1 /* 2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_mount.h" 26 #include "xfs_inode.h" 27 #include "xfs_btree.h" 28 #include "xfs_ialloc.h" 29 #include "xfs_ialloc_btree.h" 30 #include "xfs_alloc.h" 31 #include "xfs_error.h" 32 #include "xfs_trace.h" 33 #include "xfs_cksum.h" 34 #include "xfs_trans.h" 35 #include "xfs_rmap.h" 36 37 38 STATIC int 39 xfs_inobt_get_minrecs( 40 struct xfs_btree_cur *cur, 41 int level) 42 { 43 return cur->bc_mp->m_inobt_mnr[level != 0]; 44 } 45 46 STATIC struct xfs_btree_cur * 47 xfs_inobt_dup_cursor( 48 struct xfs_btree_cur *cur) 49 { 50 return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp, 51 cur->bc_private.a.agbp, cur->bc_private.a.agno, 52 cur->bc_btnum); 53 } 54 55 STATIC void 56 xfs_inobt_set_root( 57 struct xfs_btree_cur *cur, 58 union xfs_btree_ptr *nptr, 59 int inc) /* level change */ 60 { 61 struct xfs_buf *agbp = cur->bc_private.a.agbp; 62 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 63 64 agi->agi_root = nptr->s; 65 be32_add_cpu(&agi->agi_level, inc); 66 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL); 67 } 68 69 STATIC void 70 xfs_finobt_set_root( 71 struct xfs_btree_cur *cur, 72 union xfs_btree_ptr *nptr, 73 int inc) /* level change */ 74 { 75 struct xfs_buf *agbp = cur->bc_private.a.agbp; 76 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 77 78 agi->agi_free_root = nptr->s; 79 be32_add_cpu(&agi->agi_free_level, inc); 80 xfs_ialloc_log_agi(cur->bc_tp, agbp, 81 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL); 82 } 83 84 STATIC int 85 __xfs_inobt_alloc_block( 86 struct xfs_btree_cur *cur, 87 union xfs_btree_ptr *start, 88 union xfs_btree_ptr *new, 89 int *stat, 90 enum xfs_ag_resv_type resv) 91 { 92 xfs_alloc_arg_t args; /* block allocation args */ 93 int error; /* error return value */ 94 xfs_agblock_t sbno = be32_to_cpu(start->s); 95 96 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); 97 98 memset(&args, 0, sizeof(args)); 99 args.tp = cur->bc_tp; 100 args.mp = cur->bc_mp; 101 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INOBT); 102 args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno); 103 args.minlen = 1; 104 args.maxlen = 1; 105 args.prod = 1; 106 args.type = XFS_ALLOCTYPE_NEAR_BNO; 107 args.resv = resv; 108 109 error = xfs_alloc_vextent(&args); 110 if (error) { 111 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); 112 return error; 113 } 114 if (args.fsbno == NULLFSBLOCK) { 115 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 116 *stat = 0; 117 return 0; 118 } 119 ASSERT(args.len == 1); 120 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); 121 122 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno)); 123 *stat = 1; 124 return 0; 125 } 126 127 STATIC int 128 xfs_inobt_alloc_block( 129 struct xfs_btree_cur *cur, 130 union xfs_btree_ptr *start, 131 union xfs_btree_ptr *new, 132 int *stat) 133 { 134 return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE); 135 } 136 137 STATIC int 138 xfs_finobt_alloc_block( 139 struct xfs_btree_cur *cur, 140 union xfs_btree_ptr *start, 141 union xfs_btree_ptr *new, 142 int *stat) 143 { 144 return __xfs_inobt_alloc_block(cur, start, new, stat, 145 XFS_AG_RESV_METADATA); 146 } 147 148 STATIC int 149 xfs_inobt_free_block( 150 struct xfs_btree_cur *cur, 151 struct xfs_buf *bp) 152 { 153 struct xfs_owner_info oinfo; 154 155 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INOBT); 156 return xfs_free_extent(cur->bc_tp, 157 XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1, 158 &oinfo, XFS_AG_RESV_NONE); 159 } 160 161 STATIC int 162 xfs_inobt_get_maxrecs( 163 struct xfs_btree_cur *cur, 164 int level) 165 { 166 return cur->bc_mp->m_inobt_mxr[level != 0]; 167 } 168 169 STATIC void 170 xfs_inobt_init_key_from_rec( 171 union xfs_btree_key *key, 172 union xfs_btree_rec *rec) 173 { 174 key->inobt.ir_startino = rec->inobt.ir_startino; 175 } 176 177 