, state, _RET_IP_); 608 copied += sizeof(struct xfs_bmbt_rec); 609 dp++; 610 } 611 612 ASSERT(copied > 0); 613 ASSERT(copied <= ifp->if_bytes); 614 return copied; 615 } 616 617 /* 618 * Each of the following cases stores data into the same region 619 * of the on-disk inode, so only one of them can be valid at 620 * any given time. While it is possible to have conflicting formats 621 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 622 * in EXTENTS format, this can only happen when the fork has 623 * changed formats after being modified but before being flushed. 624 * In these cases, the format always takes precedence, because the 625 * format indicates the current state of the fork. 626 */ 627 void 628 xfs_iflush_fork( 629 xfs_inode_t *ip, 630 xfs_dinode_t *dip, 631 xfs_inode_log_item_t *iip, 632 int whichfork) 633 { 634 char *cp; 635 xfs_ifork_t *ifp; 636 xfs_mount_t *mp; 637 static const short brootflag[2] = 638 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 639 static const short dataflag[2] = 640 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 641 static const short extflag[2] = 642 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 643 644 if (!iip) 645 return; 646 ifp = XFS_IFORK_PTR(ip, whichfork); 647 /* 648 * This can happen if we gave up in iformat in an error path, 649 * for the attribute fork. 650 */ 651 if (!ifp) { 652 ASSERT(whichfork == XFS_ATTR_FORK); 653 return; 654 } 655 cp = XFS_DFORK_PTR(dip, whichfork); 656 mp = ip->i_mount; 657 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 658 case XFS_DINODE_FMT_LOCAL: 659 if ((iip->ili_fields & dataflag[whichfork]) && 660 (ifp->if_bytes > 0)) { 661 ASSERT(ifp->if_u1.if_data != NULL); 662 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 663 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 664 } 665 break; 666 667 case XFS_DINODE_FMT_EXTENTS: 668 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 669 !(iip->ili_fields & extflag[whichfork])); 670 if ((iip->ili_fields & extflag[whichfork]) && 671 (ifp->if_bytes > 0)) { 672 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 673 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 674 whichfork); 675 } 676 break; 677 678 case XFS_DINODE_FMT_BTREE: 679 if ((iip->ili_fields & brootflag[whichfork]) && 680 (ifp->if_broot_bytes > 0)) { 681 ASSERT(ifp->if_broot != NULL); 682 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 683 XFS_IFORK_SIZE(ip, whichfork)); 684 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 685 (xfs_bmdr_block_t *)cp, 686 XFS_DFORK_SIZE(dip, mp, whichfork)); 687 } 688 break; 689 690 case XFS_DINODE_FMT_DEV: 691 if (iip->ili_fields & XFS_ILOG_DEV) { 692 ASSERT(whichfork == XFS_DATA_FORK); 693 xfs_dinode_put_rdev(dip, 694 linux_to_xfs_dev_t(VFS_I(ip)->i_rdev)); 695 } 696 break; 697 698 default: 699 ASSERT(0); 700 break; 701 } 702 } 703 704 /* Convert bmap state flags to an inode fork. */ 705 struct xfs_ifork * 706 xfs_iext_state_to_fork( 707 struct xfs_inode *ip, 708 int state) 709 { 710 if (state & BMAP_COWFORK) 711 return ip->i_cowfp; 712 else if (state & BMAP_ATTRFORK) 713 return ip->i_afp; 714 return &ip->i_df; 715 } 716 717 /* 718 * Initialize an inode's copy-on-write fork. 719 */ 720 void 721 xfs_ifork_init_cow( 722 struct xfs_inode *ip) 723 { 724 if (ip->i_cowfp) 725 return; 726 727 ip->i_cowfp = kmem_zone_zalloc(xfs_ifork_zone, 728 KM_SLEEP | KM_NOFS); 729 ip->i_cowfp->if_flags = XFS_IFEXTENTS; 730 ip->i_cformat = XFS_DINODE_FMT_EXTENTS; 731 ip->i_cnextents = 0; 732 } 733 734 /* Default fork content verifiers. */ 735 struct xfs_ifork_ops xfs_default_ifork_ops = { 736 .verify_attr = xfs_attr_shortform_verify, 737 .verify_dir = xfs_dir2_sf_verify, 738 .verify_symlink = xfs_symlink_shortform_verify, 739 }; 740 741 /* Verify the inline contents of the data fork of an inode. */ 742 xfs_failaddr_t 743 xfs_ifork_verify_data( 744 struct xfs_inode *ip, 745 struct xfs_ifork_ops *ops) 746 { 747 /* Non-local data fork, we're done. */ 748 if (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL) 749 return NULL; 750 751 /* Check the inline data fork if there is one. */ 752 switch (VFS_I(ip)->i_mode & S_IFMT) { 753 case S_IFDIR: 754 return ops->verify_dir(ip); 755 case S_IFLNK: 756 return ops->verify_symlink(ip); 757 default: 758 return NULL; 759 } 760 } 761 762 /* Verify the inline contents of the attr fork of an inode. */ 763 xfs_failaddr_t 764 xfs_ifork_verify_attr( 765 struct xfs_inode *ip, 766 struct xfs_ifork_ops *ops) 767 { 768 /* There has to be an attr fork allocated if aformat is local. */ 769 if (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL) 770 return NULL; 771 if (!XFS_IFORK_PTR(ip, XFS_ATTR_FORK)) 772 return __this_address; 773 return ops->verify_attr(ip); 774 } 775