1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_defer.h" 28 #include "xfs_inode.h" 29 #include "xfs_btree.h" 30 #include "xfs_ialloc.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_alloc.h" 33 #include "xfs_rtalloc.h" 34 #include "xfs_errortag.h" 35 #include "xfs_error.h" 36 #include "xfs_bmap.h" 37 #include "xfs_cksum.h" 38 #include "xfs_trans.h" 39 #include "xfs_buf_item.h" 40 #include "xfs_icreate_item.h" 41 #include "xfs_icache.h" 42 #include "xfs_trace.h" 43 #include "xfs_log.h" 44 #include "xfs_rmap.h" 45 46 47 /* 48 * Allocation group level functions. 49 */ 50 int 51 xfs_ialloc_cluster_alignment( 52 struct xfs_mount *mp) 53 { 54 if (xfs_sb_version_hasalign(&mp->m_sb) && 55 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) 56 return mp->m_sb.sb_inoalignmt; 57 return 1; 58 } 59 60 /* 61 * Lookup a record by ino in the btree given by cur. 62 */ 63 int /* error */ 64 xfs_inobt_lookup( 65 struct xfs_btree_cur *cur, /* btree cursor */ 66 xfs_agino_t ino, /* starting inode of chunk */ 67 xfs_lookup_t dir, /* <=, >=, == */ 68 int *stat) /* success/failure */ 69 { 70 cur->bc_rec.i.ir_startino = ino; 71 cur->bc_rec.i.ir_holemask = 0; 72 cur->bc_rec.i.ir_count = 0; 73 cur->bc_rec.i.ir_freecount = 0; 74 cur->bc_rec.i.ir_free = 0; 75 return xfs_btree_lookup(cur, dir, stat); 76 } 77 78 /* 79 * Update the record referred to by cur to the value given. 80 * This either works (return 0) or gets an EFSCORRUPTED error. 81 */ 82 STATIC int /* error */ 83 xfs_inobt_update( 84 struct xfs_btree_cur *cur, /* btree cursor */ 85 xfs_inobt_rec_incore_t *irec) /* btree record */ 86 { 87 union xfs_btree_rec rec; 88 89 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 90 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { 91 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); 92 rec.inobt.ir_u.sp.ir_count = irec->ir_count; 93 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; 94 } else { 95 /* ir_holemask/ir_count not supported on-disk */ 96 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); 97 } 98 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 99 return xfs_btree_update(cur, &rec); 100 } 101 102 /* Convert on-disk btree record to incore inobt record. */ 103 void 104 xfs_inobt_btrec_to_irec( 105 struct xfs_mount *mp, 106 union xfs_btree_rec *rec, 107 struct xfs_inobt_rec_incore *irec) 108 { 109 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 110 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) { 111 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); 112 irec->ir_count = rec->inobt.ir_u.sp.ir_count; 113 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; 114 } else { 115 /* 116 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded 117 * values for full inode chunks. 118 */ 119 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; 120 irec->ir_count = XFS_INODES_PER_CHUNK; 121 irec->ir_freecount = 122 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); 123 } 124 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 125 } 126 127 /* 128 * Get the data from the pointed-to record. 129 */ 130 int 131 xfs_inobt_get_rec( 132 struct xfs_btree_cur *cur, 133 struct xfs_inobt_rec_incore *irec, 134 int *stat) 135 { 136 union xfs_btree_rec *rec; 137 int error; 138 139 error = xfs_btree_get_rec(cur, &rec, stat); 140 if (error || *stat == 0) 141 return error; 142 143 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec); 144 145 return 0; 146 } 147 148 /* 149 * Insert a single inobt record. Cursor must already point to desired location. 150 */ 151 STATIC int 152 xfs_inobt_insert_rec( 153 struct xfs_btree_cur *cur, 154 uint16_t holemask, 155 uint8_t count, 156 int32_t freecount, 157 xfs_inofree_t free, 158 int *stat) 159 { 160 cur->bc_rec.i.ir_holemask = holemask; 161 cur->bc_rec.i.ir_count = count; 162 cur->bc_rec.i.ir_freecount = freecount; 163 cur->bc_rec.i.ir_free = free; 164 return xfs_btree_insert(cur, stat); 165 } 166 167 /* 168 * Insert records describing a newly allocated inode chunk into the inobt. 169 */ 170 STATIC int 171 xfs_inobt_insert( 172 struct xfs_mount *mp, 173 struct xfs_trans *tp, 174 struct xfs_buf *agbp, 175 xfs_agino_t newino, 176 xfs_agino_t newlen, 177 xfs_btnum_t btnum) 178 { 179 struct xfs_btree_cur *cur; 180 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 181 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 182 xfs_agino_t thisino; 183 int i; 184 int error; 185 186 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 187 188 for (thisino = newino; 189 thisino < newino + newlen; 190 thisino += XFS_INODES_PER_CHUNK) { 191 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 192 if (error) { 193 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 194 return error; 195 } 196 ASSERT(i == 0); 197 198 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, 199 XFS_INODES_PER_CHUNK, 200 XFS_INODES_PER_CHUNK, 201 XFS_INOBT_ALL_FREE, &i); 202 if (error) { 203 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 204 return error; 205 } 206 ASSERT(i == 1); 207 } 208 209 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 210 211 return 0; 212 } 213 214 /* 215 * Verify that the number of free inodes in the AGI is correct. 216 */ 217 #ifdef DEBUG 218 STATIC int 219 xfs_check_agi_freecount( 220 struct xfs_btree_cur *cur, 221 struct xfs_agi *agi) 222 { 223 if (cur->bc_nlevels == 1) { 224 xfs_inobt_rec_incore_t rec; 225 int freecount = 0; 226 int error; 227 int i; 228 229 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 230 if (error) 231 return error; 232 233 do { 234 error = xfs_inobt_get_rec(cur, &rec, &i); 235 if (error) 236 return error; 237 238 if (i) { 239 freecount += rec.ir_freecount; 240 error = xfs_btree_increment(cur, 0, &i); 241 if (error) 242 return error; 243 } 244 } while (i == 1); 245 246 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) 247 ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); 248 } 249 return 0; 250 } 251 #else 252 #define xfs_check_agi_freecount(cur, agi) 0 253 #endif 254 255 /* 256 * Initialise a new set of inodes. When called without a transaction context 257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 258 * than logging them (which in a transaction context puts them into the AIL 259 * for writeback rather than the xfsbufd queue). 260 */ 261 int 262 xfs_ialloc_inode_init( 263 struct xfs_mount *mp, 264 struct xfs_trans *tp, 265 struct list_head *buffer_list, 266 int icount, 267 xfs_agnumber_t agno, 268 xfs_agblock_t agbno, 269 xfs_agblock_t length, 270 unsigned int gen) 271 { 272 struct xfs_buf *fbuf; 273 struct xfs_dinode *free; 274 int nbufs, blks_per_cluster, inodes_per_cluster; 275 int version; 276 int i, j; 277 xfs_daddr_t d; 278 xfs_ino_t ino = 0; 279 280 /* 281 * Loop over the new block(s), filling in the inodes. For small block 282 * sizes, manipulate the inodes in buffers which are multiples of the 283 * blocks size. 284 */ 285 blks_per_cluster = xfs_icluster_size_fsb(mp); 286 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 287 nbufs = length / blks_per_cluster; 288 289 /* 290 * Figure out what version number to use in the inodes we create. If 291 * the superblock version has caught up to the one that supports the new 292 * inode format, then use the new inode version. Otherwise use the old 293 * version so that old kernels will continue to be able to use the file 294 * system. 295 * 296 * For v3 inodes, we also need to write the inode number into the inode, 297 * so calculate the first inode number of the chunk here as 298 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not 299 * across multiple filesystem blocks (such as a cluster) and so cannot 300 * be used in the cluster buffer loop below. 301 * 302 * Further, because we are writing the inode directly into the buffer 303 * and calculating a CRC on the entire inode, we have ot log the entire 304 * inode so that the entire range the CRC covers is present in the log. 305 * That means for v3 inode we log the entire buffer rather than just the 306 * inode cores. 307 */ 308 if (xfs_sb_version_hascrc(&mp->m_sb)) { 309 version = 3; 310 ino = XFS_AGINO_TO_INO(mp, agno, 311 XFS_OFFBNO_TO_AGINO(mp, agbno, 0)); 312 313 /* 314 * log the initialisation that is about to take place as an 315 * logical operation. This means the transaction does not 316 * need to log the physical changes to the inode buffers as log 317 * recovery will know what initialisation is actually needed. 318 * Hence we only need to log the buffers as "ordered" buffers so 319 * they track in the AIL as if they were physically logged. 320 */ 321 if (tp) 322 xfs_icreate_log(tp, agno, agbno, icount, 323 mp->m_sb.sb_inodesize, length, gen); 324 } else 325 version = 2; 326 327 for (j = 0; j < nbufs; j++) { 328 /* 329 * Get the block. 330 */ 331 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster)); 332 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 333 mp->m_bsize * blks_per_cluster, 334 XBF_UNMAPPED); 335 if (!fbuf) 336 return -ENOMEM; 337 338 /* Initialize the inode buffers and log them appropriately. */ 339 fbuf->b_ops = &xfs_inode_buf_ops; 340 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 341 for (i = 0; i < inodes_per_cluster; i++) { 342 int ioffset = i << mp->m_sb.sb_inodelog; 343 uint isize = xfs_dinode_size(version); 344 345 free = xfs_make_iptr(mp, fbuf, i); 346 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 347 free->di_version = version; 348 free->di_gen = cpu_to_be32(gen); 349 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 350 351 if (version == 3) { 352 free->di_ino = cpu_to_be64(ino); 353 ino++; 354 uuid_copy(&free->di_uuid, 355 &mp->m_sb.sb_meta_uuid); 356 xfs_dinode_calc_crc(mp, free); 357 } else if (tp) { 358 /* just log the inode core */ 359 xfs_trans_log_buf(tp, fbuf, ioffset, 360 ioffset + isize - 1); 361 } 362 } 363 364 if (tp) { 365 /* 366 * Mark the buffer as an inode allocation buffer so it 367 * sticks in AIL at the point of this allocation 368 * transaction. This ensures the they are on disk before 369 * the tail of the log can be moved past this 370 * transaction (i.e. by preventing relogging from moving 371 * it forward in the log). 372 */ 373 xfs_trans_inode_alloc_buf(tp, fbuf); 374 if (version == 3) { 375 /* 376 * Mark the buffer as ordered so that they are 377 * not physically logged in the transaction but 378 * still tracked in the AIL as part of the 379 * transaction and pin the log appropriately. 