xref: /openbmc/linux/fs/xfs/libxfs/xfs_iext_tree.c (revision cce8e04c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017 Christoph Hellwig.
4  */
5 
6 #include <linux/cache.h>
7 #include <linux/kernel.h>
8 #include <linux/slab.h>
9 #include "xfs.h"
10 #include "xfs_format.h"
11 #include "xfs_bit.h"
12 #include "xfs_log_format.h"
13 #include "xfs_inode.h"
14 #include "xfs_inode_fork.h"
15 #include "xfs_trans_resv.h"
16 #include "xfs_mount.h"
17 #include "xfs_bmap.h"
18 #include "xfs_trace.h"
19 
20 /*
21  * In-core extent record layout:
22  *
23  * +-------+----------------------------+
24  * | 00:53 | all 54 bits of startoff    |
25  * | 54:63 | low 10 bits of startblock  |
26  * +-------+----------------------------+
27  * | 00:20 | all 21 bits of length      |
28  * |    21 | unwritten extent bit       |
29  * | 22:63 | high 42 bits of startblock |
30  * +-------+----------------------------+
31  */
32 #define XFS_IEXT_STARTOFF_MASK		xfs_mask64lo(BMBT_STARTOFF_BITLEN)
33 #define XFS_IEXT_LENGTH_MASK		xfs_mask64lo(BMBT_BLOCKCOUNT_BITLEN)
34 #define XFS_IEXT_STARTBLOCK_MASK	xfs_mask64lo(BMBT_STARTBLOCK_BITLEN)
35 
36 struct xfs_iext_rec {
37 	uint64_t			lo;
38 	uint64_t			hi;
39 };
40 
41 /*
42  * Given that the length can't be a zero, only an empty hi value indicates an
43  * unused record.
44  */
45 static bool xfs_iext_rec_is_empty(struct xfs_iext_rec *rec)
46 {
47 	return rec->hi == 0;
48 }
49 
50 static inline void xfs_iext_rec_clear(struct xfs_iext_rec *rec)
51 {
52 	rec->lo = 0;
53 	rec->hi = 0;
54 }
55 
56 static void
57 xfs_iext_set(
58 	struct xfs_iext_rec	*rec,
59 	struct xfs_bmbt_irec	*irec)
60 {
61 	ASSERT((irec->br_startoff & ~XFS_IEXT_STARTOFF_MASK) == 0);
62 	ASSERT((irec->br_blockcount & ~XFS_IEXT_LENGTH_MASK) == 0);
63 	ASSERT((irec->br_startblock & ~XFS_IEXT_STARTBLOCK_MASK) == 0);
64 
65 	rec->lo = irec->br_startoff & XFS_IEXT_STARTOFF_MASK;
66 	rec->hi = irec->br_blockcount & XFS_IEXT_LENGTH_MASK;
67 
68 	rec->lo |= (irec->br_startblock << 54);
69 	rec->hi |= ((irec->br_startblock & ~xfs_mask64lo(10)) << (22 - 10));
70 
71 	if (irec->br_state == XFS_EXT_UNWRITTEN)
72 		rec->hi |= (1 << 21);
73 }
74 
75 static void
76 xfs_iext_get(
77 	struct xfs_bmbt_irec	*irec,
78 	struct xfs_iext_rec	*rec)
79 {
80 	irec->br_startoff = rec->lo & XFS_IEXT_STARTOFF_MASK;
81 	irec->br_blockcount = rec->hi & XFS_IEXT_LENGTH_MASK;
82 
83 	irec->br_startblock = rec->lo >> 54;
84 	irec->br_startblock |= (rec->hi & xfs_mask64hi(42)) >> (22 - 10);
85 
86 	if (rec->hi & (1 << 21))
87 		irec->br_state = XFS_EXT_UNWRITTEN;
88 	else
89 		irec->br_state = XFS_EXT_NORM;
90 }
91 
92 enum {
93 	NODE_SIZE	= 256,
94 	KEYS_PER_NODE	= NODE_SIZE / (sizeof(uint64_t) + sizeof(void *)),
95 	RECS_PER_LEAF	= (NODE_SIZE - (2 * sizeof(struct xfs_iext_leaf *))) /
96 				sizeof(struct xfs_iext_rec),
97 };
98 
99 /*
100  * In-core extent btree block layout:
101  *
102  * There are two types of blocks in the btree: leaf and inner (non-leaf) blocks.
103  *
104  * The leaf blocks are made up by %KEYS_PER_NODE extent records, which each
105  * contain the startoffset, blockcount, startblock and unwritten extent flag.
106  * See above for the exact format, followed by pointers to the previous and next
107  * leaf blocks (if there are any).
108  *
109  * The inner (non-leaf) blocks first contain KEYS_PER_NODE lookup keys, followed
110  * by an equal number of pointers to the btree blocks at the next lower level.
