xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc.c (revision f9ce26c5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_btree.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_ialloc_btree.h"
19 #include "xfs_alloc.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 #include "xfs_bmap.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_icreate_item.h"
26 #include "xfs_icache.h"
27 #include "xfs_trace.h"
28 #include "xfs_log.h"
29 #include "xfs_rmap.h"
30 
31 /*
32  * Lookup a record by ino in the btree given by cur.
33  */
34 int					/* error */
35 xfs_inobt_lookup(
36 	struct xfs_btree_cur	*cur,	/* btree cursor */
37 	xfs_agino_t		ino,	/* starting inode of chunk */
38 	xfs_lookup_t		dir,	/* <=, >=, == */
39 	int			*stat)	/* success/failure */
40 {
41 	cur->bc_rec.i.ir_startino = ino;
42 	cur->bc_rec.i.ir_holemask = 0;
43 	cur->bc_rec.i.ir_count = 0;
44 	cur->bc_rec.i.ir_freecount = 0;
45 	cur->bc_rec.i.ir_free = 0;
46 	return xfs_btree_lookup(cur, dir, stat);
47 }
48 
49 /*
50  * Update the record referred to by cur to the value given.
51  * This either works (return 0) or gets an EFSCORRUPTED error.
52  */
53 STATIC int				/* error */
54 xfs_inobt_update(
55 	struct xfs_btree_cur	*cur,	/* btree cursor */
56 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
57 {
58 	union xfs_btree_rec	rec;
59 
60 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
62 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 	} else {
66 		/* ir_holemask/ir_count not supported on-disk */
67 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 	}
69 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 	return xfs_btree_update(cur, &rec);
71 }
72 
73 /* Convert on-disk btree record to incore inobt record. */
74 void
75 xfs_inobt_btrec_to_irec(
76 	struct xfs_mount		*mp,
77 	union xfs_btree_rec		*rec,
78 	struct xfs_inobt_rec_incore	*irec)
79 {
80 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 	if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
82 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 	} else {
86 		/*
87 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 		 * values for full inode chunks.
89 		 */
90 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 		irec->ir_count = XFS_INODES_PER_CHUNK;
92 		irec->ir_freecount =
93 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 	}
95 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96 }
97 
98 /*
99  * Get the data from the pointed-to record.
100  */
101 int
102 xfs_inobt_get_rec(
103 	struct xfs_btree_cur		*cur,
104 	struct xfs_inobt_rec_incore	*irec,
105 	int				*stat)
106 {
107 	struct xfs_mount		*mp = cur->bc_mp;
108 	xfs_agnumber_t			agno = cur->bc_ag.agno;
109 	union xfs_btree_rec		*rec;
110 	int				error;
111 	uint64_t			realfree;
112 
113 	error = xfs_btree_get_rec(cur, &rec, stat);
114 	if (error || *stat == 0)
115 		return error;
116 
117 	xfs_inobt_btrec_to_irec(mp, rec, irec);
118 
119 	if (!xfs_verify_agino(mp, agno, irec->ir_startino))
120 		goto out_bad_rec;
121 	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
122 	    irec->ir_count > XFS_INODES_PER_CHUNK)
123 		goto out_bad_rec;
124 	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
125 		goto out_bad_rec;
126 
127 	/* if there are no holes, return the first available offset */
128 	if (!xfs_inobt_issparse(irec->ir_holemask))
129 		realfree = irec->ir_free;
130 	else
131 		realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
132 	if (hweight64(realfree) != irec->ir_freecount)
133 		goto out_bad_rec;
134 
135 	return 0;
136 
137 out_bad_rec:
138 	xfs_warn(mp,
139 		"%s Inode BTree record corruption in AG %d detected!",
140 		cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
141 	xfs_warn(mp,
142 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 		irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 		irec->ir_free, irec->ir_holemask);
145 	return -EFSCORRUPTED;
146 }
147 
148 /*
149  * Insert a single inobt record. Cursor must already point to desired location.
150  */
151 int
152 xfs_inobt_insert_rec(
153 	struct xfs_btree_cur	*cur,
154 	uint16_t		holemask,
155 	uint8_t			count,
156 	int32_t			freecount,
157 	xfs_inofree_t		free,
158 	int			*stat)
159 {
160 	cur->bc_rec.i.ir_holemask = holemask;
161 	cur->bc_rec.i.ir_count = count;
162 	cur->bc_rec.i.ir_freecount = freecount;
163 	cur->bc_rec.i.ir_free = free;
164 	return xfs_btree_insert(cur, stat);
165 }
166 
167 /*
168  * Insert records describing a newly allocated inode chunk into the inobt.
169  */
170 STATIC int
171 xfs_inobt_insert(
172 	struct xfs_mount	*mp,
173 	struct xfs_trans	*tp,
174 	struct xfs_buf		*agbp,
175 	xfs_agino_t		newino,
176 	xfs_agino_t		newlen,
177 	xfs_btnum_t		btnum)
178 {
179 	struct xfs_btree_cur	*cur;
180 	struct xfs_agi		*agi = agbp->b_addr;
181 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
182 	xfs_agino_t		thisino;
183 	int			i;
184 	int			error;
185 
186 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
187 
188 	for (thisino = newino;
189 	     thisino < newino + newlen;
190 	     thisino += XFS_INODES_PER_CHUNK) {
191 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
192 		if (error) {
193 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
194 			return error;
195 		}
196 		ASSERT(i == 0);
197 
198 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
199 					     XFS_INODES_PER_CHUNK,
200 					     XFS_INODES_PER_CHUNK,
201 					     XFS_INOBT_ALL_FREE, &i);
202 		if (error) {
203 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
204 			return error;
205 		}
206 		ASSERT(i == 1);
207 	}
208 
209 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
210 
211 	return 0;
212 }
213 
214 /*
215  * Verify that the number of free inodes in the AGI is correct.
216  */
217 #ifdef DEBUG
218 STATIC int
219 xfs_check_agi_freecount(
220 	struct xfs_btree_cur	*cur,
221 	struct xfs_agi		*agi)
222 {
223 	if (cur->bc_nlevels == 1) {
224 		xfs_inobt_rec_incore_t rec;
225 		int		freecount = 0;
226 		int		error;
227 		int		i;
228 
229 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
230 		if (error)
231 			return error;
232 
233 		do {
234 			error = xfs_inobt_get_rec(cur, &rec, &i);
235 			if (error)
236 				return error;
237 
238 			if (i) {
239 				freecount += rec.ir_freecount;
240 				error = xfs_btree_increment(cur, 0, &i);
241 				if (error)
242 					return error;
243 			}
244 		} while (i == 1);
245 
246 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
247 			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
248 	}
249 	return 0;
250 }
251 #else
252 #define xfs_check_agi_freecount(cur, agi)	0
253 #endif
254 
255 /*
256  * Initialise a new set of inodes. When called without a transaction context
257  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258  * than logging them (which in a transaction context puts them into the AIL
259  * for writeback rather than the xfsbufd queue).
260  */
261 int
262 xfs_ialloc_inode_init(
263 	struct xfs_mount	*mp,
264 	struct xfs_trans	*tp,
265 	struct list_head	*buffer_list,
266 	int			icount,
267 	xfs_agnumber_t		agno,
268 	xfs_agblock_t		agbno,
269 	xfs_agblock_t		length,
270 	unsigned int		gen)
271 {
272 	struct xfs_buf		*fbuf;
273 	struct xfs_dinode	*free;
274 	int			nbufs;
275 	int			version;
276 	int			i, j;
277 	xfs_daddr_t		d;
278 	xfs_ino_t		ino = 0;
279 	int			error;
280 
281 	/*
282 	 * Loop over the new block(s), filling in the inodes.  For small block
283 	 * sizes, manipulate the inodes in buffers  which are multiples of the
284 	 * blocks size.
285 	 */
286 	nbufs = length / M_IGEO(mp)->blocks_per_cluster;
287 
288 	/*
289 	 * Figure out what version number to use in the inodes we create.  If
290 	 * the superblock version has caught up to the one that supports the new
291 	 * inode format, then use the new inode version.  Otherwise use the old
292 	 * version so that old kernels will continue to be able to use the file
293 	 * system.
294 	 *
295 	 * For v3 inodes, we also need to write the inode number into the inode,
296 	 * so calculate the first inode number of the chunk here as
297 	 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
298 	 * across multiple filesystem blocks (such as a cluster) and so cannot
299 	 * be used in the cluster buffer loop below.
300 	 *
301 	 * Further, because we are writing the inode directly into the buffer
302 	 * and calculating a CRC on the entire inode, we have ot log the entire
303 	 * inode so that the entire range the CRC covers is present in the log.
304 	 * That means for v3 inode we log the entire buffer rather than just the
305 	 * inode cores.
306 	 */
307 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
308 		version = 3;
309 		ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
310 
311 		/*
312 		 * log the initialisation that is about to take place as an
313 		 * logical operation. This means the transaction does not
314 		 * need to log the physical changes to the inode buffers as log
315 		 * recovery will know what initialisation is actually needed.
316 		 * Hence we only need to log the buffers as "ordered" buffers so
317 		 * they track in the AIL as if they were physically logged.
318 		 */
319 		if (tp)
320 			xfs_icreate_log(tp, agno, agbno, icount,
321 					mp->m_sb.sb_inodesize, length, gen);
322 	} else
323 		version = 2;
324 
325 	for (j = 0; j < nbufs; j++) {
326 		/*
327 		 * Get the block.
328 		 */
329 		d = XFS_AGB_TO_DADDR(mp, agno, agbno +
330 				(j * M_IGEO(mp)->blocks_per_cluster));
331 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
332 				mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
333 				XBF_UNMAPPED, &fbuf);
334 		if (error)
335 			return error;
336 
337 		/* Initialize the inode buffers and log them appropriately. */
338 		fbuf->b_ops = &xfs_inode_buf_ops;
339 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
340 		for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
341 			int	ioffset = i << mp->m_sb.sb_inodelog;
342 			uint	isize = XFS_DINODE_SIZE(&mp->m_sb);
343 
344 			free = xfs_make_iptr(mp, fbuf, i);
345 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
346 			free->di_version = version;
347 			free->di_gen = cpu_to_be32(gen);
348 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
349 
350 			if (version == 3) {
351 				free->di_ino = cpu_to_be64(ino);
352 				ino++;
353 				uuid_copy(&free->di_uuid,
354 					  &mp->m_sb.sb_meta_uuid);
355 				xfs_dinode_calc_crc(mp, free);
356 			} else if (tp) {
357 				/* just log the inode core */
358 				xfs_trans_log_buf(tp, fbuf, ioffset,
359 						  ioffset + isize - 1);
360 			}
361 		}
362 
363 		if (tp) {
364 			/*
365 			 * Mark the buffer as an inode allocation buffer so it
366 			 * sticks in AIL at the point of this allocation
367 			 * transaction. This ensures the they are on disk before
368 			 * the tail of the log can be moved past this
369 			 * transaction (i.e. by preventing relogging from moving
370 			 * it forward in the log).
371 			 */
372 			xfs_trans_inode_alloc_buf(tp, fbuf);
373 			if (version == 3) {
374 				/*
375 				 * Mark the buffer as ordered so that they are
376 				 * not physically logged in the transaction but
377 				 * still tracked in the AIL as part of the
378 				 * transaction and pin the log appropriately.
379 				 */
380 				xfs_trans_ordered_buf(tp, fbuf);
381 			}
382 		} else {
383 			fbuf->b_flags |= XBF_DONE;
384 			xfs_buf_delwri_queue(fbuf, buffer_list);
385 			xfs_buf_relse(fbuf);
386 		}
387 	}
388 	return 0;
389 }
390 
391 /*
392  * Align startino and allocmask for a recently allocated sparse chunk such that
393  * they are fit for insertion (or merge) into the on-disk inode btrees.