380 */ 381 xfs_trans_ordered_buf(tp, fbuf); 382 } 383 } else { 384 fbuf->b_flags |= XBF_DONE; 385 xfs_buf_delwri_queue(fbuf, buffer_list); 386 xfs_buf_relse(fbuf); 387 } 388 } 389 return 0; 390 } 391 392 /* 393 * Align startino and allocmask for a recently allocated sparse chunk such that 394 * they are fit for insertion (or merge) into the on-disk inode btrees. 395 * 396 * Background: 397 * 398 * When enabled, sparse inode support increases the inode alignment from cluster 399 * size to inode chunk size. This means that the minimum range between two 400 * non-adjacent inode records in the inobt is large enough for a full inode 401 * record. This allows for cluster sized, cluster aligned block allocation 402 * without need to worry about whether the resulting inode record overlaps with 403 * another record in the tree. Without this basic rule, we would have to deal 404 * with the consequences of overlap by potentially undoing recent allocations in 405 * the inode allocation codepath. 406 * 407 * Because of this alignment rule (which is enforced on mount), there are two 408 * inobt possibilities for newly allocated sparse chunks. One is that the 409 * aligned inode record for the chunk covers a range of inodes not already 410 * covered in the inobt (i.e., it is safe to insert a new sparse record). The 411 * other is that a record already exists at the aligned startino that considers 412 * the newly allocated range as sparse. In the latter case, record content is 413 * merged in hope that sparse inode chunks fill to full chunks over time. 414 */ 415 STATIC void 416 xfs_align_sparse_ino( 417 struct xfs_mount *mp, 418 xfs_agino_t *startino, 419 uint16_t *allocmask) 420 { 421 xfs_agblock_t agbno; 422 xfs_agblock_t mod; 423 int offset; 424 425 agbno = XFS_AGINO_TO_AGBNO(mp, *startino); 426 mod = agbno % mp->m_sb.sb_inoalignmt; 427 if (!mod) 428 return; 429 430 /* calculate the inode offset and align startino */ 431 offset = mod << mp->m_sb.sb_inopblog; 432 *startino -= offset; 433 434 /* 435 * Since startino has been aligned down, left shift allocmask such that 436 * it continues to represent the same physical inodes relative to the 437 * new startino. 438 */ 439 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; 440 } 441 442 /* 443 * Determine whether the source inode record can merge into the target. Both 444 * records must be sparse, the inode ranges must match and there must be no 445 * allocation overlap between the records. 446 */ 447 STATIC bool 448 __xfs_inobt_can_merge( 449 struct xfs_inobt_rec_incore *trec, /* tgt record */ 450 struct xfs_inobt_rec_incore *srec) /* src record */ 451 { 452 uint64_t talloc; 453 uint64_t salloc; 454 455 /* records must cover the same inode range */ 456 if (trec->ir_startino != srec->ir_startino) 457 return false; 458 459 /* both records must be sparse */ 460 if (!xfs_inobt_issparse(trec->ir_holemask) || 461 !xfs_inobt_issparse(srec->ir_holemask)) 462 return false; 463 464 /* both records must track some inodes */ 465 if (!trec->ir_count || !srec->ir_count) 466 return false; 467 468 /* can't exceed capacity of a full record */ 469 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) 470 return false; 471 472 /* verify there is no allocation overlap */ 473 talloc = xfs_inobt_irec_to_allocmask(trec); 474 salloc = xfs_inobt_irec_to_allocmask(srec); 475 if (talloc & salloc) 476 return false; 477 478 return true; 479 } 480 481 /* 482 * Merge the source inode record into the target. The caller must call 483 * __xfs_inobt_can_merge() to ensure the merge is valid. 484 */ 485 STATIC void 486 __xfs_inobt_rec_merge( 487 struct xfs_inobt_rec_incore *trec, /* target */ 488 struct xfs_inobt_rec_incore *srec) /* src */ 489 { 490 ASSERT(trec->ir_startino == srec->ir_startino); 491 492 /* combine the counts */ 493 trec->ir_count += srec->ir_count; 494 trec->ir_freecount += srec->ir_freecount; 495 496 /* 497 * Merge the holemask and free mask. For both fields, 0 bits refer to 498 * allocated inodes. We combine the allocated ranges with bitwise AND. 499 */ 500 trec->ir_holemask &= srec->ir_holemask; 501 trec->ir_free &= srec->ir_free; 502 } 503 504 /* 505 * Insert a new sparse inode chunk into the associated inode btree. The inode 506 * record for the sparse chunk is pre-aligned to a startino that should match 507 * any pre-existing sparse inode record in the tree. This allows sparse chunks 508 * to fill over time. 509 * 510 * This function supports two modes of handling preexisting records depending on 511 * the merge flag. If merge is true, the provided record is merged with the 512 * existing record and updated in place. The merged record is returned in nrec. 513 * If merge is false, an existing record is replaced with the provided record. 514 * If no preexisting record exists, the provided record is always inserted. 515 * 516 * It is considered corruption if a merge is requested and not possible. Given 517 * the sparse inode alignment constraints, this should never happen. 518 */ 519 STATIC int 520 xfs_inobt_insert_sprec( 521 struct xfs_mount *mp, 522 struct xfs_trans *tp, 523 struct xfs_buf *agbp, 524 int btnum, 525 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ 526 bool merge) /* merge or replace */ 527 { 528 struct xfs_btree_cur *cur; 529 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 530 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 531 int error; 532 int i; 533 struct xfs_inobt_rec_incore rec; 534 535 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 536 537 /* the new record is pre-aligned so we know where to look */ 538 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); 539 if (error) 540 goto error; 541 /* if nothing there, insert a new record and return */ 542 if (i == 0) { 543 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, 544 nrec->ir_count, nrec->ir_freecount, 545 nrec->ir_free, &i); 546 if (error) 547 goto error; 548 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 549 550 goto out; 551 } 552 553 /* 554 * A record exists at this startino. Merge or replace the record 555 * depending on what we've been asked to do. 556 */ 557 if (merge) { 558 error = xfs_inobt_get_rec(cur, &rec, &i); 559 if (error) 560 goto error; 561 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 562 XFS_WANT_CORRUPTED_GOTO(mp, 563 rec.ir_startino == nrec->ir_startino, 564 error); 565 566 /* 567 * This should never fail. If we have coexisting records that 568 * cannot merge, something is seriously wrong. 569 */ 570 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec), 571 error); 572 573 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino, 574 rec.ir_holemask, nrec->ir_startino, 575 nrec->ir_holemask); 576 577 /* merge to nrec to output the updated record */ 578 __xfs_inobt_rec_merge(nrec, &rec); 579 580 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino, 581 nrec->ir_holemask); 582 583 error = xfs_inobt_rec_check_count(mp, nrec); 584 if (error) 585 goto error; 586 } 587 588 error = xfs_inobt_update(cur, nrec); 589 if (error) 590 goto error; 591 592 out: 593 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 594 return 0; 595 error: 596 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 597 return error; 598 } 599 600 /* 601 * Allocate new inodes in the allocation group specified by agbp. 602 * Return 0 for success, else error code. 603 */ 604 STATIC int /* error code or 0 */ 605 xfs_ialloc_ag_alloc( 606 xfs_trans_t *tp, /* transaction pointer */ 607 xfs_buf_t *agbp, /* alloc group buffer */ 608 int *alloc) 609 { 610 xfs_agi_t *agi; /* allocation group header */ 611 xfs_alloc_arg_t args; /* allocation argument structure */ 612 xfs_agnumber_t agno; 613 int error; 614 xfs_agino_t newino; /* new first inode's number */ 615 xfs_agino_t newlen; /* new number of inodes */ 616 int isaligned = 0; /* inode allocation at stripe unit */ 617 /* boundary */ 618 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */ 619 struct xfs_inobt_rec_incore rec; 620 struct xfs_perag *pag; 621 int do_sparse = 0; 622 623 memset(&args, 0, sizeof(args)); 624 args.tp = tp; 625 args.mp = tp->t_mountp; 626 args.fsbno = NULLFSBLOCK; 627 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES); 628 629 #ifdef DEBUG 630 /* randomly do sparse inode allocations */ 631 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) && 632 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks) 633 do_sparse = prandom_u32() & 1; 634 #endif 635 636 /* 637 * Locking will ensure that we don't have two callers in here 638 * at one time. 639 */ 640 newlen = args.mp->m_ialloc_inos; 641 if (args.mp->m_maxicount && 642 percpu_counter_read_positive(&args.mp->m_icount) + newlen > 643 args.mp->m_maxicount) 644 return -ENOSPC; 645 args.minlen = args.maxlen = args.mp->m_ialloc_blks; 646 /* 647 * First try to allocate inodes contiguous with the last-allocated 648 * chunk of inodes. If the filesystem is striped, this will fill 649 * an entire stripe unit with inodes. 650 */ 651 agi = XFS_BUF_TO_AGI(agbp); 652 newino = be32_to_cpu(agi->agi_newino); 653 agno = be32_to_cpu(agi->agi_seqno); 654 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 655 args.mp->m_ialloc_blks; 656 if (do_sparse) 657 goto sparse_alloc; 658 if (likely(newino != NULLAGINO && 659 (args.agbno < be32_to_cpu(agi->agi_length)))) { 660 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 661 args.type = XFS_ALLOCTYPE_THIS_BNO; 662 args.prod = 1; 663 664 /* 665 * We need to take into account alignment here to ensure that 666 * we don't modify the free list if we fail to have an exact 667 * block. If we don't have an exact match, and every oher 668 * attempt allocation attempt fails, we'll end up cancelling 669 * a dirty transaction and shutting down. 670 * 671 * For an exact allocation, alignment must be 1, 672 * however we need to take cluster alignment into account when 673 * fixing up the freelist. Use the minalignslop field to 674 * indicate that extra blocks might be required for alignment, 675 * but not to use them in the actual exact allocation. 676 */ 677 args.alignment = 1; 678 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1; 679 680 /* Allow space for the inode btree to split. */ 681 args.minleft = args.mp->m_in_maxlevels - 1; 682 if ((error = xfs_alloc_vextent(&args))) 683 return error; 684 685 /* 686 * This request might have dirtied the transaction if the AG can 687 * satisfy the request, but the exact block was not available. 