111  *
112  *		+-------+-------+-------+-------+-------+----------+----------+
113  * Leaf:	| rec 1 | rec 2 | rec 3 | rec 4 | rec N | prev-ptr | next-ptr |
114  *		+-------+-------+-------+-------+-------+----------+----------+
115  *
116  *		+-------+-------+-------+-------+-------+-------+------+-------+
117  * Inner:	| key 1 | key 2 | key 3 | key N | ptr 1 | ptr 2 | ptr3 | ptr N |
118  *		+-------+-------+-------+-------+-------+-------+------+-------+
119  */
120 struct xfs_iext_node {
121 	uint64_t		keys[KEYS_PER_NODE];
122 #define XFS_IEXT_KEY_INVALID	(1ULL << 63)
123 	void			*ptrs[KEYS_PER_NODE];
124 };
125 
126 struct xfs_iext_leaf {
127 	struct xfs_iext_rec	recs[RECS_PER_LEAF];
128 	struct xfs_iext_leaf	*prev;
129 	struct xfs_iext_leaf	*next;
130 };
131 
132 inline xfs_extnum_t xfs_iext_count(struct xfs_ifork *ifp)
133 {
134 	return ifp->if_bytes / sizeof(struct xfs_iext_rec);
135 }
136 
137 static inline int xfs_iext_max_recs(struct xfs_ifork *ifp)
138 {
139 	if (ifp->if_height == 1)
140 		return xfs_iext_count(ifp);
141 	return RECS_PER_LEAF;
142 }
143 
144 static inline struct xfs_iext_rec *cur_rec(struct xfs_iext_cursor *cur)
145 {
146 	return &cur->leaf->recs[cur->pos];
147 }
148 
149 static inline bool xfs_iext_valid(struct xfs_ifork *ifp,
150 		struct xfs_iext_cursor *cur)
151 {
152 	if (!cur->leaf)
153 		return false;
154 	if (cur->pos < 0 || cur->pos >= xfs_iext_max_recs(ifp))
155 		return false;
156 	if (xfs_iext_rec_is_empty(cur_rec(cur)))
157 		return false;
158 	return true;
159 }
160 
161 static void *
162 xfs_iext_find_first_leaf(
163 	struct xfs_ifork	*ifp)
164 {
165 	struct xfs_iext_node	*node = ifp->if_u1.if_root;
166 	int			height;
167 
168 	if (!ifp->if_height)
169 		return NULL;
170 
171 	for (height = ifp->if_height; height > 1; height--) {
172 		node = node->ptrs[0];
173 		ASSERT(node);
174 	}
175 
176 	return node;
177 }
178 
179 static void *
180 xfs_iext_find_last_leaf(
181 	struct xfs_ifork	*ifp)
182 {
183 	struct xfs_iext_node	*node = ifp->if_u1.if_root;
184 	int			height, i;
185 
186 	if (!ifp->if_height)
187 		return NULL;
188 
189 	for (height = ifp->if_height; height > 1; height--) {
190 		for (i = 1; i < KEYS_PER_NODE; i++)
191 			if (!node->ptrs[i])
192 				break;
193 		node = node->ptrs[i - 1];
194 		ASSERT(node);
195 	}
196 
197 	return node;
198 }
199 
200 void
201 xfs_iext_first(
202 	struct xfs_ifork	*ifp,
203 	struct xfs_iext_cursor	*cur)
204 {
205 	cur->pos = 0;
206 	cur->leaf = xfs_iext_find_first_leaf(ifp);
207 }
208 
209 void
210 xfs_iext_last(
211 	struct xfs_ifork	*ifp,
212 	struct xfs_iext_cursor	*cur)
213 {
214 	int			i;
215 
216 	cur->leaf = xfs_iext_find_last_leaf(ifp);
217 	if (!cur->leaf) {
218 		cur->pos = 0;
219 		return;
220 	}
221 
222 	for (i = 1; i < xfs_iext_max_recs(ifp); i++) {
223 		if (xfs_iext_rec_is_empty(&cur->leaf->recs[i]))
224 			break;
225 	}
226 	cur->pos = i - 1;
227 }
228 
229 void
230 xfs_iext_next(
231 	struct xfs_ifork	*ifp,
232 	struct xfs_iext_cursor	*cur)
233 {
234 	if (!cur->leaf) {
235 		ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
236 		xfs_iext_first(ifp, cur);
237 		return;
238 	}
239 
240 	ASSERT(cur->pos >= 0);
241 	ASSERT(cur->pos < xfs_iext_max_recs(ifp));
