xref: /openbmc/linux/fs/xfs/libxfs/xfs_inode_fork.c (revision 0a73d21e)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_trans.h"
28 #include "xfs_inode_item.h"
29 #include "xfs_btree.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_bmap.h"
32 #include "xfs_error.h"
33 #include "xfs_trace.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_da_format.h"
36 #include "xfs_da_btree.h"
37 #include "xfs_dir2_priv.h"
38 #include "xfs_attr_leaf.h"
39 #include "xfs_shared.h"
40 
41 kmem_zone_t *xfs_ifork_zone;
42 
43 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
44 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
45 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
46 
47 /*
48  * Copy inode type and data and attr format specific information from the
49  * on-disk inode to the in-core inode and fork structures.  For fifos, devices,
50  * and sockets this means set i_rdev to the proper value.  For files,
51  * directories, and symlinks this means to bring in the in-line data or extent
52  * pointers as well as the attribute fork.  For a fork in B-tree format, only
53  * the root is immediately brought in-core.  The rest will be read in later when
54  * first referenced (see xfs_iread_extents()).
55  */
56 int
57 xfs_iformat_fork(
58 	struct xfs_inode	*ip,
59 	struct xfs_dinode	*dip)
60 {
61 	struct inode		*inode = VFS_I(ip);
62 	struct xfs_attr_shortform *atp;
63 	int			size;
64 	int			error = 0;
65 	xfs_fsize_t             di_size;
66 
67 	switch (inode->i_mode & S_IFMT) {
68 	case S_IFIFO:
69 	case S_IFCHR:
70 	case S_IFBLK:
71 	case S_IFSOCK:
72 		ip->i_d.di_size = 0;
73 		inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip));
74 		break;
75 
76 	case S_IFREG:
77 	case S_IFLNK:
78 	case S_IFDIR:
79 		switch (dip->di_format) {
80 		case XFS_DINODE_FMT_LOCAL:
81 			di_size = be64_to_cpu(dip->di_size);
82 			size = (int)di_size;
83 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
84 			break;
85 		case XFS_DINODE_FMT_EXTENTS:
86 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
87 			break;
88 		case XFS_DINODE_FMT_BTREE:
89 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
90 			break;
91 		default:
92 			return -EFSCORRUPTED;
93 		}
94 		break;
95 
96 	default:
97 		return -EFSCORRUPTED;
98 	}
99 	if (error)
100 		return error;
101 
102 	if (xfs_is_reflink_inode(ip)) {
103 		ASSERT(ip->i_cowfp == NULL);
104 		xfs_ifork_init_cow(ip);
105 	}
106 
107 	if (!XFS_DFORK_Q(dip))
108 		return 0;
109 
110 	ASSERT(ip->i_afp == NULL);
111 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
112 
113 	switch (dip->di_aformat) {
114 	case XFS_DINODE_FMT_LOCAL:
115 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
116 		size = be16_to_cpu(atp->hdr.totsize);
117 
118 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
119 		break;
120 	case XFS_DINODE_FMT_EXTENTS:
121 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
122 		break;
123 	case XFS_DINODE_FMT_BTREE:
124 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
125 		break;
126 	default:
127 		error = -EFSCORRUPTED;
128 		break;
129 	}
130 	if (error) {
131 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
132 		ip->i_afp = NULL;
133 		if (ip->i_cowfp)
134 			kmem_zone_free(xfs_ifork_zone, ip->i_cowfp);
135 		ip->i_cowfp = NULL;
136 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
137 	}
138 	return error;
139 }
140 
141 void
142 xfs_init_local_fork(
143 	struct xfs_inode	*ip,
144 	int			whichfork,
145 	const void		*data,
146 	int			size)
147 {
148 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
149 	int			mem_size = size, real_size = 0;
150 	bool			zero_terminate;
151 
152 	/*
153 	 * If we are using the local fork to store a symlink body we need to
154 	 * zero-terminate it so that we can pass it back to the VFS directly.
155 	 * Overallocate the in-memory fork by one for that and add a zero
156 	 * to terminate it below.