688 * If the allocation did fail, subsequent requests will relax 689 * the exact agbno requirement and increase the alignment 690 * instead. It is critical that the total size of the request 691 * (len + alignment + slop) does not increase from this point 692 * on, so reset minalignslop to ensure it is not included in 693 * subsequent requests. 694 */ 695 args.minalignslop = 0; 696 } 697 698 if (unlikely(args.fsbno == NULLFSBLOCK)) { 699 /* 700 * Set the alignment for the allocation. 701 * If stripe alignment is turned on then align at stripe unit 702 * boundary. 703 * If the cluster size is smaller than a filesystem block 704 * then we're doing I/O for inodes in filesystem block size 705 * pieces, so don't need alignment anyway. 706 */ 707 isaligned = 0; 708 if (args.mp->m_sinoalign) { 709 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); 710 args.alignment = args.mp->m_dalign; 711 isaligned = 1; 712 } else 713 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 714 /* 715 * Need to figure out where to allocate the inode blocks. 716 * Ideally they should be spaced out through the a.g. 717 * For now, just allocate blocks up front. 718 */ 719 args.agbno = be32_to_cpu(agi->agi_root); 720 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 721 /* 722 * Allocate a fixed-size extent of inodes. 723 */ 724 args.type = XFS_ALLOCTYPE_NEAR_BNO; 725 args.prod = 1; 726 /* 727 * Allow space for the inode btree to split. 728 */ 729 args.minleft = args.mp->m_in_maxlevels - 1; 730 if ((error = xfs_alloc_vextent(&args))) 731 return error; 732 } 733 734 /* 735 * If stripe alignment is turned on, then try again with cluster 736 * alignment. 737 */ 738 if (isaligned && args.fsbno == NULLFSBLOCK) { 739 args.type = XFS_ALLOCTYPE_NEAR_BNO; 740 args.agbno = be32_to_cpu(agi->agi_root); 741 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 742 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 743 if ((error = xfs_alloc_vextent(&args))) 744 return error; 745 } 746 747 /* 748 * Finally, try a sparse allocation if the filesystem supports it and 749 * the sparse allocation length is smaller than a full chunk. 750 */ 751 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) && 752 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks && 753 args.fsbno == NULLFSBLOCK) { 754 sparse_alloc: 755 args.type = XFS_ALLOCTYPE_NEAR_BNO; 756 args.agbno = be32_to_cpu(agi->agi_root); 757 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 758 args.alignment = args.mp->m_sb.sb_spino_align; 759 args.prod = 1; 760 761 args.minlen = args.mp->m_ialloc_min_blks; 762 args.maxlen = args.minlen; 763 764 /* 765 * The inode record will be aligned to full chunk size. We must 766 * prevent sparse allocation from AG boundaries that result in 767 * invalid inode records, such as records that start at agbno 0 768 * or extend beyond the AG. 769 * 770 * Set min agbno to the first aligned, non-zero agbno and max to 771 * the last aligned agbno that is at least one full chunk from 772 * the end of the AG. 773 */ 774 args.min_agbno = args.mp->m_sb.sb_inoalignmt; 775 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, 776 args.mp->m_sb.sb_inoalignmt) - 777 args.mp->m_ialloc_blks; 778 779 error = xfs_alloc_vextent(&args); 780 if (error) 781 return error; 782 783 newlen = args.len << args.mp->m_sb.sb_inopblog; 784 ASSERT(newlen <= XFS_INODES_PER_CHUNK); 785 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; 786 } 787 788 if (args.fsbno == NULLFSBLOCK) { 789 *alloc = 0; 790 return 0; 791 } 792 ASSERT(args.len == args.minlen); 793 794 /* 795 * Stamp and write the inode buffers. 796 * 797 * Seed the new inode cluster with a random generation number. This 798 * prevents short-term reuse of generation numbers if a chunk is 799 * freed and then immediately reallocated. We use random numbers 800 * rather than a linear progression to prevent the next generation 801 * number from being easily guessable. 802 */ 803 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno, 804 args.agbno, args.len, prandom_u32()); 805 806 if (error) 807 return error; 808 /* 809 * Convert the results. 810 */ 811 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); 812 813 if (xfs_inobt_issparse(~allocmask)) { 814 /* 815 * We've allocated a sparse chunk. Align the startino and mask. 816 */ 817 xfs_align_sparse_ino(args.mp, &newino, &allocmask); 818 819 rec.ir_startino = newino; 820 rec.ir_holemask = ~allocmask; 821 rec.ir_count = newlen; 822 rec.ir_freecount = newlen; 823 rec.ir_free = XFS_INOBT_ALL_FREE; 824 825 /* 826 * Insert the sparse record into the inobt and allow for a merge 827 * if necessary. If a merge does occur, rec is updated to the 828 * merged record. 829 */ 830 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO, 831 &rec, true); 832 if (error == -EFSCORRUPTED) { 833 xfs_alert(args.mp, 834 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", 835 XFS_AGINO_TO_INO(args.mp, agno, 836 rec.ir_startino), 837 rec.ir_holemask, rec.ir_count); 838 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); 839 } 840 if (error) 841 return error; 842 843 /* 844 * We can't merge the part we've just allocated as for the inobt 845 * due to finobt semantics. The original record may or may not 846 * exist independent of whether physical inodes exist in this 847 * sparse chunk. 848 * 849 * We must update the finobt record based on the inobt record. 850 * rec contains the fully merged and up to date inobt record 851 * from the previous call. Set merge false to replace any 852 * existing record with this one. 853 */ 854 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 855 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, 856 XFS_BTNUM_FINO, &rec, 857 false); 858 if (error) 859 return error; 860 } 861 } else { 862 /* full chunk - insert new records to both btrees */ 863 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 864 XFS_BTNUM_INO); 865 if (error) 866 return error; 867 868 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 869 error = xfs_inobt_insert(args.mp, tp, agbp, newino, 870 newlen, XFS_BTNUM_FINO); 871 if (error) 872 return error; 873 } 874 } 875 876 /* 877 * Update AGI counts and newino. 878 */ 879 be32_add_cpu(&agi->agi_count, newlen); 880 be32_add_cpu(&agi->agi_freecount, newlen); 881 pag = xfs_perag_get(args.mp, agno); 882 pag->pagi_freecount += newlen; 883 xfs_perag_put(pag); 884 agi->agi_newino = cpu_to_be32(newino); 885 886 /* 887 * Log allocation group header fields 888 */ 889 xfs_ialloc_log_agi(tp, agbp, 890 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 891 /* 892 * Modify/log superblock values for inode count and inode free count. 893 */ 894 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 895 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 896 *alloc = 1; 897 return 0; 898 } 899 900 STATIC xfs_agnumber_t 901 xfs_ialloc_next_ag( 902 xfs_mount_t *mp) 903 { 904 xfs_agnumber_t agno; 905 906 spin_lock(&mp->m_agirotor_lock); 907 agno = mp->m_agirotor; 908 if (++mp->m_agirotor >= mp->m_maxagi) 909 mp->m_agirotor = 0; 910 spin_unlock(&mp->m_agirotor_lock); 911 912 return agno; 913 } 914 915 /* 916 * Select an allocation group to look for a free inode in, based on the parent 917 * inode and the mode. Return the allocation group buffer. 918 */ 919 STATIC xfs_agnumber_t 920 xfs_ialloc_ag_select( 921 xfs_trans_t *tp, /* transaction pointer */ 922 xfs_ino_t parent, /* parent directory inode number */ 923 umode_t mode, /* bits set to indicate file type */ 924 int okalloc) /* ok to allocate more space */ 925 { 926 xfs_agnumber_t agcount; /* number of ag's in the filesystem */ 927 xfs_agnumber_t agno; /* current ag number */ 928 int flags; /* alloc buffer locking flags */ 929 xfs_extlen_t ineed; /* blocks needed for inode allocation */ 930 xfs_extlen_t longest = 0; /* longest extent available */ 931 xfs_mount_t *mp; /* mount point structure */ 932 int needspace; /* file mode implies space allocated */ 933 xfs_perag_t *pag; /* per allocation group data */ 934 xfs_agnumber_t pagno; /* parent (starting) ag number */ 935 int error; 936 937 /* 938 * Files of these types need at least one block if length > 0 939 * (and they won't fit in the inode, but that's hard to figure out). 940 */ 941 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 942 mp = tp->t_mountp; 943 agcount = mp->m_maxagi; 944 if (S_ISDIR(mode)) 945 pagno = xfs_ialloc_next_ag(mp); 946 else { 947 pagno = XFS_INO_TO_AGNO(mp, parent); 948 if (pagno >= agcount) 949 pagno = 0; 950 } 951 952 ASSERT(pagno < agcount); 953 954 /* 955 * Loop through allocation groups, looking for one with a little 956 * free space in it. Note we don't look for free inodes, exactly. 957 * Instead, we include whether there is a need to allocate inodes 958 * to mean that blocks must be allocated for them, 959 * if none are currently free. 960 */ 961 agno = pagno; 962 flags = XFS_ALLOC_FLAG_TRYLOCK; 963 for (;;) { 964 pag = xfs_perag_get(mp, agno); 965 if (!pag->pagi_inodeok) { 966 xfs_ialloc_next_ag(mp); 967 goto nextag; 968 } 969 970 if (!pag->pagi_init) { 971 error = xfs_ialloc_pagi_init(mp, tp, agno); 972 if (error) 973 goto nextag; 974 } 975 976 if (pag->pagi_freecount) { 977 xfs_perag_put(pag); 978 return agno; 979 } 980 981 if (!okalloc) 982 goto nextag; 983 984 if (!pag->pagf_init) { 985 error = xfs_alloc_pagf_init(mp, tp, agno, flags); 986 if (error) 987 goto nextag; 988 } 989 990 /* 991 * Check that there is enough free space for the file plus a 992 * chunk of inodes if we need to allocate some. If this is the 993 * first pass across the AGs, take into account the potential 994 * space needed for alignment of inode chunks when checking the 995 * longest contiguous free space in the AG - this prevents us 996 * from getting ENOSPC because we have free space larger than 997 * m_ialloc_blks but alignment constraints prevent us from using 998 * it. 999 * 1000 * If we can't find an AG with space for full alignment slack to 1001 * be taken into account, we must be near ENOSPC in all AGs. 1002 * Hence we don't include alignment for the second pass and so 1003 * if we fail allocation due to alignment issues then it is most 1004 * likely a real ENOSPC condition. 