242 
243 	cur->pos++;
244 	if (ifp->if_height > 1 && !xfs_iext_valid(ifp, cur) &&
245 	    cur->leaf->next) {
246 		cur->leaf = cur->leaf->next;
247 		cur->pos = 0;
248 	}
249 }
250 
251 void
252 xfs_iext_prev(
253 	struct xfs_ifork	*ifp,
254 	struct xfs_iext_cursor	*cur)
255 {
256 	if (!cur->leaf) {
257 		ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
258 		xfs_iext_last(ifp, cur);
259 		return;
260 	}
261 
262 	ASSERT(cur->pos >= 0);
263 	ASSERT(cur->pos <= RECS_PER_LEAF);
264 
265 recurse:
266 	do {
267 		cur->pos--;
268 		if (xfs_iext_valid(ifp, cur))
269 			return;
270 	} while (cur->pos > 0);
271 
272 	if (ifp->if_height > 1 && cur->leaf->prev) {
273 		cur->leaf = cur->leaf->prev;
274 		cur->pos = RECS_PER_LEAF;
275 		goto recurse;
276 	}
277 }
278 
279 static inline int
280 xfs_iext_key_cmp(
281 	struct xfs_iext_node	*node,
282 	int			n,
283 	xfs_fileoff_t		offset)
284 {
285 	if (node->keys[n] > offset)
286 		return 1;
287 	if (node->keys[n] < offset)
288 		return -1;
289 	return 0;
290 }
291 
292 static inline int
293 xfs_iext_rec_cmp(
294 	struct xfs_iext_rec	*rec,
295 	xfs_fileoff_t		offset)
296 {
297 	uint64_t		rec_offset = rec->lo & XFS_IEXT_STARTOFF_MASK;
298 	uint32_t		rec_len = rec->hi & XFS_IEXT_LENGTH_MASK;
299 
300 	if (rec_offset > offset)
301 		return 1;
302 	if (rec_offset + rec_len <= offset)
303 		return -1;
304 	return 0;
305 }
306 
307 static void *
308 xfs_iext_find_level(
309 	struct xfs_ifork	*ifp,
310 	xfs_fileoff_t		offset,
311 	int			level)
312 {
313 	struct xfs_iext_node	*node = ifp->if_u1.if_root;
314 	int			height, i;
315 
316 	if (!ifp->if_height)
317 		return NULL;
318 
319 	for (height = ifp->if_height; height > level; height--) {
320 		for (i = 1; i < KEYS_PER_NODE; i++)
321 			if (xfs_iext_key_cmp(node, i, offset) > 0)
322 				break;
323 
324 		node = node->ptrs[i - 1];
325 		if (!node)
326 			break;
327 	}
328 
329 	return node;
330 }
331 
332 static int
333 xfs_iext_node_pos(
334 	struct xfs_iext_node	*node,
335 	xfs_fileoff_t		offset)
336 {
337 	int			i;
338 
339 	for (i = 1; i < KEYS_PER_NODE; i++) {
340 		if (xfs_iext_key_cmp(node, i, offset) > 0)
341 			break;
342 	}
343 
344 	return i - 1;
345 }
346 
347 static int
348 xfs_iext_node_insert_pos(
349 	struct xfs_iext_node	*node,
350 	xfs_fileoff_t		offset)
351 {
352 	int			i;
353 
354 	for (i = 0; i < KEYS_PER_NODE; i++) {
355 		if (xfs_iext_key_cmp(node, i, offset) > 0)
356 			return i;
357 	}
358 
359 	return KEYS_PER_NODE;
360 }
361 
362 static int
363 xfs_iext_node_nr_entries(
364 	struct xfs_iext_node	*node,
365 	int			start)
366 {
367 	int			i;
368 
369 	for (i = start; i < KEYS_PER_NODE; i++) {
370 		if (node->keys[i] == XFS_IEXT_KEY_INVALID)
371 			break;
372 	}
373 
374 	return i;
375 }
376 
377 static int
378 xfs_iext_leaf_nr_entries(
379 	struct xfs_ifork	*ifp,
380 	struct xfs_iext_leaf	*leaf,
381 	int			start)
382 {
383 	int			i;
384 
385 	for (i = start; i < xfs_iext_max_recs(ifp); i++) {
386 		if (xfs_iext_rec_is_empty(&leaf->recs[i]))
387 			break;
388 	}
389 
390 	return i;
391 }
392 
393 static inline uint64_t
394 xfs_iext_leaf_key(
395 	struct xfs_iext_leaf	*leaf,
396 	int			n)
397 {
398 	return leaf->recs[n].lo & XFS_IEXT_STARTOFF_MASK;
