xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc.c (revision e72e8bf1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_btree.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_ialloc_btree.h"
19 #include "xfs_alloc.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 #include "xfs_bmap.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_icreate_item.h"
26 #include "xfs_icache.h"
27 #include "xfs_trace.h"
28 #include "xfs_log.h"
29 #include "xfs_rmap.h"
30 
31 /*
32  * Lookup a record by ino in the btree given by cur.
33  */
34 int					/* error */
35 xfs_inobt_lookup(
36 	struct xfs_btree_cur	*cur,	/* btree cursor */
37 	xfs_agino_t		ino,	/* starting inode of chunk */
38 	xfs_lookup_t		dir,	/* <=, >=, == */
39 	int			*stat)	/* success/failure */
40 {
41 	cur->bc_rec.i.ir_startino = ino;
42 	cur->bc_rec.i.ir_holemask = 0;
43 	cur->bc_rec.i.ir_count = 0;
44 	cur->bc_rec.i.ir_freecount = 0;
45 	cur->bc_rec.i.ir_free = 0;
46 	return xfs_btree_lookup(cur, dir, stat);
47 }
48 
49 /*
50  * Update the record referred to by cur to the value given.
51  * This either works (return 0) or gets an EFSCORRUPTED error.
52  */
53 STATIC int				/* error */
54 xfs_inobt_update(
55 	struct xfs_btree_cur	*cur,	/* btree cursor */
56 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
57 {
58 	union xfs_btree_rec	rec;
59 
60 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
62 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 	} else {
66 		/* ir_holemask/ir_count not supported on-disk */
67 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 	}
69 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 	return xfs_btree_update(cur, &rec);
71 }
72 
73 /* Convert on-disk btree record to incore inobt record. */
74 void
75 xfs_inobt_btrec_to_irec(
76 	struct xfs_mount		*mp,
77 	union xfs_btree_rec		*rec,
78 	struct xfs_inobt_rec_incore	*irec)
79 {
80 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 	if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
82 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 	} else {
86 		/*
87 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 		 * values for full inode chunks.
89 		 */
90 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 		irec->ir_count = XFS_INODES_PER_CHUNK;
92 		irec->ir_freecount =
93 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 	}
95 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96 }
97 
98 /*
99  * Get the data from the pointed-to record.
100  */
101 int
102 xfs_inobt_get_rec(
103 	struct xfs_btree_cur		*cur,
104 	struct xfs_inobt_rec_incore	*irec,
105 	int				*stat)
106 {
107 	struct xfs_mount		*mp = cur->bc_mp;
108 	xfs_agnumber_t			agno = cur->bc_ag.agno;
109 	union xfs_btree_rec		*rec;
110 	int				error;
111 	uint64_t			realfree;
112 
113 	error = xfs_btree_get_rec(cur, &rec, stat);
114 	if (error || *stat == 0)
115 		return error;
116 
117 	xfs_inobt_btrec_to_irec(mp, rec, irec);
118 
119 	if (!xfs_verify_agino(mp, agno, irec->ir_startino))
120 		goto out_bad_rec;
121 	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
122 	    irec->ir_count > XFS_INODES_PER_CHUNK)
123 		goto out_bad_rec;
124 	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
125 		goto out_bad_rec;
126 
127 	/* if there are no holes, return the first available offset */
128 	if (!xfs_inobt_issparse(irec->ir_holemask))
129 		realfree = irec->ir_free;
130 	else
131 		realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
132 	if (hweight64(realfree) != irec->ir_freecount)
133 		goto out_bad_rec;
134 
135 	return 0;
136 
137 out_bad_rec:
138 	xfs_warn(mp,
139 		"%s Inode BTree record corruption in AG %d detected!",
140 		cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
141 	xfs_warn(mp,
142 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 		irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 		irec->ir_free, irec->ir_holemask);
145 	return -EFSCORRUPTED;
146 }
147 
148 /*
149  * Insert a single inobt record. Cursor must already point to desired location.
150  */
151 int
152 xfs_inobt_insert_rec(
153 	struct xfs_btree_cur	*cur,
154 	uint16_t		holemask,
155 	uint8_t			count,
156 	int32_t			freecount,
157 	xfs_inofree_t		free,
158 	int			*stat)
159 {
160 	cur->bc_rec.i.ir_holemask = holemask;
161 	cur->bc_rec.i.ir_count = count;
162 	cur->bc_rec.i.ir_freecount = freecount;
163 	cur->bc_rec.i.ir_free = free;
164 	return xfs_btree_insert(cur, stat);
165 }
166 
167 /*
168  * Insert records describing a newly allocated inode chunk into the inobt.
169  */
170 STATIC int
171 xfs_inobt_insert(
172 	struct xfs_mount	*mp,
173 	struct xfs_trans	*tp,
174 	struct xfs_buf		*agbp,
175 	xfs_agino_t		newino,
176 	xfs_agino_t		newlen,
177 	xfs_btnum_t		btnum)
178 {
179 	struct xfs_btree_cur	*cur;
180 	struct xfs_agi		*agi = agbp->b_addr;
181 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
182 	xfs_agino_t		thisino;
183 	int			i;
184 	int			error;
185 
186 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
187 
188 	for (thisino = newino;
189 	     thisino < newino + newlen;
190 	     thisino += XFS_INODES_PER_CHUNK) {
191 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
192 		if (error) {
193 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
194 			return error;
195 		}
196 		ASSERT(i == 0);
197 
198 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
199 					     XFS_INODES_PER_CHUNK,
200 					     XFS_INODES_PER_CHUNK,
201 					     XFS_INOBT_ALL_FREE, &i);
202 		if (error) {
203 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
204 			return error;
205 		}
206 		ASSERT(i == 1);
207 	}
208 
209 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
210 
211 	return 0;
212 }
213 
214 /*
215  * Verify that the number of free inodes in the AGI is correct.
216  */
217 #ifdef DEBUG
218 STATIC int
219 xfs_check_agi_freecount(
220 	struct xfs_btree_cur	*cur,
221 	struct xfs_agi		*agi)
222 {
223 	if (cur->bc_nlevels == 1) {
224 		xfs_inobt_rec_incore_t rec;
225 		int		freecount = 0;
226 		int		error;
227 		int		i;
228 
229 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
230 		if (error)
231 			return error;
232 
233 		do {
234 			error = xfs_inobt_get_rec(cur, &rec, &i);
235 			if (error)
236 				return error;
237 
238 			if (i) {
239 				freecount += rec.ir_freecount;
240 				error = xfs_btree_increment(cur, 0, &i);
241 				if (error)
242 					return error;
243 			}
244 		} while (i == 1);
245 
246 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
247 			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
248 	}
249 	return 0;
250 }
251 #else
252 #define xfs_check_agi_freecount(cur, agi)	0
253 #endif
254 
255 /*
256  * Initialise a new set of inodes. When called without a transaction context
257  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258  * than logging them (which in a transaction context puts them into the AIL
259  * for writeback rather than the xfsbufd queue).
260  */
261 int
262 xfs_ialloc_inode_init(
263 	struct xfs_mount	*mp,
264 	struct xfs_trans	*tp,
265 	struct list_head	*buffer_list,
266 	int			icount,
267 	xfs_agnumber_t		agno,
268 	xfs_agblock_t		agbno,
269 	xfs_agblock_t		length,
270 	unsigned int		gen)
271 {
272 	struct xfs_buf		*fbuf;
273 	struct xfs_dinode	*free;
274 	int			nbufs;
275 	int			version;
276 	int			i, j;
277 	xfs_daddr_t		d;
278 	xfs_ino_t		ino = 0;
279 	int			error;
280 
281 	/*
282 	 * Loop over the new block(s), filling in the inodes.  For small block
283 	 * sizes, manipulate the inodes in buffers  which are multiples of the
284 	 * blocks size.
285 	 */
286 	nbufs = length / M_IGEO(mp)->blocks_per_cluster;
287 
288 	/*
289 	 * Figure out what version number to use in the inodes we create.  If
290 	 * the superblock version has caught up to the one that supports the new
291 	 * inode format, then use the new inode version.  Otherwise use the old
292 	 * version so that old kernels will continue to be able to use the file
293 	 * system.
294 	 *
295 	 * For v3 inodes, we also need to write the inode number into the inode,
296 	 * so calculate the first inode number of the chunk here as
297 	 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
298 	 * across multiple filesystem blocks (such as a cluster) and so cannot
299 	 * be used in the cluster buffer loop below.
