1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_defer.h" 14 #include "xfs_inode.h" 15 #include "xfs_errortag.h" 16 #include "xfs_error.h" 17 #include "xfs_cksum.h" 18 #include "xfs_icache.h" 19 #include "xfs_trans.h" 20 #include "xfs_ialloc.h" 21 #include "xfs_dir2.h" 22 23 #include <linux/iversion.h> 24 25 /* 26 * Check that none of the inode's in the buffer have a next 27 * unlinked field of 0. 28 */ 29 #if defined(DEBUG) 30 void 31 xfs_inobp_check( 32 xfs_mount_t *mp, 33 xfs_buf_t *bp) 34 { 35 int i; 36 int j; 37 xfs_dinode_t *dip; 38 39 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 40 41 for (i = 0; i < j; i++) { 42 dip = xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize); 43 if (!dip->di_next_unlinked) { 44 xfs_alert(mp, 45 "Detected bogus zero next_unlinked field in inode %d buffer 0x%llx.", 46 i, (long long)bp->b_bn); 47 } 48 } 49 } 50 #endif 51 52 bool 53 xfs_dinode_good_version( 54 struct xfs_mount *mp, 55 __u8 version) 56 { 57 if (xfs_sb_version_hascrc(&mp->m_sb)) 58 return version == 3; 59 60 return version == 1 || version == 2; 61 } 62 63 /* 64 * If we are doing readahead on an inode buffer, we might be in log recovery 65 * reading an inode allocation buffer that hasn't yet been replayed, and hence 66 * has not had the inode cores stamped into it. Hence for readahead, the buffer 67 * may be potentially invalid. 68 * 69 * If the readahead buffer is invalid, we need to mark it with an error and 70 * clear the DONE status of the buffer so that a followup read will re-read it 71 * from disk. We don't report the error otherwise to avoid warnings during log 72 * recovery and we don't get unnecssary panics on debug kernels. We use EIO here 73 * because all we want to do is say readahead failed; there is no-one to report 74 * the error to, so this will distinguish it from a non-ra verifier failure. 75 * Changes to this readahead error behavour also need to be reflected in 76 * xfs_dquot_buf_readahead_verify(). 77 */ 78 static void 79 xfs_inode_buf_verify( 80 struct xfs_buf *bp, 81 bool readahead) 82 { 83 struct xfs_mount *mp = bp->b_target->bt_mount; 84 xfs_agnumber_t agno; 85 int i; 86 int ni; 87 88 /* 89 * Validate the magic number and version of every inode in the buffer 90 */ 91 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp)); 92 ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock; 93 for (i = 0; i < ni; i++) { 94 int di_ok; 95 xfs_dinode_t *dip; 96 xfs_agino_t unlinked_ino; 97 98 dip = xfs_buf_offset(bp, (i << mp->m_sb.sb_inodelog)); 99 unlinked_ino = be32_to_cpu(dip->di_next_unlinked); 100 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) && 101 xfs_dinode_good_version(mp, dip->di_version) && 102 (unlinked_ino == NULLAGINO || 103 xfs_verify_agino(mp, agno, unlinked_ino)); 104 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 105 XFS_ERRTAG_ITOBP_INOTOBP))) { 106 if (readahead) { 107 bp->b_flags &= ~XBF_DONE; 108 xfs_buf_ioerror(bp, -EIO); 109 return; 110 } 111 112 #ifdef DEBUG 113 xfs_alert(mp, 114 "bad inode magic/vsn daddr %lld #%d (magic=%x)", 115 (unsigned long long)bp->b_bn, i, 116 be16_to_cpu(dip->di_magic)); 117 #endif 118 xfs_buf_verifier_error(bp, -EFSCORRUPTED, 119 __func__, dip, sizeof(*dip), 120 NULL); 121 return; 122 } 123 } 124 } 125 126 127 static void 128 xfs_inode_buf_read_verify( 129 struct xfs_buf *bp) 130 { 131 xfs_inode_buf_verify(bp, false); 132 } 133 134 static void 135 xfs_inode_buf_readahead_verify( 