1005 */ 1006 ineed = mp->m_ialloc_min_blks; 1007 if (flags && ineed > 1) 1008 ineed += xfs_ialloc_cluster_alignment(mp); 1009 longest = pag->pagf_longest; 1010 if (!longest) 1011 longest = pag->pagf_flcount > 0; 1012 1013 if (pag->pagf_freeblks >= needspace + ineed && 1014 longest >= ineed) { 1015 xfs_perag_put(pag); 1016 return agno; 1017 } 1018 nextag: 1019 xfs_perag_put(pag); 1020 /* 1021 * No point in iterating over the rest, if we're shutting 1022 * down. 1023 */ 1024 if (XFS_FORCED_SHUTDOWN(mp)) 1025 return NULLAGNUMBER; 1026 agno++; 1027 if (agno >= agcount) 1028 agno = 0; 1029 if (agno == pagno) { 1030 if (flags == 0) 1031 return NULLAGNUMBER; 1032 flags = 0; 1033 } 1034 } 1035 } 1036 1037 /* 1038 * Try to retrieve the next record to the left/right from the current one. 1039 */ 1040 STATIC int 1041 xfs_ialloc_next_rec( 1042 struct xfs_btree_cur *cur, 1043 xfs_inobt_rec_incore_t *rec, 1044 int *done, 1045 int left) 1046 { 1047 int error; 1048 int i; 1049 1050 if (left) 1051 error = xfs_btree_decrement(cur, 0, &i); 1052 else 1053 error = xfs_btree_increment(cur, 0, &i); 1054 1055 if (error) 1056 return error; 1057 *done = !i; 1058 if (i) { 1059 error = xfs_inobt_get_rec(cur, rec, &i); 1060 if (error) 1061 return error; 1062 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1063 } 1064 1065 return 0; 1066 } 1067 1068 STATIC int 1069 xfs_ialloc_get_rec( 1070 struct xfs_btree_cur *cur, 1071 xfs_agino_t agino, 1072 xfs_inobt_rec_incore_t *rec, 1073 int *done) 1074 { 1075 int error; 1076 int i; 1077 1078 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 1079 if (error) 1080 return error; 1081 *done = !i; 1082 if (i) { 1083 error = xfs_inobt_get_rec(cur, rec, &i); 1084 if (error) 1085 return error; 1086 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1087 } 1088 1089 return 0; 1090 } 1091 1092 /* 1093 * Return the offset of the first free inode in the record. If the inode chunk 1094 * is sparsely allocated, we convert the record holemask to inode granularity 1095 * and mask off the unallocated regions from the inode free mask. 1096 */ 1097 STATIC int 1098 xfs_inobt_first_free_inode( 1099 struct xfs_inobt_rec_incore *rec) 1100 { 1101 xfs_inofree_t realfree; 1102 1103 /* if there are no holes, return the first available offset */ 1104 if (!xfs_inobt_issparse(rec->ir_holemask)) 1105 return xfs_lowbit64(rec->ir_free); 1106 1107 realfree = xfs_inobt_irec_to_allocmask(rec); 1108 realfree &= rec->ir_free; 1109 1110 return xfs_lowbit64(realfree); 1111 } 1112 1113 /* 1114 * Allocate an inode using the inobt-only algorithm. 1115 */ 1116 STATIC int 1117 xfs_dialloc_ag_inobt( 1118 struct xfs_trans *tp, 1119 struct xfs_buf *agbp, 1120 xfs_ino_t parent, 1121 xfs_ino_t *inop) 1122 { 1123 struct xfs_mount *mp = tp->t_mountp; 1124 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1125 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1126 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1127 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1128 struct xfs_perag *pag; 1129 struct xfs_btree_cur *cur, *tcur; 1130 struct xfs_inobt_rec_incore rec, trec; 1131 xfs_ino_t ino; 1132 int error; 1133 int offset; 1134 int i, j; 1135 int searchdistance = 10; 1136 1137 pag = xfs_perag_get(mp, agno); 1138 1139 ASSERT(pag->pagi_init); 1140 ASSERT(pag->pagi_inodeok); 1141 ASSERT(pag->pagi_freecount > 0); 1142 1143 restart_pagno: 1144 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1145 /* 1146 * If pagino is 0 (this is the root inode allocation) use newino. 1147 * This must work because we've just allocated some. 1148 */ 1149 if (!pagino) 1150 pagino = be32_to_cpu(agi->agi_newino); 1151 1152 error = xfs_check_agi_freecount(cur, agi); 1153 if (error) 1154 goto error0; 1155 1156 /* 1157 * If in the same AG as the parent, try to get near the parent. 1158 */ 1159 if (pagno == agno) { 1160 int doneleft; /* done, to the left */ 1161 int doneright; /* done, to the right */ 1162 1163 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 1164 if (error) 1165 goto error0; 1166 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1167 1168 error = xfs_inobt_get_rec(cur, &rec, &j); 1169 if (error) 1170 goto error0; 1171 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0); 1172 1173 if (rec.ir_freecount > 0) { 1174 /* 1175 * Found a free inode in the same chunk 1176 * as the parent, done. 1177 */ 1178 goto alloc_inode; 1179 } 1180 1181 1182 /* 1183 * In the same AG as parent, but parent's chunk is full. 1184 */ 1185 1186 /* duplicate the cursor, search left & right simultaneously */ 1187 error = xfs_btree_dup_cursor(cur, &tcur); 1188 if (error) 1189 goto error0; 1190 1191 /* 1192 * Skip to last blocks looked up if same parent inode. 1193 */ 1194 if (pagino != NULLAGINO && 1195 pag->pagl_pagino == pagino && 1196 pag->pagl_leftrec != NULLAGINO && 1197 pag->pagl_rightrec != NULLAGINO) { 1198 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 1199 &trec, &doneleft); 1200 if (error) 1201 goto error1; 1202 1203 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 1204 &rec, &doneright); 1205 if (error) 1206 goto error1; 1207 } else { 1208 /* search left with tcur, back up 1 record */ 1209 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 1210 if (error) 1211 goto error1; 1212 1213 /* search right with cur, go forward 1 record. */ 1214 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 1215 if (error) 1216 goto error1; 1217 } 1218 1219 /* 1220 * Loop until we find an inode chunk with a free inode. 1221 */ 1222 while (--searchdistance > 0 && (!doneleft || !doneright)) { 1223 int useleft; /* using left inode chunk this time */ 1224 1225 /* figure out the closer block if both are valid. */ 1226 if (!doneleft && !doneright) { 1227 useleft = pagino - 1228 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 1229 rec.ir_startino - pagino; 1230 } else { 1231 useleft = !doneleft; 1232 } 1233 1234 /* free inodes to the left? */ 1235 if (useleft && trec.ir_freecount) { 1236 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1237 cur = tcur; 1238 1239 pag->pagl_leftrec = trec.ir_startino; 1240 pag->pagl_rightrec = rec.ir_startino; 1241 pag->pagl_pagino = pagino; 1242 rec = trec; 1243 goto alloc_inode; 1244 } 1245 1246 /* free inodes to the right? */ 1247 if (!useleft && rec.ir_freecount) { 1248 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1249 1250 pag->pagl_leftrec = trec.ir_startino; 1251 pag->pagl_rightrec = rec.ir_startino; 1252 pag->pagl_pagino = pagino; 1253 goto alloc_inode; 1254 } 1255 1256 /* get next record to check */ 1257 if (useleft) { 1258 error = xfs_ialloc_next_rec(tcur, &trec, 1259 &doneleft, 1); 1260 } else { 1261 error = xfs_ialloc_next_rec(cur, &rec, 1262 &doneright, 0); 1263 } 1264 if (error) 1265 goto error1; 1266 } 1267 1268 if (searchdistance <= 0) { 1269 /* 1270 * Not in range - save last search 1271 * location and allocate a new inode 1272 */ 1273 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1274 pag->pagl_leftrec = trec.ir_startino; 1275 pag->pagl_rightrec = rec.ir_startino; 1276 pag->pagl_pagino = pagino; 1277 1278 } else { 1279 /* 1280 * We've reached the end of the btree. because 1281 * we are only searching a small chunk of the 1282 * btree each search, there is obviously free 1283 * inodes closer to the parent inode than we 1284 * are now. restart the search again. 1285 */ 1286 pag->pagl_pagino = NULLAGINO; 1287 pag->pagl_leftrec = NULLAGINO; 1288 pag->pagl_rightrec = NULLAGINO; 1289 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1290 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1291 goto restart_pagno; 1292 } 1293 } 1294 1295 /* 1296 * In a different AG from the parent. 1297 * See if the most recently allocated block has any free. 1298 */ 1299 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1300 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1301 XFS_LOOKUP_EQ, &i); 1302 if (error) 1303 goto error0; 1304 1305 if (i == 1) { 1306 error = xfs_inobt_get_rec(cur, &rec, &j); 1307 if (error) 1308 goto error0; 1309 1310 if (j == 1 && rec.ir_freecount > 0) { 1311 /* 1312 * The last chunk allocated in the group 1313 * still has a free inode. 1314 */ 1315 goto alloc_inode; 1316 } 1317 } 1318 } 1319 1320 /* 1321 * None left in the last group, search the whole AG 1322 */ 1323 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1324 if (error) 1325 goto error0; 1326 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1327 1328 for (;;) { 1329 error = xfs_inobt_get_rec(cur, &rec, &i); 1330 if (error) 1331 goto error0; 1332 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1333 if (rec.ir_freecount > 0) 1334 break; 1335 error = xfs_btree_increment(cur, 0, &i); 1336 if (error) 1337 goto error0; 1338 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1339 } 1340 1341 alloc_inode: 1342 offset = xfs_inobt_first_free_inode(&rec); 1343 ASSERT(offset >= 0); 1344 ASSERT(offset < XFS_INODES_PER_CHUNK); 1345 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1346 XFS_INODES_PER_CHUNK) == 0); 1347 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1348 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1349 rec.ir_freecount--; 1350 error = xfs_inobt_update(cur, &rec); 1351 if (error) 1352 goto error0; 1353 be32_add_cpu(&agi->agi_freecount, -1); 1354 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1355 pag->pagi_freecount--; 1356 1357 error = xfs_check_agi_freecount(cur, agi); 1358 if (error) 1359 goto error0; 1360 1361 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1362 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1363 xfs_perag_put(pag); 1364 *inop = ino; 1365 return 0; 1366 error1: 1367 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 1368 error0: 1369 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1370 xfs_perag_put(pag); 1371 return error; 1372 } 1373 1374 /* 1375 * Use the free inode btree to allocate an inode based on distance from the 1376 * parent. Note that the provided cursor may be deleted and replaced. 1377 */ 1378 STATIC int 1379 xfs_dialloc_ag_finobt_near( 1380 xfs_agino_t pagino, 1381 struct xfs_btree_cur **ocur, 1382 struct xfs_inobt_rec_incore *rec) 1383 { 1384 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 1385 struct xfs_btree_cur *rcur; /* right search cursor */ 1386 struct xfs_inobt_rec_incore rrec; 1387 int error; 1388 int i, j; 1389 1390 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1391 if (error) 1392 return error; 1393 1394 if (i == 1) { 1395 error = xfs_inobt_get_rec(lcur, rec, &i); 1396 if (error) 1397 return error; 1398 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1); 1399 1400 /* 1401 * See if we've landed in the parent inode record. The finobt 1402 * only tracks chunks with at least one free inode, so record 1403 * existence is enough. 