300 	 *
301 	 * Further, because we are writing the inode directly into the buffer
302 	 * and calculating a CRC on the entire inode, we have ot log the entire
303 	 * inode so that the entire range the CRC covers is present in the log.
304 	 * That means for v3 inode we log the entire buffer rather than just the
305 	 * inode cores.
306 	 */
307 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
308 		version = 3;
309 		ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
310 
311 		/*
312 		 * log the initialisation that is about to take place as an
313 		 * logical operation. This means the transaction does not
314 		 * need to log the physical changes to the inode buffers as log
315 		 * recovery will know what initialisation is actually needed.
316 		 * Hence we only need to log the buffers as "ordered" buffers so
317 		 * they track in the AIL as if they were physically logged.
318 		 */
319 		if (tp)
320 			xfs_icreate_log(tp, agno, agbno, icount,
321 					mp->m_sb.sb_inodesize, length, gen);
322 	} else
323 		version = 2;
324 
325 	for (j = 0; j < nbufs; j++) {
326 		/*
327 		 * Get the block.
328 		 */
329 		d = XFS_AGB_TO_DADDR(mp, agno, agbno +
330 				(j * M_IGEO(mp)->blocks_per_cluster));
331 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
332 				mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
333 				XBF_UNMAPPED, &fbuf);
334 		if (error)
335 			return error;
336 
337 		/* Initialize the inode buffers and log them appropriately. */
338 		fbuf->b_ops = &xfs_inode_buf_ops;
339 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
340 		for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
341 			int	ioffset = i << mp->m_sb.sb_inodelog;
342 			uint	isize = XFS_DINODE_SIZE(&mp->m_sb);
343 
344 			free = xfs_make_iptr(mp, fbuf, i);
345 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
346 			free->di_version = version;
347 			free->di_gen = cpu_to_be32(gen);
348 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
349 
350 			if (version == 3) {
351 				free->di_ino = cpu_to_be64(ino);
352 				ino++;
353 				uuid_copy(&free->di_uuid,
354 					  &mp->m_sb.sb_meta_uuid);
355 				xfs_dinode_calc_crc(mp, free);
356 			} else if (tp) {
357 				/* just log the inode core */
358 				xfs_trans_log_buf(tp, fbuf, ioffset,
359 						  ioffset + isize - 1);
360 			}
361 		}
362 
363 		if (tp) {
364 			/*
365 			 * Mark the buffer as an inode allocation buffer so it
366 			 * sticks in AIL at the point of this allocation
367 			 * transaction. This ensures the they are on disk before
368 			 * the tail of the log can be moved past this
369 			 * transaction (i.e. by preventing relogging from moving
370 			 * it forward in the log).
371 			 */
372 			xfs_trans_inode_alloc_buf(tp, fbuf);
373 			if (version == 3) {
374 				/*
375 				 * Mark the buffer as ordered so that they are
376 				 * not physically logged in the transaction but
377 				 * still tracked in the AIL as part of the
378 				 * transaction and pin the log appropriately.
379 				 */
380 				xfs_trans_ordered_buf(tp, fbuf);
381 			}
382 		} else {
383 			fbuf->b_flags |= XBF_DONE;
384 			xfs_buf_delwri_queue(fbuf, buffer_list);
385 			xfs_buf_relse(fbuf);
386 		}
387 	}
388 	return 0;
389 }
390 
391 /*
392  * Align startino and allocmask for a recently allocated sparse chunk such that
393  * they are fit for insertion (or merge) into the on-disk inode btrees.
394  *
395  * Background:
396  *
397  * When enabled, sparse inode support increases the inode alignment from cluster
398  * size to inode chunk size. This means that the minimum range between two
399  * non-adjacent inode records in the inobt is large enough for a full inode
400  * record. This allows for cluster sized, cluster aligned block allocation
401  * without need to worry about whether the resulting inode record overlaps with
402  * another record in the tree. Without this basic rule, we would have to deal
403  * with the consequences of overlap by potentially undoing recent allocations in
404  * the inode allocation codepath.
405  *
406  * Because of this alignment rule (which is enforced on mount), there are two
407  * inobt possibilities for newly allocated sparse chunks. One is that the
408  * aligned inode record for the chunk covers a range of inodes not already
409  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
410  * other is that a record already exists at the aligned startino that considers
411  * the newly allocated range as sparse. In the latter case, record content is
412  * merged in hope that sparse inode chunks fill to full chunks over time.
413  */
414 STATIC void
415 xfs_align_sparse_ino(
416 	struct xfs_mount		*mp,
417 	xfs_agino_t			*startino,
418 	uint16_t			*allocmask)
419 {
420 	xfs_agblock_t			agbno;
421 	xfs_agblock_t			mod;
422 	int				offset;
423 
424 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
425 	mod = agbno % mp->m_sb.sb_inoalignmt;
426 	if (!mod)
427 		return;
428 
429 	/* calculate the inode offset and align startino */
430 	offset = XFS_AGB_TO_AGINO(mp, mod);
431 	*startino -= offset;
432 
433 	/*
434 	 * Since startino has been aligned down, left shift allocmask such that
435 	 * it continues to represent the same physical inodes relative to the
436 	 * new startino.
437 	 */
438 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
439 }
440 
441 /*
442  * Determine whether the source inode record can merge into the target. Both
443  * records must be sparse, the inode ranges must match and there must be no
444  * allocation overlap between the records.
445  */
446 STATIC bool
447 __xfs_inobt_can_merge(
448 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
449 	struct xfs_inobt_rec_incore	*srec)	/* src record */
450 {
451 	uint64_t			talloc;
452 	uint64_t			salloc;
453 
454 	/* records must cover the same inode range */
455 	if (trec->ir_startino != srec->ir_startino)
456 		return false;
457 
458 	/* both records must be sparse */
459 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
460 	    !xfs_inobt_issparse(srec->ir_holemask))
461 		return false;
462 
463 	/* both records must track some inodes */
464 	if (!trec->ir_count || !srec->ir_count)
465 		return false;
466 
467 	/* can't exceed capacity of a full record */
468 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
469 		return false;
470 
471 	/* verify there is no allocation overlap */
472 	talloc = xfs_inobt_irec_to_allocmask(trec);
473 	salloc = xfs_inobt_irec_to_allocmask(srec);
474 	if (talloc & salloc)
475 		return false;
476 
477 	return true;
478 }
479 
480 /*
481  * Merge the source inode record into the target. The caller must call
482  * __xfs_inobt_can_merge() to ensure the merge is valid.
483  */
484 STATIC void
485 __xfs_inobt_rec_merge(
486 	struct xfs_inobt_rec_incore	*trec,	/* target */
487 	struct xfs_inobt_rec_incore	*srec)	/* src */
488 {
489 	ASSERT(trec->ir_startino == srec->ir_startino);
490 
491 	/* combine the counts */
492 	trec->ir_count += srec->ir_count;
493 	trec->ir_freecount += srec->ir_freecount;
494 
495 	/*
496 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
497 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
498 	 */
499 	trec->ir_holemask &= srec->ir_holemask;
500 	trec->ir_free &= srec->ir_free;
501 }
502 
503 /*
504  * Insert a new sparse inode chunk into the associated inode btree. The inode
505  * record for the sparse chunk is pre-aligned to a startino that should match
506  * any pre-existing sparse inode record in the tree. This allows sparse chunks
507  * to fill over time.
508  *
509  * This function supports two modes of handling preexisting records depending on
510  * the merge flag. If merge is true, the provided record is merged with the
511  * existing record and updated in place. The merged record is returned in nrec.
512  * If merge is false, an existing record is replaced with the provided record.
513  * If no preexisting record exists, the provided record is always inserted.
514  *
515  * It is considered corruption if a merge is requested and not possible. Given
516  * the sparse inode alignment constraints, this should never happen.
517  */
518 STATIC int
519 xfs_inobt_insert_sprec(
520 	struct xfs_mount		*mp,
521 	struct xfs_trans		*tp,
522 	struct xfs_buf			*agbp,
523 	int				btnum,
524 	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
525 	bool				merge)	/* merge or replace */
526 {
527 	struct xfs_btree_cur		*cur;
528 	struct xfs_agi			*agi = agbp->b_addr;
529 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
530 	int				error;
531 	int				i;
532 	struct xfs_inobt_rec_incore	rec;
533 
534 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
535 
536 	/* the new record is pre-aligned so we know where to look */
537 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
538 	if (error)
539 		goto error;
540 	/* if nothing there, insert a new record and return */
541 	if (i == 0) {
542 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
543 					     nrec->ir_count, nrec->ir_freecount,
544 					     nrec->ir_free, &i);
545 		if (error)
546 			goto error;
547 		if (XFS_IS_CORRUPT(mp, i != 1)) {
548 			error = -EFSCORRUPTED;
549 			goto error;
550 		}
551 
552 		goto out;
553 	}
554 
555 	/*
556 	 * A record exists at this startino. Merge or replace the record
557 	 * depending on what we've been asked to do.