157 	 */
158 	zero_terminate = S_ISLNK(VFS_I(ip)->i_mode);
159 	if (zero_terminate)
160 		mem_size++;
161 
162 	if (size) {
163 		real_size = roundup(mem_size, 4);
164 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
165 		memcpy(ifp->if_u1.if_data, data, size);
166 		if (zero_terminate)
167 			ifp->if_u1.if_data[size] = '\0';
168 	} else {
169 		ifp->if_u1.if_data = NULL;
170 	}
171 
172 	ifp->if_bytes = size;
173 	ifp->if_real_bytes = real_size;
174 	ifp->if_flags &= ~(XFS_IFEXTENTS | XFS_IFBROOT);
175 	ifp->if_flags |= XFS_IFINLINE;
176 }
177 
178 /*
179  * The file is in-lined in the on-disk inode.
180  */
181 STATIC int
182 xfs_iformat_local(
183 	xfs_inode_t	*ip,
184 	xfs_dinode_t	*dip,
185 	int		whichfork,
186 	int		size)
187 {
188 	/*
189 	 * If the size is unreasonable, then something
190 	 * is wrong and we just bail out rather than crash in
191 	 * kmem_alloc() or memcpy() below.
192 	 */
193 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
194 		xfs_warn(ip->i_mount,
195 	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
196 			(unsigned long long) ip->i_ino, size,
197 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
198 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
199 				     ip->i_mount, dip);
200 		return -EFSCORRUPTED;
201 	}
202 
203 	xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size);
204 	return 0;
205 }
206 
207 /*
208  * The file consists of a set of extents all of which fit into the on-disk
209  * inode.
210  */
211 STATIC int
212 xfs_iformat_extents(
213 	struct xfs_inode	*ip,
214 	struct xfs_dinode	*dip,
215 	int			whichfork)
216 {
217 	struct xfs_mount	*mp = ip->i_mount;
218 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
219 	int			state = xfs_bmap_fork_to_state(whichfork);
220 	int			nex = XFS_DFORK_NEXTENTS(dip, whichfork);
221 	int			size = nex * sizeof(xfs_bmbt_rec_t);
222 	struct xfs_iext_cursor	icur;
223 	struct xfs_bmbt_rec	*dp;
224 	struct xfs_bmbt_irec	new;
225 	int			i;
226 
227 	/*
228 	 * If the number of extents is unreasonable, then something is wrong and
229 	 * we just bail out rather than crash in kmem_alloc() or memcpy() below.
230 	 */
231 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) {
232 		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
233 			(unsigned long long) ip->i_ino, nex);
234 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
235 				     mp, dip);
236 		return -EFSCORRUPTED;
237 	}
238 
239 	ifp->if_real_bytes = 0;
240 	ifp->if_bytes = 0;
241 	ifp->if_u1.if_root = NULL;
242 	ifp->if_height = 0;
243 	if (size) {
244 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
245 
246 		xfs_iext_first(ifp, &icur);
247 		for (i = 0; i < nex; i++, dp++) {
248 			xfs_bmbt_disk_get_all(dp, &new);
249 			if (!xfs_bmbt_validate_extent(mp, whichfork, &new)) {
250 				XFS_ERROR_REPORT("xfs_iformat_extents(2)",
251 						 XFS_ERRLEVEL_LOW, mp);
252 				return -EFSCORRUPTED;
253 			}
254 
255 			xfs_iext_insert(ip, &icur, &new, state);
256 			trace_xfs_read_extent(ip, &icur, state, _THIS_IP_);
257 			xfs_iext_next(ifp, &icur);
258 		}
259 	}
260 	ifp->if_flags |= XFS_IFEXTENTS;
261 	return 0;
262 }
263 
264 /*
265  * The file has too many extents to fit into
266  * the inode, so they are in B-tree format.
267  * Allocate a buffer for the root of the B-tree
268  * and copy the root into it.  The i_extents
269  * field will remain NULL until all of the
270  * extents are read in (when they are needed).
