xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc_btree.c (revision 583f12a80dfb7997d59a42e8642019695f5aa15a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_btree.h"
15 #include "xfs_btree_staging.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_trans.h"
22 #include "xfs_rmap.h"
23 #include "xfs_ag.h"
24 
25 static struct kmem_cache	*xfs_inobt_cur_cache;
26 
27 STATIC int
28 xfs_inobt_get_minrecs(
29 	struct xfs_btree_cur	*cur,
30 	int			level)
31 {
32 	return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
33 }
34 
35 STATIC struct xfs_btree_cur *
36 xfs_inobt_dup_cursor(
37 	struct xfs_btree_cur	*cur)
38 {
39 	return xfs_inobt_init_cursor(cur->bc_ag.pag, cur->bc_tp,
40 			cur->bc_ag.agbp, cur->bc_btnum);
41 }
42 
43 STATIC void
44 xfs_inobt_set_root(
45 	struct xfs_btree_cur		*cur,
46 	const union xfs_btree_ptr	*nptr,
47 	int				inc)	/* level change */
48 {
49 	struct xfs_buf		*agbp = cur->bc_ag.agbp;
50 	struct xfs_agi		*agi = agbp->b_addr;
51 
52 	agi->agi_root = nptr->s;
53 	be32_add_cpu(&agi->agi_level, inc);
54 	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
55 }
56 
57 STATIC void
58 xfs_finobt_set_root(
59 	struct xfs_btree_cur		*cur,
60 	const union xfs_btree_ptr	*nptr,
61 	int				inc)	/* level change */
62 {
63 	struct xfs_buf		*agbp = cur->bc_ag.agbp;
64 	struct xfs_agi		*agi = agbp->b_addr;
65 
66 	agi->agi_free_root = nptr->s;
67 	be32_add_cpu(&agi->agi_free_level, inc);
68 	xfs_ialloc_log_agi(cur->bc_tp, agbp,
69 			   XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
70 }
71 
72 /* Update the inode btree block counter for this btree. */
73 static inline void
74 xfs_inobt_mod_blockcount(
75 	struct xfs_btree_cur	*cur,
76 	int			howmuch)
77 {
78 	struct xfs_buf		*agbp = cur->bc_ag.agbp;
79 	struct xfs_agi		*agi = agbp->b_addr;
80 
81 	if (!xfs_has_inobtcounts(cur->bc_mp))
82 		return;
83 
84 	if (cur->bc_btnum == XFS_BTNUM_FINO)
85 		be32_add_cpu(&agi->agi_fblocks, howmuch);
86 	else if (cur->bc_btnum == XFS_BTNUM_INO)
87 		be32_add_cpu(&agi->agi_iblocks, howmuch);
88 	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
89 }
90 
91 STATIC int
92 __xfs_inobt_alloc_block(
93 	struct xfs_btree_cur		*cur,
94 	const union xfs_btree_ptr	*start,
95 	union xfs_btree_ptr		*new,
96 	int				*stat,
97 	enum xfs_ag_resv_type		resv)
98 {
99 	xfs_alloc_arg_t		args;		/* block allocation args */
100 	int			error;		/* error return value */
101 	xfs_agblock_t		sbno = be32_to_cpu(start->s);
102 
103 	memset(&args, 0, sizeof(args));
104 	args.tp = cur->bc_tp;
105 	args.mp = cur->bc_mp;
106 	args.pag = cur->bc_ag.pag;
107 	args.oinfo = XFS_RMAP_OINFO_INOBT;
108 	args.minlen = 1;
109 	args.maxlen = 1;
110 	args.prod = 1;
111 	args.resv = resv;
112 
113 	error = xfs_alloc_vextent_near_bno(&args,
114 			XFS_AGB_TO_FSB(args.mp, args.pag->pag_agno, sbno));
115 	if (error)
116 		return error;
117 
118 	if (args.fsbno == NULLFSBLOCK) {
119 		*stat = 0;
120 		return 0;
121 	}
122 	ASSERT(args.len == 1);
123 
124 	new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
125 	*stat = 1;
126 	xfs_inobt_mod_blockcount(cur, 1);
127 	return 0;
128 }
129 