399 }
400 
401 static void
402 xfs_iext_grow(
403 	struct xfs_ifork	*ifp)
404 {
405 	struct xfs_iext_node	*node = kmem_zalloc(NODE_SIZE, KM_NOFS);
406 	int			i;
407 
408 	if (ifp->if_height == 1) {
409 		struct xfs_iext_leaf *prev = ifp->if_u1.if_root;
410 
411 		node->keys[0] = xfs_iext_leaf_key(prev, 0);
412 		node->ptrs[0] = prev;
413 	} else  {
414 		struct xfs_iext_node *prev = ifp->if_u1.if_root;
415 
416 		ASSERT(ifp->if_height > 1);
417 
418 		node->keys[0] = prev->keys[0];
419 		node->ptrs[0] = prev;
420 	}
421 
422 	for (i = 1; i < KEYS_PER_NODE; i++)
423 		node->keys[i] = XFS_IEXT_KEY_INVALID;
424 
425 	ifp->if_u1.if_root = node;
426 	ifp->if_height++;
427 }
428 
429 static void
430 xfs_iext_update_node(
431 	struct xfs_ifork	*ifp,
432 	xfs_fileoff_t		old_offset,
433 	xfs_fileoff_t		new_offset,
434 	int			level,
435 	void			*ptr)
436 {
437 	struct xfs_iext_node	*node = ifp->if_u1.if_root;
438 	int			height, i;
439 
440 	for (height = ifp->if_height; height > level; height--) {
441 		for (i = 0; i < KEYS_PER_NODE; i++) {
442 			if (i > 0 && xfs_iext_key_cmp(node, i, old_offset) > 0)
443 				break;
444 			if (node->keys[i] == old_offset)
445 				node->keys[i] = new_offset;
446 		}
447 		node = node->ptrs[i - 1];
448 		ASSERT(node);
449 	}
450 
451 	ASSERT(node == ptr);
452 }
453 
454 static struct xfs_iext_node *
455 xfs_iext_split_node(
456 	struct xfs_iext_node	**nodep,
457 	int			*pos,
458 	int			*nr_entries)
459 {
460 	struct xfs_iext_node	*node = *nodep;
461 	struct xfs_iext_node	*new = kmem_zalloc(NODE_SIZE, KM_NOFS);
462 	const int		nr_move = KEYS_PER_NODE / 2;
463 	int			nr_keep = nr_move + (KEYS_PER_NODE & 1);
464 	int			i = 0;
465 
466 	/* for sequential append operations just spill over into the new node */
467 	if (*pos == KEYS_PER_NODE) {
468 		*nodep = new;
469 		*pos = 0;
470 		*nr_entries = 0;
471 		goto done;
472 	}
473 
474 
475 	for (i = 0; i < nr_move; i++) {
476 		new->keys[i] = node->keys[nr_keep + i];
477 		new->ptrs[i] = node->ptrs[nr_keep + i];
478 
479 		node->keys[nr_keep + i] = XFS_IEXT_KEY_INVALID;
480 		node->ptrs[nr_keep + i] = NULL;
481 	}
482 
483 	if (*pos >= nr_keep) {
484 		*nodep = new;
485 		*pos -= nr_keep;
486 		*nr_entries = nr_move;
487 	} else {
488 		*nr_entries = nr_keep;
489 	}
490 done:
491 	for (; i < KEYS_PER_NODE; i++)
492 		new->keys[i] = XFS_IEXT_KEY_INVALID;
493 	return new;
494 }
495 
496 static void
497 xfs_iext_insert_node(
498 	struct xfs_ifork	*ifp,
499 	uint64_t		offset,
500 	void			*ptr,
501 	int			level)
502 {
503 	struct xfs_iext_node	*node, *new;
504 	int			i, pos, nr_entries;
505 
506 again:
507 	if (ifp->if_height < level)
508 		xfs_iext_grow(ifp);
509 
510 	new = NULL;
511 	node = xfs_iext_find_level(ifp, offset, level);
512 	pos = xfs_iext_node_insert_pos(node, offset);
513 	nr_entries = xfs_iext_node_nr_entries(node, pos);
514 
515 	ASSERT(pos >= nr_entries || xfs_iext_key_cmp(node, pos, offset) != 0);
516 	ASSERT(nr_entries <= KEYS_PER_NODE);
517 
518 	if (nr_entries == KEYS_PER_NODE)
519 		new = xfs_iext_split_node(&node, &pos, &nr_entries);
520 
521 	/*
522 	 * Update the pointers in higher levels if the first entry changes
523 	 * in an existing node.
