xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc_btree.c (revision 623e9ef6)
1 /*
2  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_btree.h"
28 #include "xfs_ialloc.h"
29 #include "xfs_ialloc_btree.h"
30 #include "xfs_alloc.h"
31 #include "xfs_error.h"
32 #include "xfs_trace.h"
33 #include "xfs_cksum.h"
34 #include "xfs_trans.h"
35 
36 
37 STATIC int
38 xfs_inobt_get_minrecs(
39 	struct xfs_btree_cur	*cur,
40 	int			level)
41 {
42 	return cur->bc_mp->m_inobt_mnr[level != 0];
43 }
44 
45 STATIC struct xfs_btree_cur *
46 xfs_inobt_dup_cursor(
47 	struct xfs_btree_cur	*cur)
48 {
49 	return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
50 			cur->bc_private.a.agbp, cur->bc_private.a.agno,
51 			cur->bc_btnum);
52 }
53 
54 STATIC void
55 xfs_inobt_set_root(
56 	struct xfs_btree_cur	*cur,
57 	union xfs_btree_ptr	*nptr,
58 	int			inc)	/* level change */
59 {
60 	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
61 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
62 
63 	agi->agi_root = nptr->s;
64 	be32_add_cpu(&agi->agi_level, inc);
65 	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
66 }
67 
68 STATIC void
69 xfs_finobt_set_root(
70 	struct xfs_btree_cur	*cur,
71 	union xfs_btree_ptr	*nptr,
72 	int			inc)	/* level change */
73 {
74 	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
75 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
76 
77 	agi->agi_free_root = nptr->s;
78 	be32_add_cpu(&agi->agi_free_level, inc);
79 	xfs_ialloc_log_agi(cur->bc_tp, agbp,
80 			   XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
81 }
82 
83 STATIC int
84 xfs_inobt_alloc_block(
85 	struct xfs_btree_cur	*cur,
86 	union xfs_btree_ptr	*start,
87 	union xfs_btree_ptr	*new,
88 	int			*stat)
89 {
90 	xfs_alloc_arg_t		args;		/* block allocation args */
91 	int			error;		/* error return value */
92 	xfs_agblock_t		sbno = be32_to_cpu(start->s);
93 
94 	XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
95 
96 	memset(&args, 0, sizeof(args));
97 	args.tp = cur->bc_tp;
98 	args.mp = cur->bc_mp;
99 	args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno);
100 	args.minlen = 1;
101 	args.maxlen = 1;
102 	args.prod = 1;
103 	args.type = XFS_ALLOCTYPE_NEAR_BNO;
104 
105 	error = xfs_alloc_vextent(&args);
106 	if (error) {
107 		XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
108 		return error;
109 	}
110 	if (args.fsbno == NULLFSBLOCK) {
111 		XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
112 		*stat = 0;
113 		return 0;
114 	}
115 	ASSERT(args.len == 1);
116 	XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
117 
118 	new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
119 	*stat = 1;
120 	return 0;
121 }
122 
123 STATIC int
124 xfs_inobt_free_block(
125 	struct xfs_btree_cur	*cur,
126 	struct xfs_buf		*bp)
127 {
128 	return xfs_free_extent(cur->bc_tp,
129 			XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1);
130 }
131 
132 STATIC int
133 xfs_inobt_get_maxrecs(
134 	struct xfs_btree_cur	*cur,
135 	int			level)
136 {
137 	return cur->bc_mp->m_inobt_mxr[level != 0];
138 }
139 
140 STATIC void
141 xfs_inobt_init_key_from_rec(
