1 /* 2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_mount.h" 26 #include "xfs_inode.h" 27 #include "xfs_btree.h" 28 #include "xfs_ialloc.h" 29 #include "xfs_ialloc_btree.h" 30 #include "xfs_alloc.h" 31 #include "xfs_error.h" 32 #include "xfs_trace.h" 33 #include "xfs_cksum.h" 34 #include "xfs_trans.h" 35 36 37 STATIC int 38 xfs_inobt_get_minrecs( 39 struct xfs_btree_cur *cur, 40 int level) 41 { 42 return cur->bc_mp->m_inobt_mnr[level != 0]; 43 } 44 45 STATIC struct xfs_btree_cur * 46 xfs_inobt_dup_cursor( 47 struct xfs_btree_cur *cur) 48 { 49 return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp, 50 cur->bc_private.a.agbp, cur->bc_private.a.agno, 51 cur->bc_btnum); 52 } 53 54 STATIC void 55 xfs_inobt_set_root( 56 struct xfs_btree_cur *cur, 57 union xfs_btree_ptr *nptr, 58 int inc) /* level change */ 59 { 60 struct xfs_buf *agbp = cur->bc_private.a.agbp; 61 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 62 63 agi->agi_root = nptr->s; 64 be32_add_cpu(&agi->agi_level, inc); 65 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL); 66 } 67 68 STATIC void 69 xfs_finobt_set_root( 70 struct xfs_btree_cur *cur, 71 union xfs_btree_ptr *nptr, 72 int inc) /* level change */ 73 { 74 struct xfs_buf *agbp = cur->bc_private.a.agbp; 75 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 76 77 agi->agi_free_root = nptr->s; 78 be32_add_cpu(&agi->agi_free_level, inc); 79 xfs_ialloc_log_agi(cur->bc_tp, agbp, 80 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL); 81 } 82 83 STATIC int 84 xfs_inobt_alloc_block( 85 struct xfs_btree_cur *cur, 86 union xfs_btree_ptr *start, 87 union xfs_btree_ptr *new, 88 int *stat) 89 { 90 xfs_alloc_arg_t args; /* block allocation args */ 91 int error; /* error return value */ 92 xfs_agblock_t sbno = be32_to_cpu(start->s); 93 94 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 95 96 memset(&args, 0, sizeof(args)); 97 args.tp = cur->bc_tp; 98 args.mp = cur->bc_mp; 99 args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno); 100 args.minlen = 1; 101 args.maxlen = 1; 102 args.prod = 1; 103 args.type = XFS_ALLOCTYPE_NEAR_BNO; 104 105 error = xfs_alloc_vextent(&args); 106 if (error) { 107 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 108 return error; 109 } 110 if (args.fsbno == NULLFSBLOCK) { 111 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 112 *stat = 0; 113 return 0; 114 } 115 ASSERT(args.len == 1); 116 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 117 118 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno)); 119 *stat = 1; 120 return 0; 121 } 122 123 STATIC int 124 xfs_inobt_free_block( 125 struct xfs_btree_cur *cur, 126 struct xfs_buf *bp) 127 { 128 xfs_fsblock_t fsbno; 129 int error; 130 131 fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)); 132 error = xfs_free_extent(cur->bc_tp, fsbno, 1); 133 if (error) 134 return error; 135 136 xfs_trans_binval(cur->bc_tp, bp); 137 return error; 138 } 139 140 STATIC int 141 xfs_inobt_get_maxrecs( 142 struct xfs_btree_cur *cur, 143 int level) 144 { 145 return cur->bc_mp->m_inobt_mxr[level != 0]; 146 } 147 148 STATIC void 149 xfs_inobt_init_key_from_rec( 150 union xfs_btree_key *key, 151 union xfs_btree_rec *rec) 152 { 153 key->inobt.ir_startino = rec->inobt.ir_startino; 154 } 155 156 STATIC