524 	 */
525 	if (node != new && pos == 0 && nr_entries > 0)
526 		xfs_iext_update_node(ifp, node->keys[0], offset, level, node);
527 
528 	for (i = nr_entries; i > pos; i--) {
529 		node->keys[i] = node->keys[i - 1];
530 		node->ptrs[i] = node->ptrs[i - 1];
531 	}
532 	node->keys[pos] = offset;
533 	node->ptrs[pos] = ptr;
534 
535 	if (new) {
536 		offset = new->keys[0];
537 		ptr = new;
538 		level++;
539 		goto again;
540 	}
541 }
542 
543 static struct xfs_iext_leaf *
544 xfs_iext_split_leaf(
545 	struct xfs_iext_cursor	*cur,
546 	int			*nr_entries)
547 {
548 	struct xfs_iext_leaf	*leaf = cur->leaf;
549 	struct xfs_iext_leaf	*new = kmem_zalloc(NODE_SIZE, KM_NOFS);
550 	const int		nr_move = RECS_PER_LEAF / 2;
551 	int			nr_keep = nr_move + (RECS_PER_LEAF & 1);
552 	int			i;
553 
554 	/* for sequential append operations just spill over into the new node */
555 	if (cur->pos == RECS_PER_LEAF) {
556 		cur->leaf = new;
557 		cur->pos = 0;
558 		*nr_entries = 0;
559 		goto done;
560 	}
561 
562 	for (i = 0; i < nr_move; i++) {
563 		new->recs[i] = leaf->recs[nr_keep + i];
564 		xfs_iext_rec_clear(&leaf->recs[nr_keep + i]);
565 	}
566 
567 	if (cur->pos >= nr_keep) {
568 		cur->leaf = new;
569 		cur->pos -= nr_keep;
570 		*nr_entries = nr_move;
571 	} else {
572 		*nr_entries = nr_keep;
573 	}
574 done:
575 	if (leaf->next)
576 		leaf->next->prev = new;
577 	new->next = leaf->next;
578 	new->prev = leaf;
579 	leaf->next = new;
580 	return new;
581 }
582 
583 static void
584 xfs_iext_alloc_root(
585 	struct xfs_ifork	*ifp,
586 	struct xfs_iext_cursor	*cur)
587 {
588 	ASSERT(ifp->if_bytes == 0);
589 
590 	ifp->if_u1.if_root = kmem_zalloc(sizeof(struct xfs_iext_rec), KM_NOFS);
591 	ifp->if_height = 1;
592 
593 	/* now that we have a node step into it */
594 	cur->leaf = ifp->if_u1.if_root;
595 	cur->pos = 0;
596 }
597 
598 static void
599 xfs_iext_realloc_root(
600 	struct xfs_ifork	*ifp,
601 	struct xfs_iext_cursor	*cur)
602 {
603 	size_t new_size = ifp->if_bytes + sizeof(struct xfs_iext_rec);
604 	void *new;
605 
606 	/* account for the prev/next pointers */
607 	if (new_size / sizeof(struct xfs_iext_rec) == RECS_PER_LEAF)
608 		new_size = NODE_SIZE;
609 
610 	new = kmem_realloc(ifp->if_u1.if_root, new_size, KM_NOFS);
611 	memset(new + ifp->if_bytes, 0, new_size - ifp->if_bytes);
612 	ifp->if_u1.if_root = new;
613 	cur->leaf = new;
614 }
615 
616 /*
617  * Increment the sequence counter if we are on a COW fork.  This allows
618  * the writeback code to skip looking for a COW extent if the COW fork
619  * hasn't changed.  We use WRITE_ONCE here to ensure the update to the
620  * sequence counter is seen before the modifications to the extent
621  * tree itself take effect.
622  */
623 static inline void xfs_iext_inc_seq(struct xfs_ifork *ifp, int state)
624 {
625 	if (state & BMAP_COWFORK)
626 		WRITE_ONCE(ifp->if_seq, READ_ONCE(ifp->if_seq) + 1);
627 }
628 
629 void
630 xfs_iext_insert(
631 	struct xfs_inode	*ip,
632 	struct xfs_iext_cursor	*cur,
633 	struct xfs_bmbt_irec	*irec,
634 	int			state)
635 {
636 	struct xfs_ifork	*ifp = xfs_iext_state_to_fork(ip, state);
637 	xfs_fileoff_t		offset = irec->br_startoff;
638 	struct xfs_iext_leaf	*new = NULL;
639 	int			nr_entries, i;
640 
641 	xfs_iext_inc_seq(ifp, state);
642 
643 	if (ifp->if_height == 0)
644 		xfs_iext_alloc_root(ifp, cur);
645 	else if (ifp->if_height == 1)
646 		xfs_iext_realloc_root(ifp, cur);
647 
648 	nr_entries = xfs_iext_leaf_nr_entries(ifp, cur->leaf, cur->pos);
649 	ASSERT(nr_entries <= RECS_PER_LEAF);
650 	ASSERT(cur->pos >= nr_entries ||
651 	       xfs_iext_rec_cmp(cur_rec(cur), irec->br_startoff) != 0);
652 
653 	if (nr_entries == RECS_PER_LEAF)
654 		new = xfs_iext_split_leaf(cur, &nr_entries);
655 
656 	/*
657 	 * Update the pointers in higher levels if the first entry changes
658 	 * in an existing node.