394  *
395  * Background:
396  *
397  * When enabled, sparse inode support increases the inode alignment from cluster
398  * size to inode chunk size. This means that the minimum range between two
399  * non-adjacent inode records in the inobt is large enough for a full inode
400  * record. This allows for cluster sized, cluster aligned block allocation
401  * without need to worry about whether the resulting inode record overlaps with
402  * another record in the tree. Without this basic rule, we would have to deal
403  * with the consequences of overlap by potentially undoing recent allocations in
404  * the inode allocation codepath.
405  *
406  * Because of this alignment rule (which is enforced on mount), there are two
407  * inobt possibilities for newly allocated sparse chunks. One is that the
408  * aligned inode record for the chunk covers a range of inodes not already
409  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
410  * other is that a record already exists at the aligned startino that considers
411  * the newly allocated range as sparse. In the latter case, record content is
412  * merged in hope that sparse inode chunks fill to full chunks over time.
413  */
414 STATIC void
415 xfs_align_sparse_ino(
416 	struct xfs_mount		*mp,
417 	xfs_agino_t			*startino,
418 	uint16_t			*allocmask)
419 {
420 	xfs_agblock_t			agbno;
421 	xfs_agblock_t			mod;
422 	int				offset;
423 
424 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
425 	mod = agbno % mp->m_sb.sb_inoalignmt;
426 	if (!mod)
427 		return;
428 
429 	/* calculate the inode offset and align startino */
430 	offset = XFS_AGB_TO_AGINO(mp, mod);
431 	*startino -= offset;
432 
433 	/*
434 	 * Since startino has been aligned down, left shift allocmask such that
435 	 * it continues to represent the same physical inodes relative to the
436 	 * new startino.
437 	 */
438 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
439 }
440 
441 /*
442  * Determine whether the source inode record can merge into the target. Both
443  * records must be sparse, the inode ranges must match and there must be no
444  * allocation overlap between the records.
445  */
446 STATIC bool
447 __xfs_inobt_can_merge(
448 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
449 	struct xfs_inobt_rec_incore	*srec)	/* src record */
450 {
451 	uint64_t			talloc;
452 	uint64_t			salloc;
453 
454 	/* records must cover the same inode range */
455 	if (trec->ir_startino != srec->ir_startino)
456 		return false;
457 
458 	/* both records must be sparse */
459 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
460 	    !xfs_inobt_issparse(srec->ir_holemask))
461 		return false;
462 
463 	/* both records must track some inodes */
464 	if (!trec->ir_count || !srec->ir_count)
465 		return false;
466 
467 	/* can't exceed capacity of a full record */
468 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
469 		return false;
470 
471 	/* verify there is no allocation overlap */
472 	talloc = xfs_inobt_irec_to_allocmask(trec);
473 	salloc = xfs_inobt_irec_to_allocmask(srec);
474 	if (talloc & salloc)
475 		return false;
476 
477 	return true;
478 }
479 
480 /*
481  * Merge the source inode record into the target. The caller must call
482  * __xfs_inobt_can_merge() to ensure the merge is valid.
483  */
484 STATIC void
485 __xfs_inobt_rec_merge(
486 	struct xfs_inobt_rec_incore	*trec,	/* target */
487 	struct xfs_inobt_rec_incore	*srec)	/* src */
488 {
489 	ASSERT(trec->ir_startino == srec->ir_startino);
490 
491 	/* combine the counts */
492 	trec->ir_count += srec->ir_count;
493 	trec->ir_freecount += srec->ir_freecount;
494 
495 	/*
496 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
497 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
498 	 */
499 	trec->ir_holemask &= srec->ir_holemask;
500 	trec->ir_free &= srec->ir_free;
501 }
502 
503 /*
504  * Insert a new sparse inode chunk into the associated inode btree. The inode
505  * record for the sparse chunk is pre-aligned to a startino that should match
506  * any pre-existing sparse inode record in the tree. This allows sparse chunks
507  * to fill over time.
508  *
509  * This function supports two modes of handling preexisting records depending on
510  * the merge flag. If merge is true, the provided record is merged with the
511  * existing record and updated in place. The merged record is returned in nrec.
512  * If merge is false, an existing record is replaced with the provided record.
513  * If no preexisting record exists, the provided record is always inserted.
514  *
515  * It is considered corruption if a merge is requested and not possible. Given
516  * the sparse inode alignment constraints, this should never happen.
517  */
518 STATIC int
519 xfs_inobt_insert_sprec(
520 	struct xfs_mount		*mp,
521 	struct xfs_trans		*tp,
522 	struct xfs_buf			*agbp,
523 	int				btnum,
524 	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
525 	bool				merge)	/* merge or replace */
526 {
527 	struct xfs_btree_cur		*cur;
528 	struct xfs_agi			*agi = agbp->b_addr;
529 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
530 	int				error;
531 	int				i;
532 	struct xfs_inobt_rec_incore	rec;
533 
534 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
535 
536 	/* the new record is pre-aligned so we know where to look */
537 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
538 	if (error)
539 		goto error;
540 	/* if nothing there, insert a new record and return */
541 	if (i == 0) {
542 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
543 					     nrec->ir_count, nrec->ir_freecount,
544 					     nrec->ir_free, &i);
545 		if (error)
546 			goto error;
547 		if (XFS_IS_CORRUPT(mp, i != 1)) {
548 			error = -EFSCORRUPTED;
549 			goto error;
550 		}
551 
552 		goto out;
553 	}
554 
555 	/*
556 	 * A record exists at this startino. Merge or replace the record
557 	 * depending on what we've been asked to do.
558 	 */
559 	if (merge) {
560 		error = xfs_inobt_get_rec(cur, &rec, &i);
561 		if (error)
562 			goto error;
563 		if (XFS_IS_CORRUPT(mp, i != 1)) {
564 			error = -EFSCORRUPTED;
565 			goto error;
566 		}
567 		if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
568 			error = -EFSCORRUPTED;
569 			goto error;
570 		}
571 
572 		/*
573 		 * This should never fail. If we have coexisting records that
574 		 * cannot merge, something is seriously wrong.
575 		 */
576 		if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
577 			error = -EFSCORRUPTED;
578 			goto error;
579 		}
580 
581 		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
582 					 rec.ir_holemask, nrec->ir_startino,
583 					 nrec->ir_holemask);
584 
585 		/* merge to nrec to output the updated record */
586 		__xfs_inobt_rec_merge(nrec, &rec);
587 
588 		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
589 					  nrec->ir_holemask);
590 
591 		error = xfs_inobt_rec_check_count(mp, nrec);
592 		if (error)
593 			goto error;
594 	}
595 
596 	error = xfs_inobt_update(cur, nrec);
597 	if (error)
598 		goto error;
599 
600 out:
601 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
602 	return 0;
603 error:
604 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
605 	return error;
606 }
607 
608 /*
609  * Allocate new inodes in the allocation group specified by agbp.
610  * Returns 0 if inodes were allocated in this AG; 1 if there was no space
611  * in this AG; or the usual negative error code.
612  */
613 STATIC int
614 xfs_ialloc_ag_alloc(
615 	struct xfs_trans	*tp,
616 	struct xfs_buf		*agbp)
617 {
618 	struct xfs_agi		*agi;
619 	struct xfs_alloc_arg	args;
620 	xfs_agnumber_t		agno;
621 	int			error;
622 	xfs_agino_t		newino;		/* new first inode's number */
623 	xfs_agino_t		newlen;		/* new number of inodes */
624 	int			isaligned = 0;	/* inode allocation at stripe */
625 						/* unit boundary */
626 	/* init. to full chunk */
627 	uint16_t		allocmask = (uint16_t) -1;
628 	struct xfs_inobt_rec_incore rec;
629 	struct xfs_perag	*pag;
630 	struct xfs_ino_geometry	*igeo = M_IGEO(tp->t_mountp);
631 	int			do_sparse = 0;
632 
633 	memset(&args, 0, sizeof(args));
634 	args.tp = tp;
635 	args.mp = tp->t_mountp;
636 	args.fsbno = NULLFSBLOCK;
637 	args.oinfo = XFS_RMAP_OINFO_INODES;
638 
639 #ifdef DEBUG
640 	/* randomly do sparse inode allocations */
641 	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
642 	    igeo->ialloc_min_blks < igeo->ialloc_blks)
643 		do_sparse = prandom_u32() & 1;
644 #endif
645 
646 	/*
647 	 * Locking will ensure that we don't have two callers in here
648 	 * at one time.
649 	 */
650 	newlen = igeo->ialloc_inos;
651 	if (igeo->maxicount &&
652 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
653 							igeo->maxicount)
654 		return -ENOSPC;
655 	args.minlen = args.maxlen = igeo->ialloc_blks;
656 	/*
657 	 * First try to allocate inodes contiguous with the last-allocated
658 	 * chunk of inodes.  If the filesystem is striped, this will fill
659 	 * an entire stripe unit with inodes.
660 	 */
661 	agi = agbp->b_addr;
662 	newino = be32_to_cpu(agi->agi_newino);
663 	agno = be32_to_cpu(agi->agi_seqno);
664 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
665 		     igeo->ialloc_blks;
666 	if (do_sparse)
667 		goto sparse_alloc;
668 	if (likely(newino != NULLAGINO &&
669 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
670 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
671 		args.type = XFS_ALLOCTYPE_THIS_BNO;
672 		args.prod = 1;
673 
674 		/*
675 		 * We need to take into account alignment here to ensure that
676 		 * we don't modify the free list if we fail to have an exact
677 		 * block. If we don't have an exact match, and every oher
678 		 * attempt allocation attempt fails, we'll end up cancelling
679 		 * a dirty transaction and shutting down.
680 		 *
681 		 * For an exact allocation, alignment must be 1,
682 		 * however we need to take cluster alignment into account when
683 		 * fixing up the freelist. Use the minalignslop field to
684 		 * indicate that extra blocks might be required for alignment,
685 		 * but not to use them in the actual exact allocation.
686 		 */
687 		args.alignment = 1;
688 		args.minalignslop = igeo->cluster_align - 1;
689 
690 		/* Allow space for the inode btree to split. */
691 		args.minleft = igeo->inobt_maxlevels;
692 		if ((error = xfs_alloc_vextent(&args)))
693 			return error;
694 
695 		/*
696 		 * This request might have dirtied the transaction if the AG can
697 		 * satisfy the request, but the exact block was not available.
698 		 * If the allocation did fail, subsequent requests will relax
699 		 * the exact agbno requirement and increase the alignment
700 		 * instead. It is critical that the total size of the request
701 		 * (len + alignment + slop) does not increase from this point
702 		 * on, so reset minalignslop to ensure it is not included in
703 		 * subsequent requests.
704 		 */
705 		args.minalignslop = 0;
706 	}
707 
708 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
709 		/*
710 		 * Set the alignment for the allocation.
711 		 * If stripe alignment is turned on then align at stripe unit
712 		 * boundary.
713 		 * If the cluster size is smaller than a filesystem block
714 		 * then we're doing I/O for inodes in filesystem block size
715 		 * pieces, so don't need alignment anyway.
716 		 */
717 		isaligned = 0;
718 		if (igeo->ialloc_align) {
719 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
720 			args.alignment = args.mp->m_dalign;
721 			isaligned = 1;
722 		} else
723 			args.alignment = igeo->cluster_align;
724 		/*
725 		 * Need to figure out where to allocate the inode blocks.
726 		 * Ideally they should be spaced out through the a.g.
727 		 * For now, just allocate blocks up front.
728 		 */
729 		args.agbno = be32_to_cpu(agi->agi_root);
730 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
731 		/*
732 		 * Allocate a fixed-size extent of inodes.
733 		 */
734 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
735 		args.prod = 1;
736 		/*
737 		 * Allow space for the inode btree to split.