271  */
272 STATIC int
273 xfs_iformat_btree(
274 	xfs_inode_t		*ip,
275 	xfs_dinode_t		*dip,
276 	int			whichfork)
277 {
278 	struct xfs_mount	*mp = ip->i_mount;
279 	xfs_bmdr_block_t	*dfp;
280 	xfs_ifork_t		*ifp;
281 	/* REFERENCED */
282 	int			nrecs;
283 	int			size;
284 	int			level;
285 
286 	ifp = XFS_IFORK_PTR(ip, whichfork);
287 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
288 	size = XFS_BMAP_BROOT_SPACE(mp, dfp);
289 	nrecs = be16_to_cpu(dfp->bb_numrecs);
290 	level = be16_to_cpu(dfp->bb_level);
291 
292 	/*
293 	 * blow out if -- fork has less extents than can fit in
294 	 * fork (fork shouldn't be a btree format), root btree
295 	 * block has more records than can fit into the fork,
296 	 * or the number of extents is greater than the number of
297 	 * blocks.
298 	 */
299 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
300 					XFS_IFORK_MAXEXT(ip, whichfork) ||
301 		     nrecs == 0 ||
302 		     XFS_BMDR_SPACE_CALC(nrecs) >
303 					XFS_DFORK_SIZE(dip, mp, whichfork) ||
304 		     XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks) ||
305 		     level == 0 || level > XFS_BTREE_MAXLEVELS) {
306 		xfs_warn(mp, "corrupt inode %Lu (btree).",
307 					(unsigned long long) ip->i_ino);
308 		XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
309 					 mp, dip);
310 		return -EFSCORRUPTED;
311 	}
312 
313 	ifp->if_broot_bytes = size;
314 	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
315 	ASSERT(ifp->if_broot != NULL);
316 	/*
317 	 * Copy and convert from the on-disk structure
318 	 * to the in-memory structure.
319 	 */
320 	xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
321 			 ifp->if_broot, size);
322 	ifp->if_flags &= ~XFS_IFEXTENTS;
323 	ifp->if_flags |= XFS_IFBROOT;
324 
325 	ifp->if_real_bytes = 0;
326 	ifp->if_bytes = 0;
327 	ifp->if_u1.if_root = NULL;
328 	ifp->if_height = 0;
329 	return 0;
330 }
331 
332 /*
333  * Reallocate the space for if_broot based on the number of records
334  * being added or deleted as indicated in rec_diff.  Move the records
335  * and pointers in if_broot to fit the new size.  When shrinking this
336  * will eliminate holes between the records and pointers created by
337  * the caller.  When growing this will create holes to be filled in
338  * by the caller.
339  *
340  * The caller must not request to add more records than would fit in
341  * the on-disk inode root.  If the if_broot is currently NULL, then
342  * if we are adding records, one will be allocated.  The caller must also
343  * not request that the number of records go below zero, although
344  * it can go to zero.
345  *
346  * ip -- the inode whose if_broot area is changing
347  * ext_diff -- the change in the number of records, positive or negative,
348  *	 requested for the if_broot array.
349  */
350 void
351 xfs_iroot_realloc(
352 	xfs_inode_t		*ip,
353 	int			rec_diff,
354 	int			whichfork)
355 {
356 	struct xfs_mount	*mp = ip->i_mount;
357 	int			cur_max;
358 	xfs_ifork_t		*ifp;
359 	struct xfs_btree_block	*new_broot;
360 	int			new_max;
361 	size_t			new_size;
362 	char			*np;
363 	char			*op;
364 
365 	/*
366 	 * Handle the degenerate case quietly.
367 	 */
368 	if (rec_diff == 0) {
369 		return;
370 	}
371 
372 	ifp = XFS_IFORK_PTR(ip, whichfork);
373 	if (rec_diff > 0) {
374 		/*
375 		 * If there wasn't any memory allocated before, just
376 		 * allocate it now and get out.
377 		 */
378 		if (ifp->if_broot_bytes == 0) {
379 			new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
380 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
381 			ifp->if_broot_bytes = (int)new_size;
382 			return;
383 		}
384 
385 		/*
386 		 * If there is already an existing if_broot, then we need
387 		 * to realloc() it and shift the pointers to their new
388 		 * location.  The records don't change location because
389 		 * they are kept butted up against the btree block header.