558 	 */
559 	if (merge) {
560 		error = xfs_inobt_get_rec(cur, &rec, &i);
561 		if (error)
562 			goto error;
563 		if (XFS_IS_CORRUPT(mp, i != 1)) {
564 			error = -EFSCORRUPTED;
565 			goto error;
566 		}
567 		if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
568 			error = -EFSCORRUPTED;
569 			goto error;
570 		}
571 
572 		/*
573 		 * This should never fail. If we have coexisting records that
574 		 * cannot merge, something is seriously wrong.
575 		 */
576 		if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
577 			error = -EFSCORRUPTED;
578 			goto error;
579 		}
580 
581 		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
582 					 rec.ir_holemask, nrec->ir_startino,
583 					 nrec->ir_holemask);
584 
585 		/* merge to nrec to output the updated record */
586 		__xfs_inobt_rec_merge(nrec, &rec);
587 
588 		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
589 					  nrec->ir_holemask);
590 
591 		error = xfs_inobt_rec_check_count(mp, nrec);
592 		if (error)
593 			goto error;
594 	}
595 
596 	error = xfs_inobt_update(cur, nrec);
597 	if (error)
598 		goto error;
599 
600 out:
601 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
602 	return 0;
603 error:
604 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
605 	return error;
606 }
607 
608 /*
609  * Allocate new inodes in the allocation group specified by agbp.
610  * Return 0 for success, else error code.
611  */
612 STATIC int
613 xfs_ialloc_ag_alloc(
614 	struct xfs_trans	*tp,
615 	struct xfs_buf		*agbp,
616 	int			*alloc)
617 {
618 	struct xfs_agi		*agi;
619 	struct xfs_alloc_arg	args;
620 	xfs_agnumber_t		agno;
621 	int			error;
622 	xfs_agino_t		newino;		/* new first inode's number */
623 	xfs_agino_t		newlen;		/* new number of inodes */
624 	int			isaligned = 0;	/* inode allocation at stripe */
625 						/* unit boundary */
626 	/* init. to full chunk */
627 	uint16_t		allocmask = (uint16_t) -1;
628 	struct xfs_inobt_rec_incore rec;
629 	struct xfs_perag	*pag;
630 	struct xfs_ino_geometry	*igeo = M_IGEO(tp->t_mountp);
631 	int			do_sparse = 0;
632 
633 	memset(&args, 0, sizeof(args));
634 	args.tp = tp;
635 	args.mp = tp->t_mountp;
636 	args.fsbno = NULLFSBLOCK;
637 	args.oinfo = XFS_RMAP_OINFO_INODES;
638 
639 #ifdef DEBUG
640 	/* randomly do sparse inode allocations */
641 	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
642 	    igeo->ialloc_min_blks < igeo->ialloc_blks)
643 		do_sparse = prandom_u32() & 1;
644 #endif
645 
646 	/*
647 	 * Locking will ensure that we don't have two callers in here
648 	 * at one time.
649 	 */
650 	newlen = igeo->ialloc_inos;
651 	if (igeo->maxicount &&
652 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
653 							igeo->maxicount)
654 		return -ENOSPC;
655 	args.minlen = args.maxlen = igeo->ialloc_blks;
656 	/*
657 	 * First try to allocate inodes contiguous with the last-allocated
658 	 * chunk of inodes.  If the filesystem is striped, this will fill
659 	 * an entire stripe unit with inodes.
660 	 */
661 	agi = agbp->b_addr;
662 	newino = be32_to_cpu(agi->agi_newino);
663 	agno = be32_to_cpu(agi->agi_seqno);
664 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
665 		     igeo->ialloc_blks;
666 	if (do_sparse)
667 		goto sparse_alloc;
668 	if (likely(newino != NULLAGINO &&
669 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
670 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
671 		args.type = XFS_ALLOCTYPE_THIS_BNO;
672 		args.prod = 1;
673 
674 		/*
675 		 * We need to take into account alignment here to ensure that
676 		 * we don't modify the free list if we fail to have an exact
677 		 * block. If we don't have an exact match, and every oher
678 		 * attempt allocation attempt fails, we'll end up cancelling
679 		 * a dirty transaction and shutting down.
680 		 *
681 		 * For an exact allocation, alignment must be 1,
682 		 * however we need to take cluster alignment into account when
683 		 * fixing up the freelist. Use the minalignslop field to
684 		 * indicate that extra blocks might be required for alignment,
685 		 * but not to use them in the actual exact allocation.
686 		 */
687 		args.alignment = 1;
688 		args.minalignslop = igeo->cluster_align - 1;
689 
690 		/* Allow space for the inode btree to split. */
691 		args.minleft = igeo->inobt_maxlevels - 1;
692 		if ((error = xfs_alloc_vextent(&args)))
693 			return error;
694 
695 		/*
696 		 * This request might have dirtied the transaction if the AG can
697 		 * satisfy the request, but the exact block was not available.
698 		 * If the allocation did fail, subsequent requests will relax
699 		 * the exact agbno requirement and increase the alignment
700 		 * instead. It is critical that the total size of the request
701 		 * (len + alignment + slop) does not increase from this point
702 		 * on, so reset minalignslop to ensure it is not included in
703 		 * subsequent requests.
704 		 */
705 		args.minalignslop = 0;
706 	}
707 
708 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
709 		/*
710 		 * Set the alignment for the allocation.
711 		 * If stripe alignment is turned on then align at stripe unit
712 		 * boundary.
713 		 * If the cluster size is smaller than a filesystem block
714 		 * then we're doing I/O for inodes in filesystem block size
715 		 * pieces, so don't need alignment anyway.
716 		 */
717 		isaligned = 0;
718 		if (igeo->ialloc_align) {
719 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
720 			args.alignment = args.mp->m_dalign;
721 			isaligned = 1;
722 		} else
723 			args.alignment = igeo->cluster_align;
724 		/*
725 		 * Need to figure out where to allocate the inode blocks.
726 		 * Ideally they should be spaced out through the a.g.
727 		 * For now, just allocate blocks up front.
728 		 */
729 		args.agbno = be32_to_cpu(agi->agi_root);
730 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
731 		/*
732 		 * Allocate a fixed-size extent of inodes.
733 		 */
734 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
735 		args.prod = 1;
736 		/*
737 		 * Allow space for the inode btree to split.
738 		 */
739 		args.minleft = igeo->inobt_maxlevels - 1;
740 		if ((error = xfs_alloc_vextent(&args)))
741 			return error;
742 	}
743 
744 	/*
745 	 * If stripe alignment is turned on, then try again with cluster
746 	 * alignment.
747 	 */
748 	if (isaligned && args.fsbno == NULLFSBLOCK) {
749 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
750 		args.agbno = be32_to_cpu(agi->agi_root);
751 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
752 		args.alignment = igeo->cluster_align;
753 		if ((error = xfs_alloc_vextent(&args)))
754 			return error;
755 	}
756 
757 	/*
758 	 * Finally, try a sparse allocation if the filesystem supports it and
759 	 * the sparse allocation length is smaller than a full chunk.
760 	 */
761 	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
762 	    igeo->ialloc_min_blks < igeo->ialloc_blks &&
763 	    args.fsbno == NULLFSBLOCK) {
764 sparse_alloc:
765 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
766 		args.agbno = be32_to_cpu(agi->agi_root);
767 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
768 		args.alignment = args.mp->m_sb.sb_spino_align;
769 		args.prod = 1;
770 
771 		args.minlen = igeo->ialloc_min_blks;
772 		args.maxlen = args.minlen;
773 
774 		/*
775 		 * The inode record will be aligned to full chunk size. We must
776 		 * prevent sparse allocation from AG boundaries that result in
777 		 * invalid inode records, such as records that start at agbno 0
778 		 * or extend beyond the AG.
779 		 *
780 		 * Set min agbno to the first aligned, non-zero agbno and max to
781 		 * the last aligned agbno that is at least one full chunk from
782 		 * the end of the AG.