659 	 */
660 	if (cur->leaf != new && cur->pos == 0 && nr_entries > 0) {
661 		xfs_iext_update_node(ifp, xfs_iext_leaf_key(cur->leaf, 0),
662 				offset, 1, cur->leaf);
663 	}
664 
665 	for (i = nr_entries; i > cur->pos; i--)
666 		cur->leaf->recs[i] = cur->leaf->recs[i - 1];
667 	xfs_iext_set(cur_rec(cur), irec);
668 	ifp->if_bytes += sizeof(struct xfs_iext_rec);
669 
670 	trace_xfs_iext_insert(ip, cur, state, _RET_IP_);
671 
672 	if (new)
673 		xfs_iext_insert_node(ifp, xfs_iext_leaf_key(new, 0), new, 2);
674 }
675 
676 static struct xfs_iext_node *
677 xfs_iext_rebalance_node(
678 	struct xfs_iext_node	*parent,
679 	int			*pos,
680 	struct xfs_iext_node	*node,
681 	int			nr_entries)
682 {
683 	/*
684 	 * If the neighbouring nodes are completely full, or have different
685 	 * parents, we might never be able to merge our node, and will only
686 	 * delete it once the number of entries hits zero.
687 	 */
688 	if (nr_entries == 0)
689 		return node;
690 
691 	if (*pos > 0) {
692 		struct xfs_iext_node *prev = parent->ptrs[*pos - 1];
693 		int nr_prev = xfs_iext_node_nr_entries(prev, 0), i;
694 
695 		if (nr_prev + nr_entries <= KEYS_PER_NODE) {
696 			for (i = 0; i < nr_entries; i++) {
697 				prev->keys[nr_prev + i] = node->keys[i];
698 				prev->ptrs[nr_prev + i] = node->ptrs[i];
699 			}
700 			return node;
701 		}
702 	}
703 
704 	if (*pos + 1 < xfs_iext_node_nr_entries(parent, *pos)) {
705 		struct xfs_iext_node *next = parent->ptrs[*pos + 1];
706 		int nr_next = xfs_iext_node_nr_entries(next, 0), i;
707 
708 		if (nr_entries + nr_next <= KEYS_PER_NODE) {
709 			/*
710 			 * Merge the next node into this node so that we don't
711 			 * have to do an additional update of the keys in the
712 			 * higher levels.
713 			 */
714 			for (i = 0; i < nr_next; i++) {
715 				node->keys[nr_entries + i] = next->keys[i];
716 				node->ptrs[nr_entries + i] = next->ptrs[i];
717 			}
718 
719 			++*pos;
720 			return next;
721 		}
722 	}
723 
724 	return NULL;
725 }
726 
727 static void
728 xfs_iext_remove_node(
729 	struct xfs_ifork	*ifp,
730 	xfs_fileoff_t		offset,
731 	void			*victim)
732 {
733 	struct xfs_iext_node	*node, *parent;
734 	int			level = 2, pos, nr_entries, i;
735 
736 	ASSERT(level <= ifp->if_height);
737 	node = xfs_iext_find_level(ifp, offset, level);
738 	pos = xfs_iext_node_pos(node, offset);
739 again:
740 	ASSERT(node->ptrs[pos]);
741 	ASSERT(node->ptrs[pos] == victim);
742 	kmem_free(victim);
743 
744 	nr_entries = xfs_iext_node_nr_entries(node, pos) - 1;
745 	offset = node->keys[0];
746 	for (i = pos; i < nr_entries; i++) {
747 		node->keys[i] = node->keys[i + 1];
748 		node->ptrs[i] = node->ptrs[i + 1];
749 	}
750 	node->keys[nr_entries] = XFS_IEXT_KEY_INVALID;
751 	node->ptrs[nr_entries] = NULL;
752 
753 	if (pos == 0 && nr_entries > 0) {
754 		xfs_iext_update_node(ifp, offset, node->keys[0], level, node);
755 		offset = node->keys[0];
756 	}
757 
758 	if (nr_entries >= KEYS_PER_NODE / 2)
759 		return;
760 
761 	if (level < ifp->if_height) {
762 		/*
763 		 * If we aren't at the root yet try to find a neighbour node to
764 		 * merge with (or delete the node if it is empty), and then
765 		 * recurse up to the next level.
766 		 */
767 		level++;
768 		parent = xfs_iext_find_level(ifp, offset, level);
769 		pos = xfs_iext_node_pos(parent, offset);
770 
771 		ASSERT(pos != KEYS_PER_NODE);
772 		ASSERT(parent->ptrs[pos] == node);
773 
774 		node = xfs_iext_rebalance_node(parent, &pos, node, nr_entries);
775 		if (node) {
776 			victim = node;
777 			node = parent;
778 			goto again;
779 		}
780 	} else if (nr_entries == 1) {
781 		/*
782 		 * If we are at the root and only one entry is left we can just
783 		 * free this node and update the root pointer.
784 		 */
785 		ASSERT(node == ifp->if_u1.if_root);
786 		ifp->if_u1.if_root = node->ptrs[0];
787 		ifp->if_height--;
788 		kmem_free(node);
789 	}
790 }
791 
792 static void
793 xfs_iext_rebalance_leaf(
794 	struct xfs_ifork	*ifp,
795 	struct xfs_iext_cursor	*cur,
796 	struct xfs_iext_leaf	*leaf,
797 	xfs_fileoff_t		offset,
798 	int			nr_entries)
799 {
800 	/*
801 	 * If the neighbouring nodes are completely full we might never be able
802 	 * to merge our node, and will only delete it once the number of
803 	 * entries hits zero.