390 		 */
391 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
392 		new_max = cur_max + rec_diff;
393 		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
394 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
395 				KM_SLEEP | KM_NOFS);
396 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
397 						     ifp->if_broot_bytes);
398 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
399 						     (int)new_size);
400 		ifp->if_broot_bytes = (int)new_size;
401 		ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
402 			XFS_IFORK_SIZE(ip, whichfork));
403 		memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t));
404 		return;
405 	}
406 
407 	/*
408 	 * rec_diff is less than 0.  In this case, we are shrinking the
409 	 * if_broot buffer.  It must already exist.  If we go to zero
410 	 * records, just get rid of the root and clear the status bit.
411 	 */
412 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
413 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
414 	new_max = cur_max + rec_diff;
415 	ASSERT(new_max >= 0);
416 	if (new_max > 0)
417 		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
418 	else
419 		new_size = 0;
420 	if (new_size > 0) {
421 		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
422 		/*
423 		 * First copy over the btree block header.
424 		 */
425 		memcpy(new_broot, ifp->if_broot,
426 			XFS_BMBT_BLOCK_LEN(ip->i_mount));
427 	} else {
428 		new_broot = NULL;
429 		ifp->if_flags &= ~XFS_IFBROOT;
430 	}
431 
432 	/*
433 	 * Only copy the records and pointers if there are any.
434 	 */
435 	if (new_max > 0) {
436 		/*
437 		 * First copy the records.
438 		 */
439 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
440 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
441 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
442 
443 		/*
444 		 * Then copy the pointers.
445 		 */
446 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
447 						     ifp->if_broot_bytes);
448 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
449 						     (int)new_size);
450 		memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t));
451 	}
452 	kmem_free(ifp->if_broot);
453 	ifp->if_broot = new_broot;
454 	ifp->if_broot_bytes = (int)new_size;
455 	if (ifp->if_broot)
456 		ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
457 			XFS_IFORK_SIZE(ip, whichfork));
458 	return;
459 }
460 
461 
462 /*
463  * This is called when the amount of space needed for if_data
464  * is increased or decreased.  The change in size is indicated by
465  * the number of bytes that need to be added or deleted in the
466  * byte_diff parameter.
467  *
468  * If the amount of space needed has decreased below the size of the
469  * inline buffer, then switch to using the inline buffer.  Otherwise,
470  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
471  * to what is needed.
472  *
473  * ip -- the inode whose if_data area is changing
474  * byte_diff -- the change in the number of bytes, positive or negative,
475  *	 requested for the if_data array.
476  */
477 void
478 xfs_idata_realloc(
479 	xfs_inode_t	*ip,
480 	int		byte_diff,
481 	int		whichfork)
482 {
483 	xfs_ifork_t	*ifp;
484 	int		new_size;
485 	int		real_size;
486 
487 	if (byte_diff == 0) {
488 		return;
489 	}
490 
491 	ifp = XFS_IFORK_PTR(ip, whichfork);
492 	new_size = (int)ifp->if_bytes + byte_diff;
493 	ASSERT(new_size >= 0);
494 
495 	if (new_size == 0) {
496 		kmem_free(ifp->if_u1.if_data);
497 		ifp->if_u1.if_data = NULL;
498 		real_size = 0;
499 	} else {
500 		/*
501 		 * Stuck with malloc/realloc.
502 		 * For inline data, the underlying buffer must be
503 		 * a multiple of 4 bytes in size so that it can be
504 		 * logged and stay on word boundaries.  We enforce
505 		 * that here.
506 		 */
507 		real_size = roundup(new_size, 4);
508 		if (ifp->if_u1.if_data == NULL) {
509 			ASSERT(ifp->if_real_bytes == 0);
510 			ifp->if_u1.if_data = kmem_alloc(real_size,
511 							KM_SLEEP | KM_NOFS);
512 		} else {
513 			/*
514 			 * Only do the realloc if the underlying size
515 			 * is really changing.