738 		 */
739 		args.minleft = igeo->inobt_maxlevels;
740 		if ((error = xfs_alloc_vextent(&args)))
741 			return error;
742 	}
743 
744 	/*
745 	 * If stripe alignment is turned on, then try again with cluster
746 	 * alignment.
747 	 */
748 	if (isaligned && args.fsbno == NULLFSBLOCK) {
749 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
750 		args.agbno = be32_to_cpu(agi->agi_root);
751 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
752 		args.alignment = igeo->cluster_align;
753 		if ((error = xfs_alloc_vextent(&args)))
754 			return error;
755 	}
756 
757 	/*
758 	 * Finally, try a sparse allocation if the filesystem supports it and
759 	 * the sparse allocation length is smaller than a full chunk.
760 	 */
761 	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
762 	    igeo->ialloc_min_blks < igeo->ialloc_blks &&
763 	    args.fsbno == NULLFSBLOCK) {
764 sparse_alloc:
765 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
766 		args.agbno = be32_to_cpu(agi->agi_root);
767 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
768 		args.alignment = args.mp->m_sb.sb_spino_align;
769 		args.prod = 1;
770 
771 		args.minlen = igeo->ialloc_min_blks;
772 		args.maxlen = args.minlen;
773 
774 		/*
775 		 * The inode record will be aligned to full chunk size. We must
776 		 * prevent sparse allocation from AG boundaries that result in
777 		 * invalid inode records, such as records that start at agbno 0
778 		 * or extend beyond the AG.
779 		 *
780 		 * Set min agbno to the first aligned, non-zero agbno and max to
781 		 * the last aligned agbno that is at least one full chunk from
782 		 * the end of the AG.
783 		 */
784 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
785 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
786 					    args.mp->m_sb.sb_inoalignmt) -
787 				 igeo->ialloc_blks;
788 
789 		error = xfs_alloc_vextent(&args);
790 		if (error)
791 			return error;
792 
793 		newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
794 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
795 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
796 	}
797 
798 	if (args.fsbno == NULLFSBLOCK)
799 		return 1;
800 
801 	ASSERT(args.len == args.minlen);
802 
803 	/*
804 	 * Stamp and write the inode buffers.
805 	 *
806 	 * Seed the new inode cluster with a random generation number. This
807 	 * prevents short-term reuse of generation numbers if a chunk is
808 	 * freed and then immediately reallocated. We use random numbers
809 	 * rather than a linear progression to prevent the next generation
810 	 * number from being easily guessable.
811 	 */
812 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
813 			args.agbno, args.len, prandom_u32());
814 
815 	if (error)
816 		return error;
817 	/*
818 	 * Convert the results.
819 	 */
820 	newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
821 
822 	if (xfs_inobt_issparse(~allocmask)) {
823 		/*
824 		 * We've allocated a sparse chunk. Align the startino and mask.
825 		 */
826 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
827 
828 		rec.ir_startino = newino;
829 		rec.ir_holemask = ~allocmask;
830 		rec.ir_count = newlen;
831 		rec.ir_freecount = newlen;
832 		rec.ir_free = XFS_INOBT_ALL_FREE;
833 
834 		/*
835 		 * Insert the sparse record into the inobt and allow for a merge
836 		 * if necessary. If a merge does occur, rec is updated to the
837 		 * merged record.
838 		 */
839 		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
840 					       &rec, true);
841 		if (error == -EFSCORRUPTED) {
842 			xfs_alert(args.mp,
843 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
844 				  XFS_AGINO_TO_INO(args.mp, agno,
845 						   rec.ir_startino),
846 				  rec.ir_holemask, rec.ir_count);
847 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
848 		}
849 		if (error)
850 			return error;
851 
852 		/*
853 		 * We can't merge the part we've just allocated as for the inobt
854 		 * due to finobt semantics. The original record may or may not
855 		 * exist independent of whether physical inodes exist in this
856 		 * sparse chunk.
857 		 *
858 		 * We must update the finobt record based on the inobt record.
859 		 * rec contains the fully merged and up to date inobt record
860 		 * from the previous call. Set merge false to replace any
861 		 * existing record with this one.
862 		 */
863 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
864 			error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
865 						       XFS_BTNUM_FINO, &rec,
866 						       false);
867 			if (error)
868 				return error;
869 		}
870 	} else {
871 		/* full chunk - insert new records to both btrees */
872 		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
873 					 XFS_BTNUM_INO);
874 		if (error)
875 			return error;
876 
877 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
878 			error = xfs_inobt_insert(args.mp, tp, agbp, newino,
879 						 newlen, XFS_BTNUM_FINO);
880 			if (error)
881 				return error;
882 		}
883 	}
884 
885 	/*
886 	 * Update AGI counts and newino.
887 	 */
888 	be32_add_cpu(&agi->agi_count, newlen);
889 	be32_add_cpu(&agi->agi_freecount, newlen);
890 	pag = agbp->b_pag;
891 	pag->pagi_freecount += newlen;
892 	pag->pagi_count += newlen;
893 	agi->agi_newino = cpu_to_be32(newino);
894 
895 	/*
896 	 * Log allocation group header fields
897 	 */
898 	xfs_ialloc_log_agi(tp, agbp,
899 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
900 	/*
901 	 * Modify/log superblock values for inode count and inode free count.
902 	 */
903 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
904 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
905 	return 0;
906 }
907 
908 STATIC xfs_agnumber_t
909 xfs_ialloc_next_ag(
910 	xfs_mount_t	*mp)
911 {
912 	xfs_agnumber_t	agno;
913 
914 	spin_lock(&mp->m_agirotor_lock);
915 	agno = mp->m_agirotor;
916 	if (++mp->m_agirotor >= mp->m_maxagi)
917 		mp->m_agirotor = 0;
918 	spin_unlock(&mp->m_agirotor_lock);
919 
920 	return agno;
921 }
922 
923 /*
924  * Select an allocation group to look for a free inode in, based on the parent
925  * inode and the mode.  Return the allocation group buffer.
926  */
927 STATIC xfs_agnumber_t
928 xfs_ialloc_ag_select(
929 	xfs_trans_t	*tp,		/* transaction pointer */
930 	xfs_ino_t	parent,		/* parent directory inode number */
931 	umode_t		mode)		/* bits set to indicate file type */
932 {
933 	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
934 	xfs_agnumber_t	agno;		/* current ag number */
935 	int		flags;		/* alloc buffer locking flags */
936 	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
937 	xfs_extlen_t	longest = 0;	/* longest extent available */
938 	xfs_mount_t	*mp;		/* mount point structure */
939 	int		needspace;	/* file mode implies space allocated */
940 	xfs_perag_t	*pag;		/* per allocation group data */
941 	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
942 	int		error;
943 
944 	/*
945 	 * Files of these types need at least one block if length > 0
946 	 * (and they won't fit in the inode, but that's hard to figure out).
947 	 */
948 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
949 	mp = tp->t_mountp;
950 	agcount = mp->m_maxagi;
951 	if (S_ISDIR(mode))
952 		pagno = xfs_ialloc_next_ag(mp);
953 	else {
954 		pagno = XFS_INO_TO_AGNO(mp, parent);
955 		if (pagno >= agcount)
956 			pagno = 0;
957 	}
958 
959 	ASSERT(pagno < agcount);
960 
961 	/*
962 	 * Loop through allocation groups, looking for one with a little
963 	 * free space in it.  Note we don't look for free inodes, exactly.
964 	 * Instead, we include whether there is a need to allocate inodes
965 	 * to mean that blocks must be allocated for them,
966 	 * if none are currently free.
967 	 */
968 	agno = pagno;
969 	flags = XFS_ALLOC_FLAG_TRYLOCK;
970 	for (;;) {
971 		pag = xfs_perag_get(mp, agno);
972 		if (!pag->pagi_inodeok) {
973 			xfs_ialloc_next_ag(mp);
974 			goto nextag;
975 		}
976 
977 		if (!pag->pagi_init) {
978 			error = xfs_ialloc_pagi_init(mp, tp, agno);
979 			if (error)
980 				goto nextag;
981 		}
982 
983 		if (pag->pagi_freecount) {
984 			xfs_perag_put(pag);
985 			return agno;
986 		}
987 
988 		if (!pag->pagf_init) {
989 			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
990 			if (error)
991 				goto nextag;
992 		}
993 
994 		/*
995 		 * Check that there is enough free space for the file plus a
996 		 * chunk of inodes if we need to allocate some. If this is the
997 		 * first pass across the AGs, take into account the potential
998 		 * space needed for alignment of inode chunks when checking the
999 		 * longest contiguous free space in the AG - this prevents us
1000 		 * from getting ENOSPC because we have free space larger than
1001 		 * ialloc_blks but alignment constraints prevent us from using
1002 		 * it.
1003 		 *
1004 		 * If we can't find an AG with space for full alignment slack to
1005 		 * be taken into account, we must be near ENOSPC in all AGs.
1006 		 * Hence we don't include alignment for the second pass and so
1007 		 * if we fail allocation due to alignment issues then it is most
1008 		 * likely a real ENOSPC condition.
1009 		 */
1010 		ineed = M_IGEO(mp)->ialloc_min_blks;
1011 		if (flags && ineed > 1)
1012 			ineed += M_IGEO(mp)->cluster_align;
1013 		longest = pag->pagf_longest;
1014 		if (!longest)
1015 			longest = pag->pagf_flcount > 0;
1016 
1017 		if (pag->pagf_freeblks >= needspace + ineed &&
1018 		    longest >= ineed) {
1019 			xfs_perag_put(pag);
1020 			return agno;
1021 		}
1022 nextag:
1023 		xfs_perag_put(pag);
1024 		/*
1025 		 * No point in iterating over the rest, if we're shutting
1026 		 * down.
1027 		 */
1028 		if (XFS_FORCED_SHUTDOWN(mp))
1029 			return NULLAGNUMBER;
1030 		agno++;
1031 		if (agno >= agcount)
1032 			agno = 0;
1033 		if (agno == pagno) {
1034 			if (flags == 0)
1035 				return NULLAGNUMBER;
1036 			flags = 0;
1037 		}
1038 	}
1039 }
1040 
1041 /*
1042  * Try to retrieve the next record to the left/right from the current one.
1043  */
1044 STATIC int
1045 xfs_ialloc_next_rec(
1046 	struct xfs_btree_cur	*cur,
1047 	xfs_inobt_rec_incore_t	*rec,
1048 	int			*done,
1049 	int			left)
1050 {
1051 	int                     error;
1052 	int			i;
1053 
1054 	if (left)
1055 		error = xfs_btree_decrement(cur, 0, &i);
1056 	else
1057 		error = xfs_btree_increment(cur, 0, &i);
1058 
1059 	if (error)
1060 		return error;
1061 	*done = !i;
1062 	if (i) {
1063 		error = xfs_inobt_get_rec(cur, rec, &i);
1064 		if (error)
1065 			return error;
1066 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1067 			return -EFSCORRUPTED;
1068 	}
1069 
1070 	return 0;
1071 }
1072 
1073 STATIC int
1074 xfs_ialloc_get_rec(
1075 	struct xfs_btree_cur	*cur,
1076 	xfs_agino_t		agino,
1077 	xfs_inobt_rec_incore_t	*rec,
1078 	int			*done)
1079 {
1080 	int                     error;
1081 	int			i;
1082 
1083 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1084 	if (error)
1085 		return error;
1086 	*done = !i;
1087 	if (i) {
1088 		error = xfs_inobt_get_rec(cur, rec, &i);
1089 		if (error)
1090 			return error;
1091 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1092 			return -EFSCORRUPTED;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 /*
1099  * Return the offset of the first free inode in the record. If the inode chunk
1100  * is sparsely allocated, we convert the record holemask to inode granularity
1101  * and mask off the unallocated regions from the inode free mask.
