1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_btree.h" 15 #include "xfs_btree_staging.h" 16 #include "xfs_ialloc.h" 17 #include "xfs_ialloc_btree.h" 18 #include "xfs_alloc.h" 19 #include "xfs_error.h" 20 #include "xfs_trace.h" 21 #include "xfs_trans.h" 22 #include "xfs_rmap.h" 23 #include "xfs_ag.h" 24 25 static struct kmem_cache *xfs_inobt_cur_cache; 26 27 STATIC int 28 xfs_inobt_get_minrecs( 29 struct xfs_btree_cur *cur, 30 int level) 31 { 32 return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0]; 33 } 34 35 STATIC struct xfs_btree_cur * 36 xfs_inobt_dup_cursor( 37 struct xfs_btree_cur *cur) 38 { 39 return xfs_inobt_init_cursor(cur->bc_ag.pag, cur->bc_tp, 40 cur->bc_ag.agbp, cur->bc_btnum); 41 } 42 43 STATIC void 44 xfs_inobt_set_root( 45 struct xfs_btree_cur *cur, 46 const union xfs_btree_ptr *nptr, 47 int inc) /* level change */ 48 { 49 struct xfs_buf *agbp = cur->bc_ag.agbp; 50 struct xfs_agi *agi = agbp->b_addr; 51 52 agi->agi_root = nptr->s; 53 be32_add_cpu(&agi->agi_level, inc); 54 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL); 55 } 56 57 STATIC void 58 xfs_finobt_set_root( 59 struct xfs_btree_cur *cur, 60 const union xfs_btree_ptr *nptr, 61 int inc) /* level change */ 62 { 63 struct xfs_buf *agbp = cur->bc_ag.agbp; 64 struct xfs_agi *agi = agbp->b_addr; 65 66 agi->agi_free_root = nptr->s; 67 be32_add_cpu(&agi->agi_free_level, inc); 68 xfs_ialloc_log_agi(cur->bc_tp, agbp, 69 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL); 70 } 71 72 /* Update the inode btree block counter for this btree. */ 73 static inline void 74 xfs_inobt_mod_blockcount( 75 struct xfs_btree_cur *cur, 76 int howmuch) 77 { 78 struct xfs_buf *agbp = cur->bc_ag.agbp; 79 struct xfs_agi *agi = agbp->b_addr; 80 81 if (!xfs_has_inobtcounts(cur->bc_mp)) 82 return; 83 84 if (cur->bc_btnum == XFS_BTNUM_FINO) 85 be32_add_cpu(&agi->agi_fblocks, howmuch); 86 else if (cur->bc_btnum == XFS_BTNUM_INO) 87 be32_add_cpu(&agi->agi_iblocks, howmuch); 88 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS); 89 } 90 91 STATIC int 92 __xfs_inobt_alloc_block( 93 struct xfs_btree_cur *cur, 94 const union xfs_btree_ptr *start, 95 union xfs_btree_ptr *new, 96 int *stat, 97 enum xfs_ag_resv_type resv) 98 { 99 xfs_alloc_arg_t args; /* block allocation args */ 100 int error; /* error return value */ 101 xfs_agblock_t sbno = be32_to_cpu(start->s); 102 103 memset(&args, 0, sizeof(args)); 104 args.tp = cur->bc_tp; 105 args.mp = cur->bc_mp; 106 args.pag = cur->bc_ag.pag; 107 args.oinfo = XFS_RMAP_OINFO_INOBT; 108 args.minlen = 1; 109 args.maxlen = 1; 110 args.prod = 1; 111 args.resv = resv; 112 113 error = xfs_alloc_vextent_near_bno(&args, 114 XFS_AGB_TO_FSB(args.mp, args.pag->pag_agno, sbno)); 115 if (error) 116 return error; 117 118 if (args.fsbno == NULLFSBLOCK) { 119 *stat = 0; 120 return 0; 121 } 122 ASSERT(args.len == 1); 123 124 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno)); 125 *stat = 1; 126 xfs_inobt_mod_blockcount(cur, 1); 127 return 0; 128 } 129 130 STATIC int 131 xfs_inobt_alloc_block( 132 struct xfs_btree_cur *cur, 133 const union xfs_btree_ptr *start, 134 union xfs_btree_ptr *new, 135 int *stat) 136 { 137 return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE); 138 } 139 140 STATIC int 141 xfs_finobt_alloc_block( 142 struct xfs_btree_cur *cur, 143 const union xfs_btree_ptr *start, 144 union xfs_btree_ptr *new, 145 int *stat) 146 { 147 if (cur->bc_mp->m_finobt_nores) 148 return xfs_inobt_alloc_block(cur, start, new, stat); 149 return __xfs_inobt_alloc_block(cur, start, new, stat, 150 XFS_AG_RESV_METADATA); 151 } 152 153 STATIC int 154 __xfs_inobt_free_block( 155 struct xfs_btree_cur *cur, 156 struct xfs_buf *bp, 157 enum xfs_ag_resv_type resv) 158 { 159 xfs_fsblock_t fsbno; 160 161 xfs_inobt_mod_blockcount(cur, -1); 162 fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp)); 163 return xfs_free_extent(cur->bc_tp, cur->bc_ag.pag, 164 XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno), 1, 165 &XFS_RMAP_OINFO_INOBT, resv); 166 } 167 168 STATIC int 169 xfs_inobt_free_block( 170 struct xfs_btree_cur *cur, 171 struct xfs_buf *bp) 172 { 173 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE); 174 } 175 176 STATIC int 177 xfs_finobt_free_block( 178 struct xfs_btree_cur *cur, 179 struct xfs_buf *bp) 180 { 181 if (cur->bc_mp->m_finobt_nores) 182 return xfs_inobt_free_block(cur, bp); 183 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA); 184 } 185 186 STATIC int 187 xfs_inobt_get_maxrecs( 188 struct xfs_btree_cur *cur, 189 int level) 190 { 191 return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0]; 192 } 193 194 STATIC void 195 xfs_inobt_init_key_from_rec( 196 union xfs_btree_key *key, 197 const union xfs_btree_rec *rec) 198 { 199 key->inobt.ir_startino = rec->inobt.ir_startino; 200 } 201 202 STATIC void 203 xfs_inobt_init_high_key_from_rec( 204 union xfs_btree_key *key, 205 const union xfs_btree_rec *rec) 206 { 207 __u32 x; 208 209 x = be32_to_cpu(rec->inobt.ir_startino); 210 x += XFS_INODES_PER_CHUNK - 1; 211 key->inobt.ir_startino = cpu_to_be32(x); 212 } 213 214 STATIC void 215 xfs_inobt_init_rec_from_cur( 216 struct xfs_btree_cur *cur, 217 union xfs_btree_rec *rec) 218 { 219 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino); 220 if (xfs_has_sparseinodes(cur->bc_mp)) { 221 rec->inobt.ir_u.sp.ir_holemask = 222 cpu_to_be16(cur->bc_rec.i.ir_holemask); 223 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count; 224 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount; 225 } else { 226 /* ir_holemask/ir_count not supported on-disk */ 227 rec->inobt.ir_u.f.ir_freecount = 228 cpu_to_be32(cur->bc_rec.i.ir_freecount); 229 } 230 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free); 231 } 232 233 /* 234 * initial value of ptr for lookup 235 */ 236 STATIC void 237 xfs_inobt_init_ptr_from_cur( 238 struct xfs_btree_cur *cur, 239 union xfs_btree_ptr *ptr) 240 { 241 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr; 242 243 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno)); 244 245 ptr->s = agi->agi_root; 246 } 247 248 STATIC void 249 xfs_finobt_init_ptr_from_cur( 250 struct xfs_btree_cur *cur, 251 union xfs_btree_ptr *ptr) 252 { 253 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr; 254 255 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno)); 256 ptr->s = agi->agi_free_root; 257 } 258 259 STATIC int64_t 260 xfs_inobt_key_diff( 261 struct xfs_btree_cur *cur, 262 const union xfs_btree_key *key) 263 { 264 return (int64_t)be32_to_cpu(key->inobt.ir_startino) - 265 cur->bc_rec.i.ir_startino; 266 } 267 268 STATIC int64_t 269 