1404 */ 1405 if (pagino >= rec->ir_startino && 1406 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1407 return 0; 1408 } 1409 1410 error = xfs_btree_dup_cursor(lcur, &rcur); 1411 if (error) 1412 return error; 1413 1414 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1415 if (error) 1416 goto error_rcur; 1417 if (j == 1) { 1418 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1419 if (error) 1420 goto error_rcur; 1421 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur); 1422 } 1423 1424 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur); 1425 if (i == 1 && j == 1) { 1426 /* 1427 * Both the left and right records are valid. Choose the closer 1428 * inode chunk to the target. 1429 */ 1430 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1431 (rrec.ir_startino - pagino)) { 1432 *rec = rrec; 1433 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1434 *ocur = rcur; 1435 } else { 1436 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1437 } 1438 } else if (j == 1) { 1439 /* only the right record is valid */ 1440 *rec = rrec; 1441 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1442 *ocur = rcur; 1443 } else if (i == 1) { 1444 /* only the left record is valid */ 1445 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1446 } 1447 1448 return 0; 1449 1450 error_rcur: 1451 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1452 return error; 1453 } 1454 1455 /* 1456 * Use the free inode btree to find a free inode based on a newino hint. If 1457 * the hint is NULL, find the first free inode in the AG. 1458 */ 1459 STATIC int 1460 xfs_dialloc_ag_finobt_newino( 1461 struct xfs_agi *agi, 1462 struct xfs_btree_cur *cur, 1463 struct xfs_inobt_rec_incore *rec) 1464 { 1465 int error; 1466 int i; 1467 1468 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1469 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1470 XFS_LOOKUP_EQ, &i); 1471 if (error) 1472 return error; 1473 if (i == 1) { 1474 error = xfs_inobt_get_rec(cur, rec, &i); 1475 if (error) 1476 return error; 1477 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1478 return 0; 1479 } 1480 } 1481 1482 /* 1483 * Find the first inode available in the AG. 1484 */ 1485 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1486 if (error) 1487 return error; 1488 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1489 1490 error = xfs_inobt_get_rec(cur, rec, &i); 1491 if (error) 1492 return error; 1493 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1494 1495 return 0; 1496 } 1497 1498 /* 1499 * Update the inobt based on a modification made to the finobt. Also ensure that 1500 * the records from both trees are equivalent post-modification. 1501 */ 1502 STATIC int 1503 xfs_dialloc_ag_update_inobt( 1504 struct xfs_btree_cur *cur, /* inobt cursor */ 1505 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1506 int offset) /* inode offset */ 1507 { 1508 struct xfs_inobt_rec_incore rec; 1509 int error; 1510 int i; 1511 1512 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1513 if (error) 1514 return error; 1515 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1516 1517 error = xfs_inobt_get_rec(cur, &rec, &i); 1518 if (error) 1519 return error; 1520 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1521 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1522 XFS_INODES_PER_CHUNK) == 0); 1523 1524 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1525 rec.ir_freecount--; 1526 1527 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) && 1528 (rec.ir_freecount == frec->ir_freecount)); 1529 1530 return xfs_inobt_update(cur, &rec); 1531 } 1532 1533 /* 1534 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1535 * back to the inobt search algorithm. 1536 * 1537 * The caller selected an AG for us, and made sure that free inodes are 1538 * available. 1539 */ 1540 STATIC int 1541 xfs_dialloc_ag( 1542 struct xfs_trans *tp, 1543 struct xfs_buf *agbp, 1544 xfs_ino_t parent, 1545 xfs_ino_t *inop) 1546 { 1547 struct xfs_mount *mp = tp->t_mountp; 1548 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1549 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1550 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1551 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1552 struct xfs_perag *pag; 1553 struct xfs_btree_cur *cur; /* finobt cursor */ 1554 struct xfs_btree_cur *icur; /* inobt cursor */ 1555 struct xfs_inobt_rec_incore rec; 1556 xfs_ino_t ino; 1557 int error; 1558 int offset; 1559 int i; 1560 1561 if (!xfs_sb_version_hasfinobt(&mp->m_sb)) 1562 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); 1563 1564 pag = xfs_perag_get(mp, agno); 1565 1566 /* 1567 * If pagino is 0 (this is the root inode allocation) use newino. 1568 * This must work because we've just allocated some. 1569 */ 1570 if (!pagino) 1571 pagino = be32_to_cpu(agi->agi_newino); 1572 1573 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1574 1575 error = xfs_check_agi_freecount(cur, agi); 1576 if (error) 1577 goto error_cur; 1578 1579 /* 1580 * The search algorithm depends on whether we're in the same AG as the 1581 * parent. If so, find the closest available inode to the parent. If 1582 * not, consider the agi hint or find the first free inode in the AG. 1583 */ 1584 if (agno == pagno) 1585 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1586 else 1587 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1588 if (error) 1589 goto error_cur; 1590 1591 offset = xfs_inobt_first_free_inode(&rec); 1592 ASSERT(offset >= 0); 1593 ASSERT(offset < XFS_INODES_PER_CHUNK); 1594 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1595 XFS_INODES_PER_CHUNK) == 0); 1596 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1597 1598 /* 1599 * Modify or remove the finobt record. 1600 */ 1601 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1602 rec.ir_freecount--; 1603 if (rec.ir_freecount) 1604 error = xfs_inobt_update(cur, &rec); 1605 else 1606 error = xfs_btree_delete(cur, &i); 1607 if (error) 1608 goto error_cur; 1609 1610 /* 1611 * The finobt has now been updated appropriately. We haven't updated the 1612 * agi and superblock yet, so we can create an inobt cursor and validate 1613 * the original freecount. If all is well, make the equivalent update to 1614 * the inobt using the finobt record and offset information. 1615 */ 1616 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1617 1618 error = xfs_check_agi_freecount(icur, agi); 1619 if (error) 1620 goto error_icur; 1621 1622 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1623 if (error) 1624 goto error_icur; 1625 1626 /* 1627 * Both trees have now been updated. We must update the perag and 1628 * superblock before we can check the freecount for each btree. 1629 */ 1630 be32_add_cpu(&agi->agi_freecount, -1); 1631 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1632 pag->pagi_freecount--; 1633 1634 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1635 1636 error = xfs_check_agi_freecount(icur, agi); 1637 if (error) 1638 goto error_icur; 1639 error = xfs_check_agi_freecount(cur, agi); 1640 if (error) 1641 goto error_icur; 1642 1643 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1644 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1645 xfs_perag_put(pag); 1646 *inop = ino; 1647 return 0; 1648 1649 error_icur: 1650 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1651 error_cur: 1652 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1653 xfs_perag_put(pag); 1654 return error; 1655 } 1656 1657 /* 1658 * Allocate an inode on disk. 1659 * 1660 * Mode is used to tell whether the new inode will need space, and whether it 1661 * is a directory. 1662 * 1663 * This function is designed to be called twice if it has to do an allocation 1664 * to make more free inodes. On the first call, *IO_agbp should be set to NULL. 1665 * If an inode is available without having to performn an allocation, an inode 1666 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation 1667 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. 1668 * The caller should then commit the current transaction, allocate a 1669 * new transaction, and call xfs_dialloc() again, passing in the previous value 1670 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI 1671 * buffer is locked across the two calls, the second call is guaranteed to have 1672 * a free inode available. 1673 * 1674 * Once we successfully pick an inode its number is returned and the on-disk 1675 * data structures are updated. The inode itself is not read in, since doing so 1676 * would break ordering constraints with xfs_reclaim. 1677 */ 1678 int 1679 xfs_dialloc( 1680 struct xfs_trans *tp, 1681 xfs_ino_t parent, 1682 umode_t mode, 1683 int okalloc, 1684 struct xfs_buf **IO_agbp, 1685 xfs_ino_t *inop) 1686 { 1687 struct xfs_mount *mp = tp->t_mountp; 1688 struct xfs_buf *agbp; 1689 xfs_agnumber_t agno; 1690 int error; 1691 int ialloced; 1692 int noroom = 0; 1693 xfs_agnumber_t start_agno; 1694 struct xfs_perag *pag; 1695 1696 if (*IO_agbp) { 1697 /* 1698 * If the caller passes in a pointer to the AGI buffer, 1699 * continue where we left off before. In this case, we 1700 * know that the allocation group has free inodes. 1701 */ 1702 agbp = *IO_agbp; 1703 goto out_alloc; 1704 } 1705 1706 /* 1707 * We do not have an agbp, so select an initial allocation 1708 * group for inode allocation. 1709 */ 1710 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc); 1711 if (start_agno == NULLAGNUMBER) { 1712 *inop = NULLFSINO; 1713 return 0; 1714 } 1715 1716 /* 1717 * If we have already hit the ceiling of inode blocks then clear 1718 * okalloc so we scan all available agi structures for a free 1719 * inode. 1720 * 1721 * Read rough value of mp->m_icount by percpu_counter_read_positive, 1722 * which will sacrifice the preciseness but improve the performance. 