1102  */
1103 STATIC int
1104 xfs_inobt_first_free_inode(
1105 	struct xfs_inobt_rec_incore	*rec)
1106 {
1107 	xfs_inofree_t			realfree;
1108 
1109 	/* if there are no holes, return the first available offset */
1110 	if (!xfs_inobt_issparse(rec->ir_holemask))
1111 		return xfs_lowbit64(rec->ir_free);
1112 
1113 	realfree = xfs_inobt_irec_to_allocmask(rec);
1114 	realfree &= rec->ir_free;
1115 
1116 	return xfs_lowbit64(realfree);
1117 }
1118 
1119 /*
1120  * Allocate an inode using the inobt-only algorithm.
1121  */
1122 STATIC int
1123 xfs_dialloc_ag_inobt(
1124 	struct xfs_trans	*tp,
1125 	struct xfs_buf		*agbp,
1126 	xfs_ino_t		parent,
1127 	xfs_ino_t		*inop)
1128 {
1129 	struct xfs_mount	*mp = tp->t_mountp;
1130 	struct xfs_agi		*agi = agbp->b_addr;
1131 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
1132 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1133 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1134 	struct xfs_perag	*pag = agbp->b_pag;
1135 	struct xfs_btree_cur	*cur, *tcur;
1136 	struct xfs_inobt_rec_incore rec, trec;
1137 	xfs_ino_t		ino;
1138 	int			error;
1139 	int			offset;
1140 	int			i, j;
1141 	int			searchdistance = 10;
1142 
1143 	ASSERT(pag->pagi_init);
1144 	ASSERT(pag->pagi_inodeok);
1145 	ASSERT(pag->pagi_freecount > 0);
1146 
1147  restart_pagno:
1148 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1149 	/*
1150 	 * If pagino is 0 (this is the root inode allocation) use newino.
1151 	 * This must work because we've just allocated some.
1152 	 */
1153 	if (!pagino)
1154 		pagino = be32_to_cpu(agi->agi_newino);
1155 
1156 	error = xfs_check_agi_freecount(cur, agi);
1157 	if (error)
1158 		goto error0;
1159 
1160 	/*
1161 	 * If in the same AG as the parent, try to get near the parent.
1162 	 */
1163 	if (pagno == agno) {
1164 		int		doneleft;	/* done, to the left */
1165 		int		doneright;	/* done, to the right */
1166 
1167 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1168 		if (error)
1169 			goto error0;
1170 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1171 			error = -EFSCORRUPTED;
1172 			goto error0;
1173 		}
1174 
1175 		error = xfs_inobt_get_rec(cur, &rec, &j);
1176 		if (error)
1177 			goto error0;
1178 		if (XFS_IS_CORRUPT(mp, j != 1)) {
1179 			error = -EFSCORRUPTED;
1180 			goto error0;
1181 		}
1182 
1183 		if (rec.ir_freecount > 0) {
1184 			/*
1185 			 * Found a free inode in the same chunk
1186 			 * as the parent, done.
1187 			 */
1188 			goto alloc_inode;
1189 		}
1190 
1191 
1192 		/*
1193 		 * In the same AG as parent, but parent's chunk is full.
1194 		 */
1195 
1196 		/* duplicate the cursor, search left & right simultaneously */
1197 		error = xfs_btree_dup_cursor(cur, &tcur);
1198 		if (error)
1199 			goto error0;
1200 
1201 		/*
1202 		 * Skip to last blocks looked up if same parent inode.
1203 		 */
1204 		if (pagino != NULLAGINO &&
1205 		    pag->pagl_pagino == pagino &&
1206 		    pag->pagl_leftrec != NULLAGINO &&
1207 		    pag->pagl_rightrec != NULLAGINO) {
1208 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1209 						   &trec, &doneleft);
1210 			if (error)
1211 				goto error1;
1212 
1213 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1214 						   &rec, &doneright);
1215 			if (error)
1216 				goto error1;
1217 		} else {
1218 			/* search left with tcur, back up 1 record */
1219 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1220 			if (error)
1221 				goto error1;
1222 
1223 			/* search right with cur, go forward 1 record. */
1224 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1225 			if (error)
1226 				goto error1;
1227 		}
1228 
1229 		/*
1230 		 * Loop until we find an inode chunk with a free inode.
1231 		 */
1232 		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1233 			int	useleft;  /* using left inode chunk this time */
1234 
1235 			/* figure out the closer block if both are valid. */
1236 			if (!doneleft && !doneright) {
1237 				useleft = pagino -
1238 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1239 				  rec.ir_startino - pagino;
1240 			} else {
1241 				useleft = !doneleft;
1242 			}
1243 
1244 			/* free inodes to the left? */
1245 			if (useleft && trec.ir_freecount) {
1246 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1247 				cur = tcur;
1248 
1249 				pag->pagl_leftrec = trec.ir_startino;
1250 				pag->pagl_rightrec = rec.ir_startino;
1251 				pag->pagl_pagino = pagino;
1252 				rec = trec;
1253 				goto alloc_inode;
1254 			}
1255 
1256 			/* free inodes to the right? */
1257 			if (!useleft && rec.ir_freecount) {
1258 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1259 
1260 				pag->pagl_leftrec = trec.ir_startino;
1261 				pag->pagl_rightrec = rec.ir_startino;
1262 				pag->pagl_pagino = pagino;
1263 				goto alloc_inode;
1264 			}
1265 
1266 			/* get next record to check */
1267 			if (useleft) {
1268 				error = xfs_ialloc_next_rec(tcur, &trec,
1269 								 &doneleft, 1);
1270 			} else {
1271 				error = xfs_ialloc_next_rec(cur, &rec,
1272 								 &doneright, 0);
1273 			}
1274 			if (error)
1275 				goto error1;
1276 		}
1277 
1278 		if (searchdistance <= 0) {
1279 			/*
1280 			 * Not in range - save last search
1281 			 * location and allocate a new inode
1282 			 */
1283 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1284 			pag->pagl_leftrec = trec.ir_startino;
1285 			pag->pagl_rightrec = rec.ir_startino;
1286 			pag->pagl_pagino = pagino;
1287 
1288 		} else {
1289 			/*
1290 			 * We've reached the end of the btree. because
1291 			 * we are only searching a small chunk of the
1292 			 * btree each search, there is obviously free
1293 			 * inodes closer to the parent inode than we
1294 			 * are now. restart the search again.
1295 			 */
1296 			pag->pagl_pagino = NULLAGINO;
1297 			pag->pagl_leftrec = NULLAGINO;
1298 			pag->pagl_rightrec = NULLAGINO;
1299 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1300 			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1301 			goto restart_pagno;
1302 		}
1303 	}
1304 
1305 	/*
1306 	 * In a different AG from the parent.
1307 	 * See if the most recently allocated block has any free.
1308 	 */
1309 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1310 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1311 					 XFS_LOOKUP_EQ, &i);
1312 		if (error)
1313 			goto error0;
1314 
1315 		if (i == 1) {
1316 			error = xfs_inobt_get_rec(cur, &rec, &j);
1317 			if (error)
1318 				goto error0;
1319 
1320 			if (j == 1 && rec.ir_freecount > 0) {
1321 				/*
1322 				 * The last chunk allocated in the group
1323 				 * still has a free inode.
1324 				 */
1325 				goto alloc_inode;
1326 			}
1327 		}
1328 	}
1329 
1330 	/*
1331 	 * None left in the last group, search the whole AG
1332 	 */
1333 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1334 	if (error)
1335 		goto error0;
1336 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1337 		error = -EFSCORRUPTED;
1338 		goto error0;
1339 	}
1340 
1341 	for (;;) {
1342 		error = xfs_inobt_get_rec(cur, &rec, &i);
1343 		if (error)
1344 			goto error0;
1345 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1346 			error = -EFSCORRUPTED;
1347 			goto error0;
1348 		}
1349 		if (rec.ir_freecount > 0)
1350 			break;
1351 		error = xfs_btree_increment(cur, 0, &i);
1352 		if (error)
1353 			goto error0;
1354 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1355 			error = -EFSCORRUPTED;
1356 			goto error0;
1357 		}
1358 	}
1359 
1360 alloc_inode:
1361 	offset = xfs_inobt_first_free_inode(&rec);
1362 	ASSERT(offset >= 0);
1363 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1364 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1365 				   XFS_INODES_PER_CHUNK) == 0);
1366 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1367 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1368 	rec.ir_freecount--;
1369 	error = xfs_inobt_update(cur, &rec);
1370 	if (error)
1371 		goto error0;
1372 	be32_add_cpu(&agi->agi_freecount, -1);
1373 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1374 	pag->pagi_freecount--;
1375 
1376 	error = xfs_check_agi_freecount(cur, agi);
1377 	if (error)
1378 		goto error0;
1379 
1380 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1381 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1382 	*inop = ino;
1383 	return 0;
1384 error1:
1385 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1386 error0:
1387 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1388 	return error;
1389 }
1390 
1391 /*
1392  * Use the free inode btree to allocate an inode based on distance from the
1393  * parent. Note that the provided cursor may be deleted and replaced.
1394  */
1395 STATIC int
1396 xfs_dialloc_ag_finobt_near(
1397 	xfs_agino_t			pagino,
1398 	struct xfs_btree_cur		**ocur,
1399 	struct xfs_inobt_rec_incore	*rec)
1400 {
1401 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1402 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1403 	struct xfs_inobt_rec_incore	rrec;
1404 	int				error;
1405 	int				i, j;
1406 
1407 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1408 	if (error)
1409 		return error;
1410 
1411 	if (i == 1) {
1412 		error = xfs_inobt_get_rec(lcur, rec, &i);
1413 		if (error)
1414 			return error;
1415 		if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1416 			return -EFSCORRUPTED;
1417 
1418 		/*
1419 		 * See if we've landed in the parent inode record. The finobt
1420 		 * only tracks chunks with at least one free inode, so record
1421 		 * existence is enough.
1422 		 */
1423 		if (pagino >= rec->ir_startino &&
1424 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1425 			return 0;
1426 	}
1427 
1428 	error = xfs_btree_dup_cursor(lcur, &rcur);
1429 	if (error)
1430 		return error;
1431 
1432 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1433 	if (error)
1434 		goto error_rcur;
1435 	if (j == 1) {
1436 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1437 		if (error)
1438 			goto error_rcur;
1439 		if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1440 			error = -EFSCORRUPTED;
1441 			goto error_rcur;
1442 		}
1443 	}
1444 
1445 	if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1446 		error = -EFSCORRUPTED;
1447 		goto error_rcur;
1448 	}
1449 	if (i == 1 && j == 1) {
1450 		/*
1451 		 * Both the left and right records are valid. Choose the closer
1452 		 * inode chunk to the target.
1453 		 */
1454 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1455 		    (rrec.ir_startino - pagino)) {
1456 			*rec = rrec;
1457 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1458 			*ocur = rcur;
1459 		} else {
1460 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1461 		}
1462 	} else if (j == 1) {
1463 		/* only the right record is valid */
1464 		*rec = rrec;
1465 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1466 		*ocur = rcur;
1467 	} else if (i == 1) {
1468 		/* only the left record is valid */
1469 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1470 	}
1471 
1472 	return 0;
1473 
1474 error_rcur:
1475 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1476 	return error;
1477 }
1478 
1479 /*
1480  * Use the free inode btree to find a free inode based on a newino hint. If
1481  * the hint is NULL, find the first free inode in the AG.