void 157 xfs_inobt_init_rec_from_key( 158 union xfs_btree_key *key, 159 union xfs_btree_rec *rec) 160 { 161 rec->inobt.ir_startino = key->inobt.ir_startino; 162 } 163 164 STATIC void 165 xfs_inobt_init_rec_from_cur( 166 struct xfs_btree_cur *cur, 167 union xfs_btree_rec *rec) 168 { 169 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino); 170 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { 171 rec->inobt.ir_u.sp.ir_holemask = 172 cpu_to_be16(cur->bc_rec.i.ir_holemask); 173 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count; 174 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount; 175 } else { 176 /* ir_holemask/ir_count not supported on-disk */ 177 rec->inobt.ir_u.f.ir_freecount = 178 cpu_to_be32(cur->bc_rec.i.ir_freecount); 179 } 180 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free); 181 } 182 183 /* 184 * initial value of ptr for lookup 185 */ 186 STATIC void 187 xfs_inobt_init_ptr_from_cur( 188 struct xfs_btree_cur *cur, 189 union xfs_btree_ptr *ptr) 190 { 191 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp); 192 193 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno)); 194 195 ptr->s = agi->agi_root; 196 } 197 198 STATIC void 199 xfs_finobt_init_ptr_from_cur( 200 struct xfs_btree_cur *cur, 201 union xfs_btree_ptr *ptr) 202 { 203 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp); 204 205 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno)); 206 ptr->s = agi->agi_free_root; 207 } 208 209 STATIC __int64_t 210 xfs_inobt_key_diff( 211 struct xfs_btree_cur *cur, 212 union xfs_btree_key *key) 213 { 214 return (__int64_t)be32_to_cpu(key->inobt.ir_startino) - 215 cur->bc_rec.i.ir_startino; 216 } 217 218 static int 219 xfs_inobt_verify( 220 struct xfs_buf *bp) 221 { 222 struct xfs_mount *mp = bp->b_target->bt_mount; 223 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 224 unsigned int level; 225 226 /* 227 * During growfs operations, we can't verify the exact owner as the 228 * perag is not fully initialised and hence not attached to the buffer. 229 * 230 * Similarly, during log recovery we will have a perag structure 231 * attached, but the agi information will not yet have been initialised 232 * from the on disk AGI. We don't currently use any of this information, 233 * but beware of the landmine (i.e. need to check pag->pagi_init) if we 234 * ever do. 235 */ 236 switch (block->bb_magic) { 237 case cpu_to_be32(XFS_IBT_CRC_MAGIC): 238 case cpu_to_be32(XFS_FIBT_CRC_MAGIC): 239 if (!xfs_btree_sblock_v5hdr_verify(bp)) 240 return false; 241 /* fall through */ 242 case cpu_to_be32(XFS_IBT_MAGIC): 243 case cpu_to_be32(XFS_FIBT_MAGIC): 244 break; 245 default: 246 return 0; 247 } 248 249 /* level verification */ 250 level = be16_to_cpu(block->bb_level); 251 if (level >= mp->m_in_maxlevels) 252 return false; 253 254 return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]); 255 } 256 257 static void 258 xfs_inobt_read_verify( 259 struct xfs_buf *bp) 260 { 261 if (!xfs_btree_sblock_verify_crc(bp)) 262 xfs_buf_ioerror(bp, -EFSBADCRC); 263 else if (!xfs_inobt_verify(bp)) 264 xfs_buf_ioerror(bp, -EFSCORRUPTED); 265 266 if (bp->b_error) { 267 trace_xfs_btree_corrupt(bp, _RET_IP_); 268 xfs_verifier_error(bp); 269 } 270 } 271 272 static void 273 xfs_inobt_write_verify( 274 