xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc_btree.c (revision bc5aa3a0)
1 /*
2  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_btree.h"
28 #include "xfs_ialloc.h"
29 #include "xfs_ialloc_btree.h"
30 #include "xfs_alloc.h"
31 #include "xfs_error.h"
32 #include "xfs_trace.h"
33 #include "xfs_cksum.h"
34 #include "xfs_trans.h"
35 #include "xfs_rmap.h"
36 
37 
38 STATIC int
39 xfs_inobt_get_minrecs(
40 	struct xfs_btree_cur	*cur,
41 	int			level)
42 {
43 	return cur->bc_mp->m_inobt_mnr[level != 0];
44 }
45 
46 STATIC struct xfs_btree_cur *
47 xfs_inobt_dup_cursor(
48 	struct xfs_btree_cur	*cur)
49 {
50 	return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
51 			cur->bc_private.a.agbp, cur->bc_private.a.agno,
52 			cur->bc_btnum);
53 }
54 
55 STATIC void
56 xfs_inobt_set_root(
57 	struct xfs_btree_cur	*cur,
58 	union xfs_btree_ptr	*nptr,
59 	int			inc)	/* level change */
60 {
61 	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
62 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
63 
64 	agi->agi_root = nptr->s;
65 	be32_add_cpu(&agi->agi_level, inc);
66 	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
67 }
68 
69 STATIC void
70 xfs_finobt_set_root(
71 	struct xfs_btree_cur	*cur,
72 	union xfs_btree_ptr	*nptr,
73 	int			inc)	/* level change */
74 {
75 	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
76 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
77 
78 	agi->agi_free_root = nptr->s;
79 	be32_add_cpu(&agi->agi_free_level, inc);
80 	xfs_ialloc_log_agi(cur->bc_tp, agbp,
81 			   XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
82 }
83 
84 STATIC int
85 xfs_inobt_alloc_block(
86 	struct xfs_btree_cur	*cur,
87 	union xfs_btree_ptr	*start,
88 	union xfs_btree_ptr	*new,
89 	int			*stat)
90 {
91 	xfs_alloc_arg_t		args;		/* block allocation args */
92 	int			error;		/* error return value */
93 	xfs_agblock_t		sbno = be32_to_cpu(start->s);
94 
95 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
96 
97 	memset(&args, 0, sizeof(args));
98 	args.tp = cur->bc_tp;
99 	args.mp = cur->bc_mp;
100 	xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INOBT);
101 	args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno);
102 	args.minlen = 1;
103 	args.maxlen = 1;
104 	args.prod = 1;
105 	args.type = XFS_ALLOCTYPE_NEAR_BNO;
106 
107 	error = xfs_alloc_vextent(&args);
108 	if (error) {
109 		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
110 		return error;
111 	}
112 	if (args.fsbno == NULLFSBLOCK) {
113 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
114 		*stat = 0;
115 		return 0;
116 	}
117 	ASSERT(args.len == 1);
118 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
119 
120 	new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
121 	*stat = 1;
122 	return 0;
123 }
124 
125 STATIC int
126 xfs_inobt_free_block(
127 	struct xfs_btree_cur	*cur,
128 	struct xfs_buf		*bp)
129 {
130 	struct xfs_owner_info	oinfo;
131 
132 	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INOBT);
133 	return xfs_free_extent(cur->bc_tp,
134 			XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1,
135 			&oinfo);
136 }
137 
138 STATIC int
139 xfs_inobt_get_maxrecs(
140 	struct xfs_btree_cur	*cur,
141 	int			level)
142 {
143 	return cur->bc_mp->m_inobt_mxr[level != 0];
144 }
145 
146 STATIC void
147 xfs_inobt_init_key_from_rec(
148 	union xfs_btree_key	*key,
149 	union xfs_btree_rec	*rec)
150 {
151 	key->inobt.ir_startino = rec->inobt.ir_startino;
152 }
153 
154 STATIC void
155 xfs_inobt_init_rec_from_cur(
156 	struct xfs_btree_cur	*cur,
157 	union xfs_btree_rec	*rec)
158 {
159 	rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
160 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
161 		rec->inobt.ir_u.sp.ir_holemask =
162 					cpu_to_be16(cur->bc_rec.i.ir_holemask);
163 		rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
164 		rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
165 	} else {
166 		/* ir_holemask/ir_count not supported on-disk */
167 		rec->inobt.ir_u.f.ir_freecount =
168 					cpu_to_be32(cur->bc_rec.i.ir_freecount);
169 	}
170 	rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
171 }
172 
173 /*
174  * initial value of ptr for lookup
175  */
176 STATIC void
177 xfs_inobt_init_ptr_from_cur(
178 	struct xfs_btree_cur	*cur,
179 	union xfs_btree_ptr	*ptr)
180 {
181 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
182 
183 	ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
184 
185 	ptr->s = agi->agi_root;
186 }
187 
188 STATIC void
189 xfs_finobt_init_ptr_from_cur(
190 	struct xfs_btree_cur	*cur,
191 	union xfs_btree_ptr	*ptr)
192 {
193 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
194 
195 	ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
196 	ptr->s = agi->agi_free_root;
197 }
198 
199 STATIC __int64_t
200 xfs_inobt_key_diff(
201 	struct xfs_btree_cur	*cur,
202 	union xfs_btree_key	*key)
203 {
204 	return (__int64_t)be32_to_cpu(key->inobt.ir_startino) -
205 			  cur->bc_rec.i.ir_startino;
206 }
207 
208 static int
209 xfs_inobt_verify(
210 	struct xfs_buf		*bp)
211 {
212 	struct xfs_mount	*mp = bp->b_target->bt_mount;
213 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
214 	unsigned int		level;
215 
216 	/*
217 	 * During growfs operations, we can't verify the exact owner as the
218 	 * perag is not fully initialised and hence not attached to the buffer.