130 STATIC int
131 xfs_inobt_alloc_block(
132 	struct xfs_btree_cur		*cur,
133 	const union xfs_btree_ptr	*start,
134 	union xfs_btree_ptr		*new,
135 	int				*stat)
136 {
137 	return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
138 }
139 
140 STATIC int
141 xfs_finobt_alloc_block(
142 	struct xfs_btree_cur		*cur,
143 	const union xfs_btree_ptr	*start,
144 	union xfs_btree_ptr		*new,
145 	int				*stat)
146 {
147 	if (cur->bc_mp->m_finobt_nores)
148 		return xfs_inobt_alloc_block(cur, start, new, stat);
149 	return __xfs_inobt_alloc_block(cur, start, new, stat,
150 			XFS_AG_RESV_METADATA);
151 }
152 
153 STATIC int
154 __xfs_inobt_free_block(
155 	struct xfs_btree_cur	*cur,
156 	struct xfs_buf		*bp,
157 	enum xfs_ag_resv_type	resv)
158 {
159 	xfs_fsblock_t		fsbno;
160 
161 	xfs_inobt_mod_blockcount(cur, -1);
162 	fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
163 	return xfs_free_extent(cur->bc_tp, cur->bc_ag.pag,
164 			XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno), 1,
165 			&XFS_RMAP_OINFO_INOBT, resv);
166 }
167 
168 STATIC int
169 xfs_inobt_free_block(
170 	struct xfs_btree_cur	*cur,
171 	struct xfs_buf		*bp)
172 {
173 	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
174 }
175 
176 STATIC int
177 xfs_finobt_free_block(
178 	struct xfs_btree_cur	*cur,
179 	struct xfs_buf		*bp)
180 {
181 	if (cur->bc_mp->m_finobt_nores)
182 		return xfs_inobt_free_block(cur, bp);
183 	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
184 }
185 
186 STATIC int
187 xfs_inobt_get_maxrecs(
188 	struct xfs_btree_cur	*cur,
189 	int			level)
190 {
191 	return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
192 }
193 
194 STATIC void
195 xfs_inobt_init_key_from_rec(
196 	union xfs_btree_key		*key,
197 	const union xfs_btree_rec	*rec)
198 {
199 	key->inobt.ir_startino = rec->inobt.ir_startino;
200 }
201 
202 STATIC void
203 xfs_inobt_init_high_key_from_rec(
204 	union xfs_btree_key		*key,
205 	const union xfs_btree_rec	*rec)
206 {
207 	__u32				x;
208 
209 	x = be32_to_cpu(rec->inobt.ir_startino);
210 	x += XFS_INODES_PER_CHUNK - 1;
211 	key->inobt.ir_startino = cpu_to_be32(x);
212 }
213 
214 STATIC void
215 xfs_inobt_init_rec_from_cur(
216 	struct xfs_btree_cur	*cur,
217 	union xfs_btree_rec	*rec)
218 {
219 	rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
220 	if (xfs_has_sparseinodes(cur->bc_mp)) {
221 		rec->inobt.ir_u.sp.ir_holemask =
222 					cpu_to_be16(cur->bc_rec.i.ir_holemask);
223 		rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
224 		rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
225 	} else {
226 		/* ir_holemask/ir_count not supported on-disk */
227 		rec->inobt.ir_u.f.ir_freecount =
228 					cpu_to_be32(cur->bc_rec.i.ir_freecount);
229 	}
230 	rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
231 }
232 
233 /*
234  * initial value of ptr for lookup
235  */
236 STATIC void
237 xfs_inobt_init_ptr_from_cur(
238 	struct xfs_btree_cur	*cur,
239 	union xfs_btree_ptr	*ptr)
240 {
241 	struct xfs_agi		*agi = cur->bc_ag.agbp->b_addr;
242 
243 	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
244 