struct xfs_buf *bp) 275 { 276 if (!xfs_inobt_verify(bp)) { 277 trace_xfs_btree_corrupt(bp, _RET_IP_); 278 xfs_buf_ioerror(bp, -EFSCORRUPTED); 279 xfs_verifier_error(bp); 280 return; 281 } 282 xfs_btree_sblock_calc_crc(bp); 283 284 } 285 286 const struct xfs_buf_ops xfs_inobt_buf_ops = { 287 .name = "xfs_inobt", 288 .verify_read = xfs_inobt_read_verify, 289 .verify_write = xfs_inobt_write_verify, 290 }; 291 292 #if defined(DEBUG) || defined(XFS_WARN) 293 STATIC int 294 xfs_inobt_keys_inorder( 295 struct xfs_btree_cur *cur, 296 union xfs_btree_key *k1, 297 union xfs_btree_key *k2) 298 { 299 return be32_to_cpu(k1->inobt.ir_startino) < 300 be32_to_cpu(k2->inobt.ir_startino); 301 } 302 303 STATIC int 304 xfs_inobt_recs_inorder( 305 struct xfs_btree_cur *cur, 306 union xfs_btree_rec *r1, 307 union xfs_btree_rec *r2) 308 { 309 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <= 310 be32_to_cpu(r2->inobt.ir_startino); 311 } 312 #endif /* DEBUG */ 313 314 static const struct xfs_btree_ops xfs_inobt_ops = { 315 .rec_len = sizeof(xfs_inobt_rec_t), 316 .key_len = sizeof(xfs_inobt_key_t), 317 318 .dup_cursor = xfs_inobt_dup_cursor, 319 .set_root = xfs_inobt_set_root, 320 .alloc_block = xfs_inobt_alloc_block, 321 .free_block = xfs_inobt_free_block, 322 .get_minrecs = xfs_inobt_get_minrecs, 323 .get_maxrecs = xfs_inobt_get_maxrecs, 324 .init_key_from_rec = xfs_inobt_init_key_from_rec, 325 .init_rec_from_key = xfs_inobt_init_rec_from_key, 326 .init_rec_from_cur = xfs_inobt_init_rec_from_cur, 327 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur, 328 .key_diff = xfs_inobt_key_diff, 329 .buf_ops = &xfs_inobt_buf_ops, 330 #if defined(DEBUG) || defined(XFS_WARN) 331 .keys_inorder = xfs_inobt_keys_inorder, 332 .recs_inorder = xfs_inobt_recs_inorder, 333 #endif 334 }; 335 336 static const struct xfs_btree_ops xfs_finobt_ops = { 337 .rec_len = sizeof(xfs_inobt_rec_t), 338 .key_len = sizeof(xfs_inobt_key_t), 339 340 .dup_cursor = xfs_inobt_dup_cursor, 341 .set_root = xfs_finobt_set_root, 342 .alloc_block = xfs_inobt_alloc_block, 343 .free_block = xfs_inobt_free_block, 344 .get_minrecs = xfs_inobt_get_minrecs, 345 .get_maxrecs = xfs_inobt_get_maxrecs, 346 .init_key_from_rec = xfs_inobt_init_key_from_rec, 347 .init_rec_from_key = xfs_inobt_init_rec_from_key, 348 .init_rec_from_cur = xfs_inobt_init_rec_from_cur, 349 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur, 350 .key_diff = xfs_inobt_key_diff, 351 .buf_ops = &xfs_inobt_buf_ops, 352 #if defined(DEBUG) || defined(XFS_WARN) 353 .keys_inorder = xfs_inobt_keys_inorder, 354 .recs_inorder = xfs_inobt_recs_inorder, 355 #endif 356 }; 357 358 /* 359 * Allocate a new inode btree cursor. 360 */ 361 struct xfs_btree_cur * /* new inode btree cursor */ 362 xfs_inobt_init_cursor( 363 struct xfs_mount *mp, /* file system mount point */ 364 struct xfs_trans *tp, /* transaction pointer */ 365 struct xfs_buf *agbp, /* buffer for agi structure */ 366 xfs_agnumber_t agno, /* allocation group number */ 367 xfs_btnum_t btnum) /* ialloc or free ino btree */ 368 { 369 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 370 struct xfs_btree_cur *cur; 371 372 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_SLEEP); 373 374 cur->bc_tp = tp; 375 cur->bc_mp = mp; 376 cur->bc_btnum = btnum; 