136 struct xfs_buf *bp) 137 { 138 xfs_inode_buf_verify(bp, true); 139 } 140 141 static void 142 xfs_inode_buf_write_verify( 143 struct xfs_buf *bp) 144 { 145 xfs_inode_buf_verify(bp, false); 146 } 147 148 const struct xfs_buf_ops xfs_inode_buf_ops = { 149 .name = "xfs_inode", 150 .verify_read = xfs_inode_buf_read_verify, 151 .verify_write = xfs_inode_buf_write_verify, 152 }; 153 154 const struct xfs_buf_ops xfs_inode_buf_ra_ops = { 155 .name = "xxfs_inode_ra", 156 .verify_read = xfs_inode_buf_readahead_verify, 157 .verify_write = xfs_inode_buf_write_verify, 158 }; 159 160 161 /* 162 * This routine is called to map an inode to the buffer containing the on-disk 163 * version of the inode. It returns a pointer to the buffer containing the 164 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a 165 * pointer to the on-disk inode within that buffer. 166 * 167 * If a non-zero error is returned, then the contents of bpp and dipp are 168 * undefined. 169 */ 170 int 171 xfs_imap_to_bp( 172 struct xfs_mount *mp, 173 struct xfs_trans *tp, 174 struct xfs_imap *imap, 175 struct xfs_dinode **dipp, 176 struct xfs_buf **bpp, 177 uint buf_flags, 178 uint iget_flags) 179 { 180 struct xfs_buf *bp; 181 int error; 182 183 buf_flags |= XBF_UNMAPPED; 184 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, 185 (int)imap->im_len, buf_flags, &bp, 186 &xfs_inode_buf_ops); 187 if (error) { 188 if (error == -EAGAIN) { 189 ASSERT(buf_flags & XBF_TRYLOCK); 190 return error; 191 } 192 xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.", 193 __func__, error); 194 return error; 195 } 196 197 *bpp = bp; 198 *dipp = xfs_buf_offset(bp, imap->im_boffset); 199 return 0; 200 } 201 202 void 203 xfs_inode_from_disk( 204 struct xfs_inode *ip, 205 struct xfs_dinode *from) 206 { 207 struct xfs_icdinode *to = &ip->i_d; 208 struct inode *inode = VFS_I(ip); 209 210 211 /* 212 * Convert v1 inodes immediately to v2 inode format as this is the 213 * minimum inode version format we support in the rest of the code. 214 */ 215 to->di_version = from->di_version; 216 if (to->di_version == 1) { 217 set_nlink(inode, be16_to_cpu(from->di_onlink)); 218 to->di_projid_lo = 0; 219 to->di_projid_hi = 0; 220 to->di_version = 2; 221 } else { 222 set_nlink(inode, be32_to_cpu(from->di_nlink)); 223 to->di_projid_lo = be16_to_cpu(from->di_projid_lo); 224 to->di_projid_hi = be16_to_cpu(from->di_projid_hi); 225 } 226 227 to->di_format = from->di_format; 228 to->di_uid = be32_to_cpu(from->di_uid); 229 to->di_gid = be32_to_cpu(from->di_gid); 230 to->di_flushiter = be16_to_cpu(from->di_flushiter); 231 232 /* 233 * Time is signed, so need to convert to signed 32 bit before 234 * storing in inode timestamp which may be 64 bit. Otherwise 235 * a time before epoch is converted to a time long after epoch 236 * on 64 bit systems. 237 */ 238 inode->i_atime.tv_sec = (int)be32_to_cpu(from->di_atime.t_sec); 239 inode->i_atime.tv_nsec = (int)be32_to_cpu(from->di_atime.t_nsec); 240 inode->i_mtime.tv_sec = (int)be32_to_cpu(from->di_mtime.t_sec); 241 inode->i_mtime.tv_nsec = (int)be32_to_cpu(from->di_mtime.t_nsec); 242 inode->i_ctime.tv_sec = (int)be32_to_cpu(from->di_ctime.t_sec); 243 inode->i_ctime.tv_nsec = (int)be32_to_cpu(from->di_ctime.t_nsec); 244 inode->i_generation = be32_to_cpu(from->di_gen); 245 inode->i_mode = be16_to_cpu(from->di_mode); 246 247 to->di_size = be64_to_cpu(from->di_size); 248 to->di_nblocks = be64_to_cpu(from->di_nblocks); 