804 	 */
805 	if (nr_entries == 0)
806 		goto remove_node;
807 
808 	if (leaf->prev) {
809 		int nr_prev = xfs_iext_leaf_nr_entries(ifp, leaf->prev, 0), i;
810 
811 		if (nr_prev + nr_entries <= RECS_PER_LEAF) {
812 			for (i = 0; i < nr_entries; i++)
813 				leaf->prev->recs[nr_prev + i] = leaf->recs[i];
814 
815 			if (cur->leaf == leaf) {
816 				cur->leaf = leaf->prev;
817 				cur->pos += nr_prev;
818 			}
819 			goto remove_node;
820 		}
821 	}
822 
823 	if (leaf->next) {
824 		int nr_next = xfs_iext_leaf_nr_entries(ifp, leaf->next, 0), i;
825 
826 		if (nr_entries + nr_next <= RECS_PER_LEAF) {
827 			/*
828 			 * Merge the next node into this node so that we don't
829 			 * have to do an additional update of the keys in the
830 			 * higher levels.
831 			 */
832 			for (i = 0; i < nr_next; i++) {
833 				leaf->recs[nr_entries + i] =
834 					leaf->next->recs[i];
835 			}
836 
837 			if (cur->leaf == leaf->next) {
838 				cur->leaf = leaf;
839 				cur->pos += nr_entries;
840 			}
841 
842 			offset = xfs_iext_leaf_key(leaf->next, 0);
843 			leaf = leaf->next;
844 			goto remove_node;
845 		}
846 	}
847 
848 	return;
849 remove_node:
850 	if (leaf->prev)
851 		leaf->prev->next = leaf->next;
852 	if (leaf->next)
853 		leaf->next->prev = leaf->prev;
854 	xfs_iext_remove_node(ifp, offset, leaf);
855 }
856 
857 static void
858 xfs_iext_free_last_leaf(
859 	struct xfs_ifork	*ifp)
860 {
861 	ifp->if_height--;
862 	kmem_free(ifp->if_u1.if_root);
863 	ifp->if_u1.if_root = NULL;
864 }
865 
866 void
867 xfs_iext_remove(
868 	struct xfs_inode	*ip,
869 	struct xfs_iext_cursor	*cur,
870 	int			state)
871 {
872 	struct xfs_ifork	*ifp = xfs_iext_state_to_fork(ip, state);
873 	struct xfs_iext_leaf	*leaf = cur->leaf;
874 	xfs_fileoff_t		offset = xfs_iext_leaf_key(leaf, 0);
875 	int			i, nr_entries;
876 
877 	trace_xfs_iext_remove(ip, cur, state, _RET_IP_);
878 
879 	ASSERT(ifp->if_height > 0);
880 	ASSERT(ifp->if_u1.if_root != NULL);
881 	ASSERT(xfs_iext_valid(ifp, cur));
882 
883 	xfs_iext_inc_seq(ifp, state);
884 
885 	nr_entries = xfs_iext_leaf_nr_entries(ifp, leaf, cur->pos) - 1;
886 	for (i = cur->pos; i < nr_entries; i++)
887 		leaf->recs[i] = leaf->recs[i + 1];
888 	xfs_iext_rec_clear(&leaf->recs[nr_entries]);
889 	ifp->if_bytes -= sizeof(struct xfs_iext_rec);
890 
891 	if (cur->pos == 0 && nr_entries > 0) {
892 		xfs_iext_update_node(ifp, offset, xfs_iext_leaf_key(leaf, 0), 1,
893 				leaf);
894 		offset = xfs_iext_leaf_key(leaf, 0);
895 	} else if (cur->pos == nr_entries) {
896 		if (ifp->if_height > 1 && leaf->next)
897 			cur->leaf = leaf->next;
898 		else
899 			cur->leaf = NULL;
900 		cur->pos = 0;
901 	}
902 
903 	if (nr_entries >= RECS_PER_LEAF / 2)
904 		return;
905 
906 	if (ifp->if_height > 1)
907 		xfs_iext_rebalance_leaf(ifp, cur, leaf, offset, nr_entries);
908 	else if (nr_entries == 0)
909 		xfs_iext_free_last_leaf(ifp);
910 }
911 
912 /*
913  * Lookup the extent covering bno.
914  *
915  * If there is an extent covering bno return the extent index, and store the
916  * expanded extent structure in *gotp, and the extent cursor in *cur.
917  * If there is no extent covering bno, but there is an extent after it (e.g.
918  * it lies in a hole) return that extent in *gotp and its cursor in *cur
919  * instead.
920  * If bno is beyond the last extent return false, and return an invalid
921  * cursor value.