142 	union xfs_btree_key	*key,
143 	union xfs_btree_rec	*rec)
144 {
145 	key->inobt.ir_startino = rec->inobt.ir_startino;
146 }
147 
148 STATIC void
149 xfs_inobt_init_rec_from_key(
150 	union xfs_btree_key	*key,
151 	union xfs_btree_rec	*rec)
152 {
153 	rec->inobt.ir_startino = key->inobt.ir_startino;
154 }
155 
156 STATIC void
157 xfs_inobt_init_rec_from_cur(
158 	struct xfs_btree_cur	*cur,
159 	union xfs_btree_rec	*rec)
160 {
161 	rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
162 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
163 		rec->inobt.ir_u.sp.ir_holemask =
164 					cpu_to_be16(cur->bc_rec.i.ir_holemask);
165 		rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
166 		rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
167 	} else {
168 		/* ir_holemask/ir_count not supported on-disk */
169 		rec->inobt.ir_u.f.ir_freecount =
170 					cpu_to_be32(cur->bc_rec.i.ir_freecount);
171 	}
172 	rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
173 }
174 
175 /*
176  * initial value of ptr for lookup
177  */
178 STATIC void
179 xfs_inobt_init_ptr_from_cur(
180 	struct xfs_btree_cur	*cur,
181 	union xfs_btree_ptr	*ptr)
182 {
183 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
184 
185 	ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
186 
187 	ptr->s = agi->agi_root;
188 }
189 
190 STATIC void
191 xfs_finobt_init_ptr_from_cur(
192 	struct xfs_btree_cur	*cur,
193 	union xfs_btree_ptr	*ptr)
194 {
195 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
196 
197 	ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
198 	ptr->s = agi->agi_free_root;
199 }
200 
201 STATIC __int64_t
202 xfs_inobt_key_diff(
203 	struct xfs_btree_cur	*cur,
204 	union xfs_btree_key	*key)
205 {
206 	return (__int64_t)be32_to_cpu(key->inobt.ir_startino) -
207 			  cur->bc_rec.i.ir_startino;
208 }
209 
210 static int
211 xfs_inobt_verify(
212 	struct xfs_buf		*bp)
213 {
214 	struct xfs_mount	*mp = bp->b_target->bt_mount;
215 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
216 	unsigned int		level;
217 
218 	/*
219 	 * During growfs operations, we can't verify the exact owner as the
220 	 * perag is not fully initialised and hence not attached to the buffer.
221 	 *
222 	 * Similarly, during log recovery we will have a perag structure
223 	 * attached, but the agi information will not yet have been initialised
224 	 * from the on disk AGI. We don't currently use any of this information,
225 	 * but beware of the landmine (i.e. need to check pag->pagi_init) if we
226 	 * ever do.
227 	 */
228 	switch (block->bb_magic) {
229 	case cpu_to_be32(XFS_IBT_CRC_MAGIC):
230 	case cpu_to_be32(XFS_FIBT_CRC_MAGIC):
231 		if (!xfs_btree_sblock_v5hdr_verify(bp))
232 			return false;
233 		/* fall through */
234 	case cpu_to_be32(XFS_IBT_MAGIC):
235 	case cpu_to_be32(XFS_FIBT_MAGIC):
236 		break;
237 	default:
238 		return 0;
239 	}
240 
241 	/* level verification */
242 	level = be16_to_cpu(block->bb_level);
243 	if (level >= mp->m_in_maxlevels)
244 		return false;
245 
246 	return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]);
247 }
248 
249 static void
250 xfs_inobt_read_verify(
251 	struct xfs_buf	*bp)