783 		 */
784 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
785 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
786 					    args.mp->m_sb.sb_inoalignmt) -
787 				 igeo->ialloc_blks;
788 
789 		error = xfs_alloc_vextent(&args);
790 		if (error)
791 			return error;
792 
793 		newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
794 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
795 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
796 	}
797 
798 	if (args.fsbno == NULLFSBLOCK) {
799 		*alloc = 0;
800 		return 0;
801 	}
802 	ASSERT(args.len == args.minlen);
803 
804 	/*
805 	 * Stamp and write the inode buffers.
806 	 *
807 	 * Seed the new inode cluster with a random generation number. This
808 	 * prevents short-term reuse of generation numbers if a chunk is
809 	 * freed and then immediately reallocated. We use random numbers
810 	 * rather than a linear progression to prevent the next generation
811 	 * number from being easily guessable.
812 	 */
813 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
814 			args.agbno, args.len, prandom_u32());
815 
816 	if (error)
817 		return error;
818 	/*
819 	 * Convert the results.
820 	 */
821 	newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
822 
823 	if (xfs_inobt_issparse(~allocmask)) {
824 		/*
825 		 * We've allocated a sparse chunk. Align the startino and mask.
826 		 */
827 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
828 
829 		rec.ir_startino = newino;
830 		rec.ir_holemask = ~allocmask;
831 		rec.ir_count = newlen;
832 		rec.ir_freecount = newlen;
833 		rec.ir_free = XFS_INOBT_ALL_FREE;
834 
835 		/*
836 		 * Insert the sparse record into the inobt and allow for a merge
837 		 * if necessary. If a merge does occur, rec is updated to the
838 		 * merged record.
839 		 */
840 		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
841 					       &rec, true);
842 		if (error == -EFSCORRUPTED) {
843 			xfs_alert(args.mp,
844 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
845 				  XFS_AGINO_TO_INO(args.mp, agno,
846 						   rec.ir_startino),
847 				  rec.ir_holemask, rec.ir_count);
848 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
849 		}
850 		if (error)
851 			return error;
852 
853 		/*
854 		 * We can't merge the part we've just allocated as for the inobt
855 		 * due to finobt semantics. The original record may or may not
856 		 * exist independent of whether physical inodes exist in this
857 		 * sparse chunk.
858 		 *
859 		 * We must update the finobt record based on the inobt record.
860 		 * rec contains the fully merged and up to date inobt record
861 		 * from the previous call. Set merge false to replace any
862 		 * existing record with this one.
863 		 */
864 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
865 			error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
866 						       XFS_BTNUM_FINO, &rec,
867 						       false);
868 			if (error)
869 				return error;
870 		}
871 	} else {
872 		/* full chunk - insert new records to both btrees */
873 		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
874 					 XFS_BTNUM_INO);
875 		if (error)
876 			return error;
877 
878 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
879 			error = xfs_inobt_insert(args.mp, tp, agbp, newino,
880 						 newlen, XFS_BTNUM_FINO);
881 			if (error)
882 				return error;
883 		}
884 	}
885 
886 	/*
887 	 * Update AGI counts and newino.
888 	 */
889 	be32_add_cpu(&agi->agi_count, newlen);
890 	be32_add_cpu(&agi->agi_freecount, newlen);
891 	pag = xfs_perag_get(args.mp, agno);
892 	pag->pagi_freecount += newlen;
893 	pag->pagi_count += newlen;
894 	xfs_perag_put(pag);
895 	agi->agi_newino = cpu_to_be32(newino);
896 
897 	/*
898 	 * Log allocation group header fields
899 	 */
900 	xfs_ialloc_log_agi(tp, agbp,
901 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
902 	/*
903 	 * Modify/log superblock values for inode count and inode free count.
904 	 */
905 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
906 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
907 	*alloc = 1;
908 	return 0;
909 }
910 
911 STATIC xfs_agnumber_t
912 xfs_ialloc_next_ag(
913 	xfs_mount_t	*mp)
914 {
915 	xfs_agnumber_t	agno;
916 
917 	spin_lock(&mp->m_agirotor_lock);
918 	agno = mp->m_agirotor;
919 	if (++mp->m_agirotor >= mp->m_maxagi)
920 		mp->m_agirotor = 0;
921 	spin_unlock(&mp->m_agirotor_lock);
922 
923 	return agno;
924 }
925 
926 /*
927  * Select an allocation group to look for a free inode in, based on the parent
928  * inode and the mode.  Return the allocation group buffer.
929  */
930 STATIC xfs_agnumber_t
931 xfs_ialloc_ag_select(
932 	xfs_trans_t	*tp,		/* transaction pointer */
933 	xfs_ino_t	parent,		/* parent directory inode number */
934 	umode_t		mode)		/* bits set to indicate file type */
935 {
936 	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
937 	xfs_agnumber_t	agno;		/* current ag number */
938 	int		flags;		/* alloc buffer locking flags */
939 	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
940 	xfs_extlen_t	longest = 0;	/* longest extent available */
941 	xfs_mount_t	*mp;		/* mount point structure */
942 	int		needspace;	/* file mode implies space allocated */
943 	xfs_perag_t	*pag;		/* per allocation group data */
944 	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
945 	int		error;
946 
947 	/*
948 	 * Files of these types need at least one block if length > 0
949 	 * (and they won't fit in the inode, but that's hard to figure out).
950 	 */
951 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
952 	mp = tp->t_mountp;
953 	agcount = mp->m_maxagi;
954 	if (S_ISDIR(mode))
955 		pagno = xfs_ialloc_next_ag(mp);
956 	else {
957 		pagno = XFS_INO_TO_AGNO(mp, parent);
958 		if (pagno >= agcount)
959 			pagno = 0;
960 	}
961 
962 	ASSERT(pagno < agcount);
963 
964 	/*
965 	 * Loop through allocation groups, looking for one with a little
966 	 * free space in it.  Note we don't look for free inodes, exactly.
967 	 * Instead, we include whether there is a need to allocate inodes
968 	 * to mean that blocks must be allocated for them,
969 	 * if none are currently free.
970 	 */
971 	agno = pagno;
972 	flags = XFS_ALLOC_FLAG_TRYLOCK;
973 	for (;;) {
974 		pag = xfs_perag_get(mp, agno);
975 		if (!pag->pagi_inodeok) {
976 			xfs_ialloc_next_ag(mp);
977 			goto nextag;
978 		}
979 
980 		if (!pag->pagi_init) {
981 			error = xfs_ialloc_pagi_init(mp, tp, agno);
982 			if (error)
983 				goto nextag;
984 		}
985 
986 		if (pag->pagi_freecount) {
987 			xfs_perag_put(pag);
988 			return agno;
989 		}
990 
991 		if (!pag->pagf_init) {
992 			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
993 			if (error)
994 				goto nextag;
995 		}
996 
997 		/*
998 		 * Check that there is enough free space for the file plus a
999 		 * chunk of inodes if we need to allocate some. If this is the
1000 		 * first pass across the AGs, take into account the potential
1001 		 * space needed for alignment of inode chunks when checking the
1002 		 * longest contiguous free space in the AG - this prevents us
1003 		 * from getting ENOSPC because we have free space larger than
1004 		 * ialloc_blks but alignment constraints prevent us from using
1005 		 * it.
1006 		 *
1007 		 * If we can't find an AG with space for full alignment slack to
1008 		 * be taken into account, we must be near ENOSPC in all AGs.
1009 		 * Hence we don't include alignment for the second pass and so
1010 		 * if we fail allocation due to alignment issues then it is most
1011 		 * likely a real ENOSPC condition.
1012 		 */
1013 		ineed = M_IGEO(mp)->ialloc_min_blks;
1014 		if (flags && ineed > 1)
1015 			ineed += M_IGEO(mp)->cluster_align;
1016 		longest = pag->pagf_longest;
1017 		if (!longest)
1018 			longest = pag->pagf_flcount > 0;
1019 
1020 		if (pag->pagf_freeblks >= needspace + ineed &&
1021 		    longest >= ineed) {
1022 			xfs_perag_put(pag);
1023 			return agno;
1024 		}
1025 nextag:
1026 		xfs_perag_put(pag);
1027 		/*
1028 		 * No point in iterating over the rest, if we're shutting
1029 		 * down.
1030 		 */
1031 		if (XFS_FORCED_SHUTDOWN(mp))
1032 			return NULLAGNUMBER;
1033 		agno++;
1034 		if (agno >= agcount)
1035 			agno = 0;
1036 		if (agno == pagno) {
1037 			if (flags == 0)
1038 				return NULLAGNUMBER;
1039 			flags = 0;
1040 		}
1041 	}
1042 }
1043 
1044 /*
1045  * Try to retrieve the next record to the left/right from the current one.