xfs_inobt_diff_two_keys( 270 struct xfs_btree_cur *cur, 271 const union xfs_btree_key *k1, 272 const union xfs_btree_key *k2, 273 const union xfs_btree_key *mask) 274 { 275 ASSERT(!mask || mask->inobt.ir_startino); 276 277 return (int64_t)be32_to_cpu(k1->inobt.ir_startino) - 278 be32_to_cpu(k2->inobt.ir_startino); 279 } 280 281 static xfs_failaddr_t 282 xfs_inobt_verify( 283 struct xfs_buf *bp) 284 { 285 struct xfs_mount *mp = bp->b_mount; 286 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 287 xfs_failaddr_t fa; 288 unsigned int level; 289 290 if (!xfs_verify_magic(bp, block->bb_magic)) 291 return __this_address; 292 293 /* 294 * During growfs operations, we can't verify the exact owner as the 295 * perag is not fully initialised and hence not attached to the buffer. 296 * 297 * Similarly, during log recovery we will have a perag structure 298 * attached, but the agi information will not yet have been initialised 299 * from the on disk AGI. We don't currently use any of this information, 300 * but beware of the landmine (i.e. need to check 301 * xfs_perag_initialised_agi(pag)) if we ever do. 302 */ 303 if (xfs_has_crc(mp)) { 304 fa = xfs_btree_sblock_v5hdr_verify(bp); 305 if (fa) 306 return fa; 307 } 308 309 /* level verification */ 310 level = be16_to_cpu(block->bb_level); 311 if (level >= M_IGEO(mp)->inobt_maxlevels) 312 return __this_address; 313 314 return xfs_btree_sblock_verify(bp, 315 M_IGEO(mp)->inobt_mxr[level != 0]); 316 } 317 318 static void 319 xfs_inobt_read_verify( 320 struct xfs_buf *bp) 321 { 322 xfs_failaddr_t fa; 323 324 if (!xfs_btree_sblock_verify_crc(bp)) 325 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 326 else { 327 fa = xfs_inobt_verify(bp); 328 if (fa) 329 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 330 } 331 332 if (bp->b_error) 333 trace_xfs_btree_corrupt(bp, _RET_IP_); 334 } 335 336 static void 337 xfs_inobt_write_verify( 338 struct xfs_buf *bp) 339 { 340 xfs_failaddr_t fa; 341 342 fa = xfs_inobt_verify(bp); 343 if (fa) { 344 trace_xfs_btree_corrupt(bp, _RET_IP_); 345 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 346 return; 347 } 348 xfs_btree_sblock_calc_crc(bp); 349 350 } 351 352 const struct xfs_buf_ops xfs_inobt_buf_ops = { 353 .name = "xfs_inobt", 354 .magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) }, 355 .verify_read = xfs_inobt_read_verify, 356 .verify_write = xfs_inobt_write_verify, 357 .verify_struct = xfs_inobt_verify, 358 }; 359 360 const struct xfs_buf_ops xfs_finobt_buf_ops = { 361 .name = "xfs_finobt", 362 .magic = { cpu_to_be32(XFS_FIBT_MAGIC), 363 cpu_to_be32(XFS_FIBT_CRC_MAGIC) }, 364 .verify_read = xfs_inobt_read_verify, 365 .verify_write = xfs_inobt_write_verify, 366 .verify_struct = xfs_inobt_verify, 367 }; 368 369 STATIC int 370 xfs_inobt_keys_inorder( 371 struct xfs_btree_cur *cur, 372 const union xfs_btree_key *k1, 373 const union xfs_btree_key *k2) 374 { 375 return be32_to_cpu(k1->inobt.ir_startino) < 376 be32_to_cpu(k2->inobt.ir_startino); 377 } 378 379 STATIC int 380 xfs_inobt_recs_inorder( 381 struct xfs_btree_cur *cur, 382 const union xfs_btree_rec *r1, 383 const union xfs_btree_rec *r2) 384 { 385 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <= 386 be32_to_cpu(r2->inobt.ir_startino); 387 } 388 389 STATIC enum xbtree_key_contig 390 