249 to->di_extsize = be32_to_cpu(from->di_extsize); 250 to->di_nextents = be32_to_cpu(from->di_nextents); 251 to->di_anextents = be16_to_cpu(from->di_anextents); 252 to->di_forkoff = from->di_forkoff; 253 to->di_aformat = from->di_aformat; 254 to->di_dmevmask = be32_to_cpu(from->di_dmevmask); 255 to->di_dmstate = be16_to_cpu(from->di_dmstate); 256 to->di_flags = be16_to_cpu(from->di_flags); 257 258 if (to->di_version == 3) { 259 inode_set_iversion_queried(inode, 260 be64_to_cpu(from->di_changecount)); 261 to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec); 262 to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec); 263 to->di_flags2 = be64_to_cpu(from->di_flags2); 264 to->di_cowextsize = be32_to_cpu(from->di_cowextsize); 265 } 266 } 267 268 void 269 xfs_inode_to_disk( 270 struct xfs_inode *ip, 271 struct xfs_dinode *to, 272 xfs_lsn_t lsn) 273 { 274 struct xfs_icdinode *from = &ip->i_d; 275 struct inode *inode = VFS_I(ip); 276 277 to->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 278 to->di_onlink = 0; 279 280 to->di_version = from->di_version; 281 to->di_format = from->di_format; 282 to->di_uid = cpu_to_be32(from->di_uid); 283 to->di_gid = cpu_to_be32(from->di_gid); 284 to->di_projid_lo = cpu_to_be16(from->di_projid_lo); 285 to->di_projid_hi = cpu_to_be16(from->di_projid_hi); 286 287 memset(to->di_pad, 0, sizeof(to->di_pad)); 288 to->di_atime.t_sec = cpu_to_be32(inode->i_atime.tv_sec); 289 to->di_atime.t_nsec = cpu_to_be32(inode->i_atime.tv_nsec); 290 to->di_mtime.t_sec = cpu_to_be32(inode->i_mtime.tv_sec); 291 to->di_mtime.t_nsec = cpu_to_be32(inode->i_mtime.tv_nsec); 292 to->di_ctime.t_sec = cpu_to_be32(inode->i_ctime.tv_sec); 293 to->di_ctime.t_nsec = cpu_to_be32(inode->i_ctime.tv_nsec); 294 to->di_nlink = cpu_to_be32(inode->i_nlink); 295 to->di_gen = cpu_to_be32(inode->i_generation); 296 to->di_mode = cpu_to_be16(inode->i_mode); 297 298 to->di_size = cpu_to_be64(from->di_size); 299 to->di_nblocks = cpu_to_be64(from->di_nblocks); 300 to->di_extsize = cpu_to_be32(from->di_extsize); 301 to->di_nextents = cpu_to_be32(from->di_nextents); 302 to->di_anextents = cpu_to_be16(from->di_anextents); 303 to->di_forkoff = from->di_forkoff; 304 to->di_aformat = from->di_aformat; 305 to->di_dmevmask = cpu_to_be32(from->di_dmevmask); 306 to->di_dmstate = cpu_to_be16(from->di_dmstate); 307 to->di_flags = cpu_to_be16(from->di_flags); 308 309 if (from->di_version == 3) { 310 to->di_changecount = cpu_to_be64(inode_peek_iversion(inode)); 311 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec); 312 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec); 313 to->di_flags2 = cpu_to_be64(from->di_flags2); 314 to->di_cowextsize = cpu_to_be32(from->di_cowextsize); 315 to->di_ino = cpu_to_be64(ip->i_ino); 316 to->di_lsn = cpu_to_be64(lsn); 317 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 318 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 319 to->di_flushiter = 0; 320 } else { 321 to->di_flushiter = cpu_to_be16(from->di_flushiter); 322 } 323 } 324 325 void 326 xfs_log_dinode_to_disk( 327 struct xfs_log_dinode *from, 328 struct xfs_dinode *to) 329 { 330 to->di_magic = cpu_to_be16(from->di_magic); 331 to->di_mode = cpu_to_be16(from->di_mode); 332 to->di_version = from->di_version; 333 to->di_format = from->di_format; 334 to->di_onlink = 0; 335 to->di_uid = cpu_to_be32(from->di_uid); 336 to->di_gid = cpu_to_be32(from->di_gid); 337 to->di_nlink = cpu_to_be32(from->di_nlink); 338 to->di_projid_lo = cpu_to_be16(from->di_projid_lo); 339 to->di_projid_hi = cpu_to_be16(from->di_projid_hi); 340 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 341 342 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); 343 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); 344 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); 345 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); 346 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); 347 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); 348 349 to->di_size = cpu_to_be64(from->di_size); 350 to->di_nblocks = cpu_to_be64(from->di_nblocks); 351 to->di_extsize = cpu_to_be32(from->di_extsize); 352 to->di_nextents = cpu_to_be32(from->di_nextents); 353 to->di_anextents = cpu_to_be16(from->di_anextents); 354 to->di_forkoff = from->di_forkoff; 355 to->di_aformat = from->di_aformat; 356 to->di_dmevmask = cpu_to_be32(from->di_dmevmask); 357 to->di_dmstate = cpu_to_be16(from->di_dmstate); 358 to->di_flags = cpu_to_be16(from->di_flags); 359 to->di_gen = cpu_to_be32(from->di_gen); 360 361 if (from->di_version == 3) { 362 to->di_changecount = cpu_to_be64(from->di_changecount); 363 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec); 364 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec); 365 to->di_flags2 = cpu_to_be64(from->di_flags2); 366 to->di_cowextsize = cpu_to_be32(from->di_cowextsize); 367 to->di_ino = cpu_to_be64(from->di_ino); 368 to->di_lsn = cpu_to_be64(from->di_lsn); 369 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2)); 370 uuid_copy(&to->di_uuid, &from->di_uuid); 371 to->di_flushiter = 0; 372 } else { 373 to->di_flushiter = cpu_to_be16(from->di_flushiter); 374 } 375 } 376 377 static xfs_failaddr_t 378 xfs_dinode_verify_fork( 379 struct xfs_dinode *dip, 380 struct xfs_mount *mp, 381 int whichfork) 382 { 383 uint32_t di_nextents = XFS_DFORK_NEXTENTS(dip, whichfork); 384 385 switch (XFS_DFORK_FORMAT(dip, whichfork)) { 386 case XFS_DINODE_FMT_LOCAL: 387 /* 388 * no local regular files yet 389 */ 390 if (whichfork == XFS_DATA_FORK) { 391 if (S_ISREG(be16_to_cpu(dip->di_mode))) 392 return __this_address; 393 if (be64_to_cpu(dip->di_size) > 394 XFS_DFORK_SIZE(dip, mp, whichfork)) 395 return __this_address; 396 } 397 if (di_nextents) 398 return __this_address; 399 break; 400 case XFS_DINODE_FMT_EXTENTS: 401 if (di_nextents > XFS_DFORK_MAXEXT(dip, mp, whichfork)) 402 return __this_address; 403 break; 404 case XFS_DINODE_FMT_BTREE: 405 if (whichfork == XFS_ATTR_FORK) { 406 if (di_nextents > MAXAEXTNUM) 407 return __this_address; 408 } else if (di_nextents > MAXEXTNUM) { 409 return __this_address; 410 } 411 break; 412 default: 413 return __this_address; 414 } 415 return NULL; 416 } 417 418 xfs_failaddr_t 419 xfs_dinode_verify( 420 struct xfs_mount *mp, 421 xfs_ino_t ino, 422 struct xfs_dinode *dip) 423 { 424 xfs_failaddr_t fa; 425 uint16_t mode; 426 uint16_t flags; 427 uint64_t flags2; 428 uint64_t di_size; 429 430 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) 431 return __this_address; 432 433 /* Verify v3 integrity information first */ 434 if (dip->di_version >= 3) { 435 if (!xfs_sb_version_hascrc(&mp->m_sb)) 436 return __this_address; 437 if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize, 438 XFS_DINODE_CRC_OFF)) 439 return __this_address; 440 if (be64_to_cpu(dip->di_ino) != ino) 441 return __this_address; 442 