245 	ptr->s = agi->agi_root;
246 }
247 
248 STATIC void
249 xfs_finobt_init_ptr_from_cur(
250 	struct xfs_btree_cur	*cur,
251 	union xfs_btree_ptr	*ptr)
252 {
253 	struct xfs_agi		*agi = cur->bc_ag.agbp->b_addr;
254 
255 	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
256 	ptr->s = agi->agi_free_root;
257 }
258 
259 STATIC int64_t
260 xfs_inobt_key_diff(
261 	struct xfs_btree_cur		*cur,
262 	const union xfs_btree_key	*key)
263 {
264 	return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
265 			  cur->bc_rec.i.ir_startino;
266 }
267 
268 STATIC int64_t
269 xfs_inobt_diff_two_keys(
270 	struct xfs_btree_cur		*cur,
271 	const union xfs_btree_key	*k1,
272 	const union xfs_btree_key	*k2,
273 	const union xfs_btree_key	*mask)
274 {
275 	ASSERT(!mask || mask->inobt.ir_startino);
276 
277 	return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
278 			be32_to_cpu(k2->inobt.ir_startino);
279 }
280 
281 static xfs_failaddr_t
282 xfs_inobt_verify(
283 	struct xfs_buf		*bp)
284 {
285 	struct xfs_mount	*mp = bp->b_mount;
286 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
287 	xfs_failaddr_t		fa;
288 	unsigned int		level;
289 
290 	if (!xfs_verify_magic(bp, block->bb_magic))
291 		return __this_address;
292 
293 	/*
294 	 * During growfs operations, we can't verify the exact owner as the
295 	 * perag is not fully initialised and hence not attached to the buffer.
296 	 *
297 	 * Similarly, during log recovery we will have a perag structure
298 	 * attached, but the agi information will not yet have been initialised
299 	 * from the on disk AGI. We don't currently use any of this information,
300 	 * but beware of the landmine (i.e. need to check
301 	 * xfs_perag_initialised_agi(pag)) if we ever do.
302 	 */
303 	if (xfs_has_crc(mp)) {
304 		fa = xfs_btree_sblock_v5hdr_verify(bp);
305 		if (fa)
306 			return fa;
307 	}
308 
309 	/* level verification */
310 	level = be16_to_cpu(block->bb_level);
311 	if (level >= M_IGEO(mp)->inobt_maxlevels)
312 		return __this_address;
313 
314 	return xfs_btree_sblock_verify(bp,
315 			M_IGEO(mp)->inobt_mxr[level != 0]);
316 }
317 
318 static void
319 xfs_inobt_read_verify(
320 	struct xfs_buf	*bp)
321 {
322 	xfs_failaddr_t	fa;
323 
324 	if (!xfs_btree_sblock_verify_crc(bp))
325 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
326 	else {
327 		fa = xfs_inobt_verify(bp);
328 		if (fa)
329 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
330 	}
331 
332 	if (bp->b_error)
333 		trace_xfs_btree_corrupt(bp, _RET_IP_);
334 }
335 
336 static void
337 xfs_inobt_write_verify(
338 	struct xfs_buf	*bp)
339 {
340 	xfs_failaddr_t	fa;
341 
342 	fa = xfs_inobt_verify(bp);
343 	if (fa) {
344 		trace_xfs_btree_corrupt(bp, _RET_IP_);
345 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
346 		return;
347 	}
348 	xfs_btree_sblock_calc_crc(bp);
349 
350 }
351 
352 const struct xfs_buf_ops xfs_inobt_buf_ops = {
353 	.name = "xfs_inobt",
354 	.magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
355 	.verify_read = xfs_inobt_read_verify,
356 	.verify_write = xfs_inobt_write_verify,
357 	.verify_struct = xfs_inobt_verify,
358 };
359 