1046  */
1047 STATIC int
1048 xfs_ialloc_next_rec(
1049 	struct xfs_btree_cur	*cur,
1050 	xfs_inobt_rec_incore_t	*rec,
1051 	int			*done,
1052 	int			left)
1053 {
1054 	int                     error;
1055 	int			i;
1056 
1057 	if (left)
1058 		error = xfs_btree_decrement(cur, 0, &i);
1059 	else
1060 		error = xfs_btree_increment(cur, 0, &i);
1061 
1062 	if (error)
1063 		return error;
1064 	*done = !i;
1065 	if (i) {
1066 		error = xfs_inobt_get_rec(cur, rec, &i);
1067 		if (error)
1068 			return error;
1069 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1070 			return -EFSCORRUPTED;
1071 	}
1072 
1073 	return 0;
1074 }
1075 
1076 STATIC int
1077 xfs_ialloc_get_rec(
1078 	struct xfs_btree_cur	*cur,
1079 	xfs_agino_t		agino,
1080 	xfs_inobt_rec_incore_t	*rec,
1081 	int			*done)
1082 {
1083 	int                     error;
1084 	int			i;
1085 
1086 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1087 	if (error)
1088 		return error;
1089 	*done = !i;
1090 	if (i) {
1091 		error = xfs_inobt_get_rec(cur, rec, &i);
1092 		if (error)
1093 			return error;
1094 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1095 			return -EFSCORRUPTED;
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 /*
1102  * Return the offset of the first free inode in the record. If the inode chunk
1103  * is sparsely allocated, we convert the record holemask to inode granularity
1104  * and mask off the unallocated regions from the inode free mask.
1105  */
1106 STATIC int
1107 xfs_inobt_first_free_inode(
1108 	struct xfs_inobt_rec_incore	*rec)
1109 {
1110 	xfs_inofree_t			realfree;
1111 
1112 	/* if there are no holes, return the first available offset */
1113 	if (!xfs_inobt_issparse(rec->ir_holemask))
1114 		return xfs_lowbit64(rec->ir_free);
1115 
1116 	realfree = xfs_inobt_irec_to_allocmask(rec);
1117 	realfree &= rec->ir_free;
1118 
1119 	return xfs_lowbit64(realfree);
1120 }
1121 
1122 /*
1123  * Allocate an inode using the inobt-only algorithm.
1124  */
1125 STATIC int
1126 xfs_dialloc_ag_inobt(
1127 	struct xfs_trans	*tp,
1128 	struct xfs_buf		*agbp,
1129 	xfs_ino_t		parent,
1130 	xfs_ino_t		*inop)
1131 {
1132 	struct xfs_mount	*mp = tp->t_mountp;
1133 	struct xfs_agi		*agi = agbp->b_addr;
1134 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
1135 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1136 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1137 	struct xfs_perag	*pag;
1138 	struct xfs_btree_cur	*cur, *tcur;
1139 	struct xfs_inobt_rec_incore rec, trec;
1140 	xfs_ino_t		ino;
1141 	int			error;
1142 	int			offset;
1143 	int			i, j;
1144 	int			searchdistance = 10;
1145 
1146 	pag = xfs_perag_get(mp, agno);
1147 
1148 	ASSERT(pag->pagi_init);
1149 	ASSERT(pag->pagi_inodeok);
1150 	ASSERT(pag->pagi_freecount > 0);
1151 
1152  restart_pagno:
1153 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1154 	/*
1155 	 * If pagino is 0 (this is the root inode allocation) use newino.
1156 	 * This must work because we've just allocated some.
1157 	 */
1158 	if (!pagino)
1159 		pagino = be32_to_cpu(agi->agi_newino);
1160 
1161 	error = xfs_check_agi_freecount(cur, agi);
1162 	if (error)
1163 		goto error0;
1164 
1165 	/*
1166 	 * If in the same AG as the parent, try to get near the parent.
1167 	 */
1168 	if (pagno == agno) {
1169 		int		doneleft;	/* done, to the left */
1170 		int		doneright;	/* done, to the right */
1171 
1172 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1173 		if (error)
1174 			goto error0;
1175 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1176 			error = -EFSCORRUPTED;
1177 			goto error0;
1178 		}
1179 
1180 		error = xfs_inobt_get_rec(cur, &rec, &j);
1181 		if (error)
1182 			goto error0;
1183 		if (XFS_IS_CORRUPT(mp, j != 1)) {
1184 			error = -EFSCORRUPTED;
1185 			goto error0;
1186 		}
1187 
1188 		if (rec.ir_freecount > 0) {
1189 			/*
1190 			 * Found a free inode in the same chunk
1191 			 * as the parent, done.
1192 			 */
1193 			goto alloc_inode;
1194 		}
1195 
1196 
1197 		/*
1198 		 * In the same AG as parent, but parent's chunk is full.
1199 		 */
1200 
1201 		/* duplicate the cursor, search left & right simultaneously */
1202 		error = xfs_btree_dup_cursor(cur, &tcur);
1203 		if (error)
1204 			goto error0;
1205 
1206 		/*
1207 		 * Skip to last blocks looked up if same parent inode.
1208 		 */
1209 		if (pagino != NULLAGINO &&
1210 		    pag->pagl_pagino == pagino &&
1211 		    pag->pagl_leftrec != NULLAGINO &&
1212 		    pag->pagl_rightrec != NULLAGINO) {
1213 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1214 						   &trec, &doneleft);
1215 			if (error)
1216 				goto error1;
1217 
1218 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1219 						   &rec, &doneright);
1220 			if (error)
1221 				goto error1;
1222 		} else {
1223 			/* search left with tcur, back up 1 record */
1224 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1225 			if (error)
1226 				goto error1;
1227 
1228 			/* search right with cur, go forward 1 record. */
1229 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1230 			if (error)
1231 				goto error1;
1232 		}
1233 
1234 		/*
1235 		 * Loop until we find an inode chunk with a free inode.
1236 		 */
1237 		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1238 			int	useleft;  /* using left inode chunk this time */
1239 
1240 			/* figure out the closer block if both are valid. */
1241 			if (!doneleft && !doneright) {
1242 				useleft = pagino -
1243 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1244 				  rec.ir_startino - pagino;
1245 			} else {
1246 				useleft = !doneleft;
1247 			}
1248 
1249 			/* free inodes to the left? */
1250 			if (useleft && trec.ir_freecount) {
1251 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1252 				cur = tcur;
1253 
1254 				pag->pagl_leftrec = trec.ir_startino;
1255 				pag->pagl_rightrec = rec.ir_startino;
1256 				pag->pagl_pagino = pagino;
1257 				rec = trec;
1258 				goto alloc_inode;
1259 			}
1260 
1261 			/* free inodes to the right? */
1262 			if (!useleft && rec.ir_freecount) {
1263 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1264 
1265 				pag->pagl_leftrec = trec.ir_startino;
1266 				pag->pagl_rightrec = rec.ir_startino;
1267 				pag->pagl_pagino = pagino;
1268 				goto alloc_inode;
1269 			}
1270 
1271 			/* get next record to check */
1272 			if (useleft) {
1273 				error = xfs_ialloc_next_rec(tcur, &trec,
1274 								 &doneleft, 1);
1275 			} else {
1276 				error = xfs_ialloc_next_rec(cur, &rec,
1277 								 &doneright, 0);
1278 			}
1279 			if (error)
1280 				goto error1;
1281 		}
1282 
1283 		if (searchdistance <= 0) {
1284 			/*
1285 			 * Not in range - save last search
1286 			 * location and allocate a new inode
1287 			 */
1288 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1289 			pag->pagl_leftrec = trec.ir_startino;
1290 			pag->pagl_rightrec = rec.ir_startino;
1291 			pag->pagl_pagino = pagino;
1292 
1293 		} else {
1294 			/*
1295 			 * We've reached the end of the btree. because
1296 			 * we are only searching a small chunk of the
1297 			 * btree each search, there is obviously free
1298 			 * inodes closer to the parent inode than we
1299 			 * are now. restart the search again.
1300 			 */
1301 			pag->pagl_pagino = NULLAGINO;
1302 			pag->pagl_leftrec = NULLAGINO;
1303 			pag->pagl_rightrec = NULLAGINO;
1304 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1305 			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1306 			goto restart_pagno;
1307 		}
1308 	}
1309 
1310 	/*
1311 	 * In a different AG from the parent.