1482  */
1483 STATIC int
1484 xfs_dialloc_ag_finobt_newino(
1485 	struct xfs_agi			*agi,
1486 	struct xfs_btree_cur		*cur,
1487 	struct xfs_inobt_rec_incore	*rec)
1488 {
1489 	int error;
1490 	int i;
1491 
1492 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1493 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1494 					 XFS_LOOKUP_EQ, &i);
1495 		if (error)
1496 			return error;
1497 		if (i == 1) {
1498 			error = xfs_inobt_get_rec(cur, rec, &i);
1499 			if (error)
1500 				return error;
1501 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1502 				return -EFSCORRUPTED;
1503 			return 0;
1504 		}
1505 	}
1506 
1507 	/*
1508 	 * Find the first inode available in the AG.
1509 	 */
1510 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1511 	if (error)
1512 		return error;
1513 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1514 		return -EFSCORRUPTED;
1515 
1516 	error = xfs_inobt_get_rec(cur, rec, &i);
1517 	if (error)
1518 		return error;
1519 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1520 		return -EFSCORRUPTED;
1521 
1522 	return 0;
1523 }
1524 
1525 /*
1526  * Update the inobt based on a modification made to the finobt. Also ensure that
1527  * the records from both trees are equivalent post-modification.
1528  */
1529 STATIC int
1530 xfs_dialloc_ag_update_inobt(
1531 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1532 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1533 	int				offset) /* inode offset */
1534 {
1535 	struct xfs_inobt_rec_incore	rec;
1536 	int				error;
1537 	int				i;
1538 
1539 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1540 	if (error)
1541 		return error;
1542 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1543 		return -EFSCORRUPTED;
1544 
1545 	error = xfs_inobt_get_rec(cur, &rec, &i);
1546 	if (error)
1547 		return error;
1548 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1549 		return -EFSCORRUPTED;
1550 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1551 				   XFS_INODES_PER_CHUNK) == 0);
1552 
1553 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1554 	rec.ir_freecount--;
1555 
1556 	if (XFS_IS_CORRUPT(cur->bc_mp,
1557 			   rec.ir_free != frec->ir_free ||
1558 			   rec.ir_freecount != frec->ir_freecount))
1559 		return -EFSCORRUPTED;
1560 
1561 	return xfs_inobt_update(cur, &rec);
1562 }
1563 
1564 /*
1565  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1566  * back to the inobt search algorithm.
1567  *
1568  * The caller selected an AG for us, and made sure that free inodes are
1569  * available.
1570  */
1571 int
1572 xfs_dialloc_ag(
1573 	struct xfs_trans	*tp,
1574 	struct xfs_buf		*agbp,
1575 	xfs_ino_t		parent,
1576 	xfs_ino_t		*inop)
1577 {
1578 	struct xfs_mount		*mp = tp->t_mountp;
1579 	struct xfs_agi			*agi = agbp->b_addr;
1580 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1581 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1582 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1583 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1584 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1585 	struct xfs_inobt_rec_incore	rec;
1586 	xfs_ino_t			ino;
1587 	int				error;
1588 	int				offset;
1589 	int				i;
1590 
1591 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1592 		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1593 
1594 	/*
1595 	 * If pagino is 0 (this is the root inode allocation) use newino.
1596 	 * This must work because we've just allocated some.
1597 	 */
1598 	if (!pagino)
1599 		pagino = be32_to_cpu(agi->agi_newino);
1600 
1601 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1602 
1603 	error = xfs_check_agi_freecount(cur, agi);
1604 	if (error)
1605 		goto error_cur;
1606 
1607 	/*
1608 	 * The search algorithm depends on whether we're in the same AG as the
1609 	 * parent. If so, find the closest available inode to the parent. If
1610 	 * not, consider the agi hint or find the first free inode in the AG.
1611 	 */
1612 	if (agno == pagno)
1613 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1614 	else
1615 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1616 	if (error)
1617 		goto error_cur;
1618 
1619 	offset = xfs_inobt_first_free_inode(&rec);
1620 	ASSERT(offset >= 0);
1621 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1622 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1623 				   XFS_INODES_PER_CHUNK) == 0);
1624 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1625 
1626 	/*
1627 	 * Modify or remove the finobt record.
1628 	 */
1629 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1630 	rec.ir_freecount--;
1631 	if (rec.ir_freecount)
1632 		error = xfs_inobt_update(cur, &rec);
1633 	else
1634 		error = xfs_btree_delete(cur, &i);
1635 	if (error)
1636 		goto error_cur;
1637 
1638 	/*
1639 	 * The finobt has now been updated appropriately. We haven't updated the
1640 	 * agi and superblock yet, so we can create an inobt cursor and validate
1641 	 * the original freecount. If all is well, make the equivalent update to
1642 	 * the inobt using the finobt record and offset information.
1643 	 */
1644 	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1645 
1646 	error = xfs_check_agi_freecount(icur, agi);
1647 	if (error)
1648 		goto error_icur;
1649 
1650 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1651 	if (error)
1652 		goto error_icur;
1653 
1654 	/*
1655 	 * Both trees have now been updated. We must update the perag and
1656 	 * superblock before we can check the freecount for each btree.
1657 	 */
1658 	be32_add_cpu(&agi->agi_freecount, -1);
1659 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1660 	agbp->b_pag->pagi_freecount--;
1661 
1662 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1663 
1664 	error = xfs_check_agi_freecount(icur, agi);
1665 	if (error)
1666 		goto error_icur;
1667 	error = xfs_check_agi_freecount(cur, agi);
1668 	if (error)
1669 		goto error_icur;
1670 
1671 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1672 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1673 	*inop = ino;
1674 	return 0;
1675 
1676 error_icur:
1677 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1678 error_cur:
1679 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1680 	return error;
1681 }
1682 
1683 static int
1684 xfs_dialloc_roll(
1685 	struct xfs_trans	**tpp,
1686 	struct xfs_buf		*agibp)
1687 {
1688 	struct xfs_trans	*tp = *tpp;
1689 	struct xfs_dquot_acct	*dqinfo;
1690 	int			error;
1691 
1692 	/*
1693 	 * Hold to on to the agibp across the commit so no other allocation can
1694 	 * come in and take the free inodes we just allocated for our caller.
1695 	 */
1696 	xfs_trans_bhold(tp, agibp);
1697 
1698 	/*
1699 	 * We want the quota changes to be associated with the next transaction,
1700 	 * NOT this one. So, detach the dqinfo from this and attach it to the
1701 	 * next transaction.
1702 	 */
1703 	dqinfo = tp->t_dqinfo;
1704 	tp->t_dqinfo = NULL;
1705 
1706 	error = xfs_trans_roll(&tp);
1707 
1708 	/* Re-attach the quota info that we detached from prev trx. */
1709 	tp->t_dqinfo = dqinfo;
1710 
1711 	*tpp = tp;
1712 	if (error)
1713 		return error;
1714 	xfs_trans_bjoin(tp, agibp);
1715 	return 0;
1716 }
1717 
1718 /*
1719  * Select and prepare an AG for inode allocation.
1720  *
1721  * Mode is used to tell whether the new inode is a directory and hence where to
1722  * locate it.
1723  *
1724  * This function will ensure that the selected AG has free inodes available to
1725  * allocate from. The selected AGI will be returned locked to the caller, and it
1726  * will allocate more free inodes if required. If no free inodes are found or
1727  * can be allocated, no AGI will be returned.
1728  */
1729 int
1730 xfs_dialloc_select_ag(
1731 	struct xfs_trans	**tpp,
1732 	xfs_ino_t		parent,
1733 	umode_t			mode,
1734 	struct xfs_buf		**IO_agbp)
1735 {
1736 	struct xfs_mount	*mp = (*tpp)->t_mountp;
1737 	struct xfs_buf		*agbp;
1738 	xfs_agnumber_t		agno;
1739 	int			error;
1740 	bool			noroom = false;
1741 	xfs_agnumber_t		start_agno;
1742 	struct xfs_perag	*pag;
1743 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1744 	bool			okalloc = true;
1745 
1746 	*IO_agbp = NULL;
1747 
1748 	/*
1749 	 * We do not have an agbp, so select an initial allocation
1750 	 * group for inode allocation.
1751 	 */
1752 	start_agno = xfs_ialloc_ag_select(*tpp, parent, mode);
1753 	if (start_agno == NULLAGNUMBER)
1754 		return 0;
1755 
1756 	/*
1757 	 * If we have already hit the ceiling of inode blocks then clear
1758 	 * okalloc so we scan all available agi structures for a free
1759 	 * inode.
1760 	 *
1761 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1762 	 * which will sacrifice the preciseness but improve the performance.
1763 	 */
1764 	if (igeo->maxicount &&
1765 	    percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1766 							> igeo->maxicount) {
1767 		noroom = true;
1768 		okalloc = false;
1769 	}
1770 
1771 	/*
1772 	 * Loop until we find an allocation group that either has free inodes
1773 	 * or in which we can allocate some inodes.  Iterate through the
1774 	 * allocation groups upward, wrapping at the end.
1775 	 */
1776 	agno = start_agno;
1777 	for (;;) {
1778 		pag = xfs_perag_get(mp, agno);
1779 		if (!pag->pagi_inodeok) {
1780 			xfs_ialloc_next_ag(mp);
1781 			goto nextag;
1782 		}
1783 
1784 		if (!pag->pagi_init) {
1785 			error = xfs_ialloc_pagi_init(mp, *tpp, agno);
1786 			if (error)
1787 				break;
1788 		}
1789 
1790 		/*
1791 		 * Do a first racy fast path check if this AG is usable.
1792 		 */
1793 		if (!pag->pagi_freecount && !okalloc)
1794 			goto nextag;
1795 
1796 		/*
1797 		 * Then read in the AGI buffer and recheck with the AGI buffer
1798 		 * lock held.
1799 		 */
1800 		error = xfs_ialloc_read_agi(mp, *tpp, agno, &agbp);
1801 		if (error)
1802 			break;
1803 
1804 		if (pag->pagi_freecount) {
1805 			xfs_perag_put(pag);
1806 			goto found_ag;
1807 		}
1808 
1809 		if (!okalloc)
1810 			goto nextag_relse_buffer;
1811 
1812 		error = xfs_ialloc_ag_alloc(*tpp, agbp);
1813 		if (error < 0) {
1814 			xfs_trans_brelse(*tpp, agbp);
1815 
1816 			if (error == -ENOSPC)
1817 				error = 0;
1818 			break;
1819 		}
1820 
1821 		if (error == 0) {
1822 			/*
1823 			 * We successfully allocated space for an inode cluster
1824 			 * in this AG.  Roll the transaction so that we can
1825 			 * allocate one of the new inodes.
1826 			 */
1827 			ASSERT(pag->pagi_freecount > 0);
1828 			xfs_perag_put(pag);
1829 
1830 			error = xfs_dialloc_roll(tpp, agbp);
1831 			if (error) {
1832 				xfs_buf_relse(agbp);
1833 				return error;
1834 			}
1835 			goto found_ag;
1836 		}
1837 
1838 nextag_relse_buffer:
1839 		xfs_trans_brelse(*tpp, agbp);
1840 nextag:
1841 		xfs_perag_put(pag);
1842 		if (++agno == mp->m_sb.sb_agcount)
1843 			agno = 0;
1844 		if (agno == start_agno)
1845 			return noroom ? -ENOSPC : 0;
1846 	}
1847 
1848 	xfs_perag_put(pag);
1849 	return error;
1850 found_ag:
1851 	*IO_agbp = agbp;
1852 	return 0;
1853 }
1854 
1855 /*
1856  * Free the blocks of an inode chunk. We must consider that the inode chunk
1857  * might be sparse and only free the regions that are allocated as part of the
1858  * chunk.