xfs_inobt_keys_contiguous( 391 struct xfs_btree_cur *cur, 392 const union xfs_btree_key *key1, 393 const union xfs_btree_key *key2, 394 const union xfs_btree_key *mask) 395 { 396 ASSERT(!mask || mask->inobt.ir_startino); 397 398 return xbtree_key_contig(be32_to_cpu(key1->inobt.ir_startino), 399 be32_to_cpu(key2->inobt.ir_startino)); 400 } 401 402 static const struct xfs_btree_ops xfs_inobt_ops = { 403 .rec_len = sizeof(xfs_inobt_rec_t), 404 .key_len = sizeof(xfs_inobt_key_t), 405 406 .dup_cursor = xfs_inobt_dup_cursor, 407 .set_root = xfs_inobt_set_root, 408 .alloc_block = xfs_inobt_alloc_block, 409 .free_block = xfs_inobt_free_block, 410 .get_minrecs = xfs_inobt_get_minrecs, 411 .get_maxrecs = xfs_inobt_get_maxrecs, 412 .init_key_from_rec = xfs_inobt_init_key_from_rec, 413 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec, 414 .init_rec_from_cur = xfs_inobt_init_rec_from_cur, 415 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur, 416 .key_diff = xfs_inobt_key_diff, 417 .buf_ops = &xfs_inobt_buf_ops, 418 .diff_two_keys = xfs_inobt_diff_two_keys, 419 .keys_inorder = xfs_inobt_keys_inorder, 420 .recs_inorder = xfs_inobt_recs_inorder, 421 .keys_contiguous = xfs_inobt_keys_contiguous, 422 }; 423 424 static const struct xfs_btree_ops xfs_finobt_ops = { 425 .rec_len = sizeof(xfs_inobt_rec_t), 426 .key_len = sizeof(xfs_inobt_key_t), 427 428 .dup_cursor = xfs_inobt_dup_cursor, 429 .set_root = xfs_finobt_set_root, 430 .alloc_block = xfs_finobt_alloc_block, 431 .free_block = xfs_finobt_free_block, 432 .get_minrecs = xfs_inobt_get_minrecs, 433 .get_maxrecs = xfs_inobt_get_maxrecs, 434 .init_key_from_rec = xfs_inobt_init_key_from_rec, 435 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec, 436 .init_rec_from_cur = xfs_inobt_init_rec_from_cur, 437 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur, 438 .key_diff = xfs_inobt_key_diff, 439 .buf_ops = &xfs_finobt_buf_ops, 440 .diff_two_keys = xfs_inobt_diff_two_keys, 441 .keys_inorder = xfs_inobt_keys_inorder, 442 .recs_inorder = xfs_inobt_recs_inorder, 443 .keys_contiguous = xfs_inobt_keys_contiguous, 444 }; 445 446 /* 447 * Initialize a new inode btree cursor. 448 */ 449 static struct xfs_btree_cur * 450 xfs_inobt_init_common( 451 struct xfs_perag *pag, 452 struct xfs_trans *tp, /* transaction pointer */ 453 xfs_btnum_t btnum) /* ialloc or free ino btree */ 454 { 455 struct xfs_mount *mp = pag->pag_mount; 456 struct xfs_btree_cur *cur; 457 458 cur = xfs_btree_alloc_cursor(mp, tp, btnum, 459 M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache); 460 if (btnum == XFS_BTNUM_INO) { 461 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2); 462 cur->bc_ops = &xfs_inobt_ops; 463 } else { 464 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2); 465 cur->bc_ops = &xfs_finobt_ops; 466 } 467 468 if (xfs_has_crc(mp)) 469 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; 470 471 cur->bc_ag.pag = xfs_perag_hold(pag); 472 return cur; 473 } 474 475 /* Create an inode btree cursor. */ 476 struct xfs_btree_cur * 477 xfs_inobt_init_cursor( 478 struct xfs_perag *pag, 479 struct xfs_trans *tp, 480 struct xfs_buf *agbp, 481 xfs_btnum_t btnum) 482 { 483 struct xfs_btree_cur *cur; 484 struct xfs_agi *agi = agbp->b_addr; 485 486 cur = xfs_inobt_init_common(pag, tp, btnum); 487 if (btnum == XFS_BTNUM_INO) 