if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_meta_uuid)) 443 return __this_address; 444 } 445 446 /* don't allow invalid i_size */ 447 di_size = be64_to_cpu(dip->di_size); 448 if (di_size & (1ULL << 63)) 449 return __this_address; 450 451 mode = be16_to_cpu(dip->di_mode); 452 if (mode && xfs_mode_to_ftype(mode) == XFS_DIR3_FT_UNKNOWN) 453 return __this_address; 454 455 /* No zero-length symlinks/dirs. */ 456 if ((S_ISLNK(mode) || S_ISDIR(mode)) && di_size == 0) 457 return __this_address; 458 459 /* Fork checks carried over from xfs_iformat_fork */ 460 if (mode && 461 be32_to_cpu(dip->di_nextents) + be16_to_cpu(dip->di_anextents) > 462 be64_to_cpu(dip->di_nblocks)) 463 return __this_address; 464 465 if (mode && XFS_DFORK_BOFF(dip) > mp->m_sb.sb_inodesize) 466 return __this_address; 467 468 flags = be16_to_cpu(dip->di_flags); 469 470 if (mode && (flags & XFS_DIFLAG_REALTIME) && !mp->m_rtdev_targp) 471 return __this_address; 472 473 /* Do we have appropriate data fork formats for the mode? */ 474 switch (mode & S_IFMT) { 475 case S_IFIFO: 476 case S_IFCHR: 477 case S_IFBLK: 478 case S_IFSOCK: 479 if (dip->di_format != XFS_DINODE_FMT_DEV) 480 return __this_address; 481 break; 482 case S_IFREG: 483 case S_IFLNK: 484 case S_IFDIR: 485 fa = xfs_dinode_verify_fork(dip, mp, XFS_DATA_FORK); 486 if (fa) 487 return fa; 488 break; 489 case 0: 490 /* Uninitialized inode ok. */ 491 break; 492 default: 493 return __this_address; 494 } 495 496 if (XFS_DFORK_Q(dip)) { 497 fa = xfs_dinode_verify_fork(dip, mp, XFS_ATTR_FORK); 498 if (fa) 499 return fa; 500 } else { 501 /* 502 * If there is no fork offset, this may be a freshly-made inode 503 * in a new disk cluster, in which case di_aformat is zeroed. 504 * Otherwise, such an inode must be in EXTENTS format; this goes 505 * for freed inodes as well. 506 */ 507 switch (dip->di_aformat) { 508 case 0: 509 case XFS_DINODE_FMT_EXTENTS: 510 break; 511 default: 512 return __this_address; 513 } 514 if (dip->di_anextents) 515 return __this_address; 516 } 517 518 /* extent size hint validation */ 519 fa = xfs_inode_validate_extsize(mp, be32_to_cpu(dip->di_extsize), 520 mode, flags); 521 if (fa) 522 return fa; 523 524 /* only version 3 or greater inodes are extensively verified here */ 525 if (dip->di_version < 3) 526 return NULL; 527 528 flags2 = be64_to_cpu(dip->di_flags2); 529 530 /* don't allow reflink/cowextsize if we don't have reflink */ 531 if ((flags2 & (XFS_DIFLAG2_REFLINK | XFS_DIFLAG2_COWEXTSIZE)) && 532 !xfs_sb_version_hasreflink(&mp->m_sb)) 533 return __this_address; 534 535 /* only regular files get reflink */ 536 if ((flags2 & XFS_DIFLAG2_REFLINK) && (mode & S_IFMT) != S_IFREG) 537 return __this_address; 538 539 /* don't let reflink and realtime mix */ 540 if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags & XFS_DIFLAG_REALTIME)) 541 return __this_address; 542 543 /* don't let reflink and dax mix */ 544 if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags2 & XFS_DIFLAG2_DAX)) 545 return __this_address; 546 547 /* COW extent size hint validation */ 548 fa = xfs_inode_validate_cowextsize(mp, be32_to_cpu(dip->di_cowextsize), 549 mode, flags, flags2); 550 if (fa) 551 return fa; 552 553 return NULL; 554 } 555 556 void 557 xfs_dinode_calc_crc( 558 struct xfs_mount *mp, 559 struct xfs_dinode *dip) 560 { 561 uint32_t crc; 562 563 if (dip->di_version < 3) 564 return; 565 566 ASSERT(xfs_sb_version_hascrc(&mp->m_sb)); 567 crc = xfs_start_cksum_update((char *)dip, mp->m_sb.sb_inodesize, 568 XFS_DINODE_CRC_OFF); 569 dip->di_crc = xfs_end_cksum(crc); 570 } 571 572 /* 573 * Read the disk inode attributes into the in-core inode structure. 