516 			 */
517 			if (ifp->if_real_bytes != real_size) {
518 				ifp->if_u1.if_data =
519 					kmem_realloc(ifp->if_u1.if_data,
520 							real_size,
521 							KM_SLEEP | KM_NOFS);
522 			}
523 		}
524 	}
525 	ifp->if_real_bytes = real_size;
526 	ifp->if_bytes = new_size;
527 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
528 }
529 
530 void
531 xfs_idestroy_fork(
532 	xfs_inode_t	*ip,
533 	int		whichfork)
534 {
535 	xfs_ifork_t	*ifp;
536 
537 	ifp = XFS_IFORK_PTR(ip, whichfork);
538 	if (ifp->if_broot != NULL) {
539 		kmem_free(ifp->if_broot);
540 		ifp->if_broot = NULL;
541 	}
542 
543 	/*
544 	 * If the format is local, then we can't have an extents
545 	 * array so just look for an inline data array.  If we're
546 	 * not local then we may or may not have an extents list,
547 	 * so check and free it up if we do.
548 	 */
549 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
550 		if (ifp->if_u1.if_data != NULL) {
551 			ASSERT(ifp->if_real_bytes != 0);
552 			kmem_free(ifp->if_u1.if_data);
553 			ifp->if_u1.if_data = NULL;
554 			ifp->if_real_bytes = 0;
555 		}
556 	} else if ((ifp->if_flags & XFS_IFEXTENTS) && ifp->if_height) {
557 		xfs_iext_destroy(ifp);
558 	}
559 
560 	ASSERT(ifp->if_real_bytes == 0);
561 
562 	if (whichfork == XFS_ATTR_FORK) {
563 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
564 		ip->i_afp = NULL;
565 	} else if (whichfork == XFS_COW_FORK) {
566 		kmem_zone_free(xfs_ifork_zone, ip->i_cowfp);
567 		ip->i_cowfp = NULL;
568 	}
569 }
570 
571 /*
572  * Convert in-core extents to on-disk form
573  *
574  * In the case of the data fork, the in-core and on-disk fork sizes can be
575  * different due to delayed allocation extents. We only copy on-disk extents
576  * here, so callers must always use the physical fork size to determine the
577  * size of the buffer passed to this routine.  We will return the size actually
578  * used.
579  */
580 int
581 xfs_iextents_copy(
582 	struct xfs_inode	*ip,
583 	struct xfs_bmbt_rec	*dp,
584 	int			whichfork)
585 {
586 	int			state = xfs_bmap_fork_to_state(whichfork);
587 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
588 	struct xfs_iext_cursor	icur;
589 	struct xfs_bmbt_irec	rec;
590 	int			copied = 0;
591 
592 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
593 	ASSERT(ifp->if_bytes > 0);
594 
595 	for_each_xfs_iext(ifp, &icur, &rec) {
596 		if (isnullstartblock(rec.br_startblock))
597 			continue;
598 		ASSERT(xfs_bmbt_validate_extent(ip->i_mount, whichfork, &rec));
599 		xfs_bmbt_disk_set_all(dp, &rec);
600 		trace_xfs_write_extent(ip, &icur, state, _RET_IP_);
601 		copied += sizeof(struct xfs_bmbt_rec);
602 		dp++;
603 	}
604 
605 	ASSERT(copied > 0);
606 	ASSERT(copied <= ifp->if_bytes);
607 	return copied;
608 }
609 
610 /*
611  * Each of the following cases stores data into the same region
612  * of the on-disk inode, so only one of them can be valid at
613  * any given time. While it is possible to have conflicting formats
614  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
615  * in EXTENTS format, this can only happen when the fork has
616  * changed formats after being modified but before being flushed.
617  * In these cases, the format always takes precedence, because the
618  * format indicates the current state of the fork.
619  */
620 void
621 xfs_iflush_fork(
622 	xfs_inode_t		*ip,
623 	xfs_dinode_t		*dip,
624 	xfs_inode_log_item_t	*iip,
625 	int			whichfork)
626 {
627 	char			*cp;
628 	xfs_ifork_t		*ifp;
629 	xfs_mount_t		*mp;
630 	static const short	brootflag[2] =
631 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
632 	static const short	dataflag[2] =
633 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
634 	static const short	extflag[2] =
635 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
636 
637 	if (!iip)
638 		return;
639 	ifp = XFS_IFORK_PTR(ip, whichfork);
640 	/*
641 	 * This can happen if we gave up in iformat in an error path,
642 	 * for the attribute fork.