1723 */ 1724 if (mp->m_maxicount && 1725 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos 1726 > mp->m_maxicount) { 1727 noroom = 1; 1728 okalloc = 0; 1729 } 1730 1731 /* 1732 * Loop until we find an allocation group that either has free inodes 1733 * or in which we can allocate some inodes. Iterate through the 1734 * allocation groups upward, wrapping at the end. 1735 */ 1736 agno = start_agno; 1737 for (;;) { 1738 pag = xfs_perag_get(mp, agno); 1739 if (!pag->pagi_inodeok) { 1740 xfs_ialloc_next_ag(mp); 1741 goto nextag; 1742 } 1743 1744 if (!pag->pagi_init) { 1745 error = xfs_ialloc_pagi_init(mp, tp, agno); 1746 if (error) 1747 goto out_error; 1748 } 1749 1750 /* 1751 * Do a first racy fast path check if this AG is usable. 1752 */ 1753 if (!pag->pagi_freecount && !okalloc) 1754 goto nextag; 1755 1756 /* 1757 * Then read in the AGI buffer and recheck with the AGI buffer 1758 * lock held. 1759 */ 1760 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1761 if (error) 1762 goto out_error; 1763 1764 if (pag->pagi_freecount) { 1765 xfs_perag_put(pag); 1766 goto out_alloc; 1767 } 1768 1769 if (!okalloc) 1770 goto nextag_relse_buffer; 1771 1772 1773 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); 1774 if (error) { 1775 xfs_trans_brelse(tp, agbp); 1776 1777 if (error != -ENOSPC) 1778 goto out_error; 1779 1780 xfs_perag_put(pag); 1781 *inop = NULLFSINO; 1782 return 0; 1783 } 1784 1785 if (ialloced) { 1786 /* 1787 * We successfully allocated some inodes, return 1788 * the current context to the caller so that it 1789 * can commit the current transaction and call 1790 * us again where we left off. 1791 */ 1792 ASSERT(pag->pagi_freecount > 0); 1793 xfs_perag_put(pag); 1794 1795 *IO_agbp = agbp; 1796 *inop = NULLFSINO; 1797 return 0; 1798 } 1799 1800 nextag_relse_buffer: 1801 xfs_trans_brelse(tp, agbp); 1802 nextag: 1803 xfs_perag_put(pag); 1804 if (++agno == mp->m_sb.sb_agcount) 1805 agno = 0; 1806 if (agno == start_agno) { 1807 *inop = NULLFSINO; 1808 return noroom ? -ENOSPC : 0; 1809 } 1810 } 1811 1812 out_alloc: 1813 *IO_agbp = NULL; 1814 return xfs_dialloc_ag(tp, agbp, parent, inop); 1815 out_error: 1816 xfs_perag_put(pag); 1817 return error; 1818 } 1819 1820 /* 1821 * Free the blocks of an inode chunk. We must consider that the inode chunk 1822 * might be sparse and only free the regions that are allocated as part of the 1823 * chunk. 1824 */ 1825 STATIC void 1826 xfs_difree_inode_chunk( 1827 struct xfs_mount *mp, 1828 xfs_agnumber_t agno, 1829 struct xfs_inobt_rec_incore *rec, 1830 struct xfs_defer_ops *dfops) 1831 { 1832 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino); 1833 int startidx, endidx; 1834 int nextbit; 1835 xfs_agblock_t agbno; 1836 int contigblk; 1837 struct xfs_owner_info oinfo; 1838 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); 1839 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES); 1840 1841 if (!xfs_inobt_issparse(rec->ir_holemask)) { 1842 /* not sparse, calculate extent info directly */ 1843 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno), 1844 mp->m_ialloc_blks, &oinfo); 1845 return; 1846 } 1847 1848 /* holemask is only 16-bits (fits in an unsigned long) */ 1849 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); 1850 holemask[0] = rec->ir_holemask; 1851 1852 /* 1853 * Find contiguous ranges of zeroes (i.e., allocated regions) in the 1854 * holemask and convert the start/end index of each range to an extent. 1855 * We start with the start and end index both pointing at the first 0 in 1856 * the mask. 1857 */ 1858 startidx = endidx = find_first_zero_bit(holemask, 1859 XFS_INOBT_HOLEMASK_BITS); 1860 nextbit = startidx + 1; 1861 while (startidx < XFS_INOBT_HOLEMASK_BITS) { 1862 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, 1863 nextbit); 1864 /* 1865 * If the next zero bit is contiguous, update the end index of 1866 * the current range and continue. 1867 */ 1868 if (nextbit != XFS_INOBT_HOLEMASK_BITS && 1869 nextbit == endidx + 1) { 1870 endidx = nextbit; 1871 goto next; 1872 } 1873 1874 /* 1875 * nextbit is not contiguous with the current end index. Convert 1876 * the current start/end to an extent and add it to the free 1877 * list. 1878 */ 1879 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / 1880 mp->m_sb.sb_inopblock; 1881 contigblk = ((endidx - startidx + 1) * 1882 XFS_INODES_PER_HOLEMASK_BIT) / 1883 mp->m_sb.sb_inopblock; 1884 1885 ASSERT(agbno % mp->m_sb.sb_spino_align == 0); 1886 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); 1887 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno), 1888 contigblk, &oinfo); 1889 1890 /* reset range to current bit and carry on... */ 1891 startidx = endidx = nextbit; 1892 1893 next: 1894 nextbit++; 1895 } 1896 } 1897 1898 STATIC int 1899 xfs_difree_inobt( 1900 struct xfs_mount *mp, 1901 struct xfs_trans *tp, 1902 struct xfs_buf *agbp, 1903 xfs_agino_t agino, 1904 struct xfs_defer_ops *dfops, 1905 struct xfs_icluster *xic, 1906 struct xfs_inobt_rec_incore *orec) 1907 { 1908 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1909 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1910 struct xfs_perag *pag; 1911 struct xfs_btree_cur *cur; 1912 struct xfs_inobt_rec_incore rec; 1913 int ilen; 1914 int error; 1915 int i; 1916 int off; 1917 1918 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1919 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 1920 1921 /* 1922 * Initialize the cursor. 1923 */ 1924 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1925 1926 error = xfs_check_agi_freecount(cur, agi); 1927 if (error) 1928 goto error0; 1929 1930 /* 1931 * Look for the entry describing this inode. 1932 */ 1933 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 1934 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 1935 __func__, error); 1936 goto error0; 1937 } 1938 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1939 error = xfs_inobt_get_rec(cur, &rec, &i); 1940 if (error) { 1941 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 1942 __func__, error); 1943 goto error0; 1944 } 1945 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1946 /* 1947 * Get the offset in the inode chunk. 1948 */ 1949 off = agino - rec.ir_startino; 1950 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 1951 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 1952 /* 1953 * Mark the inode free & increment the count. 1954 */ 1955 rec.ir_free |= XFS_INOBT_MASK(off); 1956 rec.ir_freecount++; 1957 1958 /* 1959 * When an inode chunk is free, it becomes eligible for removal. Don't 1960 * remove the chunk if the block size is large enough for multiple inode 1961 * chunks (that might not be free). 1962 */ 1963 if (!(mp->m_flags & XFS_MOUNT_IKEEP) && 1964 rec.ir_free == XFS_INOBT_ALL_FREE && 1965 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 1966 xic->deleted = true; 1967 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); 1968 xic->alloc = xfs_inobt_irec_to_allocmask(&rec); 1969 1970 /* 1971 * Remove the inode cluster from the AGI B+Tree, adjust the 1972 * AGI and Superblock inode counts, and mark the disk space 1973 * to be freed when the transaction is committed. 1974 */ 1975 ilen = rec.ir_freecount; 1976 be32_add_cpu(&agi->agi_count, -ilen); 1977 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 1978 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 1979 pag = xfs_perag_get(mp, agno); 1980 pag->pagi_freecount -= ilen - 1; 1981 xfs_perag_put(pag); 1982 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 1983 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 1984 1985 if ((error = xfs_btree_delete(cur, &i))) { 1986 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 1987 __func__, error); 1988 goto error0; 1989 } 1990 1991 xfs_difree_inode_chunk(mp, agno, &rec, dfops); 1992 } else { 1993 xic->deleted = false; 1994 1995 error = xfs_inobt_update(cur, &rec); 1996 if (error) { 1997 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 1998 __func__, error); 1999 goto error0; 2000 } 2001 2002 /* 2003 * Change the inode free counts and log the ag/sb changes. 2004 */ 2005 be32_add_cpu(&agi->agi_freecount, 1); 2006 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 2007 pag = xfs_perag_get(mp, agno); 2008 pag->pagi_freecount++; 2009 xfs_perag_put(pag); 2010 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 2011 } 2012 2013 error = xfs_check_agi_freecount(cur, agi); 2014 if (error) 2015 goto error0; 2016 2017 *orec = rec; 2018 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2019 return 0; 2020 2021 error0: 2022 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2023 return error; 2024 } 2025 2026 /* 2027 * Free an inode in the free inode btree. 2028 */ 2029 STATIC int 2030 xfs_difree_finobt( 2031 struct xfs_mount *mp, 2032 struct xfs_trans *tp, 2033 struct xfs_buf *agbp, 2034 xfs_agino_t agino, 2035 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 2036 { 2037 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 2038 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 2039 struct xfs_btree_cur *cur; 2040 struct xfs_inobt_rec_incore rec; 2041 int offset = agino - ibtrec->ir_startino; 2042 int error; 2043 int i; 2044 2045 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 2046 2047 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 2048 if (error) 2049 goto error; 2050 if (i == 0) { 2051 /* 2052 * If the record does not exist in the finobt, we must have just 2053 * freed an inode in a previously fully allocated chunk. If not, 2054 * something is out of sync. 2055 */ 2056 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error); 2057 2058 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, 2059 ibtrec->ir_count, 2060 ibtrec->ir_freecount, 2061 ibtrec->ir_free, &i); 2062 if (error) 2063 goto error; 2064 ASSERT(i == 1); 2065 2066 goto out; 2067 } 2068 2069 /* 2070 * Read and update the existing record. We could just copy the ibtrec 2071 * across here, but that would defeat the purpose of having redundant 2072 * metadata. By making the modifications independently, we can catch 2073 * corruptions that we wouldn't see if we just copied from one record 2074 * to another. 2075 */ 2076 error = xfs_inobt_get_rec(cur, &rec, &i); 2077 if (error) 2078 goto error; 2079 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 2080 2081 rec.ir_free |= XFS_INOBT_MASK(offset); 2082 rec.ir_freecount++; 2083 2084 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) && 2085 (rec.ir_freecount == ibtrec->ir_freecount), 2086 error); 2087 2088 /* 2089 * The content of inobt records should always match between the inobt 2090 * and finobt. The lifecycle of records in the finobt is different from 2091 * the inobt in that the finobt only tracks records with at least one 2092 * free inode. Hence, if all of the inodes are free and we aren't 2093 * keeping inode chunks permanently on disk, remove the record. 