574 * 575 * For version 5 superblocks, if we are initialising a new inode and we are not 576 * utilising the XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new 577 * inode core with a random generation number. If we are keeping inodes around, 578 * we need to read the inode cluster to get the existing generation number off 579 * disk. Further, if we are using version 4 superblocks (i.e. v1/v2 inode 580 * format) then log recovery is dependent on the di_flushiter field being 581 * initialised from the current on-disk value and hence we must also read the 582 * inode off disk. 583 */ 584 int 585 xfs_iread( 586 xfs_mount_t *mp, 587 xfs_trans_t *tp, 588 xfs_inode_t *ip, 589 uint iget_flags) 590 { 591 xfs_buf_t *bp; 592 xfs_dinode_t *dip; 593 xfs_failaddr_t fa; 594 int error; 595 596 /* 597 * Fill in the location information in the in-core inode. 598 */ 599 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags); 600 if (error) 601 return error; 602 603 /* shortcut IO on inode allocation if possible */ 604 if ((iget_flags & XFS_IGET_CREATE) && 605 xfs_sb_version_hascrc(&mp->m_sb) && 606 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 607 /* initialise the on-disk inode core */ 608 memset(&ip->i_d, 0, sizeof(ip->i_d)); 609 VFS_I(ip)->i_generation = prandom_u32(); 610 ip->i_d.di_version = 3; 611 return 0; 612 } 613 614 /* 615 * Get pointers to the on-disk inode and the buffer containing it. 616 */ 617 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags); 618 if (error) 619 return error; 620 621 /* even unallocated inodes are verified */ 622 fa = xfs_dinode_verify(mp, ip->i_ino, dip); 623 if (fa) { 624 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "dinode", dip, 625 sizeof(*dip), fa); 626 error = -EFSCORRUPTED; 627 goto out_brelse; 628 } 629 630 /* 631 * If the on-disk inode is already linked to a directory 632 * entry, copy all of the inode into the in-core inode. 633 * xfs_iformat_fork() handles copying in the inode format 634 * specific information. 635 * Otherwise, just get the truly permanent information. 636 */ 637 if (dip->di_mode) { 638 xfs_inode_from_disk(ip, dip); 639 error = xfs_iformat_fork(ip, dip); 640 if (error) { 641 #ifdef DEBUG 642 xfs_alert(mp, "%s: xfs_iformat() returned error %d", 643 __func__, error); 644 #endif /* DEBUG */ 645 goto out_brelse; 646 } 647 } else { 648 /* 649 * Partial initialisation of the in-core inode. Just the bits 650 * that xfs_ialloc won't overwrite or relies on being correct. 651 */ 652 ip->i_d.di_version = dip->di_version; 653 VFS_I(ip)->i_generation = be32_to_cpu(dip->di_gen); 654 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter); 655 656 /* 657 * Make sure to pull in the mode here as well in 658 * case the inode is released without being used. 659 * This ensures that xfs_inactive() will see that 660 * the inode is already free and not try to mess 661 * with the uninitialized part of it. 662 */ 663 VFS_I(ip)->i_mode = 0; 664 } 665 666 ASSERT(ip->i_d.di_version >= 2); 667 ip->i_delayed_blks = 0; 668 669 /* 670 * Mark the buffer containing the inode as something to keep 671 * around for a while. This helps to keep recently accessed 672 * meta-data in-core longer. 