252 {
253 	if (!xfs_btree_sblock_verify_crc(bp))
254 		xfs_buf_ioerror(bp, -EFSBADCRC);
255 	else if (!xfs_inobt_verify(bp))
256 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
257 
258 	if (bp->b_error) {
259 		trace_xfs_btree_corrupt(bp, _RET_IP_);
260 		xfs_verifier_error(bp);
261 	}
262 }
263 
264 static void
265 xfs_inobt_write_verify(
266 	struct xfs_buf	*bp)
267 {
268 	if (!xfs_inobt_verify(bp)) {
269 		trace_xfs_btree_corrupt(bp, _RET_IP_);
270 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
271 		xfs_verifier_error(bp);
272 		return;
273 	}
274 	xfs_btree_sblock_calc_crc(bp);
275 
276 }
277 
278 const struct xfs_buf_ops xfs_inobt_buf_ops = {
279 	.name = "xfs_inobt",
280 	.verify_read = xfs_inobt_read_verify,
281 	.verify_write = xfs_inobt_write_verify,
282 };
283 
284 #if defined(DEBUG) || defined(XFS_WARN)
285 STATIC int
286 xfs_inobt_keys_inorder(
287 	struct xfs_btree_cur	*cur,
288 	union xfs_btree_key	*k1,
289 	union xfs_btree_key	*k2)
290 {
291 	return be32_to_cpu(k1->inobt.ir_startino) <
292 		be32_to_cpu(k2->inobt.ir_startino);
293 }
294 
295 STATIC int
296 xfs_inobt_recs_inorder(
297 	struct xfs_btree_cur	*cur,
298 	union xfs_btree_rec	*r1,
299 	union xfs_btree_rec	*r2)
300 {
301 	return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
302 		be32_to_cpu(r2->inobt.ir_startino);
303 }
304 #endif	/* DEBUG */
305 
306 static const struct xfs_btree_ops xfs_inobt_ops = {
307 	.rec_len		= sizeof(xfs_inobt_rec_t),
308 	.key_len		= sizeof(xfs_inobt_key_t),
309 
310 	.dup_cursor		= xfs_inobt_dup_cursor,
311 	.set_root		= xfs_inobt_set_root,
312 	.alloc_block		= xfs_inobt_alloc_block,
313 	.free_block		= xfs_inobt_free_block,
314 	.get_minrecs		= xfs_inobt_get_minrecs,
315 	.get_maxrecs		= xfs_inobt_get_maxrecs,
316 	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
317 	.init_rec_from_key	= xfs_inobt_init_rec_from_key,
318 	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
319 	.init_ptr_from_cur	= xfs_inobt_init_ptr_from_cur,
320 	.key_diff		= xfs_inobt_key_diff,
321 	.buf_ops		= &xfs_inobt_buf_ops,
322 #if defined(DEBUG) || defined(XFS_WARN)
323 	.keys_inorder		= xfs_inobt_keys_inorder,
324 	.recs_inorder		= xfs_inobt_recs_inorder,
325 #endif
326 };
327 
328 static const struct xfs_btree_ops xfs_finobt_ops = {
329 	.rec_len		= sizeof(xfs_inobt_rec_t),
330 	.key_len		= sizeof(xfs_inobt_key_t),
331 
332 	.dup_cursor		= xfs_inobt_dup_cursor,
333 	.set_root		= xfs_finobt_set_root,
334 	.alloc_block		= xfs_inobt_alloc_block,
335 	.free_block		= xfs_inobt_free_block,
336 	.get_minrecs		= xfs_inobt_get_minrecs,
337 	.get_maxrecs		= xfs_inobt_get_maxrecs,
338 	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
339 	.init_rec_from_key	= xfs_inobt_init_rec_from_key,
340 	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
341 	.init_ptr_from_cur	= xfs_finobt_init_ptr_from_cur,
342 	.key_diff		= xfs_inobt_key_diff,
343 	.buf_ops		= &xfs_inobt_buf_ops,
344 #if defined(DEBUG) || defined(XFS_WARN)
345 	.keys_inorder		= xfs_inobt_keys_inorder,
346 	.recs_inorder		= xfs_inobt_recs_inorder,
347 #endif
348 };
349 
350 /*
351  * Allocate a new inode btree cursor.