488 cur->bc_nlevels = be32_to_cpu(agi->agi_level); 489 else 490 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level); 491 cur->bc_ag.agbp = agbp; 492 return cur; 493 } 494 495 /* Create an inode btree cursor with a fake root for staging. */ 496 struct xfs_btree_cur * 497 xfs_inobt_stage_cursor( 498 struct xfs_perag *pag, 499 struct xbtree_afakeroot *afake, 500 xfs_btnum_t btnum) 501 { 502 struct xfs_btree_cur *cur; 503 504 cur = xfs_inobt_init_common(pag, NULL, btnum); 505 xfs_btree_stage_afakeroot(cur, afake); 506 return cur; 507 } 508 509 /* 510 * Install a new inobt btree root. Caller is responsible for invalidating 511 * and freeing the old btree blocks. 512 */ 513 void 514 xfs_inobt_commit_staged_btree( 515 struct xfs_btree_cur *cur, 516 struct xfs_trans *tp, 517 struct xfs_buf *agbp) 518 { 519 struct xfs_agi *agi = agbp->b_addr; 520 struct xbtree_afakeroot *afake = cur->bc_ag.afake; 521 int fields; 522 523 ASSERT(cur->bc_flags & XFS_BTREE_STAGING); 524 525 if (cur->bc_btnum == XFS_BTNUM_INO) { 526 fields = XFS_AGI_ROOT | XFS_AGI_LEVEL; 527 agi->agi_root = cpu_to_be32(afake->af_root); 528 agi->agi_level = cpu_to_be32(afake->af_levels); 529 if (xfs_has_inobtcounts(cur->bc_mp)) { 530 agi->agi_iblocks = cpu_to_be32(afake->af_blocks); 531 fields |= XFS_AGI_IBLOCKS; 532 } 533 xfs_ialloc_log_agi(tp, agbp, fields); 534 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_inobt_ops); 535 } else { 536 fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL; 537 agi->agi_free_root = cpu_to_be32(afake->af_root); 538 agi->agi_free_level = cpu_to_be32(afake->af_levels); 539 if (xfs_has_inobtcounts(cur->bc_mp)) { 540 agi->agi_fblocks = cpu_to_be32(afake->af_blocks); 541 fields |= XFS_AGI_IBLOCKS; 542 } 543 xfs_ialloc_log_agi(tp, agbp, fields); 544 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_finobt_ops); 545 } 546 } 547 548 /* Calculate number of records in an inode btree block. */ 549 static inline unsigned int 550 xfs_inobt_block_maxrecs( 551 unsigned int blocklen, 552 bool leaf) 553 { 554 if (leaf) 555 return blocklen / sizeof(xfs_inobt_rec_t); 556 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t)); 557 } 558 559 /* 560 * Calculate number of records in an inobt btree block. 561 */ 562 int 563 xfs_inobt_maxrecs( 564 struct xfs_mount *mp, 565 int blocklen, 566 int leaf) 567 { 568 blocklen -= XFS_INOBT_BLOCK_LEN(mp); 569 return xfs_inobt_block_maxrecs(blocklen, leaf); 570 } 571 572 /* 573 * Maximum number of inode btree records per AG. Pretend that we can fill an 574 * entire AG completely full of inodes except for the AG headers. 575 */ 576 #define XFS_MAX_INODE_RECORDS \ 577 ((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \ 578 XFS_INODES_PER_CHUNK 579 580 /* Compute the max possible height for the inode btree. */ 581 static inline unsigned int 582 xfs_inobt_maxlevels_ondisk(void) 583 { 584 unsigned int minrecs[2]; 585 unsigned int blocklen; 586 587 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN, 588 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN); 589 590 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2; 591 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2; 592 593 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS); 594 } 595 596 /* Compute the max possible height for the free inode btree. */ 