673 */ 674 xfs_buf_set_ref(bp, XFS_INO_REF); 675 676 /* 677 * Use xfs_trans_brelse() to release the buffer containing the on-disk 678 * inode, because it was acquired with xfs_trans_read_buf() in 679 * xfs_imap_to_bp() above. If tp is NULL, this is just a normal 680 * brelse(). If we're within a transaction, then xfs_trans_brelse() 681 * will only release the buffer if it is not dirty within the 682 * transaction. It will be OK to release the buffer in this case, 683 * because inodes on disk are never destroyed and we will be locking the 684 * new in-core inode before putting it in the cache where other 685 * processes can find it. Thus we don't have to worry about the inode 686 * being changed just because we released the buffer. 687 */ 688 out_brelse: 689 xfs_trans_brelse(tp, bp); 690 return error; 691 } 692 693 /* 694 * Validate di_extsize hint. 695 * 696 * The rules are documented at xfs_ioctl_setattr_check_extsize(). 697 * These functions must be kept in sync with each other. 698 */ 699 xfs_failaddr_t 700 xfs_inode_validate_extsize( 701 struct xfs_mount *mp, 702 uint32_t extsize, 703 uint16_t mode, 704 uint16_t flags) 705 { 706 bool rt_flag; 707 bool hint_flag; 708 bool inherit_flag; 709 uint32_t extsize_bytes; 710 uint32_t blocksize_bytes; 711 712 rt_flag = (flags & XFS_DIFLAG_REALTIME); 713 hint_flag = (flags & XFS_DIFLAG_EXTSIZE); 714 inherit_flag = (flags & XFS_DIFLAG_EXTSZINHERIT); 715 extsize_bytes = XFS_FSB_TO_B(mp, extsize); 716 717 if (rt_flag) 718 blocksize_bytes = mp->m_sb.sb_rextsize << mp->m_sb.sb_blocklog; 719 else 720 blocksize_bytes = mp->m_sb.sb_blocksize; 721 722 if ((hint_flag || inherit_flag) && !(S_ISDIR(mode) || S_ISREG(mode))) 723 return __this_address; 724 725 if (hint_flag && !S_ISREG(mode)) 726 return __this_address; 727 728 if (inherit_flag && !S_ISDIR(mode)) 729 return __this_address; 730 731 if ((hint_flag || inherit_flag) && extsize == 0) 732 return __this_address; 733 734 if (!(hint_flag || inherit_flag) && extsize != 0) 735 return __this_address; 736 737 if (extsize_bytes % blocksize_bytes) 738 return __this_address; 739 740 if (extsize > MAXEXTLEN) 741 return __this_address; 742 743 if (!rt_flag && extsize > mp->m_sb.sb_agblocks / 2) 744 return __this_address; 745 746 return NULL; 747 } 748 749 /* 750 * Validate di_cowextsize hint. 751 * 752 * The rules are documented at xfs_ioctl_setattr_check_cowextsize(). 753 * These functions must be kept in sync with each other. 754 */ 755 xfs_failaddr_t 756 xfs_inode_validate_cowextsize( 757 struct xfs_mount *mp, 758 uint32_t cowextsize, 759 uint16_t mode, 760 uint16_t flags, 761 uint64_t flags2) 762 { 763 bool rt_flag; 764 bool hint_flag; 765 uint32_t cowextsize_bytes; 766 767 rt_flag = (flags & XFS_DIFLAG_REALTIME); 768 hint_flag = (flags2 & XFS_DIFLAG2_COWEXTSIZE); 769 cowextsize_bytes = XFS_FSB_TO_B(mp, cowextsize); 770 771 if (hint_flag && !xfs_sb_version_hasreflink(&mp->m_sb)) 772 return __this_address; 773 774 if (hint_flag && !(S_ISDIR(mode) || S_ISREG(mode))) 775 return __this_address; 776 777 if (hint_flag && cowextsize == 0) 778 return __this_address; 779 780 if (!hint_flag && cowextsize != 0) 781 return __this_address; 782 783 if (hint_flag && rt_flag) 784 return __this_address; 785 786 if (cowextsize_bytes % mp->m_sb.sb_blocksize) 787 return __this_address; 788 789 if (cowextsize > MAXEXTLEN) 790 return __this_address; 791 792 if (cowextsize > mp->m_sb.sb_agblocks / 2) 793 return __this_address; 794 795 return NULL; 796 } 797