2094 * Otherwise, update the record with the new information. 2095 * 2096 * Note that we currently can't free chunks when the block size is large 2097 * enough for multiple chunks. Leave the finobt record to remain in sync 2098 * with the inobt. 2099 */ 2100 if (rec.ir_free == XFS_INOBT_ALL_FREE && 2101 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK && 2102 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 2103 error = xfs_btree_delete(cur, &i); 2104 if (error) 2105 goto error; 2106 ASSERT(i == 1); 2107 } else { 2108 error = xfs_inobt_update(cur, &rec); 2109 if (error) 2110 goto error; 2111 } 2112 2113 out: 2114 error = xfs_check_agi_freecount(cur, agi); 2115 if (error) 2116 goto error; 2117 2118 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2119 return 0; 2120 2121 error: 2122 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2123 return error; 2124 } 2125 2126 /* 2127 * Free disk inode. Carefully avoids touching the incore inode, all 2128 * manipulations incore are the caller's responsibility. 2129 * The on-disk inode is not changed by this operation, only the 2130 * btree (free inode mask) is changed. 2131 */ 2132 int 2133 xfs_difree( 2134 struct xfs_trans *tp, /* transaction pointer */ 2135 xfs_ino_t inode, /* inode to be freed */ 2136 struct xfs_defer_ops *dfops, /* extents to free */ 2137 struct xfs_icluster *xic) /* cluster info if deleted */ 2138 { 2139 /* REFERENCED */ 2140 xfs_agblock_t agbno; /* block number containing inode */ 2141 struct xfs_buf *agbp; /* buffer for allocation group header */ 2142 xfs_agino_t agino; /* allocation group inode number */ 2143 xfs_agnumber_t agno; /* allocation group number */ 2144 int error; /* error return value */ 2145 struct xfs_mount *mp; /* mount structure for filesystem */ 2146 struct xfs_inobt_rec_incore rec;/* btree record */ 2147 2148 mp = tp->t_mountp; 2149 2150 /* 2151 * Break up inode number into its components. 2152 */ 2153 agno = XFS_INO_TO_AGNO(mp, inode); 2154 if (agno >= mp->m_sb.sb_agcount) { 2155 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", 2156 __func__, agno, mp->m_sb.sb_agcount); 2157 ASSERT(0); 2158 return -EINVAL; 2159 } 2160 agino = XFS_INO_TO_AGINO(mp, inode); 2161 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { 2162 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 2163 __func__, (unsigned long long)inode, 2164 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); 2165 ASSERT(0); 2166 return -EINVAL; 2167 } 2168 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2169 if (agbno >= mp->m_sb.sb_agblocks) { 2170 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 2171 __func__, agbno, mp->m_sb.sb_agblocks); 2172 ASSERT(0); 2173 return -EINVAL; 2174 } 2175 /* 2176 * Get the allocation group header. 2177 */ 2178 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2179 if (error) { 2180 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 2181 __func__, error); 2182 return error; 2183 } 2184 2185 /* 2186 * Fix up the inode allocation btree. 2187 */ 2188 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec); 2189 if (error) 2190 goto error0; 2191 2192 /* 2193 * Fix up the free inode btree. 2194 */ 2195 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 2196 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); 2197 if (error) 2198 goto error0; 2199 } 2200 2201 return 0; 2202 2203 error0: 2204 return error; 2205 } 2206 2207 STATIC int 2208 xfs_imap_lookup( 2209 struct xfs_mount *mp, 2210 struct xfs_trans *tp, 2211 xfs_agnumber_t agno, 2212 xfs_agino_t agino, 2213 xfs_agblock_t agbno, 2214 xfs_agblock_t *chunk_agbno, 2215 xfs_agblock_t *offset_agbno, 2216 int flags) 2217 { 2218 struct xfs_inobt_rec_incore rec; 2219 struct xfs_btree_cur *cur; 2220 struct xfs_buf *agbp; 2221 int error; 2222 int i; 2223 2224 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2225 if (error) { 2226 xfs_alert(mp, 2227 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 2228 __func__, error, agno); 2229 return error; 2230 } 2231 2232 /* 2233 * Lookup the inode record for the given agino. If the record cannot be 2234 * found, then it's an invalid inode number and we should abort. Once 2235 * we have a record, we need to ensure it contains the inode number 2236 * we are looking up. 2237 */ 2238 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 2239 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 2240 if (!error) { 2241 if (i) 2242 error = xfs_inobt_get_rec(cur, &rec, &i); 2243 if (!error && i == 0) 2244 error = -EINVAL; 2245 } 2246 2247 xfs_trans_brelse(tp, agbp); 2248 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); 2249 if (error) 2250 return error; 2251 2252 /* check that the returned record contains the required inode */ 2253 if (rec.ir_startino > agino || 2254 rec.ir_startino + mp->m_ialloc_inos <= agino) 2255 return -EINVAL; 2256 2257 /* for untrusted inodes check it is allocated first */ 2258 if ((flags & XFS_IGET_UNTRUSTED) && 2259 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 2260 return -EINVAL; 2261 2262 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 2263 *offset_agbno = agbno - *chunk_agbno; 2264 return 0; 2265 } 2266 2267 /* 2268 * Return the location of the inode in imap, for mapping it into a buffer. 2269 */ 2270 int 2271 xfs_imap( 2272 xfs_mount_t *mp, /* file system mount structure */ 2273 xfs_trans_t *tp, /* transaction pointer */ 2274 xfs_ino_t ino, /* inode to locate */ 2275 struct xfs_imap *imap, /* location map structure */ 2276 uint flags) /* flags for inode btree lookup */ 2277 { 2278 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 2279 xfs_agino_t agino; /* inode number within alloc group */ 2280 xfs_agnumber_t agno; /* allocation group number */ 2281 int blks_per_cluster; /* num blocks per inode cluster */ 2282 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 2283 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 2284 int error; /* error code */ 2285 int offset; /* index of inode in its buffer */ 2286 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 2287 2288 ASSERT(ino != NULLFSINO); 2289 2290 /* 2291 * Split up the inode number into its parts. 2292 */ 2293 agno = XFS_INO_TO_AGNO(mp, ino); 2294 agino = XFS_INO_TO_AGINO(mp, ino); 2295 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2296 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || 2297 ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2298 #ifdef DEBUG 2299 /* 2300 * Don't output diagnostic information for untrusted inodes 2301 * as they can be invalid without implying corruption. 2302 */ 2303 if (flags & XFS_IGET_UNTRUSTED) 2304 return -EINVAL; 2305 if (agno >= mp->m_sb.sb_agcount) { 2306 xfs_alert(mp, 2307 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", 2308 __func__, agno, mp->m_sb.sb_agcount); 2309 } 2310 if (agbno >= mp->m_sb.sb_agblocks) { 2311 xfs_alert(mp, 2312 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 2313 __func__, (unsigned long long)agbno, 2314 (unsigned long)mp->m_sb.sb_agblocks); 2315 } 2316 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2317 xfs_alert(mp, 2318 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 2319 __func__, ino, 2320 XFS_AGINO_TO_INO(mp, agno, agino)); 2321 } 2322 xfs_stack_trace(); 2323 #endif /* DEBUG */ 2324 return -EINVAL; 2325 } 2326 2327 blks_per_cluster = xfs_icluster_size_fsb(mp); 2328 2329 /* 2330 * For bulkstat and handle lookups, we have an untrusted inode number 2331 * that we have to verify is valid. We cannot do this just by reading 2332 * the inode buffer as it may have been unlinked and removed leaving 2333 * inodes in stale state on disk. Hence we have to do a btree lookup 2334 * in all cases where an untrusted inode number is passed. 2335 */ 2336 if (flags & XFS_IGET_UNTRUSTED) { 2337 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2338 &chunk_agbno, &offset_agbno, flags); 2339 if (error) 2340 return error; 2341 goto out_map; 2342 } 2343 2344 /* 2345 * If the inode cluster size is the same as the blocksize or 2346 * smaller we get to the buffer by simple arithmetics. 2347 */ 2348 if (blks_per_cluster == 1) { 2349 offset = XFS_INO_TO_OFFSET(mp, ino); 2350 ASSERT(offset < mp->m_sb.sb_inopblock); 2351 2352 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); 2353 imap->im_len = XFS_FSB_TO_BB(mp, 1); 2354 imap->im_boffset = (unsigned short)(offset << 2355 mp->m_sb.sb_inodelog); 2356 return 0; 2357 } 2358 2359 /* 2360 * If the inode chunks are aligned then use simple maths to 2361 * find the location. Otherwise we have to do a btree 2362 * lookup to find the location. 2363 */ 2364 if (mp->m_inoalign_mask) { 2365 offset_agbno = agbno & mp->m_inoalign_mask; 2366 chunk_agbno = agbno - offset_agbno; 2367 } else { 2368 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2369 &chunk_agbno, &offset_agbno, flags); 2370 if (error) 2371 return error; 2372 } 2373 2374 out_map: 2375 ASSERT(agbno >= chunk_agbno); 2376 cluster_agbno = chunk_agbno + 2377 ((offset_agbno / blks_per_cluster) * blks_per_cluster); 2378 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 2379 XFS_INO_TO_OFFSET(mp, ino); 2380 2381 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); 2382 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster); 2383 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); 2384 2385 /* 2386 * If the inode number maps to a block outside the bounds 2387 * of the file system then return NULL rather than calling 2388 * read_buf and panicing when we get an error from the 2389 * driver. 2390 */ 2391 if ((imap->im_blkno + imap->im_len) > 2392 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 2393 xfs_alert(mp, 2394 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 2395 __func__, (unsigned long long) imap->im_blkno, 2396 (unsigned long long) imap->im_len, 2397 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 2398 return -EINVAL; 2399 } 2400 return 0; 2401 } 2402 2403 /* 2404 * Compute and fill in value of m_in_maxlevels. 