1859  */
1860 STATIC void
1861 xfs_difree_inode_chunk(
1862 	struct xfs_trans		*tp,
1863 	xfs_agnumber_t			agno,
1864 	struct xfs_inobt_rec_incore	*rec)
1865 {
1866 	struct xfs_mount		*mp = tp->t_mountp;
1867 	xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp,
1868 							rec->ir_startino);
1869 	int				startidx, endidx;
1870 	int				nextbit;
1871 	xfs_agblock_t			agbno;
1872 	int				contigblk;
1873 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1874 
1875 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1876 		/* not sparse, calculate extent info directly */
1877 		xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1878 				  M_IGEO(mp)->ialloc_blks,
1879 				  &XFS_RMAP_OINFO_INODES);
1880 		return;
1881 	}
1882 
1883 	/* holemask is only 16-bits (fits in an unsigned long) */
1884 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1885 	holemask[0] = rec->ir_holemask;
1886 
1887 	/*
1888 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1889 	 * holemask and convert the start/end index of each range to an extent.
1890 	 * We start with the start and end index both pointing at the first 0 in
1891 	 * the mask.
1892 	 */
1893 	startidx = endidx = find_first_zero_bit(holemask,
1894 						XFS_INOBT_HOLEMASK_BITS);
1895 	nextbit = startidx + 1;
1896 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1897 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1898 					     nextbit);
1899 		/*
1900 		 * If the next zero bit is contiguous, update the end index of
1901 		 * the current range and continue.
1902 		 */
1903 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1904 		    nextbit == endidx + 1) {
1905 			endidx = nextbit;
1906 			goto next;
1907 		}
1908 
1909 		/*
1910 		 * nextbit is not contiguous with the current end index. Convert
1911 		 * the current start/end to an extent and add it to the free
1912 		 * list.
1913 		 */
1914 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1915 				  mp->m_sb.sb_inopblock;
1916 		contigblk = ((endidx - startidx + 1) *
1917 			     XFS_INODES_PER_HOLEMASK_BIT) /
1918 			    mp->m_sb.sb_inopblock;
1919 
1920 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1921 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1922 		xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1923 				  contigblk, &XFS_RMAP_OINFO_INODES);
1924 
1925 		/* reset range to current bit and carry on... */
1926 		startidx = endidx = nextbit;
1927 
1928 next:
1929 		nextbit++;
1930 	}
1931 }
1932 
1933 STATIC int
1934 xfs_difree_inobt(
1935 	struct xfs_mount		*mp,
1936 	struct xfs_trans		*tp,
1937 	struct xfs_buf			*agbp,
1938 	xfs_agino_t			agino,
1939 	struct xfs_icluster		*xic,
1940 	struct xfs_inobt_rec_incore	*orec)
1941 {
1942 	struct xfs_agi			*agi = agbp->b_addr;
1943 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1944 	struct xfs_btree_cur		*cur;
1945 	struct xfs_inobt_rec_incore	rec;
1946 	int				ilen;
1947 	int				error;
1948 	int				i;
1949 	int				off;
1950 
1951 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1952 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1953 
1954 	/*
1955 	 * Initialize the cursor.
1956 	 */
1957 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1958 
1959 	error = xfs_check_agi_freecount(cur, agi);
1960 	if (error)
1961 		goto error0;
1962 
1963 	/*
1964 	 * Look for the entry describing this inode.
1965 	 */
1966 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1967 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1968 			__func__, error);
1969 		goto error0;
1970 	}
1971 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1972 		error = -EFSCORRUPTED;
1973 		goto error0;
1974 	}
1975 	error = xfs_inobt_get_rec(cur, &rec, &i);
1976 	if (error) {
1977 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1978 			__func__, error);
1979 		goto error0;
1980 	}
1981 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1982 		error = -EFSCORRUPTED;
1983 		goto error0;
1984 	}
1985 	/*
1986 	 * Get the offset in the inode chunk.
1987 	 */
1988 	off = agino - rec.ir_startino;
1989 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1990 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1991 	/*
1992 	 * Mark the inode free & increment the count.
1993 	 */
1994 	rec.ir_free |= XFS_INOBT_MASK(off);
1995 	rec.ir_freecount++;
1996 
1997 	/*
1998 	 * When an inode chunk is free, it becomes eligible for removal. Don't
1999 	 * remove the chunk if the block size is large enough for multiple inode
2000 	 * chunks (that might not be free).
2001 	 */
2002 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
2003 	    rec.ir_free == XFS_INOBT_ALL_FREE &&
2004 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2005 		struct xfs_perag	*pag = agbp->b_pag;
2006 
2007 		xic->deleted = true;
2008 		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
2009 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2010 
2011 		/*
2012 		 * Remove the inode cluster from the AGI B+Tree, adjust the
2013 		 * AGI and Superblock inode counts, and mark the disk space
2014 		 * to be freed when the transaction is committed.
2015 		 */
2016 		ilen = rec.ir_freecount;
2017 		be32_add_cpu(&agi->agi_count, -ilen);
2018 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2019 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2020 		pag->pagi_freecount -= ilen - 1;
2021 		pag->pagi_count -= ilen;
2022 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2023 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2024 
2025 		if ((error = xfs_btree_delete(cur, &i))) {
2026 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2027 				__func__, error);
2028 			goto error0;
2029 		}
2030 
2031 		xfs_difree_inode_chunk(tp, agno, &rec);
2032 	} else {
2033 		xic->deleted = false;
2034 
2035 		error = xfs_inobt_update(cur, &rec);
2036 		if (error) {
2037 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2038 				__func__, error);
2039 			goto error0;
2040 		}
2041 
2042 		/*
2043 		 * Change the inode free counts and log the ag/sb changes.
2044 		 */
2045 		be32_add_cpu(&agi->agi_freecount, 1);
2046 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2047 		agbp->b_pag->pagi_freecount++;
2048 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2049 	}
2050 
2051 	error = xfs_check_agi_freecount(cur, agi);
2052 	if (error)
2053 		goto error0;
2054 
2055 	*orec = rec;
2056 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2057 	return 0;
2058 
2059 error0:
2060 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2061 	return error;
2062 }
2063 
2064 /*
2065  * Free an inode in the free inode btree.
2066  */
2067 STATIC int
2068 xfs_difree_finobt(
2069 	struct xfs_mount		*mp,
2070 	struct xfs_trans		*tp,
2071 	struct xfs_buf			*agbp,
2072 	xfs_agino_t			agino,
2073 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2074 {
2075 	struct xfs_agi			*agi = agbp->b_addr;
2076 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
2077 	struct xfs_btree_cur		*cur;
2078 	struct xfs_inobt_rec_incore	rec;
2079 	int				offset = agino - ibtrec->ir_startino;
2080 	int				error;
2081 	int				i;
2082 
2083 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2084 
2085 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2086 	if (error)
2087 		goto error;
2088 	if (i == 0) {
2089 		/*
2090 		 * If the record does not exist in the finobt, we must have just
2091 		 * freed an inode in a previously fully allocated chunk. If not,
2092 		 * something is out of sync.
2093 		 */
2094 		if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2095 			error = -EFSCORRUPTED;
2096 			goto error;
2097 		}
2098 
2099 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2100 					     ibtrec->ir_count,
2101 					     ibtrec->ir_freecount,
2102 					     ibtrec->ir_free, &i);
2103 		if (error)
2104 			goto error;
2105 		ASSERT(i == 1);
2106 
2107 		goto out;
2108 	}
2109 
2110 	/*
2111 	 * Read and update the existing record. We could just copy the ibtrec
2112 	 * across here, but that would defeat the purpose of having redundant
2113 	 * metadata. By making the modifications independently, we can catch
2114 	 * corruptions that we wouldn't see if we just copied from one record
2115 	 * to another.
2116 	 */
2117 	error = xfs_inobt_get_rec(cur, &rec, &i);
2118 	if (error)
2119 		goto error;
2120 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2121 		error = -EFSCORRUPTED;
2122 		goto error;
2123 	}
2124 
2125 	rec.ir_free |= XFS_INOBT_MASK(offset);
2126 	rec.ir_freecount++;
2127 
2128 	if (XFS_IS_CORRUPT(mp,
2129 			   rec.ir_free != ibtrec->ir_free ||
2130 			   rec.ir_freecount != ibtrec->ir_freecount)) {
2131 		error = -EFSCORRUPTED;
2132 		goto error;
2133 	}
2134 
2135 	/*
2136 	 * The content of inobt records should always match between the inobt
2137 	 * and finobt. The lifecycle of records in the finobt is different from
2138 	 * the inobt in that the finobt only tracks records with at least one
2139 	 * free inode. Hence, if all of the inodes are free and we aren't
2140 	 * keeping inode chunks permanently on disk, remove the record.
2141 	 * Otherwise, update the record with the new information.
2142 	 *
2143 	 * Note that we currently can't free chunks when the block size is large
2144 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2145 	 * with the inobt.
2146 	 */
2147 	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2148 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2149 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2150 		error = xfs_btree_delete(cur, &i);
2151 		if (error)
2152 			goto error;
2153 		ASSERT(i == 1);
2154 	} else {
2155 		error = xfs_inobt_update(cur, &rec);
2156 		if (error)
2157 			goto error;
2158 	}
2159 
2160 out:
2161 	error = xfs_check_agi_freecount(cur, agi);
2162 	if (error)
2163 		goto error;
2164 
2165 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2166 	return 0;
2167 
2168 error:
2169 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2170 	return error;
2171 }
2172 
2173 /*
2174  * Free disk inode.  Carefully avoids touching the incore inode, all
2175  * manipulations incore are the caller's responsibility.
2176  * The on-disk inode is not changed by this operation, only the
2177  * btree (free inode mask) is changed.
2178  */
2179 int
2180 xfs_difree(
2181 	struct xfs_trans	*tp,		/* transaction pointer */
2182 	xfs_ino_t		inode,		/* inode to be freed */
2183 	struct xfs_icluster	*xic)	/* cluster info if deleted */
2184 {
2185 	/* REFERENCED */
2186 	xfs_agblock_t		agbno;	/* block number containing inode */
2187 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2188 	xfs_agino_t		agino;	/* allocation group inode number */
2189 	xfs_agnumber_t		agno;	/* allocation group number */
2190 	int			error;	/* error return value */
2191 	struct xfs_mount	*mp;	/* mount structure for filesystem */
2192 	struct xfs_inobt_rec_incore rec;/* btree record */
2193 
2194 	mp = tp->t_mountp;
2195 
2196 	/*
2197 	 * Break up inode number into its components.
2198 	 */
2199 	agno = XFS_INO_TO_AGNO(mp, inode);
2200 	if (agno >= mp->m_sb.sb_agcount)  {
2201 		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2202 			__func__, agno, mp->m_sb.sb_agcount);
2203 		ASSERT(0);
2204 		return -EINVAL;
2205 	}
2206 	agino = XFS_INO_TO_AGINO(mp, inode);
2207 	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2208 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2209 			__func__, (unsigned long long)inode,
2210 			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2211 		ASSERT(0);
2212 		return -EINVAL;
2213 	}
2214 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2215 	if (agbno >= mp->m_sb.sb_agblocks)  {
2216 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2217 			__func__, agbno, mp->m_sb.sb_agblocks);
2218 		ASSERT(0);
2219 		return -EINVAL;
2220 	}
2221 	/*
2222 	 * Get the allocation group header.
2223 	 */
2224 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2225 	if (error) {
2226 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2227 			__func__, error);
2228 		return error;
2229 	}
2230 
2231 	/*
2232 	 * Fix up the inode allocation btree.
2233 	 */
2234 	error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec);
2235 	if (error)
2236 		goto error0;
2237 
2238 	/*
2239 	 * Fix up the free inode btree.