STATIC void 178 xfs_inobt_init_high_key_from_rec( 179 union xfs_btree_key *key, 180 union xfs_btree_rec *rec) 181 { 182 __u32 x; 183 184 x = be32_to_cpu(rec->inobt.ir_startino); 185 x += XFS_INODES_PER_CHUNK - 1; 186 key->inobt.ir_startino = cpu_to_be32(x); 187 } 188 189 STATIC void 190 xfs_inobt_init_rec_from_cur( 191 struct xfs_btree_cur *cur, 192 union xfs_btree_rec *rec) 193 { 194 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino); 195 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { 196 rec->inobt.ir_u.sp.ir_holemask = 197 cpu_to_be16(cur->bc_rec.i.ir_holemask); 198 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count; 199 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount; 200 } else { 201 /* ir_holemask/ir_count not supported on-disk */ 202 rec->inobt.ir_u.f.ir_freecount = 203 cpu_to_be32(cur->bc_rec.i.ir_freecount); 204 } 205 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free); 206 } 207 208 /* 209 * initial value of ptr for lookup 210 */ 211 STATIC void 212 xfs_inobt_init_ptr_from_cur( 213 struct xfs_btree_cur *cur, 214 union xfs_btree_ptr *ptr) 215 { 216 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp); 217 218 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno)); 219 220 ptr->s = agi->agi_root; 221 } 222 223 STATIC void 224 xfs_finobt_init_ptr_from_cur( 225 struct xfs_btree_cur *cur, 226 union xfs_btree_ptr *ptr) 227 { 228 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp); 229 230 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno)); 231 ptr->s = agi->agi_free_root; 232 } 233 234 STATIC int64_t 235 xfs_inobt_key_diff( 236 struct xfs_btree_cur *cur, 237 union xfs_btree_key *key) 238 { 239 return (int64_t)be32_to_cpu(key->inobt.ir_startino) - 240 cur->bc_rec.i.ir_startino; 241 } 242 243 STATIC int64_t 244 xfs_inobt_diff_two_keys( 245 struct xfs_btree_cur *cur, 246 union xfs_btree_key *k1, 247 union xfs_btree_key *k2) 248 { 249 return (int64_t)be32_to_cpu(k1->inobt.ir_startino) - 250 be32_to_cpu(k2->inobt.ir_startino); 251 } 252 253 static int 254 xfs_inobt_verify( 255 struct xfs_buf *bp) 256 { 257 struct xfs_mount *mp = bp->b_target->bt_mount; 258 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 259 unsigned int level; 260 261 /* 262 * During growfs operations, we can't verify the exact owner as the 263 * perag is not fully initialised and hence not attached to the buffer. 264 * 265 * Similarly, during log recovery we will have a perag structure 266 * attached, but the agi information will not yet have been initialised 267 * from the on disk AGI. We don't currently use any of this information, 268 * but beware of the landmine (i.e. need to check pag->pagi_init) if we 269 * ever do. 270 */ 271 switch (block->bb_magic) { 272 case cpu_to_be32(XFS_IBT_CRC_MAGIC): 273 case cpu_to_be32(XFS_FIBT_CRC_MAGIC): 274 if (!xfs_btree_sblock_v5hdr_verify(bp)) 275 return false; 276 /* fall through */ 277 case cpu_to_be32(XFS_IBT_MAGIC): 278 case cpu_to_be32(XFS_FIBT_MAGIC): 279 break; 280 default: 281 return 0; 282 } 283 284 /* level verification */ 285 level = be16_to_cpu(block->bb_level); 286 if (level >= mp->m_in_maxlevels) 287 return false; 288 289 return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]); 290 } 291 292 static void 293 xfs_inobt_read_verify( 294 struct xfs_buf *bp) 295 { 296 if (!xfs_btree_sblock_verify_crc(bp)) 297 xfs_buf_ioerror(bp, -EFSBADCRC); 298 else if (!xfs_inobt_verify(bp)) 299 xfs_buf_ioerror(bp, -EFSCORRUPTED); 300 301 if (bp->b_error) { 302 trace_xfs_btree_corrupt(bp, _RET_IP_); 303 xfs_verifier_error(bp); 304 } 305 } 306 307 static void 308 xfs_inobt_write_verify( 309 struct xfs_buf *bp) 310 { 311 if (!xfs_inobt_verify(bp)) { 312 trace_xfs_btree_corrupt(bp, _RET_IP_); 313 xfs_buf_ioerror(bp, -EFSCORRUPTED); 314 xfs_verifier_error(bp); 315 return; 316 } 317 xfs_btree_sblock_calc_crc(bp); 318 319 } 320 321 const struct xfs_buf_ops