597 static inline unsigned int 598 xfs_finobt_maxlevels_ondisk(void) 599 { 600 unsigned int minrecs[2]; 601 unsigned int blocklen; 602 603 blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN; 604 605 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2; 606 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2; 607 608 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS); 609 } 610 611 /* Compute the max possible height for either inode btree. */ 612 unsigned int 613 xfs_iallocbt_maxlevels_ondisk(void) 614 { 615 return max(xfs_inobt_maxlevels_ondisk(), 616 xfs_finobt_maxlevels_ondisk()); 617 } 618 619 /* 620 * Convert the inode record holemask to an inode allocation bitmap. The inode 621 * allocation bitmap is inode granularity and specifies whether an inode is 622 * physically allocated on disk (not whether the inode is considered allocated 623 * or free by the fs). 624 * 625 * A bit value of 1 means the inode is allocated, a value of 0 means it is free. 626 */ 627 uint64_t 628 xfs_inobt_irec_to_allocmask( 629 const struct xfs_inobt_rec_incore *rec) 630 { 631 uint64_t bitmap = 0; 632 uint64_t inodespbit; 633 int nextbit; 634 uint allocbitmap; 635 636 /* 637 * The holemask has 16-bits for a 64 inode record. Therefore each 638 * holemask bit represents multiple inodes. Create a mask of bits to set 639 * in the allocmask for each holemask bit. 640 */ 641 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1; 642 643 /* 644 * Allocated inodes are represented by 0 bits in holemask. Invert the 0 645 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask 646 * anything beyond the 16 holemask bits since this casts to a larger 647 * type. 648 */ 649 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1); 650 651 /* 652 * allocbitmap is the inverted holemask so every set bit represents 653 * allocated inodes. To expand from 16-bit holemask granularity to 654 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target 655 * bitmap for every holemask bit. 656 */ 657 nextbit = xfs_next_bit(&allocbitmap, 1, 0); 658 while (nextbit != -1) { 659 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY)); 660 661 bitmap |= (inodespbit << 662 (nextbit * XFS_INODES_PER_HOLEMASK_BIT)); 663 664 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1); 665 } 666 667 return bitmap; 668 } 669 670 #if defined(DEBUG) || defined(XFS_WARN) 671 /* 672 * Verify that an in-core inode record has a valid inode count. 673 */ 674 int 675 xfs_inobt_rec_check_count( 676 struct xfs_mount *mp, 677 struct xfs_inobt_rec_incore *rec) 678 { 679 int inocount = 0; 680 int nextbit = 0; 681 uint64_t allocbmap; 682 int wordsz; 683 684 wordsz = sizeof(allocbmap) / sizeof(unsigned int); 685 allocbmap = xfs_inobt_irec_to_allocmask(rec); 686 687 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit); 688 while (nextbit != -1) { 689 inocount++; 690 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, 691 nextbit + 1); 692 } 693 694 if (inocount != rec->ir_count) 695 return -EFSCORRUPTED; 696 697 return 0; 698 } 699 #endif /* DEBUG */ 700 701 static xfs_extlen_t 702 xfs_inobt_max_size( 703 struct xfs_perag *pag) 704 { 705 struct xfs_mount *mp = pag->pag_mount; 706 xfs_agblock_t agblocks = pag->block_count; 707 708 /* Bail out if we're uninitialized, which can happen in mkfs. */ 709 if (M_IGEO(mp)->inobt_mxr[0] == 0) 710 return 0; 711 712 /* 713 * The log is permanently allocated, so the space it occupies will 714 * never be available for the kinds of things that would require btree 715 * expansion. We therefore can pretend the space isn't there. 