219 	 *
220 	 * Similarly, during log recovery we will have a perag structure
221 	 * attached, but the agi information will not yet have been initialised
222 	 * from the on disk AGI. We don't currently use any of this information,
223 	 * but beware of the landmine (i.e. need to check pag->pagi_init) if we
224 	 * ever do.
225 	 */
226 	switch (block->bb_magic) {
227 	case cpu_to_be32(XFS_IBT_CRC_MAGIC):
228 	case cpu_to_be32(XFS_FIBT_CRC_MAGIC):
229 		if (!xfs_btree_sblock_v5hdr_verify(bp))
230 			return false;
231 		/* fall through */
232 	case cpu_to_be32(XFS_IBT_MAGIC):
233 	case cpu_to_be32(XFS_FIBT_MAGIC):
234 		break;
235 	default:
236 		return 0;
237 	}
238 
239 	/* level verification */
240 	level = be16_to_cpu(block->bb_level);
241 	if (level >= mp->m_in_maxlevels)
242 		return false;
243 
244 	return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]);
245 }
246 
247 static void
248 xfs_inobt_read_verify(
249 	struct xfs_buf	*bp)
250 {
251 	if (!xfs_btree_sblock_verify_crc(bp))
252 		xfs_buf_ioerror(bp, -EFSBADCRC);
253 	else if (!xfs_inobt_verify(bp))
254 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
255 
256 	if (bp->b_error) {
257 		trace_xfs_btree_corrupt(bp, _RET_IP_);
258 		xfs_verifier_error(bp);
259 	}
260 }
261 
262 static void
263 xfs_inobt_write_verify(
264 	struct xfs_buf	*bp)
265 {
266 	if (!xfs_inobt_verify(bp)) {
267 		trace_xfs_btree_corrupt(bp, _RET_IP_);
268 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
269 		xfs_verifier_error(bp);
270 		return;
271 	}
272 	xfs_btree_sblock_calc_crc(bp);
273 
274 }
275 
276 const struct xfs_buf_ops xfs_inobt_buf_ops = {
277 	.name = "xfs_inobt",
278 	.verify_read = xfs_inobt_read_verify,
279 	.verify_write = xfs_inobt_write_verify,
280 };
281 
282 #if defined(DEBUG) || defined(XFS_WARN)
283 STATIC int
284 xfs_inobt_keys_inorder(
285 	struct xfs_btree_cur	*cur,
286 	union xfs_btree_key	*k1,
287 	union xfs_btree_key	*k2)
288 {
289 	return be32_to_cpu(k1->inobt.ir_startino) <
290 		be32_to_cpu(k2->inobt.ir_startino);
291 }
292 
293 STATIC int
294 xfs_inobt_recs_inorder(
295 	struct xfs_btree_cur	*cur,
296 	union xfs_btree_rec	*r1,
297 	union xfs_btree_rec	*r2)
298 {
299 	return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
300 		be32_to_cpu(r2->inobt.ir_startino);
301 }
302 #endif	/* DEBUG */
303 
304 static const struct xfs_btree_ops xfs_inobt_ops = {
305 	.rec_len		= sizeof(xfs_inobt_rec_t),
306 	.key_len		= sizeof(xfs_inobt_key_t),
307 
308 	.dup_cursor		= xfs_inobt_dup_cursor,
309 	.set_root		= xfs_inobt_set_root,
310 	.alloc_block		= xfs_inobt_alloc_block,
311 	.free_block		= xfs_inobt_free_block,
312 	.get_minrecs		= xfs_inobt_get_minrecs,
313 	.get_maxrecs		= xfs_inobt_get_maxrecs,
314 	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
315 	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
316 	.init_ptr_from_cur	= xfs_inobt_init_ptr_from_cur,
317 	.key_diff		= xfs_inobt_key_diff,
318 	.buf_ops		= &xfs_inobt_buf_ops,
319 #if defined(DEBUG) || defined(XFS_WARN)
320 	.keys_inorder		= xfs_inobt_keys_inorder,
321 	.recs_inorder		= xfs_inobt_recs_inorder,
322 #endif
323 };
324 
325 static const struct xfs_btree_ops xfs_finobt_ops = {
326 	.rec_len		= sizeof(xfs_inobt_rec_t),
327 	.key_len		= sizeof(xfs_inobt_key_t),
328 
329 	.dup_cursor		= xfs_inobt_dup_cursor,
330 	.set_root		= xfs_finobt_set_root,
331 	.alloc_block		= xfs_inobt_alloc_block,
332 	.free_block		= xfs_inobt_free_block,
333 	.get_minrecs		= xfs_inobt_get_minrecs,
334 	.get_maxrecs		= xfs_inobt_get_maxrecs,
335 	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
336 	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
337 	.init_ptr_from_cur	= xfs_finobt_init_ptr_from_cur,
338 	.key_diff		= xfs_inobt_key_diff,
339 	.buf_ops		= &xfs_inobt_buf_ops,
340 #if defined(DEBUG) || defined(XFS_WARN)
341 	.keys_inorder		= xfs_inobt_keys_inorder,
342 	.recs_inorder		= xfs_inobt_recs_inorder,
343 #endif
344 };
345 
346 /*
347  * Allocate a new inode btree cursor.