xfs_inobt_buf_ops = { 322 .name = "xfs_inobt", 323 .verify_read = xfs_inobt_read_verify, 324 .verify_write = xfs_inobt_write_verify, 325 }; 326 327 STATIC int 328 xfs_inobt_keys_inorder( 329 struct xfs_btree_cur *cur, 330 union xfs_btree_key *k1, 331 union xfs_btree_key *k2) 332 { 333 return be32_to_cpu(k1->inobt.ir_startino) < 334 be32_to_cpu(k2->inobt.ir_startino); 335 } 336 337 STATIC int 338 xfs_inobt_recs_inorder( 339 struct xfs_btree_cur *cur, 340 union xfs_btree_rec *r1, 341 union xfs_btree_rec *r2) 342 { 343 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <= 344 be32_to_cpu(r2->inobt.ir_startino); 345 } 346 347 static const struct xfs_btree_ops xfs_inobt_ops = { 348 .rec_len = sizeof(xfs_inobt_rec_t), 349 .key_len = sizeof(xfs_inobt_key_t), 350 351 .dup_cursor = xfs_inobt_dup_cursor, 352 .set_root = xfs_inobt_set_root, 353 .alloc_block = xfs_inobt_alloc_block, 354 .free_block = xfs_inobt_free_block, 355 .get_minrecs = xfs_inobt_get_minrecs, 356 .get_maxrecs = xfs_inobt_get_maxrecs, 357 .init_key_from_rec = xfs_inobt_init_key_from_rec, 358 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec, 359 .init_rec_from_cur = xfs_inobt_init_rec_from_cur, 360 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur, 361 .key_diff = xfs_inobt_key_diff, 362 .buf_ops = &xfs_inobt_buf_ops, 363 .diff_two_keys = xfs_inobt_diff_two_keys, 364 .keys_inorder = xfs_inobt_keys_inorder, 365 .recs_inorder = xfs_inobt_recs_inorder, 366 }; 367 368 static const struct xfs_btree_ops xfs_finobt_ops = { 369 .rec_len = sizeof(xfs_inobt_rec_t), 370 .key_len = sizeof(xfs_inobt_key_t), 371 372 .dup_cursor = xfs_inobt_dup_cursor, 373 .set_root = xfs_finobt_set_root, 374 .alloc_block = xfs_finobt_alloc_block, 375 .free_block = xfs_inobt_free_block, 376 .get_minrecs = xfs_inobt_get_minrecs, 377 .get_maxrecs = xfs_inobt_get_maxrecs, 378 .init_key_from_rec = xfs_inobt_init_key_from_rec, 379 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec, 380 .init_rec_from_cur = xfs_inobt_init_rec_from_cur, 381 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur, 382 .key_diff = xfs_inobt_key_diff, 383 .buf_ops = &xfs_inobt_buf_ops, 384 .diff_two_keys = xfs_inobt_diff_two_keys, 385 .keys_inorder = xfs_inobt_keys_inorder, 386 .recs_inorder = xfs_inobt_recs_inorder, 387 }; 388 389 /* 390 * Allocate a new inode btree cursor. 391 */ 392 struct xfs_btree_cur * /* new inode btree cursor */ 393 xfs_inobt_init_cursor( 394 struct xfs_mount *mp, /* file system mount point */ 395 struct xfs_trans *tp, /* transaction pointer */ 396 struct xfs_buf *agbp, /* buffer for agi structure */ 397 xfs_agnumber_t agno, /* allocation group number */ 398 xfs_btnum_t btnum) /* ialloc or free ino btree */ 399 { 400 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 401 struct xfs_btree_cur *cur; 402 403 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS); 404 405 cur->bc_tp = tp; 406 cur->bc_mp = mp; 407 cur->bc_btnum = btnum; 408 if (btnum == XFS_BTNUM_INO) { 409 cur->bc_nlevels = be32_to_cpu(agi->agi_level); 410 cur->bc_ops = &xfs_inobt_ops; 411 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2); 412 } else { 413 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level); 414 cur->bc_ops = &xfs_finobt_ops; 415 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2); 416 } 417 418 cur->bc_blocklog = mp->m_sb.sb_blocklog; 419 420 if (xfs_sb_version_hascrc(&mp->m_sb)) 421 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; 422 423 cur->bc_private.a.agbp = agbp; 424 cur->bc_private.a.agno = agno; 425 426 return cur; 427 } 428 429 /* 430 * Calculate number of records in an inobt btree block. 