2240 	 */
2241 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2242 		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2243 		if (error)
2244 			goto error0;
2245 	}
2246 
2247 	return 0;
2248 
2249 error0:
2250 	return error;
2251 }
2252 
2253 STATIC int
2254 xfs_imap_lookup(
2255 	struct xfs_mount	*mp,
2256 	struct xfs_trans	*tp,
2257 	xfs_agnumber_t		agno,
2258 	xfs_agino_t		agino,
2259 	xfs_agblock_t		agbno,
2260 	xfs_agblock_t		*chunk_agbno,
2261 	xfs_agblock_t		*offset_agbno,
2262 	int			flags)
2263 {
2264 	struct xfs_inobt_rec_incore rec;
2265 	struct xfs_btree_cur	*cur;
2266 	struct xfs_buf		*agbp;
2267 	int			error;
2268 	int			i;
2269 
2270 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2271 	if (error) {
2272 		xfs_alert(mp,
2273 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2274 			__func__, error, agno);
2275 		return error;
2276 	}
2277 
2278 	/*
2279 	 * Lookup the inode record for the given agino. If the record cannot be
2280 	 * found, then it's an invalid inode number and we should abort. Once
2281 	 * we have a record, we need to ensure it contains the inode number
2282 	 * we are looking up.
2283 	 */
2284 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2285 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2286 	if (!error) {
2287 		if (i)
2288 			error = xfs_inobt_get_rec(cur, &rec, &i);
2289 		if (!error && i == 0)
2290 			error = -EINVAL;
2291 	}
2292 
2293 	xfs_trans_brelse(tp, agbp);
2294 	xfs_btree_del_cursor(cur, error);
2295 	if (error)
2296 		return error;
2297 
2298 	/* check that the returned record contains the required inode */
2299 	if (rec.ir_startino > agino ||
2300 	    rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2301 		return -EINVAL;
2302 
2303 	/* for untrusted inodes check it is allocated first */
2304 	if ((flags & XFS_IGET_UNTRUSTED) &&
2305 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2306 		return -EINVAL;
2307 
2308 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2309 	*offset_agbno = agbno - *chunk_agbno;
2310 	return 0;
2311 }
2312 
2313 /*
2314  * Return the location of the inode in imap, for mapping it into a buffer.
2315  */
2316 int
2317 xfs_imap(
2318 	xfs_mount_t	 *mp,	/* file system mount structure */
2319 	xfs_trans_t	 *tp,	/* transaction pointer */
2320 	xfs_ino_t	ino,	/* inode to locate */
2321 	struct xfs_imap	*imap,	/* location map structure */
2322 	uint		flags)	/* flags for inode btree lookup */
2323 {
2324 	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
2325 	xfs_agino_t	agino;	/* inode number within alloc group */
2326 	xfs_agnumber_t	agno;	/* allocation group number */
2327 	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
2328 	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
2329 	int		error;	/* error code */
2330 	int		offset;	/* index of inode in its buffer */
2331 	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
2332 
2333 	ASSERT(ino != NULLFSINO);
2334 
2335 	/*
2336 	 * Split up the inode number into its parts.
2337 	 */
2338 	agno = XFS_INO_TO_AGNO(mp, ino);
2339 	agino = XFS_INO_TO_AGINO(mp, ino);
2340 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2341 	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2342 	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2343 #ifdef DEBUG
2344 		/*
2345 		 * Don't output diagnostic information for untrusted inodes
2346 		 * as they can be invalid without implying corruption.
2347 		 */
2348 		if (flags & XFS_IGET_UNTRUSTED)
2349 			return -EINVAL;
2350 		if (agno >= mp->m_sb.sb_agcount) {
2351 			xfs_alert(mp,
2352 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2353 				__func__, agno, mp->m_sb.sb_agcount);
2354 		}
2355 		if (agbno >= mp->m_sb.sb_agblocks) {
2356 			xfs_alert(mp,
2357 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2358 				__func__, (unsigned long long)agbno,
2359 				(unsigned long)mp->m_sb.sb_agblocks);
2360 		}
2361 		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2362 			xfs_alert(mp,
2363 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2364 				__func__, ino,
2365 				XFS_AGINO_TO_INO(mp, agno, agino));
2366 		}
2367 		xfs_stack_trace();
2368 #endif /* DEBUG */
2369 		return -EINVAL;
2370 	}
2371 
2372 	/*
2373 	 * For bulkstat and handle lookups, we have an untrusted inode number
2374 	 * that we have to verify is valid. We cannot do this just by reading
2375 	 * the inode buffer as it may have been unlinked and removed leaving
2376 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2377 	 * in all cases where an untrusted inode number is passed.
2378 	 */
2379 	if (flags & XFS_IGET_UNTRUSTED) {
2380 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2381 					&chunk_agbno, &offset_agbno, flags);
2382 		if (error)
2383 			return error;
2384 		goto out_map;
2385 	}
2386 
2387 	/*
2388 	 * If the inode cluster size is the same as the blocksize or
2389 	 * smaller we get to the buffer by simple arithmetics.
2390 	 */
2391 	if (M_IGEO(mp)->blocks_per_cluster == 1) {
2392 		offset = XFS_INO_TO_OFFSET(mp, ino);
2393 		ASSERT(offset < mp->m_sb.sb_inopblock);
2394 
2395 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2396 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2397 		imap->im_boffset = (unsigned short)(offset <<
2398 							mp->m_sb.sb_inodelog);
2399 		return 0;
2400 	}
2401 
2402 	/*
2403 	 * If the inode chunks are aligned then use simple maths to
2404 	 * find the location. Otherwise we have to do a btree
2405 	 * lookup to find the location.
2406 	 */
2407 	if (M_IGEO(mp)->inoalign_mask) {
2408 		offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2409 		chunk_agbno = agbno - offset_agbno;
2410 	} else {
2411 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2412 					&chunk_agbno, &offset_agbno, flags);
2413 		if (error)
2414 			return error;
2415 	}
2416 
2417 out_map:
2418 	ASSERT(agbno >= chunk_agbno);
2419 	cluster_agbno = chunk_agbno +
2420 		((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2421 		 M_IGEO(mp)->blocks_per_cluster);
2422 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2423 		XFS_INO_TO_OFFSET(mp, ino);
2424 
2425 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2426 	imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2427 	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2428 
2429 	/*
2430 	 * If the inode number maps to a block outside the bounds
2431 	 * of the file system then return NULL rather than calling
2432 	 * read_buf and panicing when we get an error from the
2433 	 * driver.
2434 	 */
2435 	if ((imap->im_blkno + imap->im_len) >
2436 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2437 		xfs_alert(mp,
2438 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2439 			__func__, (unsigned long long) imap->im_blkno,
2440 			(unsigned long long) imap->im_len,
2441 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2442 		return -EINVAL;
2443 	}
2444 	return 0;
2445 }
2446 
2447 /*
2448  * Log specified fields for the ag hdr (inode section). The growth of the agi
2449  * structure over time requires that we interpret the buffer as two logical
2450  * regions delineated by the end of the unlinked list. This is due to the size
2451  * of the hash table and its location in the middle of the agi.
2452  *
2453  * For example, a request to log a field before agi_unlinked and a field after
2454  * agi_unlinked could cause us to log the entire hash table and use an excessive
2455  * amount of log space. To avoid this behavior, log the region up through
2456  * agi_unlinked in one call and the region after agi_unlinked through the end of
2457  * the structure in another.
2458  */
2459 void
2460 xfs_ialloc_log_agi(
2461 	xfs_trans_t	*tp,		/* transaction pointer */
2462 	struct xfs_buf	*bp,		/* allocation group header buffer */
2463 	int		fields)		/* bitmask of fields to log */
2464 {
2465 	int			first;		/* first byte number */
2466 	int			last;		/* last byte number */
2467 	static const short	offsets[] = {	/* field starting offsets */
2468 					/* keep in sync with bit definitions */
2469 		offsetof(xfs_agi_t, agi_magicnum),
2470 		offsetof(xfs_agi_t, agi_versionnum),
2471 		offsetof(xfs_agi_t, agi_seqno),
2472 		offsetof(xfs_agi_t, agi_length),
2473 		offsetof(xfs_agi_t, agi_count),
2474 		offsetof(xfs_agi_t, agi_root),
2475 		offsetof(xfs_agi_t, agi_level),
2476 		offsetof(xfs_agi_t, agi_freecount),
2477 		offsetof(xfs_agi_t, agi_newino),
2478 		offsetof(xfs_agi_t, agi_dirino),
2479 		offsetof(xfs_agi_t, agi_unlinked),
2480 		offsetof(xfs_agi_t, agi_free_root),
2481 		offsetof(xfs_agi_t, agi_free_level),
2482 		offsetof(xfs_agi_t, agi_iblocks),
2483 		sizeof(xfs_agi_t)
2484 	};
2485 #ifdef DEBUG
2486 	struct xfs_agi		*agi = bp->b_addr;
2487 
2488 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2489 #endif
2490 
2491 	/*
2492 	 * Compute byte offsets for the first and last fields in the first
2493 	 * region and log the agi buffer. This only logs up through
2494 	 * agi_unlinked.
2495 	 */
2496 	if (fields & XFS_AGI_ALL_BITS_R1) {
2497 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2498 				  &first, &last);
2499 		xfs_trans_log_buf(tp, bp, first, last);
2500 	}
2501 
2502 	/*
2503 	 * Mask off the bits in the first region and calculate the first and
2504 	 * last field offsets for any bits in the second region.
2505 	 */
2506 	fields &= ~XFS_AGI_ALL_BITS_R1;
2507 	if (fields) {
2508 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2509 				  &first, &last);
2510 		xfs_trans_log_buf(tp, bp, first, last);
2511 	}
2512 }
2513 
2514 static xfs_failaddr_t
2515 xfs_agi_verify(
2516 	struct xfs_buf	*bp)
2517 {
2518 	struct xfs_mount *mp = bp->b_mount;
2519 	struct xfs_agi	*agi = bp->b_addr;
2520 	int		i;
2521 
2522 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2523 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2524 			return __this_address;
2525 		if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2526 			return __this_address;
2527 	}
2528 
2529 	/*
2530 	 * Validate the magic number of the agi block.
2531 	 */
2532 	if (!xfs_verify_magic(bp, agi->agi_magicnum))
2533 		return __this_address;
2534 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2535 		return __this_address;
2536 
2537 	if (be32_to_cpu(agi->agi_level) < 1 ||
2538 	    be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2539 		return __this_address;
2540 
2541 	if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2542 	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2543 	     be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2544 		return __this_address;
2545 
2546 	/*
2547 	 * during growfs operations, the perag is not fully initialised,
2548 	 * so we can't use it for any useful checking. growfs ensures we can't
2549 	 * use it by using uncached buffers that don't have the perag attached
2550 	 * so we can detect and avoid this problem.