360 const struct xfs_buf_ops xfs_finobt_buf_ops = {
361 	.name = "xfs_finobt",
362 	.magic = { cpu_to_be32(XFS_FIBT_MAGIC),
363 		   cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
364 	.verify_read = xfs_inobt_read_verify,
365 	.verify_write = xfs_inobt_write_verify,
366 	.verify_struct = xfs_inobt_verify,
367 };
368 
369 STATIC int
370 xfs_inobt_keys_inorder(
371 	struct xfs_btree_cur		*cur,
372 	const union xfs_btree_key	*k1,
373 	const union xfs_btree_key	*k2)
374 {
375 	return be32_to_cpu(k1->inobt.ir_startino) <
376 		be32_to_cpu(k2->inobt.ir_startino);
377 }
378 
379 STATIC int
380 xfs_inobt_recs_inorder(
381 	struct xfs_btree_cur		*cur,
382 	const union xfs_btree_rec	*r1,
383 	const union xfs_btree_rec	*r2)
384 {
385 	return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
386 		be32_to_cpu(r2->inobt.ir_startino);
387 }
388 
389 STATIC enum xbtree_key_contig
390 xfs_inobt_keys_contiguous(
391 	struct xfs_btree_cur		*cur,
392 	const union xfs_btree_key	*key1,
393 	const union xfs_btree_key	*key2,
394 	const union xfs_btree_key	*mask)
395 {
396 	ASSERT(!mask || mask->inobt.ir_startino);
397 
398 	return xbtree_key_contig(be32_to_cpu(key1->inobt.ir_startino),
399 				 be32_to_cpu(key2->inobt.ir_startino));
400 }
401 
402 static const struct xfs_btree_ops xfs_inobt_ops = {
403 	.rec_len		= sizeof(xfs_inobt_rec_t),
404 	.key_len		= sizeof(xfs_inobt_key_t),
405 
406 	.dup_cursor		= xfs_inobt_dup_cursor,
407 	.set_root		= xfs_inobt_set_root,
408 	.alloc_block		= xfs_inobt_alloc_block,
409 	.free_block		= xfs_inobt_free_block,
410 	.get_minrecs		= xfs_inobt_get_minrecs,
411 	.get_maxrecs		= xfs_inobt_get_maxrecs,
412 	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
413 	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
414 	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
415 	.init_ptr_from_cur	= xfs_inobt_init_ptr_from_cur,
416 	.key_diff		= xfs_inobt_key_diff,
417 	.buf_ops		= &xfs_inobt_buf_ops,
418 	.diff_two_keys		= xfs_inobt_diff_two_keys,
419 	.keys_inorder		= xfs_inobt_keys_inorder,
420 	.recs_inorder		= xfs_inobt_recs_inorder,
421 	.keys_contiguous	= xfs_inobt_keys_contiguous,
422 };
423 
424 static const struct xfs_btree_ops xfs_finobt_ops = {
425 	.rec_len		= sizeof(xfs_inobt_rec_t),
426 	.key_len		= sizeof(xfs_inobt_key_t),
427 
428 	.dup_cursor		= xfs_inobt_dup_cursor,
429 	.set_root		= xfs_finobt_set_root,
430 	.alloc_block		= xfs_finobt_alloc_block,
431 	.free_block		= xfs_finobt_free_block,
432 	.get_minrecs		= xfs_inobt_get_minrecs,
433 	.get_maxrecs		= xfs_inobt_get_maxrecs,
434 	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
435 	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
436 	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
437 	.init_ptr_from_cur	= xfs_finobt_init_ptr_from_cur,
438 	.key_diff		= xfs_inobt_key_diff,
439 	.buf_ops		= &xfs_finobt_buf_ops,
440 	.diff_two_keys		= xfs_inobt_diff_two_keys,
441 	.keys_inorder		= xfs_inobt_keys_inorder,
442 	.recs_inorder		= xfs_inobt_recs_inorder,
443 	.keys_contiguous	= xfs_inobt_keys_contiguous,
444 };
445 
446 /*
447  * Initialize a new inode btree cursor.