431 */ 432 int 433 xfs_inobt_maxrecs( 434 struct xfs_mount *mp, 435 int blocklen, 436 int leaf) 437 { 438 blocklen -= XFS_INOBT_BLOCK_LEN(mp); 439 440 if (leaf) 441 return blocklen / sizeof(xfs_inobt_rec_t); 442 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t)); 443 } 444 445 /* 446 * Convert the inode record holemask to an inode allocation bitmap. The inode 447 * allocation bitmap is inode granularity and specifies whether an inode is 448 * physically allocated on disk (not whether the inode is considered allocated 449 * or free by the fs). 450 * 451 * A bit value of 1 means the inode is allocated, a value of 0 means it is free. 452 */ 453 uint64_t 454 xfs_inobt_irec_to_allocmask( 455 struct xfs_inobt_rec_incore *rec) 456 { 457 uint64_t bitmap = 0; 458 uint64_t inodespbit; 459 int nextbit; 460 uint allocbitmap; 461 462 /* 463 * The holemask has 16-bits for a 64 inode record. Therefore each 464 * holemask bit represents multiple inodes. Create a mask of bits to set 465 * in the allocmask for each holemask bit. 466 */ 467 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1; 468 469 /* 470 * Allocated inodes are represented by 0 bits in holemask. Invert the 0 471 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask 472 * anything beyond the 16 holemask bits since this casts to a larger 473 * type. 474 */ 475 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1); 476 477 /* 478 * allocbitmap is the inverted holemask so every set bit represents 479 * allocated inodes. To expand from 16-bit holemask granularity to 480 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target 481 * bitmap for every holemask bit. 482 */ 483 nextbit = xfs_next_bit(&allocbitmap, 1, 0); 484 while (nextbit != -1) { 485 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY)); 486 487 bitmap |= (inodespbit << 488 (nextbit * XFS_INODES_PER_HOLEMASK_BIT)); 489 490 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1); 491 } 492 493 return bitmap; 494 } 495 496 #if defined(DEBUG) || defined(XFS_WARN) 497 /* 498 * Verify that an in-core inode record has a valid inode count. 499 */ 500 int 501 xfs_inobt_rec_check_count( 502 struct xfs_mount *mp, 503 struct xfs_inobt_rec_incore *rec) 504 { 505 int inocount = 0; 506 int nextbit = 0; 507 uint64_t allocbmap; 508 int wordsz; 509 510 wordsz = sizeof(allocbmap) / sizeof(unsigned int); 511 allocbmap = xfs_inobt_irec_to_allocmask(rec); 512 513 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit); 514 while (nextbit != -1) { 515 inocount++; 516 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, 517 nextbit + 1); 518 } 519 520 if (inocount != rec->ir_count) 521 return -EFSCORRUPTED; 522 523 return 0; 524 } 525 #endif /* DEBUG */ 526 527 static xfs_extlen_t 528 xfs_inobt_max_size( 529 struct xfs_mount *mp) 530 { 531 /* Bail out if we're uninitialized, which can happen in mkfs. */ 532 if (mp->m_inobt_mxr[0] == 0) 533 return 0; 534 535 return xfs_btree_calc_size(mp, mp->m_inobt_mnr, 536 (uint64_t)mp->m_sb.sb_agblocks * mp->m_sb.sb_inopblock / 537 XFS_INODES_PER_CHUNK); 538 } 539 540 static int 541 xfs_inobt_count_blocks( 542 struct xfs_mount *mp, 543 xfs_agnumber_t agno, 544 xfs_btnum_t btnum, 545 xfs_extlen_t *tree_blocks) 546 { 547 struct xfs_buf *agbp; 548 struct xfs_btree_cur *cur; 549 int error; 550 551 error = xfs_ialloc_read_agi(mp, NULL, agno, &agbp); 552 if (error) 553 return error; 554 555 cur = xfs_inobt_init_cursor(mp, NULL, agbp, agno, btnum); 556 error = xfs_btree_count_blocks(cur, tree_blocks); 557 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); 558 xfs_buf_relse(agbp); 559 560 return error; 561 } 562 563 /* 564 * Figure out how many blocks to reserve and how many are used by this btree. 565 */ 566 int 567 xfs_finobt_calc_reserves( 568 struct xfs_mount *mp, 569 xfs_agnumber_t agno, 570 xfs_extlen_t *ask, 571 xfs_extlen_t *used) 572 { 573 xfs_extlen_t tree_len = 0; 574 int error; 575 576 if (!xfs_sb_version_hasfinobt(&mp->m_sb)) 577 return 0; 578 579 error = xfs_inobt_count_blocks(mp, agno, XFS_BTNUM_FINO, &tree_len); 580 if (error) 581 return error; 582 583 *ask += xfs_inobt_max_size(mp); 584 *used += tree_len; 585 return 0; 586 } 587