922  */
923 bool
924 xfs_iext_lookup_extent(
925 	struct xfs_inode	*ip,
926 	struct xfs_ifork	*ifp,
927 	xfs_fileoff_t		offset,
928 	struct xfs_iext_cursor	*cur,
929 	struct xfs_bmbt_irec	*gotp)
930 {
931 	XFS_STATS_INC(ip->i_mount, xs_look_exlist);
932 
933 	cur->leaf = xfs_iext_find_level(ifp, offset, 1);
934 	if (!cur->leaf) {
935 		cur->pos = 0;
936 		return false;
937 	}
938 
939 	for (cur->pos = 0; cur->pos < xfs_iext_max_recs(ifp); cur->pos++) {
940 		struct xfs_iext_rec *rec = cur_rec(cur);
941 
942 		if (xfs_iext_rec_is_empty(rec))
943 			break;
944 		if (xfs_iext_rec_cmp(rec, offset) >= 0)
945 			goto found;
946 	}
947 
948 	/* Try looking in the next node for an entry > offset */
949 	if (ifp->if_height == 1 || !cur->leaf->next)
950 		return false;
951 	cur->leaf = cur->leaf->next;
952 	cur->pos = 0;
953 	if (!xfs_iext_valid(ifp, cur))
954 		return false;
955 found:
956 	xfs_iext_get(gotp, cur_rec(cur));
957 	return true;
958 }
959 
960 /*
961  * Returns the last extent before end, and if this extent doesn't cover
962  * end, update end to the end of the extent.
963  */
964 bool
965 xfs_iext_lookup_extent_before(
966 	struct xfs_inode	*ip,
967 	struct xfs_ifork	*ifp,
968 	xfs_fileoff_t		*end,
969 	struct xfs_iext_cursor	*cur,
970 	struct xfs_bmbt_irec	*gotp)
971 {
972 	/* could be optimized to not even look up the next on a match.. */
973 	if (xfs_iext_lookup_extent(ip, ifp, *end - 1, cur, gotp) &&
974 	    gotp->br_startoff <= *end - 1)
975 		return true;
976 	if (!xfs_iext_prev_extent(ifp, cur, gotp))
977 		return false;
978 	*end = gotp->br_startoff + gotp->br_blockcount;
979 	return true;
980 }
981 
982 void
983 xfs_iext_update_extent(
984 	struct xfs_inode	*ip,
985 	int			state,
986 	struct xfs_iext_cursor	*cur,
987 	struct xfs_bmbt_irec	*new)
988 {
989 	struct xfs_ifork	*ifp = xfs_iext_state_to_fork(ip, state);
990 
991 	xfs_iext_inc_seq(ifp, state);
992 
993 	if (cur->pos == 0) {
994 		struct xfs_bmbt_irec	old;
995 
996 		xfs_iext_get(&old, cur_rec(cur));
997 		if (new->br_startoff != old.br_startoff) {
998 			xfs_iext_update_node(ifp, old.br_startoff,
999 					new->br_startoff, 1, cur->leaf);
1000 		}
1001 	}
1002 
1003 	trace_xfs_bmap_pre_update(ip, cur, state, _RET_IP_);
1004 	xfs_iext_set(cur_rec(cur), new);
1005 	trace_xfs_bmap_post_update(ip, cur, state, _RET_IP_);
1006 }
1007 
1008 /*
1009  * Return true if the cursor points at an extent and return the extent structure
1010  * in gotp.  Else return false.
1011  */
1012 bool
1013 xfs_iext_get_extent(
1014 	struct xfs_ifork	*ifp,
1015 	struct xfs_iext_cursor	*cur,
1016 	struct xfs_bmbt_irec	*gotp)
1017 {
1018 	if (!xfs_iext_valid(ifp, cur))
1019 		return false;
1020 	xfs_iext_get(gotp, cur_rec(cur));
1021 	return true;
1022 }
1023 
1024 /*
1025  * This is a recursive function, because of that we need to be extremely
1026  * careful with stack usage.
1027  */
1028 static void
1029 xfs_iext_destroy_node(
1030 	struct xfs_iext_node	*node,
1031 	int			level)
1032 {
1033 	int			i;
1034 
1035 	if (level > 1) {
1036 		for (i = 0; i < KEYS_PER_NODE; i++) {
1037 			if (node->keys[i] == XFS_IEXT_KEY_INVALID)
1038 				break;
1039 			xfs_iext_destroy_node(node->ptrs[i], level - 1);
1040 		}
1041 	}
1042 
1043 	kmem_free(node);
1044 }
1045 
1046 void
1047 xfs_iext_destroy(
1048 	struct xfs_ifork	*ifp)
1049 {
1050 	xfs_iext_destroy_node(ifp->if_u1.if_root, ifp->if_height);
1051 
1052 	ifp->if_bytes = 0;
1053 	ifp->if_height = 0;
1054 	ifp->if_u1.if_root = NULL;
1055 }
1056