643 	 */
644 	if (!ifp) {
645 		ASSERT(whichfork == XFS_ATTR_FORK);
646 		return;
647 	}
648 	cp = XFS_DFORK_PTR(dip, whichfork);
649 	mp = ip->i_mount;
650 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
651 	case XFS_DINODE_FMT_LOCAL:
652 		if ((iip->ili_fields & dataflag[whichfork]) &&
653 		    (ifp->if_bytes > 0)) {
654 			ASSERT(ifp->if_u1.if_data != NULL);
655 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
656 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
657 		}
658 		break;
659 
660 	case XFS_DINODE_FMT_EXTENTS:
661 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
662 		       !(iip->ili_fields & extflag[whichfork]));
663 		if ((iip->ili_fields & extflag[whichfork]) &&
664 		    (ifp->if_bytes > 0)) {
665 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
666 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
667 				whichfork);
668 		}
669 		break;
670 
671 	case XFS_DINODE_FMT_BTREE:
672 		if ((iip->ili_fields & brootflag[whichfork]) &&
673 		    (ifp->if_broot_bytes > 0)) {
674 			ASSERT(ifp->if_broot != NULL);
675 			ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
676 			        XFS_IFORK_SIZE(ip, whichfork));
677 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
678 				(xfs_bmdr_block_t *)cp,
679 				XFS_DFORK_SIZE(dip, mp, whichfork));
680 		}
681 		break;
682 
683 	case XFS_DINODE_FMT_DEV:
684 		if (iip->ili_fields & XFS_ILOG_DEV) {
685 			ASSERT(whichfork == XFS_DATA_FORK);
686 			xfs_dinode_put_rdev(dip,
687 					linux_to_xfs_dev_t(VFS_I(ip)->i_rdev));
688 		}
689 		break;
690 
691 	default:
692 		ASSERT(0);
693 		break;
694 	}
695 }
696 
697 /* Convert bmap state flags to an inode fork. */
698 struct xfs_ifork *
699 xfs_iext_state_to_fork(
700 	struct xfs_inode	*ip,
701 	int			state)
702 {
703 	if (state & BMAP_COWFORK)
704 		return ip->i_cowfp;
705 	else if (state & BMAP_ATTRFORK)
706 		return ip->i_afp;
707 	return &ip->i_df;
708 }
709 
710 /*
711  * Initialize an inode's copy-on-write fork.
712  */
713 void
714 xfs_ifork_init_cow(
715 	struct xfs_inode	*ip)
716 {
717 	if (ip->i_cowfp)
718 		return;
719 
720 	ip->i_cowfp = kmem_zone_zalloc(xfs_ifork_zone,
721 				       KM_SLEEP | KM_NOFS);
722 	ip->i_cowfp->if_flags = XFS_IFEXTENTS;
723 	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
724 	ip->i_cnextents = 0;
725 }
726 
727 /* Default fork content verifiers. */
728 struct xfs_ifork_ops xfs_default_ifork_ops = {
729 	.verify_attr	= xfs_attr_shortform_verify,
730 	.verify_dir	= xfs_dir2_sf_verify,
731 	.verify_symlink	= xfs_symlink_shortform_verify,
732 };
733 
734 /* Verify the inline contents of the data fork of an inode. */
735 xfs_failaddr_t
736 xfs_ifork_verify_data(
737 	struct xfs_inode	*ip,
738 	struct xfs_ifork_ops	*ops)
739 {
740 	/* Non-local data fork, we're done. */
741 	if (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL)
742 		return NULL;
743 
744 	/* Check the inline data fork if there is one. */
745 	switch (VFS_I(ip)->i_mode & S_IFMT) {
746 	case S_IFDIR:
747 		return ops->verify_dir(ip);
748 	case S_IFLNK:
749 		return ops->verify_symlink(ip);
750 	default:
751 		return NULL;
752 	}
753 }
754 
755 /* Verify the inline contents of the attr fork of an inode. */
756 xfs_failaddr_t
757 xfs_ifork_verify_attr(
758 	struct xfs_inode	*ip,
759 	struct xfs_ifork_ops	*ops)
760 {
761 	/* There has to be an attr fork allocated if aformat is local. */
762 	if (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
763 		return NULL;
764 	if (!XFS_IFORK_PTR(ip, XFS_ATTR_FORK))
765 		return __this_address;
766 	return ops->verify_attr(ip);
767 }
768