2405 */ 2406 void 2407 xfs_ialloc_compute_maxlevels( 2408 xfs_mount_t *mp) /* file system mount structure */ 2409 { 2410 uint inodes; 2411 2412 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; 2413 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr, 2414 inodes); 2415 } 2416 2417 /* 2418 * Log specified fields for the ag hdr (inode section). The growth of the agi 2419 * structure over time requires that we interpret the buffer as two logical 2420 * regions delineated by the end of the unlinked list. This is due to the size 2421 * of the hash table and its location in the middle of the agi. 2422 * 2423 * For example, a request to log a field before agi_unlinked and a field after 2424 * agi_unlinked could cause us to log the entire hash table and use an excessive 2425 * amount of log space. To avoid this behavior, log the region up through 2426 * agi_unlinked in one call and the region after agi_unlinked through the end of 2427 * the structure in another. 2428 */ 2429 void 2430 xfs_ialloc_log_agi( 2431 xfs_trans_t *tp, /* transaction pointer */ 2432 xfs_buf_t *bp, /* allocation group header buffer */ 2433 int fields) /* bitmask of fields to log */ 2434 { 2435 int first; /* first byte number */ 2436 int last; /* last byte number */ 2437 static const short offsets[] = { /* field starting offsets */ 2438 /* keep in sync with bit definitions */ 2439 offsetof(xfs_agi_t, agi_magicnum), 2440 offsetof(xfs_agi_t, agi_versionnum), 2441 offsetof(xfs_agi_t, agi_seqno), 2442 offsetof(xfs_agi_t, agi_length), 2443 offsetof(xfs_agi_t, agi_count), 2444 offsetof(xfs_agi_t, agi_root), 2445 offsetof(xfs_agi_t, agi_level), 2446 offsetof(xfs_agi_t, agi_freecount), 2447 offsetof(xfs_agi_t, agi_newino), 2448 offsetof(xfs_agi_t, agi_dirino), 2449 offsetof(xfs_agi_t, agi_unlinked), 2450 offsetof(xfs_agi_t, agi_free_root), 2451 offsetof(xfs_agi_t, agi_free_level), 2452 sizeof(xfs_agi_t) 2453 }; 2454 #ifdef DEBUG 2455 xfs_agi_t *agi; /* allocation group header */ 2456 2457 agi = XFS_BUF_TO_AGI(bp); 2458 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2459 #endif 2460 2461 /* 2462 * Compute byte offsets for the first and last fields in the first 2463 * region and log the agi buffer. This only logs up through 2464 * agi_unlinked. 2465 */ 2466 if (fields & XFS_AGI_ALL_BITS_R1) { 2467 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2468 &first, &last); 2469 xfs_trans_log_buf(tp, bp, first, last); 2470 } 2471 2472 /* 2473 * Mask off the bits in the first region and calculate the first and 2474 * last field offsets for any bits in the second region. 2475 */ 2476 fields &= ~XFS_AGI_ALL_BITS_R1; 2477 if (fields) { 2478 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2479 &first, &last); 2480 xfs_trans_log_buf(tp, bp, first, last); 2481 } 2482 } 2483 2484 #ifdef DEBUG 2485 STATIC void 2486 xfs_check_agi_unlinked( 2487 struct xfs_agi *agi) 2488 { 2489 int i; 2490 2491 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) 2492 ASSERT(agi->agi_unlinked[i]); 2493 } 2494 #else 2495 #define xfs_check_agi_unlinked(agi) 2496 #endif 2497 2498 static bool 2499 xfs_agi_verify( 2500 struct xfs_buf *bp) 2501 { 2502 struct xfs_mount *mp = bp->b_target->bt_mount; 2503 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); 2504 2505 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2506 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) 2507 return false; 2508 if (!xfs_log_check_lsn(mp, 2509 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn))) 2510 return false; 2511 } 2512 2513 /* 2514 * Validate the magic number of the agi block. 2515 */ 2516 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC)) 2517 return false; 2518 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2519 return false; 2520 2521 if (be32_to_cpu(agi->agi_level) < 1 || 2522 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS) 2523 return false; 2524 2525 if (xfs_sb_version_hasfinobt(&mp->m_sb) && 2526 (be32_to_cpu(agi->agi_free_level) < 1 || 2527 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS)) 2528 return false; 2529 2530 /* 2531 * during growfs operations, the perag is not fully initialised, 2532 * so we can't use it for any useful checking. growfs ensures we can't 2533 * use it by using uncached buffers that don't have the perag attached 2534 * so we can detect and avoid this problem. 2535 */ 2536 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) 2537 return false; 2538 2539 xfs_check_agi_unlinked(agi); 2540 return true; 2541 } 2542 2543 static void 2544 xfs_agi_read_verify( 2545 struct xfs_buf *bp) 2546 { 2547 struct xfs_mount *mp = bp->b_target->bt_mount; 2548 2549 if (xfs_sb_version_hascrc(&mp->m_sb) && 2550 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2551 xfs_buf_ioerror(bp, -EFSBADCRC); 2552 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp, 2553 XFS_ERRTAG_IALLOC_READ_AGI)) 2554 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2555 2556 if (bp->b_error) 2557 xfs_verifier_error(bp); 2558 } 2559 2560 static void 2561 xfs_agi_write_verify( 2562 struct xfs_buf *bp) 2563 { 2564 struct xfs_mount *mp = bp->b_target->bt_mount; 2565 struct xfs_buf_log_item *bip = bp->b_fspriv; 2566 2567 if (!xfs_agi_verify(bp)) { 2568 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2569 xfs_verifier_error(bp); 2570 return; 2571 } 2572 2573 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2574 return; 2575 2576 if (bip) 2577 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2578 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2579 } 2580 2581 const struct xfs_buf_ops xfs_agi_buf_ops = { 2582 .name = "xfs_agi", 2583 .verify_read = xfs_agi_read_verify, 2584 .verify_write = xfs_agi_write_verify, 2585 }; 2586 2587 /* 2588 * Read in the allocation group header (inode allocation section) 2589 */ 2590 int 2591 xfs_read_agi( 2592 struct xfs_mount *mp, /* file system mount structure */ 2593 struct xfs_trans *tp, /* transaction pointer */ 2594 xfs_agnumber_t agno, /* allocation group number */ 2595 struct xfs_buf **bpp) /* allocation group hdr buf */ 2596 { 2597 int error; 2598 2599 trace_xfs_read_agi(mp, agno); 2600 2601 ASSERT(agno != NULLAGNUMBER); 2602 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2603 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 2604 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); 2605 if (error) 2606 return error; 2607 if (tp) 2608 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF); 2609 2610 xfs_buf_set_ref(*bpp, XFS_AGI_REF); 2611 return 0; 2612 } 2613 2614 int 2615 xfs_ialloc_read_agi( 2616 struct xfs_mount *mp, /* file system mount structure */ 2617 struct xfs_trans *tp, /* transaction pointer */ 2618 xfs_agnumber_t agno, /* allocation group number */ 2619 struct xfs_buf **bpp) /* allocation group hdr buf */ 2620 { 2621 struct xfs_agi *agi; /* allocation group header */ 2622 struct xfs_perag *pag; /* per allocation group data */ 2623 int error; 2624 2625 trace_xfs_ialloc_read_agi(mp, agno); 2626 2627 error = xfs_read_agi(mp, tp, agno, bpp); 2628 if (error) 2629 return error; 2630 2631 agi = XFS_BUF_TO_AGI(*bpp); 2632 pag = xfs_perag_get(mp, agno); 2633 if (!pag->pagi_init) { 2634 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2635 pag->pagi_count = be32_to_cpu(agi->agi_count); 2636 pag->pagi_init = 1; 2637 } 2638 2639 /* 2640 * It's possible for these to be out of sync if 2641 * we are in the middle of a forced shutdown. 2642 */ 2643 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2644 XFS_FORCED_SHUTDOWN(mp)); 2645 xfs_perag_put(pag); 2646 return 0; 2647 } 2648 2649 /* 2650 * Read in the agi to initialise the per-ag data in the mount structure 2651 */ 2652 int 2653 xfs_ialloc_pagi_init( 2654 xfs_mount_t *mp, /* file system mount structure */ 2655 xfs_trans_t *tp, /* transaction pointer */ 2656 xfs_agnumber_t agno) /* allocation group number */ 2657 { 2658 xfs_buf_t *bp = NULL; 2659 int error; 2660 2661 error = xfs_ialloc_read_agi(mp, tp, agno, &bp); 2662 if (error) 2663 return error; 2664 if (bp) 2665 xfs_trans_brelse(tp, bp); 2666 return 0; 2667 } 2668 2669 /* Calculate the first and last possible inode number in an AG. */ 2670 void 2671 xfs_ialloc_agino_range( 2672 struct xfs_mount *mp, 2673 xfs_agnumber_t agno, 2674 xfs_agino_t *first, 2675 xfs_agino_t *last) 2676 { 2677 xfs_agblock_t bno; 2678 xfs_agblock_t eoag; 2679 2680 eoag = xfs_ag_block_count(mp, agno); 2681 2682 /* 2683 * Calculate the first inode, which will be in the first 2684 * cluster-aligned block after the AGFL. 2685 */ 2686 bno = round_up(XFS_AGFL_BLOCK(mp) + 1, 2687 xfs_ialloc_cluster_alignment(mp)); 2688 *first = XFS_OFFBNO_TO_AGINO(mp, bno, 0); 2689 2690 /* 2691 * Calculate the last inode, which will be at the end of the 2692 * last (aligned) cluster that can be allocated in the AG. 2693 */ 2694 bno = round_down(eoag, xfs_ialloc_cluster_alignment(mp)); 2695 *last = XFS_OFFBNO_TO_AGINO(mp, bno, 0) - 1; 2696 } 2697 2698 /* 2699 * Verify that an AG inode number pointer neither points outside the AG 2700 * nor points at static metadata. 2701 */ 2702 bool 2703 xfs_verify_agino( 2704 struct xfs_mount *mp, 2705 xfs_agnumber_t agno, 2706 xfs_agino_t agino) 2707 { 2708 xfs_agino_t first; 2709 xfs_agino_t last; 2710 2711 xfs_ialloc_agino_range(mp, agno, &first, &last); 2712 return agino >= first && agino <= last; 2713 } 2714 2715 /* 2716 * Verify that an FS inode number pointer neither points outside the 2717 * filesystem nor points at static AG metadata. 2718 */ 2719 bool 2720 xfs_verify_ino( 2721 struct xfs_mount *mp, 2722 xfs_ino_t ino) 2723 { 2724 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ino); 2725 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 2726 2727 if (agno >= mp->m_sb.sb_agcount) 2728 return false; 2729 if (XFS_AGINO_TO_INO(mp, agno, agino) != ino) 2730 return false; 2731 return xfs_verify_agino(mp, agno, agino); 2732 } 2733 2734 /* Is this an internal inode number? */ 2735 bool 2736 xfs_internal_inum( 2737 struct xfs_mount *mp, 2738 xfs_ino_t ino) 2739 { 2740 return ino == mp->m_sb.sb_rbmino || ino == mp->m_sb.sb_rsumino || 2741 (xfs_sb_version_hasquota(&mp->m_sb) && 2742 xfs_is_quota_inode(&mp->m_sb, ino)); 2743 } 2744 2745 /* 2746 * Verify that a directory entry's inode number doesn't point at an internal 2747 * inode, empty space, or static AG metadata. 2748 */ 2749 bool 2750 xfs_verify_dir_ino( 2751 struct xfs_mount *mp, 2752 xfs_ino_t ino) 2753 { 2754 if (xfs_internal_inum(mp, ino)) 2755 return false; 2756 return xfs_verify_ino(mp, ino); 2757 } 2758