448  */
449 static struct xfs_btree_cur *
450 xfs_inobt_init_common(
451 	struct xfs_perag	*pag,
452 	struct xfs_trans	*tp,		/* transaction pointer */
453 	xfs_btnum_t		btnum)		/* ialloc or free ino btree */
454 {
455 	struct xfs_mount	*mp = pag->pag_mount;
456 	struct xfs_btree_cur	*cur;
457 
458 	cur = xfs_btree_alloc_cursor(mp, tp, btnum,
459 			M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
460 	if (btnum == XFS_BTNUM_INO) {
461 		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
462 		cur->bc_ops = &xfs_inobt_ops;
463 	} else {
464 		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
465 		cur->bc_ops = &xfs_finobt_ops;
466 	}
467 
468 	if (xfs_has_crc(mp))
469 		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
470 
471 	cur->bc_ag.pag = xfs_perag_hold(pag);
472 	return cur;
473 }
474 
475 /* Create an inode btree cursor. */
476 struct xfs_btree_cur *
477 xfs_inobt_init_cursor(
478 	struct xfs_perag	*pag,
479 	struct xfs_trans	*tp,
480 	struct xfs_buf		*agbp,
481 	xfs_btnum_t		btnum)
482 {
483 	struct xfs_btree_cur	*cur;
484 	struct xfs_agi		*agi = agbp->b_addr;
485 
486 	cur = xfs_inobt_init_common(pag, tp, btnum);
487 	if (btnum == XFS_BTNUM_INO)
488 		cur->bc_nlevels = be32_to_cpu(agi->agi_level);
489 	else
490 		cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
491 	cur->bc_ag.agbp = agbp;
492 	return cur;
493 }
494 
495 /* Create an inode btree cursor with a fake root for staging. */
496 struct xfs_btree_cur *
497 xfs_inobt_stage_cursor(
498 	struct xfs_perag	*pag,
499 	struct xbtree_afakeroot	*afake,
500 	xfs_btnum_t		btnum)
501 {
502 	struct xfs_btree_cur	*cur;
503 
504 	cur = xfs_inobt_init_common(pag, NULL, btnum);
505 	xfs_btree_stage_afakeroot(cur, afake);
506 	return cur;
507 }
508 
509 /*
510  * Install a new inobt btree root.  Caller is responsible for invalidating
511  * and freeing the old btree blocks.
512  */
513 void
514 xfs_inobt_commit_staged_btree(
515 	struct xfs_btree_cur	*cur,
516 	struct xfs_trans	*tp,
517 	struct xfs_buf		*agbp)
518 {
519 	struct xfs_agi		*agi = agbp->b_addr;
520 	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
521 	int			fields;
522 
523 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
524 
525 	if (cur->bc_btnum == XFS_BTNUM_INO) {
526 		fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
527 		agi->agi_root = cpu_to_be32(afake->af_root);
528 		agi->agi_level = cpu_to_be32(afake->af_levels);
529 		if (xfs_has_inobtcounts(cur->bc_mp)) {
530 			agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
531 			fields |= XFS_AGI_IBLOCKS;
532 		}
533 		xfs_ialloc_log_agi(tp, agbp, fields);
534 		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_inobt_ops);
535 	} else {
536 		fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
537 		agi->agi_free_root = cpu_to_be32(afake->af_root);
538 		agi->agi_free_level = cpu_to_be32(afake->af_levels);
539 		if (xfs_has_inobtcounts(cur->bc_mp)) {
540 			agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
541 			fields |= XFS_AGI_IBLOCKS;
542 		}
543 		xfs_ialloc_log_agi(tp, agbp, fields);
544 		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_finobt_ops);
545 	}
546 }
547 
548 /* Calculate number of records in an inode btree block. */
549 static inline unsigned int
550 xfs_inobt_block_maxrecs(
551 	unsigned int		blocklen,
552 	bool			leaf)
553 {
554 	if (leaf)
555 		return blocklen / sizeof(xfs_inobt_rec_t);
556 	return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
557 }
558 
559 /*
560  * Calculate number of records in an inobt btree block.
561  */
562 int
563 xfs_inobt_maxrecs(
564 	struct xfs_mount	*mp,
565 	int			blocklen,
566 	int			leaf)
567 {
568 	blocklen -= XFS_INOBT_BLOCK_LEN(mp);
569 	return xfs_inobt_block_maxrecs(blocklen, leaf);
570 }
571 
572 /*
573  * Maximum number of inode btree records per AG.  Pretend that we can fill an
574  * entire AG completely full of inodes except for the AG headers.