2551 	 */
2552 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2553 		return __this_address;
2554 
2555 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2556 		if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2557 			continue;
2558 		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2559 			return __this_address;
2560 	}
2561 
2562 	return NULL;
2563 }
2564 
2565 static void
2566 xfs_agi_read_verify(
2567 	struct xfs_buf	*bp)
2568 {
2569 	struct xfs_mount *mp = bp->b_mount;
2570 	xfs_failaddr_t	fa;
2571 
2572 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2573 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2574 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2575 	else {
2576 		fa = xfs_agi_verify(bp);
2577 		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2578 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2579 	}
2580 }
2581 
2582 static void
2583 xfs_agi_write_verify(
2584 	struct xfs_buf	*bp)
2585 {
2586 	struct xfs_mount	*mp = bp->b_mount;
2587 	struct xfs_buf_log_item	*bip = bp->b_log_item;
2588 	struct xfs_agi		*agi = bp->b_addr;
2589 	xfs_failaddr_t		fa;
2590 
2591 	fa = xfs_agi_verify(bp);
2592 	if (fa) {
2593 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2594 		return;
2595 	}
2596 
2597 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2598 		return;
2599 
2600 	if (bip)
2601 		agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2602 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2603 }
2604 
2605 const struct xfs_buf_ops xfs_agi_buf_ops = {
2606 	.name = "xfs_agi",
2607 	.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2608 	.verify_read = xfs_agi_read_verify,
2609 	.verify_write = xfs_agi_write_verify,
2610 	.verify_struct = xfs_agi_verify,
2611 };
2612 
2613 /*
2614  * Read in the allocation group header (inode allocation section)
2615  */
2616 int
2617 xfs_read_agi(
2618 	struct xfs_mount	*mp,	/* file system mount structure */
2619 	struct xfs_trans	*tp,	/* transaction pointer */
2620 	xfs_agnumber_t		agno,	/* allocation group number */
2621 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2622 {
2623 	int			error;
2624 
2625 	trace_xfs_read_agi(mp, agno);
2626 
2627 	ASSERT(agno != NULLAGNUMBER);
2628 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2629 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2630 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2631 	if (error)
2632 		return error;
2633 	if (tp)
2634 		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2635 
2636 	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2637 	return 0;
2638 }
2639 
2640 int
2641 xfs_ialloc_read_agi(
2642 	struct xfs_mount	*mp,	/* file system mount structure */
2643 	struct xfs_trans	*tp,	/* transaction pointer */
2644 	xfs_agnumber_t		agno,	/* allocation group number */
2645 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2646 {
2647 	struct xfs_agi		*agi;	/* allocation group header */
2648 	struct xfs_perag	*pag;	/* per allocation group data */
2649 	int			error;
2650 
2651 	trace_xfs_ialloc_read_agi(mp, agno);
2652 
2653 	error = xfs_read_agi(mp, tp, agno, bpp);
2654 	if (error)
2655 		return error;
2656 
2657 	agi = (*bpp)->b_addr;
2658 	pag = (*bpp)->b_pag;
2659 	if (!pag->pagi_init) {
2660 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2661 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2662 		pag->pagi_init = 1;
2663 	}
2664 
2665 	/*
2666 	 * It's possible for these to be out of sync if
2667 	 * we are in the middle of a forced shutdown.
2668 	 */
2669 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2670 		XFS_FORCED_SHUTDOWN(mp));
2671 	return 0;
2672 }
2673 
2674 /*
2675  * Read in the agi to initialise the per-ag data in the mount structure
2676  */
2677 int
2678 xfs_ialloc_pagi_init(
2679 	xfs_mount_t	*mp,		/* file system mount structure */
2680 	xfs_trans_t	*tp,		/* transaction pointer */
2681 	xfs_agnumber_t	agno)		/* allocation group number */
2682 {
2683 	struct xfs_buf	*bp = NULL;
2684 	int		error;
2685 
2686 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2687 	if (error)
2688 		return error;
2689 	if (bp)
2690 		xfs_trans_brelse(tp, bp);
2691 	return 0;
2692 }
2693 
2694 /* Is there an inode record covering a given range of inode numbers? */
2695 int
2696 xfs_ialloc_has_inode_record(
2697 	struct xfs_btree_cur	*cur,
2698 	xfs_agino_t		low,
2699 	xfs_agino_t		high,
2700 	bool			*exists)
2701 {
2702 	struct xfs_inobt_rec_incore	irec;
2703 	xfs_agino_t		agino;
2704 	uint16_t		holemask;
2705 	int			has_record;
2706 	int			i;
2707 	int			error;
2708 
2709 	*exists = false;
2710 	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2711 	while (error == 0 && has_record) {
2712 		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2713 		if (error || irec.ir_startino > high)
2714 			break;
2715 
2716 		agino = irec.ir_startino;
2717 		holemask = irec.ir_holemask;
2718 		for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2719 				i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2720 			if (holemask & 1)
2721 				continue;
2722 			if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2723 					agino <= high) {
2724 				*exists = true;
2725 				return 0;
2726 			}
2727 		}
2728 
2729 		error = xfs_btree_increment(cur, 0, &has_record);
2730 	}
2731 	return error;
2732 }
2733 
2734 /* Is there an inode record covering a given extent? */
2735 int
2736 xfs_ialloc_has_inodes_at_extent(
2737 	struct xfs_btree_cur	*cur,
2738 	xfs_agblock_t		bno,
2739 	xfs_extlen_t		len,
2740 	bool			*exists)
2741 {
2742 	xfs_agino_t		low;
2743 	xfs_agino_t		high;
2744 
2745 	low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2746 	high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2747 
2748 	return xfs_ialloc_has_inode_record(cur, low, high, exists);
2749 }
2750 
2751 struct xfs_ialloc_count_inodes {
2752 	xfs_agino_t			count;
2753 	xfs_agino_t			freecount;
2754 };
2755 
2756 /* Record inode counts across all inobt records. */
2757 STATIC int
2758 xfs_ialloc_count_inodes_rec(
2759 	struct xfs_btree_cur		*cur,
2760 	union xfs_btree_rec		*rec,
2761 	void				*priv)
2762 {
2763 	struct xfs_inobt_rec_incore	irec;
2764 	struct xfs_ialloc_count_inodes	*ci = priv;
2765 
2766 	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2767 	ci->count += irec.ir_count;
2768 	ci->freecount += irec.ir_freecount;
2769 
2770 	return 0;
2771 }
2772 
2773 /* Count allocated and free inodes under an inobt. */
2774 int
2775 xfs_ialloc_count_inodes(
2776 	struct xfs_btree_cur		*cur,
2777 	xfs_agino_t			*count,
2778 	xfs_agino_t			*freecount)
2779 {
2780 	struct xfs_ialloc_count_inodes	ci = {0};
2781 	int				error;
2782 
2783 	ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2784 	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2785 	if (error)
2786 		return error;
2787 
2788 	*count = ci.count;
2789 	*freecount = ci.freecount;
2790 	return 0;
2791 }
2792 
2793 /*
2794  * Initialize inode-related geometry information.
2795  *
2796  * Compute the inode btree min and max levels and set maxicount.
2797  *
2798  * Set the inode cluster size.  This may still be overridden by the file
2799  * system block size if it is larger than the chosen cluster size.
2800  *
2801  * For v5 filesystems, scale the cluster size with the inode size to keep a
2802  * constant ratio of inode per cluster buffer, but only if mkfs has set the
2803  * inode alignment value appropriately for larger cluster sizes.
2804  *
2805  * Then compute the inode cluster alignment information.
2806  */
2807 void
2808 xfs_ialloc_setup_geometry(
2809 	struct xfs_mount	*mp)
2810 {
2811 	struct xfs_sb		*sbp = &mp->m_sb;
2812 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2813 	uint64_t		icount;
2814 	uint			inodes;
2815 
2816 	igeo->new_diflags2 = 0;
2817 	if (xfs_sb_version_hasbigtime(&mp->m_sb))
2818 		igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2819 
2820 	/* Compute inode btree geometry. */
2821 	igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2822 	igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2823 	igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2824 	igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2825 	igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2826 
2827 	igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2828 			sbp->sb_inopblock);
2829 	igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2830 
2831 	if (sbp->sb_spino_align)
2832 		igeo->ialloc_min_blks = sbp->sb_spino_align;
2833 	else
2834 		igeo->ialloc_min_blks = igeo->ialloc_blks;
2835 
2836 	/* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2837 	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2838 	igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2839 			inodes);
2840 
2841 	/*
2842 	 * Set the maximum inode count for this filesystem, being careful not
2843 	 * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2844 	 * users should never get here due to failing sb verification, but
2845 	 * certain users (xfs_db) need to be usable even with corrupt metadata.
2846 	 */
2847 	if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2848 		/*
2849 		 * Make sure the maximum inode count is a multiple
2850 		 * of the units we allocate inodes in.
2851 		 */
2852 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2853 		do_div(icount, 100);
2854 		do_div(icount, igeo->ialloc_blks);
2855 		igeo->maxicount = XFS_FSB_TO_INO(mp,
2856 				icount * igeo->ialloc_blks);
2857 	} else {
2858 		igeo->maxicount = 0;
2859 	}
2860 
2861 	/*
2862 	 * Compute the desired size of an inode cluster buffer size, which
2863 	 * starts at 8K and (on v5 filesystems) scales up with larger inode
2864 	 * sizes.
2865 	 *
2866 	 * Preserve the desired inode cluster size because the sparse inodes
2867 	 * feature uses that desired size (not the actual size) to compute the
2868 	 * sparse inode alignment.  The mount code validates this value, so we
2869 	 * cannot change the behavior.
2870 	 */
2871 	igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2872 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
2873 		int	new_size = igeo->inode_cluster_size_raw;
2874 
2875 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2876 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2877 			igeo->inode_cluster_size_raw = new_size;
2878 	}
2879 
2880 	/* Calculate inode cluster ratios. */
2881 	if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2882 		igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2883 				igeo->inode_cluster_size_raw);
2884 	else
2885 		igeo->blocks_per_cluster = 1;
2886 	igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2887 	igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2888 
2889 	/* Calculate inode cluster alignment. */
2890 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
2891 	    mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2892 		igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2893 	else
2894 		igeo->cluster_align = 1;
2895 	igeo->inoalign_mask = igeo->cluster_align - 1;
2896 	igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2897 
2898 	/*
2899 	 * If we are using stripe alignment, check whether
2900 	 * the stripe unit is a multiple of the inode alignment
2901 	 */
2902 	if (mp->m_dalign && igeo->inoalign_mask &&
2903 	    !(mp->m_dalign & igeo->inoalign_mask))
2904 		igeo->ialloc_align = mp->m_dalign;
2905 	else
2906 		igeo->ialloc_align = 0;
2907 }
2908 
2909 /* Compute the location of the root directory inode that is laid out by mkfs. */
2910 xfs_ino_t
2911 xfs_ialloc_calc_rootino(
2912 	struct xfs_mount	*mp,
2913 	int			sunit)
2914 {
2915 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2916 	xfs_agblock_t		first_bno;
2917 
2918 	/*
2919 	 * Pre-calculate the geometry of AG 0.  We know what it looks like
2920 	 * because libxfs knows how to create allocation groups now.
2921 	 *
2922 	 * first_bno is the first block in which mkfs could possibly have
2923 	 * allocated the root directory inode, once we factor in the metadata
2924 	 * that mkfs formats before it.  Namely, the four AG headers...
2925 	 */
2926 	first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2927 
2928 	/* ...the two free space btree roots... */
2929 	first_bno += 2;
2930 
2931 	/* ...the inode btree root... */
2932 	first_bno += 1;
2933 
2934 	/* ...the initial AGFL... */
2935 	first_bno += xfs_alloc_min_freelist(mp, NULL);
2936 
2937 	/* ...the free inode btree root... */
2938 	if (xfs_sb_version_hasfinobt(&mp->m_sb))
2939 		first_bno++;
2940 
2941 	/* ...the reverse mapping btree root... */
2942 	if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2943 		first_bno++;
2944 
2945 	/* ...the reference count btree... */
2946 	if (xfs_sb_version_hasreflink(&mp->m_sb))
2947 		first_bno++;
2948 
2949 	/*
2950 	 * ...and the log, if it is allocated in the first allocation group.
2951 	 *
2952 	 * This can happen with filesystems that only have a single
2953 	 * allocation group, or very odd geometries created by old mkfs
2954 	 * versions on very small filesystems.
2955 	 */
2956 	if (mp->m_sb.sb_logstart &&
2957 	    XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0)
2958 		 first_bno += mp->m_sb.sb_logblocks;
2959 
2960 	/*
2961 	 * Now round first_bno up to whatever allocation alignment is given
2962 	 * by the filesystem or was passed in.
2963 	 */
2964 	if (xfs_sb_version_hasdalign(&mp->m_sb) && igeo->ialloc_align > 0)
2965 		first_bno = roundup(first_bno, sunit);
2966 	else if (xfs_sb_version_hasalign(&mp->m_sb) &&
2967 			mp->m_sb.sb_inoalignmt > 1)
2968 		first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2969 
2970 	return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2971 }
2972