1312 	 * See if the most recently allocated block has any free.
1313 	 */
1314 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1315 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1316 					 XFS_LOOKUP_EQ, &i);
1317 		if (error)
1318 			goto error0;
1319 
1320 		if (i == 1) {
1321 			error = xfs_inobt_get_rec(cur, &rec, &j);
1322 			if (error)
1323 				goto error0;
1324 
1325 			if (j == 1 && rec.ir_freecount > 0) {
1326 				/*
1327 				 * The last chunk allocated in the group
1328 				 * still has a free inode.
1329 				 */
1330 				goto alloc_inode;
1331 			}
1332 		}
1333 	}
1334 
1335 	/*
1336 	 * None left in the last group, search the whole AG
1337 	 */
1338 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1339 	if (error)
1340 		goto error0;
1341 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1342 		error = -EFSCORRUPTED;
1343 		goto error0;
1344 	}
1345 
1346 	for (;;) {
1347 		error = xfs_inobt_get_rec(cur, &rec, &i);
1348 		if (error)
1349 			goto error0;
1350 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1351 			error = -EFSCORRUPTED;
1352 			goto error0;
1353 		}
1354 		if (rec.ir_freecount > 0)
1355 			break;
1356 		error = xfs_btree_increment(cur, 0, &i);
1357 		if (error)
1358 			goto error0;
1359 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1360 			error = -EFSCORRUPTED;
1361 			goto error0;
1362 		}
1363 	}
1364 
1365 alloc_inode:
1366 	offset = xfs_inobt_first_free_inode(&rec);
1367 	ASSERT(offset >= 0);
1368 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1369 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1370 				   XFS_INODES_PER_CHUNK) == 0);
1371 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1372 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1373 	rec.ir_freecount--;
1374 	error = xfs_inobt_update(cur, &rec);
1375 	if (error)
1376 		goto error0;
1377 	be32_add_cpu(&agi->agi_freecount, -1);
1378 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1379 	pag->pagi_freecount--;
1380 
1381 	error = xfs_check_agi_freecount(cur, agi);
1382 	if (error)
1383 		goto error0;
1384 
1385 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1386 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1387 	xfs_perag_put(pag);
1388 	*inop = ino;
1389 	return 0;
1390 error1:
1391 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1392 error0:
1393 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1394 	xfs_perag_put(pag);
1395 	return error;
1396 }
1397 
1398 /*
1399  * Use the free inode btree to allocate an inode based on distance from the
1400  * parent. Note that the provided cursor may be deleted and replaced.
1401  */
1402 STATIC int
1403 xfs_dialloc_ag_finobt_near(
1404 	xfs_agino_t			pagino,
1405 	struct xfs_btree_cur		**ocur,
1406 	struct xfs_inobt_rec_incore	*rec)
1407 {
1408 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1409 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1410 	struct xfs_inobt_rec_incore	rrec;
1411 	int				error;
1412 	int				i, j;
1413 
1414 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1415 	if (error)
1416 		return error;
1417 
1418 	if (i == 1) {
1419 		error = xfs_inobt_get_rec(lcur, rec, &i);
1420 		if (error)
1421 			return error;
1422 		if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1423 			return -EFSCORRUPTED;
1424 
1425 		/*
1426 		 * See if we've landed in the parent inode record. The finobt
1427 		 * only tracks chunks with at least one free inode, so record
1428 		 * existence is enough.
1429 		 */
1430 		if (pagino >= rec->ir_startino &&
1431 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1432 			return 0;
1433 	}
1434 
1435 	error = xfs_btree_dup_cursor(lcur, &rcur);
1436 	if (error)
1437 		return error;
1438 
1439 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1440 	if (error)
1441 		goto error_rcur;
1442 	if (j == 1) {
1443 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1444 		if (error)
1445 			goto error_rcur;
1446 		if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1447 			error = -EFSCORRUPTED;
1448 			goto error_rcur;
1449 		}
1450 	}
1451 
1452 	if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1453 		error = -EFSCORRUPTED;
1454 		goto error_rcur;
1455 	}
1456 	if (i == 1 && j == 1) {
1457 		/*
1458 		 * Both the left and right records are valid. Choose the closer
1459 		 * inode chunk to the target.
1460 		 */
1461 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1462 		    (rrec.ir_startino - pagino)) {
1463 			*rec = rrec;
1464 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1465 			*ocur = rcur;
1466 		} else {
1467 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1468 		}
1469 	} else if (j == 1) {
1470 		/* only the right record is valid */
1471 		*rec = rrec;
1472 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1473 		*ocur = rcur;
1474 	} else if (i == 1) {
1475 		/* only the left record is valid */
1476 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1477 	}
1478 
1479 	return 0;
1480 
1481 error_rcur:
1482 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1483 	return error;
1484 }
1485 
1486 /*
1487  * Use the free inode btree to find a free inode based on a newino hint. If
1488  * the hint is NULL, find the first free inode in the AG.
1489  */
1490 STATIC int
1491 xfs_dialloc_ag_finobt_newino(
1492 	struct xfs_agi			*agi,
1493 	struct xfs_btree_cur		*cur,
1494 	struct xfs_inobt_rec_incore	*rec)
1495 {
1496 	int error;
1497 	int i;
1498 
1499 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1500 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1501 					 XFS_LOOKUP_EQ, &i);
1502 		if (error)
1503 			return error;
1504 		if (i == 1) {
1505 			error = xfs_inobt_get_rec(cur, rec, &i);
1506 			if (error)
1507 				return error;
1508 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1509 				return -EFSCORRUPTED;
1510 			return 0;
1511 		}
1512 	}
1513 
1514 	/*
1515 	 * Find the first inode available in the AG.
1516 	 */
1517 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1518 	if (error)
1519 		return error;
1520 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1521 		return -EFSCORRUPTED;
1522 
1523 	error = xfs_inobt_get_rec(cur, rec, &i);
1524 	if (error)
1525 		return error;
1526 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1527 		return -EFSCORRUPTED;
1528 
1529 	return 0;
1530 }
1531 
1532 /*
1533  * Update the inobt based on a modification made to the finobt. Also ensure that
1534  * the records from both trees are equivalent post-modification.
1535  */
1536 STATIC int
1537 xfs_dialloc_ag_update_inobt(
1538 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1539 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1540 	int				offset) /* inode offset */
1541 {
1542 	struct xfs_inobt_rec_incore	rec;
1543 	int				error;
1544 	int				i;
1545 
1546 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1547 	if (error)
1548 		return error;
1549 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1550 		return -EFSCORRUPTED;
1551 
1552 	error = xfs_inobt_get_rec(cur, &rec, &i);
1553 	if (error)
1554 		return error;
1555 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1556 		return -EFSCORRUPTED;
1557 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1558 				   XFS_INODES_PER_CHUNK) == 0);
1559 
1560 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1561 	rec.ir_freecount--;
1562 
1563 	if (XFS_IS_CORRUPT(cur->bc_mp,
1564 			   rec.ir_free != frec->ir_free ||
1565 			   rec.ir_freecount != frec->ir_freecount))
1566 		return -EFSCORRUPTED;
1567 
1568 	return xfs_inobt_update(cur, &rec);
1569 }
1570 
1571 /*
1572  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1573  * back to the inobt search algorithm.
1574  *
1575  * The caller selected an AG for us, and made sure that free inodes are
1576  * available.
1577  */
1578 STATIC int
1579 xfs_dialloc_ag(
1580 	struct xfs_trans	*tp,
1581 	struct xfs_buf		*agbp,
1582 	xfs_ino_t		parent,
1583 	xfs_ino_t		*inop)
1584 {
1585 	struct xfs_mount		*mp = tp->t_mountp;
1586 	struct xfs_agi			*agi = agbp->b_addr;
1587 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1588 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1589 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1590 	struct xfs_perag		*pag;
1591 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1592 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1593 	struct xfs_inobt_rec_incore	rec;
1594 	xfs_ino_t			ino;
1595 	int				error;
1596 	int				offset;
1597 	int				i;
1598 
1599 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1600 		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1601 
1602 	pag = xfs_perag_get(mp, agno);
1603 
1604 	/*
1605 	 * If pagino is 0 (this is the root inode allocation) use newino.
1606 	 * This must work because we've just allocated some.