575  */
576 #define XFS_MAX_INODE_RECORDS \
577 	((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
578 			XFS_INODES_PER_CHUNK
579 
580 /* Compute the max possible height for the inode btree. */
581 static inline unsigned int
582 xfs_inobt_maxlevels_ondisk(void)
583 {
584 	unsigned int		minrecs[2];
585 	unsigned int		blocklen;
586 
587 	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
588 		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
589 
590 	minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
591 	minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
592 
593 	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
594 }
595 
596 /* Compute the max possible height for the free inode btree. */
597 static inline unsigned int
598 xfs_finobt_maxlevels_ondisk(void)
599 {
600 	unsigned int		minrecs[2];
601 	unsigned int		blocklen;
602 
603 	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
604 
605 	minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
606 	minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
607 
608 	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
609 }
610 
611 /* Compute the max possible height for either inode btree. */
612 unsigned int
613 xfs_iallocbt_maxlevels_ondisk(void)
614 {
615 	return max(xfs_inobt_maxlevels_ondisk(),
616 		   xfs_finobt_maxlevels_ondisk());
617 }
618 
619 /*
620  * Convert the inode record holemask to an inode allocation bitmap. The inode
621  * allocation bitmap is inode granularity and specifies whether an inode is
622  * physically allocated on disk (not whether the inode is considered allocated
623  * or free by the fs).
624  *
625  * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
626  */
627 uint64_t
628 xfs_inobt_irec_to_allocmask(
629 	const struct xfs_inobt_rec_incore	*rec)
630 {
631 	uint64_t			bitmap = 0;
632 	uint64_t			inodespbit;
633 	int				nextbit;
634 	uint				allocbitmap;
635 
636 	/*
637 	 * The holemask has 16-bits for a 64 inode record. Therefore each
638 	 * holemask bit represents multiple inodes. Create a mask of bits to set
639 	 * in the allocmask for each holemask bit.
640 	 */
641 	inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
642 
643 	/*
644 	 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
645 	 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
646 	 * anything beyond the 16 holemask bits since this casts to a larger
647 	 * type.
648 	 */
649 	allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
650 
651 	/*
652 	 * allocbitmap is the inverted holemask so every set bit represents
653 	 * allocated inodes. To expand from 16-bit holemask granularity to
654 	 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
655 	 * bitmap for every holemask bit.
656 	 */
657 	nextbit = xfs_next_bit(&allocbitmap, 1, 0);
658 	while (nextbit != -1) {
659 		ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
660 
661 		bitmap |= (inodespbit <<
662 			   (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
663 
664 		nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
665 	}
666 
667 	return bitmap;
668 }
669 
670 #if defined(DEBUG) || defined(XFS_WARN)
671 /*
672  * Verify that an in-core inode record has a valid inode count.
673  */
674 int
675 xfs_inobt_rec_check_count(
676 	struct xfs_mount		*mp,
677 	struct xfs_inobt_rec_incore	*rec)
678 {
679 	int				inocount = 0;
680 	int				nextbit = 0;
681 	uint64_t			allocbmap;
682 	int				wordsz;
683 
684 	wordsz = sizeof(allocbmap) / sizeof(unsigned int);
685 	allocbmap = xfs_inobt_irec_to_allocmask(rec);
686 
687 	nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
688 	while (nextbit != -1) {
689 		inocount++;
690 		nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
691 				       nextbit + 1);
692 	}
693 
694 	if (inocount != rec->ir_count)
695 		return -EFSCORRUPTED;
696 
697 	return 0;
698 }
699 #endif	/* DEBUG */
700 
701 static xfs_extlen_t
702 xfs_inobt_max_size(
703 	struct xfs_perag	*pag)
704 {
705 	struct xfs_mount	*mp = pag->pag_mount;
706 	xfs_agblock_t		agblocks = pag->block_count;
707 
708 	/* Bail out if we're uninitialized, which can happen in mkfs. */
709 	if (M_IGEO(mp)->inobt_mxr[0] == 0)
710 		return 0;
711 
712 	/*
713 	 * The log is permanently allocated, so the space it occupies will
714 	 * never be available for the kinds of things that would require btree
715 	 * expansion.  We therefore can pretend the space isn't there.