348  */
349 struct xfs_btree_cur *				/* new inode btree cursor */
350 xfs_inobt_init_cursor(
351 	struct xfs_mount	*mp,		/* file system mount point */
352 	struct xfs_trans	*tp,		/* transaction pointer */
353 	struct xfs_buf		*agbp,		/* buffer for agi structure */
354 	xfs_agnumber_t		agno,		/* allocation group number */
355 	xfs_btnum_t		btnum)		/* ialloc or free ino btree */
356 {
357 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
358 	struct xfs_btree_cur	*cur;
359 
360 	cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_SLEEP);
361 
362 	cur->bc_tp = tp;
363 	cur->bc_mp = mp;
364 	cur->bc_btnum = btnum;
365 	if (btnum == XFS_BTNUM_INO) {
366 		cur->bc_nlevels = be32_to_cpu(agi->agi_level);
367 		cur->bc_ops = &xfs_inobt_ops;
368 	} else {
369 		cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
370 		cur->bc_ops = &xfs_finobt_ops;
371 	}
372 
373 	cur->bc_blocklog = mp->m_sb.sb_blocklog;
374 
375 	if (xfs_sb_version_hascrc(&mp->m_sb))
376 		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
377 
378 	cur->bc_private.a.agbp = agbp;
379 	cur->bc_private.a.agno = agno;
380 
381 	return cur;
382 }
383 
384 /*
385  * Calculate number of records in an inobt btree block.
386  */
387 int
388 xfs_inobt_maxrecs(
389 	struct xfs_mount	*mp,
390 	int			blocklen,
391 	int			leaf)
392 {
393 	blocklen -= XFS_INOBT_BLOCK_LEN(mp);
394 
395 	if (leaf)
396 		return blocklen / sizeof(xfs_inobt_rec_t);
397 	return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
398 }
399 
400 /*
401  * Convert the inode record holemask to an inode allocation bitmap. The inode
402  * allocation bitmap is inode granularity and specifies whether an inode is
403  * physically allocated on disk (not whether the inode is considered allocated
404  * or free by the fs).
405  *
406  * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
407  */
408 uint64_t
409 xfs_inobt_irec_to_allocmask(
410 	struct xfs_inobt_rec_incore	*rec)
411 {
412 	uint64_t			bitmap = 0;
413 	uint64_t			inodespbit;
414 	int				nextbit;
415 	uint				allocbitmap;
416 
417 	/*
418 	 * The holemask has 16-bits for a 64 inode record. Therefore each
419 	 * holemask bit represents multiple inodes. Create a mask of bits to set
420 	 * in the allocmask for each holemask bit.
421 	 */
422 	inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
423 
424 	/*
425 	 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
426 	 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
427 	 * anything beyond the 16 holemask bits since this casts to a larger
428 	 * type.
429 	 */
430 	allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
431 
432 	/*
433 	 * allocbitmap is the inverted holemask so every set bit represents
434 	 * allocated inodes. To expand from 16-bit holemask granularity to
435 	 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
436 	 * bitmap for every holemask bit.
437 	 */
438 	nextbit = xfs_next_bit(&allocbitmap, 1, 0);
439 	while (nextbit != -1) {
440 		ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
441 
442 		bitmap |= (inodespbit <<
443 			   (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
444 
445 		nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
446 	}
447 
448 	return bitmap;
449 }
450 
451 #if defined(DEBUG) || defined(XFS_WARN)
452 /*
453  * Verify that an in-core inode record has a valid inode count.
454  */
455 int
456 xfs_inobt_rec_check_count(
457 	struct xfs_mount		*mp,
458 	struct xfs_inobt_rec_incore	*rec)
459 {
460 	int				inocount = 0;
461 	int				nextbit = 0;
462 	uint64_t			allocbmap;
463 	int				wordsz;
464 
465 	wordsz = sizeof(allocbmap) / sizeof(unsigned int);
466 	allocbmap = xfs_inobt_irec_to_allocmask(rec);
467 
468 	nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
469 	while (nextbit != -1) {
470 		inocount++;
471 		nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
472 				       nextbit + 1);
473 	}
474 
475 	if (inocount != rec->ir_count)
476 		return -EFSCORRUPTED;
477 
478 	return 0;
479 }
480 #endif	/* DEBUG */
481