1607 	 */
1608 	if (!pagino)
1609 		pagino = be32_to_cpu(agi->agi_newino);
1610 
1611 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1612 
1613 	error = xfs_check_agi_freecount(cur, agi);
1614 	if (error)
1615 		goto error_cur;
1616 
1617 	/*
1618 	 * The search algorithm depends on whether we're in the same AG as the
1619 	 * parent. If so, find the closest available inode to the parent. If
1620 	 * not, consider the agi hint or find the first free inode in the AG.
1621 	 */
1622 	if (agno == pagno)
1623 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1624 	else
1625 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1626 	if (error)
1627 		goto error_cur;
1628 
1629 	offset = xfs_inobt_first_free_inode(&rec);
1630 	ASSERT(offset >= 0);
1631 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1632 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1633 				   XFS_INODES_PER_CHUNK) == 0);
1634 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1635 
1636 	/*
1637 	 * Modify or remove the finobt record.
1638 	 */
1639 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1640 	rec.ir_freecount--;
1641 	if (rec.ir_freecount)
1642 		error = xfs_inobt_update(cur, &rec);
1643 	else
1644 		error = xfs_btree_delete(cur, &i);
1645 	if (error)
1646 		goto error_cur;
1647 
1648 	/*
1649 	 * The finobt has now been updated appropriately. We haven't updated the
1650 	 * agi and superblock yet, so we can create an inobt cursor and validate
1651 	 * the original freecount. If all is well, make the equivalent update to
1652 	 * the inobt using the finobt record and offset information.
1653 	 */
1654 	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1655 
1656 	error = xfs_check_agi_freecount(icur, agi);
1657 	if (error)
1658 		goto error_icur;
1659 
1660 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1661 	if (error)
1662 		goto error_icur;
1663 
1664 	/*
1665 	 * Both trees have now been updated. We must update the perag and
1666 	 * superblock before we can check the freecount for each btree.
1667 	 */
1668 	be32_add_cpu(&agi->agi_freecount, -1);
1669 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1670 	pag->pagi_freecount--;
1671 
1672 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1673 
1674 	error = xfs_check_agi_freecount(icur, agi);
1675 	if (error)
1676 		goto error_icur;
1677 	error = xfs_check_agi_freecount(cur, agi);
1678 	if (error)
1679 		goto error_icur;
1680 
1681 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1682 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1683 	xfs_perag_put(pag);
1684 	*inop = ino;
1685 	return 0;
1686 
1687 error_icur:
1688 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1689 error_cur:
1690 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1691 	xfs_perag_put(pag);
1692 	return error;
1693 }
1694 
1695 /*
1696  * Allocate an inode on disk.
1697  *
1698  * Mode is used to tell whether the new inode will need space, and whether it
1699  * is a directory.
1700  *
1701  * This function is designed to be called twice if it has to do an allocation
1702  * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1703  * If an inode is available without having to performn an allocation, an inode
1704  * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1705  * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1706  * The caller should then commit the current transaction, allocate a
1707  * new transaction, and call xfs_dialloc() again, passing in the previous value
1708  * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1709  * buffer is locked across the two calls, the second call is guaranteed to have
1710  * a free inode available.
1711  *
1712  * Once we successfully pick an inode its number is returned and the on-disk
1713  * data structures are updated.  The inode itself is not read in, since doing so
1714  * would break ordering constraints with xfs_reclaim.
1715  */
1716 int
1717 xfs_dialloc(
1718 	struct xfs_trans	*tp,
1719 	xfs_ino_t		parent,
1720 	umode_t			mode,
1721 	struct xfs_buf		**IO_agbp,
1722 	xfs_ino_t		*inop)
1723 {
1724 	struct xfs_mount	*mp = tp->t_mountp;
1725 	struct xfs_buf		*agbp;
1726 	xfs_agnumber_t		agno;
1727 	int			error;
1728 	int			ialloced;
1729 	int			noroom = 0;
1730 	xfs_agnumber_t		start_agno;
1731 	struct xfs_perag	*pag;
1732 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1733 	int			okalloc = 1;
1734 
1735 	if (*IO_agbp) {
1736 		/*
1737 		 * If the caller passes in a pointer to the AGI buffer,
1738 		 * continue where we left off before.  In this case, we
1739 		 * know that the allocation group has free inodes.
1740 		 */
1741 		agbp = *IO_agbp;
1742 		goto out_alloc;
1743 	}
1744 
1745 	/*
1746 	 * We do not have an agbp, so select an initial allocation
1747 	 * group for inode allocation.
1748 	 */
1749 	start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1750 	if (start_agno == NULLAGNUMBER) {
1751 		*inop = NULLFSINO;
1752 		return 0;
1753 	}
1754 
1755 	/*
1756 	 * If we have already hit the ceiling of inode blocks then clear
1757 	 * okalloc so we scan all available agi structures for a free
1758 	 * inode.
1759 	 *
1760 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1761 	 * which will sacrifice the preciseness but improve the performance.
1762 	 */
1763 	if (igeo->maxicount &&
1764 	    percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1765 							> igeo->maxicount) {
1766 		noroom = 1;
1767 		okalloc = 0;
1768 	}
1769 
1770 	/*
1771 	 * Loop until we find an allocation group that either has free inodes
1772 	 * or in which we can allocate some inodes.  Iterate through the
1773 	 * allocation groups upward, wrapping at the end.
1774 	 */
1775 	agno = start_agno;
1776 	for (;;) {
1777 		pag = xfs_perag_get(mp, agno);
1778 		if (!pag->pagi_inodeok) {
1779 			xfs_ialloc_next_ag(mp);
1780 			goto nextag;
1781 		}
1782 
1783 		if (!pag->pagi_init) {
1784 			error = xfs_ialloc_pagi_init(mp, tp, agno);
1785 			if (error)
1786 				goto out_error;
1787 		}
1788 
1789 		/*
1790 		 * Do a first racy fast path check if this AG is usable.
1791 		 */
1792 		if (!pag->pagi_freecount && !okalloc)
1793 			goto nextag;
1794 
1795 		/*
1796 		 * Then read in the AGI buffer and recheck with the AGI buffer
1797 		 * lock held.
1798 		 */
1799 		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1800 		if (error)
1801 			goto out_error;
1802 
1803 		if (pag->pagi_freecount) {
1804 			xfs_perag_put(pag);
1805 			goto out_alloc;
1806 		}
1807 
1808 		if (!okalloc)
1809 			goto nextag_relse_buffer;
1810 
1811 
1812 		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1813 		if (error) {
1814 			xfs_trans_brelse(tp, agbp);
1815 
1816 			if (error != -ENOSPC)
1817 				goto out_error;
1818 
1819 			xfs_perag_put(pag);
1820 			*inop = NULLFSINO;
1821 			return 0;
1822 		}
1823 
1824 		if (ialloced) {
1825 			/*
1826 			 * We successfully allocated some inodes, return
1827 			 * the current context to the caller so that it
1828 			 * can commit the current transaction and call
1829 			 * us again where we left off.
1830 			 */
1831 			ASSERT(pag->pagi_freecount > 0);
1832 			xfs_perag_put(pag);
1833 
1834 			*IO_agbp = agbp;
1835 			*inop = NULLFSINO;
1836 			return 0;
1837 		}
1838 
1839 nextag_relse_buffer:
1840 		xfs_trans_brelse(tp, agbp);
1841 nextag:
1842 		xfs_perag_put(pag);
1843 		if (++agno == mp->m_sb.sb_agcount)
1844 			agno = 0;
1845 		if (agno == start_agno) {
1846 			*inop = NULLFSINO;
1847 			return noroom ? -ENOSPC : 0;
1848 		}
1849 	}
1850 
1851 out_alloc:
1852 	*IO_agbp = NULL;
1853 	return xfs_dialloc_ag(tp, agbp, parent, inop);
1854 out_error:
1855 	xfs_perag_put(pag);
1856 	return error;
1857 }
1858 
1859 /*
1860  * Free the blocks of an inode chunk. We must consider that the inode chunk
1861  * might be sparse and only free the regions that are allocated as part of the
1862  * chunk.
1863  */
1864 STATIC void
1865 xfs_difree_inode_chunk(
1866 	struct xfs_trans		*tp,
1867 	xfs_agnumber_t			agno,
1868 	struct xfs_inobt_rec_incore	*rec)
1869 {
1870 	struct xfs_mount		*mp = tp->t_mountp;
1871 	xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp,
1872 							rec->ir_startino);
1873 	int				startidx, endidx;
1874 	int				nextbit;
1875 	xfs_agblock_t			agbno;
1876 	int				contigblk;
1877 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1878 
1879 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1880 		/* not sparse, calculate extent info directly */
1881 		xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1882 				  M_IGEO(mp)->ialloc_blks,
1883 				  &XFS_RMAP_OINFO_INODES);
1884 		return;
1885 	}
1886 
1887 	/* holemask is only 16-bits (fits in an unsigned long) */
1888 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1889 	holemask[0] = rec->ir_holemask;
1890 
1891 	/*
1892 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1893 	 * holemask and convert the start/end index of each range to an extent.