716 	 */
717 	if (xfs_ag_contains_log(mp, pag->pag_agno))
718 		agblocks -= mp->m_sb.sb_logblocks;
719 
720 	return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
721 				(uint64_t)agblocks * mp->m_sb.sb_inopblock /
722 					XFS_INODES_PER_CHUNK);
723 }
724 
725 /* Read AGI and create inobt cursor. */
726 int
727 xfs_inobt_cur(
728 	struct xfs_perag	*pag,
729 	struct xfs_trans	*tp,
730 	xfs_btnum_t		which,
731 	struct xfs_btree_cur	**curpp,
732 	struct xfs_buf		**agi_bpp)
733 {
734 	struct xfs_btree_cur	*cur;
735 	int			error;
736 
737 	ASSERT(*agi_bpp == NULL);
738 	ASSERT(*curpp == NULL);
739 
740 	error = xfs_ialloc_read_agi(pag, tp, agi_bpp);
741 	if (error)
742 		return error;
743 
744 	cur = xfs_inobt_init_cursor(pag, tp, *agi_bpp, which);
745 	*curpp = cur;
746 	return 0;
747 }
748 
749 static int
750 xfs_inobt_count_blocks(
751 	struct xfs_perag	*pag,
752 	struct xfs_trans	*tp,
753 	xfs_btnum_t		btnum,
754 	xfs_extlen_t		*tree_blocks)
755 {
756 	struct xfs_buf		*agbp = NULL;
757 	struct xfs_btree_cur	*cur = NULL;
758 	int			error;
759 
760 	error = xfs_inobt_cur(pag, tp, btnum, &cur, &agbp);
761 	if (error)
762 		return error;
763 
764 	error = xfs_btree_count_blocks(cur, tree_blocks);
765 	xfs_btree_del_cursor(cur, error);
766 	xfs_trans_brelse(tp, agbp);
767 
768 	return error;
769 }
770 
771 /* Read finobt block count from AGI header. */
772 static int
773 xfs_finobt_read_blocks(
774 	struct xfs_perag	*pag,
775 	struct xfs_trans	*tp,
776 	xfs_extlen_t		*tree_blocks)
777 {
778 	struct xfs_buf		*agbp;
779 	struct xfs_agi		*agi;
780 	int			error;
781 
782 	error = xfs_ialloc_read_agi(pag, tp, &agbp);
783 	if (error)
784 		return error;
785 
786 	agi = agbp->b_addr;
787 	*tree_blocks = be32_to_cpu(agi->agi_fblocks);
788 	xfs_trans_brelse(tp, agbp);
789 	return 0;
790 }
791 
792 /*
793  * Figure out how many blocks to reserve and how many are used by this btree.
794  */
795 int
796 xfs_finobt_calc_reserves(
797 	struct xfs_perag	*pag,
798 	struct xfs_trans	*tp,
799 	xfs_extlen_t		*ask,
800 	xfs_extlen_t		*used)
801 {
802 	xfs_extlen_t		tree_len = 0;
803 	int			error;
804 
805 	if (!xfs_has_finobt(pag->pag_mount))
806 		return 0;
807 
808 	if (xfs_has_inobtcounts(pag->pag_mount))
809 		error = xfs_finobt_read_blocks(pag, tp, &tree_len);
810 	else
811 		error = xfs_inobt_count_blocks(pag, tp, XFS_BTNUM_FINO,
812 				&tree_len);
813 	if (error)
814 		return error;
815 
816 	*ask += xfs_inobt_max_size(pag);
817 	*used += tree_len;
818 	return 0;
819 }
820 
821 /* Calculate the inobt btree size for some records. */
822 xfs_extlen_t
823 xfs_iallocbt_calc_size(
824 	struct xfs_mount	*mp,
825 	unsigned long long	len)
826 {
827 	return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
828 }
829 
830 int __init
831 xfs_inobt_init_cur_cache(void)
832 {
833 	xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
834 			xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
835 			0, 0, NULL);
836 
837 	if (!xfs_inobt_cur_cache)
838 		return -ENOMEM;
839 	return 0;
840 }
841 
842 void
843 xfs_inobt_destroy_cur_cache(void)
844 {
845 	kmem_cache_destroy(xfs_inobt_cur_cache);
846 	xfs_inobt_cur_cache = NULL;
847 }
848