377 if (btnum == XFS_BTNUM_INO) { 378 cur->bc_nlevels = be32_to_cpu(agi->agi_level); 379 cur->bc_ops = &xfs_inobt_ops; 380 } else { 381 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level); 382 cur->bc_ops = &xfs_finobt_ops; 383 } 384 385 cur->bc_blocklog = mp->m_sb.sb_blocklog; 386 387 if (xfs_sb_version_hascrc(&mp->m_sb)) 388 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; 389 390 cur->bc_private.a.agbp = agbp; 391 cur->bc_private.a.agno = agno; 392 393 return cur; 394 } 395 396 /* 397 * Calculate number of records in an inobt btree block. 398 */ 399 int 400 xfs_inobt_maxrecs( 401 struct xfs_mount *mp, 402 int blocklen, 403 int leaf) 404 { 405 blocklen -= XFS_INOBT_BLOCK_LEN(mp); 406 407 if (leaf) 408 return blocklen / sizeof(xfs_inobt_rec_t); 409 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t)); 410 } 411 412 /* 413 * Convert the inode record holemask to an inode allocation bitmap. The inode 414 * allocation bitmap is inode granularity and specifies whether an inode is 415 * physically allocated on disk (not whether the inode is considered allocated 416 * or free by the fs). 417 * 418 * A bit value of 1 means the inode is allocated, a value of 0 means it is free. 419 */ 420 uint64_t 421 xfs_inobt_irec_to_allocmask( 422 struct xfs_inobt_rec_incore *rec) 423 { 424 uint64_t bitmap = 0; 425 uint64_t inodespbit; 426 int nextbit; 427 uint allocbitmap; 428 429 /* 430 * The holemask has 16-bits for a 64 inode record. Therefore each 431 * holemask bit represents multiple inodes. Create a mask of bits to set 432 * in the allocmask for each holemask bit. 433 */ 434 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1; 435 436 /* 437 * Allocated inodes are represented by 0 bits in holemask. Invert the 0 438 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask 439 * anything beyond the 16 holemask bits since this casts to a larger 440 * type. 441 */ 442 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1); 443 444 /* 445 * allocbitmap is the inverted holemask so every set bit represents 446 * allocated inodes. To expand from 16-bit holemask granularity to 447 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target 448 * bitmap for every holemask bit. 449 */ 450 nextbit = xfs_next_bit(&allocbitmap, 1, 0); 451 while (nextbit != -1) { 452 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY)); 453 454 bitmap |= (inodespbit << 455 (nextbit * XFS_INODES_PER_HOLEMASK_BIT)); 456 457 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1); 458 } 459 460 return bitmap; 461 } 462 463 #if defined(DEBUG) || defined(XFS_WARN) 464 /* 465 * Verify that an in-core inode record has a valid inode count. 466 */ 467 int 468 xfs_inobt_rec_check_count( 469 struct xfs_mount *mp, 470 struct xfs_inobt_rec_incore *rec) 471 { 472 int inocount = 0; 473 int nextbit = 0; 474 uint64_t allocbmap; 475 int wordsz; 476 477 wordsz = sizeof(allocbmap) / sizeof(unsigned int); 478 allocbmap = xfs_inobt_irec_to_allocmask(rec); 479 480 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit); 481 while (nextbit != -1) { 482 inocount++; 483 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, 484 nextbit + 1); 485 } 486 487 if (inocount != rec->ir_count) 488 return -EFSCORRUPTED; 489 490 return 0; 491 } 492 #endif /* DEBUG */ 493