352  */
353 struct xfs_btree_cur *				/* new inode btree cursor */
354 xfs_inobt_init_cursor(
355 	struct xfs_mount	*mp,		/* file system mount point */
356 	struct xfs_trans	*tp,		/* transaction pointer */
357 	struct xfs_buf		*agbp,		/* buffer for agi structure */
358 	xfs_agnumber_t		agno,		/* allocation group number */
359 	xfs_btnum_t		btnum)		/* ialloc or free ino btree */
360 {
361 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
362 	struct xfs_btree_cur	*cur;
363 
364 	cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_SLEEP);
365 
366 	cur->bc_tp = tp;
367 	cur->bc_mp = mp;
368 	cur->bc_btnum = btnum;
369 	if (btnum == XFS_BTNUM_INO) {
370 		cur->bc_nlevels = be32_to_cpu(agi->agi_level);
371 		cur->bc_ops = &xfs_inobt_ops;
372 	} else {
373 		cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
374 		cur->bc_ops = &xfs_finobt_ops;
375 	}
376 
377 	cur->bc_blocklog = mp->m_sb.sb_blocklog;
378 
379 	if (xfs_sb_version_hascrc(&mp->m_sb))
380 		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
381 
382 	cur->bc_private.a.agbp = agbp;
383 	cur->bc_private.a.agno = agno;
384 
385 	return cur;
386 }
387 
388 /*
389  * Calculate number of records in an inobt btree block.
390  */
391 int
392 xfs_inobt_maxrecs(
393 	struct xfs_mount	*mp,
394 	int			blocklen,
395 	int			leaf)
396 {
397 	blocklen -= XFS_INOBT_BLOCK_LEN(mp);
398 
399 	if (leaf)
400 		return blocklen / sizeof(xfs_inobt_rec_t);
401 	return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
402 }
403 
404 /*
405  * Convert the inode record holemask to an inode allocation bitmap. The inode
406  * allocation bitmap is inode granularity and specifies whether an inode is
407  * physically allocated on disk (not whether the inode is considered allocated
408  * or free by the fs).
409  *
410  * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
411  */
412 uint64_t
413 xfs_inobt_irec_to_allocmask(
414 	struct xfs_inobt_rec_incore	*rec)
415 {
416 	uint64_t			bitmap = 0;
417 	uint64_t			inodespbit;
418 	int				nextbit;
419 	uint				allocbitmap;
420 
421 	/*
422 	 * The holemask has 16-bits for a 64 inode record. Therefore each
423 	 * holemask bit represents multiple inodes. Create a mask of bits to set
424 	 * in the allocmask for each holemask bit.
425 	 */
426 	inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
427 
428 	/*
429 	 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
430 	 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
431 	 * anything beyond the 16 holemask bits since this casts to a larger
432 	 * type.
433 	 */
434 	allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
435 
436 	/*
437 	 * allocbitmap is the inverted holemask so every set bit represents
438 	 * allocated inodes. To expand from 16-bit holemask granularity to
439 	 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
440 	 * bitmap for every holemask bit.
441 	 */
442 	nextbit = xfs_next_bit(&allocbitmap, 1, 0);
443 	while (nextbit != -1) {
444 		ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
445 
446 		bitmap |= (inodespbit <<
447 			   (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
448 
449 		nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
450 	}
451 
452 	return bitmap;
453 }
454 
455 #if defined(DEBUG) || defined(XFS_WARN)
456 /*
457  * Verify that an in-core inode record has a valid inode count.
458  */
459 int
460 xfs_inobt_rec_check_count(
461 	struct xfs_mount		*mp,
462 	struct xfs_inobt_rec_incore	*rec)
463 {
464 	int				inocount = 0;
465 	int				nextbit = 0;
466 	uint64_t			allocbmap;
467 	int				wordsz;
468 
469 	wordsz = sizeof(allocbmap) / sizeof(unsigned int);
470 	allocbmap = xfs_inobt_irec_to_allocmask(rec);
471 
472 	nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
473 	while (nextbit != -1) {
474 		inocount++;
475 		nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
476 				       nextbit + 1);
477 	}
478 
479 	if (inocount != rec->ir_count)
480 		return -EFSCORRUPTED;
481 
482 	return 0;
483 }
484 #endif	/* DEBUG */
485