716 */ 717 if (xfs_ag_contains_log(mp, pag->pag_agno)) 718 agblocks -= mp->m_sb.sb_logblocks; 719 720 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, 721 (uint64_t)agblocks * mp->m_sb.sb_inopblock / 722 XFS_INODES_PER_CHUNK); 723 } 724 725 /* Read AGI and create inobt cursor. */ 726 int 727 xfs_inobt_cur( 728 struct xfs_perag *pag, 729 struct xfs_trans *tp, 730 xfs_btnum_t which, 731 struct xfs_btree_cur **curpp, 732 struct xfs_buf **agi_bpp) 733 { 734 struct xfs_btree_cur *cur; 735 int error; 736 737 ASSERT(*agi_bpp == NULL); 738 ASSERT(*curpp == NULL); 739 740 error = xfs_ialloc_read_agi(pag, tp, agi_bpp); 741 if (error) 742 return error; 743 744 cur = xfs_inobt_init_cursor(pag, tp, *agi_bpp, which); 745 *curpp = cur; 746 return 0; 747 } 748 749 static int 750 xfs_inobt_count_blocks( 751 struct xfs_perag *pag, 752 struct xfs_trans *tp, 753 xfs_btnum_t btnum, 754 xfs_extlen_t *tree_blocks) 755 { 756 struct xfs_buf *agbp = NULL; 757 struct xfs_btree_cur *cur = NULL; 758 int error; 759 760 error = xfs_inobt_cur(pag, tp, btnum, &cur, &agbp); 761 if (error) 762 return error; 763 764 error = xfs_btree_count_blocks(cur, tree_blocks); 765 xfs_btree_del_cursor(cur, error); 766 xfs_trans_brelse(tp, agbp); 767 768 return error; 769 } 770 771 /* Read finobt block count from AGI header. */ 772 static int 773 xfs_finobt_read_blocks( 774 struct xfs_perag *pag, 775 struct xfs_trans *tp, 776 xfs_extlen_t *tree_blocks) 777 { 778 struct xfs_buf *agbp; 779 struct xfs_agi *agi; 780 int error; 781 782 error = xfs_ialloc_read_agi(pag, tp, &agbp); 783 if (error) 784 return error; 785 786 agi = agbp->b_addr; 787 *tree_blocks = be32_to_cpu(agi->agi_fblocks); 788 xfs_trans_brelse(tp, agbp); 789 return 0; 790 } 791 792 /* 793 * Figure out how many blocks to reserve and how many are used by this btree. 794 */ 795 int 796 xfs_finobt_calc_reserves( 797 struct xfs_perag *pag, 798 struct xfs_trans *tp, 799 xfs_extlen_t *ask, 800 xfs_extlen_t *used) 801 { 802 xfs_extlen_t tree_len = 0; 803 int error; 804 805 if (!xfs_has_finobt(pag->pag_mount)) 806 return 0; 807 808 if (xfs_has_inobtcounts(pag->pag_mount)) 809 error = xfs_finobt_read_blocks(pag, tp, &tree_len); 810 else 811 error = xfs_inobt_count_blocks(pag, tp, XFS_BTNUM_FINO, 812 &tree_len); 813 if (error) 814 return error; 815 816 *ask += xfs_inobt_max_size(pag); 817 *used += tree_len; 818 return 0; 819 } 820 821 /* Calculate the inobt btree size for some records. */ 822 xfs_extlen_t 823 xfs_iallocbt_calc_size( 824 struct xfs_mount *mp, 825 unsigned long long len) 826 { 827 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len); 828 } 829 830 int __init 831 xfs_inobt_init_cur_cache(void) 832 { 833 xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur", 834 xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()), 835 0, 0, NULL); 836 837 if (!xfs_inobt_cur_cache) 838 return -ENOMEM; 839 return 0; 840 } 841 842 void 843 xfs_inobt_destroy_cur_cache(void) 844 { 845 kmem_cache_destroy(xfs_inobt_cur_cache); 846 xfs_inobt_cur_cache = NULL; 847 } 848