1894 	 * We start with the start and end index both pointing at the first 0 in
1895 	 * the mask.
1896 	 */
1897 	startidx = endidx = find_first_zero_bit(holemask,
1898 						XFS_INOBT_HOLEMASK_BITS);
1899 	nextbit = startidx + 1;
1900 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1901 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1902 					     nextbit);
1903 		/*
1904 		 * If the next zero bit is contiguous, update the end index of
1905 		 * the current range and continue.
1906 		 */
1907 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1908 		    nextbit == endidx + 1) {
1909 			endidx = nextbit;
1910 			goto next;
1911 		}
1912 
1913 		/*
1914 		 * nextbit is not contiguous with the current end index. Convert
1915 		 * the current start/end to an extent and add it to the free
1916 		 * list.
1917 		 */
1918 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1919 				  mp->m_sb.sb_inopblock;
1920 		contigblk = ((endidx - startidx + 1) *
1921 			     XFS_INODES_PER_HOLEMASK_BIT) /
1922 			    mp->m_sb.sb_inopblock;
1923 
1924 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1925 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1926 		xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1927 				  contigblk, &XFS_RMAP_OINFO_INODES);
1928 
1929 		/* reset range to current bit and carry on... */
1930 		startidx = endidx = nextbit;
1931 
1932 next:
1933 		nextbit++;
1934 	}
1935 }
1936 
1937 STATIC int
1938 xfs_difree_inobt(
1939 	struct xfs_mount		*mp,
1940 	struct xfs_trans		*tp,
1941 	struct xfs_buf			*agbp,
1942 	xfs_agino_t			agino,
1943 	struct xfs_icluster		*xic,
1944 	struct xfs_inobt_rec_incore	*orec)
1945 {
1946 	struct xfs_agi			*agi = agbp->b_addr;
1947 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1948 	struct xfs_perag		*pag;
1949 	struct xfs_btree_cur		*cur;
1950 	struct xfs_inobt_rec_incore	rec;
1951 	int				ilen;
1952 	int				error;
1953 	int				i;
1954 	int				off;
1955 
1956 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1957 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1958 
1959 	/*
1960 	 * Initialize the cursor.
1961 	 */
1962 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1963 
1964 	error = xfs_check_agi_freecount(cur, agi);
1965 	if (error)
1966 		goto error0;
1967 
1968 	/*
1969 	 * Look for the entry describing this inode.
1970 	 */
1971 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1972 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1973 			__func__, error);
1974 		goto error0;
1975 	}
1976 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1977 		error = -EFSCORRUPTED;
1978 		goto error0;
1979 	}
1980 	error = xfs_inobt_get_rec(cur, &rec, &i);
1981 	if (error) {
1982 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1983 			__func__, error);
1984 		goto error0;
1985 	}
1986 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1987 		error = -EFSCORRUPTED;
1988 		goto error0;
1989 	}
1990 	/*
1991 	 * Get the offset in the inode chunk.
1992 	 */
1993 	off = agino - rec.ir_startino;
1994 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1995 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1996 	/*
1997 	 * Mark the inode free & increment the count.
1998 	 */
1999 	rec.ir_free |= XFS_INOBT_MASK(off);
2000 	rec.ir_freecount++;
2001 
2002 	/*
2003 	 * When an inode chunk is free, it becomes eligible for removal. Don't
2004 	 * remove the chunk if the block size is large enough for multiple inode
2005 	 * chunks (that might not be free).
2006 	 */
2007 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
2008 	    rec.ir_free == XFS_INOBT_ALL_FREE &&
2009 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2010 		xic->deleted = true;
2011 		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
2012 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2013 
2014 		/*
2015 		 * Remove the inode cluster from the AGI B+Tree, adjust the
2016 		 * AGI and Superblock inode counts, and mark the disk space
2017 		 * to be freed when the transaction is committed.
2018 		 */
2019 		ilen = rec.ir_freecount;
2020 		be32_add_cpu(&agi->agi_count, -ilen);
2021 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2022 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2023 		pag = xfs_perag_get(mp, agno);
2024 		pag->pagi_freecount -= ilen - 1;
2025 		pag->pagi_count -= ilen;
2026 		xfs_perag_put(pag);
2027 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2028 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2029 
2030 		if ((error = xfs_btree_delete(cur, &i))) {
2031 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2032 				__func__, error);
2033 			goto error0;
2034 		}
2035 
2036 		xfs_difree_inode_chunk(tp, agno, &rec);
2037 	} else {
2038 		xic->deleted = false;
2039 
2040 		error = xfs_inobt_update(cur, &rec);
2041 		if (error) {
2042 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2043 				__func__, error);
2044 			goto error0;
2045 		}
2046 
2047 		/*
2048 		 * Change the inode free counts and log the ag/sb changes.
2049 		 */
2050 		be32_add_cpu(&agi->agi_freecount, 1);
2051 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2052 		pag = xfs_perag_get(mp, agno);
2053 		pag->pagi_freecount++;
2054 		xfs_perag_put(pag);
2055 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2056 	}
2057 
2058 	error = xfs_check_agi_freecount(cur, agi);
2059 	if (error)
2060 		goto error0;
2061 
2062 	*orec = rec;
2063 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2064 	return 0;
2065 
2066 error0:
2067 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2068 	return error;
2069 }
2070 
2071 /*
2072  * Free an inode in the free inode btree.
2073  */
2074 STATIC int
2075 xfs_difree_finobt(
2076 	struct xfs_mount		*mp,
2077 	struct xfs_trans		*tp,
2078 	struct xfs_buf			*agbp,
2079 	xfs_agino_t			agino,
2080 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2081 {
2082 	struct xfs_agi			*agi = agbp->b_addr;
2083 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
2084 	struct xfs_btree_cur		*cur;
2085 	struct xfs_inobt_rec_incore	rec;
2086 	int				offset = agino - ibtrec->ir_startino;
2087 	int				error;
2088 	int				i;
2089 
2090 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2091 
2092 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2093 	if (error)
2094 		goto error;
2095 	if (i == 0) {
2096 		/*
2097 		 * If the record does not exist in the finobt, we must have just
2098 		 * freed an inode in a previously fully allocated chunk. If not,
2099 		 * something is out of sync.
2100 		 */
2101 		if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2102 			error = -EFSCORRUPTED;
2103 			goto error;
2104 		}
2105 
2106 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2107 					     ibtrec->ir_count,
2108 					     ibtrec->ir_freecount,
2109 					     ibtrec->ir_free, &i);
2110 		if (error)
2111 			goto error;
2112 		ASSERT(i == 1);
2113 
2114 		goto out;
2115 	}
2116 
2117 	/*
2118 	 * Read and update the existing record. We could just copy the ibtrec
2119 	 * across here, but that would defeat the purpose of having redundant
2120 	 * metadata. By making the modifications independently, we can catch
2121 	 * corruptions that we wouldn't see if we just copied from one record
2122 	 * to another.
2123 	 */
2124 	error = xfs_inobt_get_rec(cur, &rec, &i);
2125 	if (error)
2126 		goto error;
2127 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2128 		error = -EFSCORRUPTED;
2129 		goto error;
2130 	}
2131 
2132 	rec.ir_free |= XFS_INOBT_MASK(offset);
2133 	rec.ir_freecount++;
2134 
2135 	if (XFS_IS_CORRUPT(mp,
2136 			   rec.ir_free != ibtrec->ir_free ||
2137 			   rec.ir_freecount != ibtrec->ir_freecount)) {
2138 		error = -EFSCORRUPTED;
2139 		goto error;
2140 	}
2141 
2142 	/*
2143 	 * The content of inobt records should always match between the inobt
2144 	 * and finobt. The lifecycle of records in the finobt is different from
2145 	 * the inobt in that the finobt only tracks records with at least one
2146 	 * free inode. Hence, if all of the inodes are free and we aren't
2147 	 * keeping inode chunks permanently on disk, remove the record.
2148 	 * Otherwise, update the record with the new information.
2149 	 *
2150 	 * Note that we currently can't free chunks when the block size is large
2151 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2152 	 * with the inobt.
2153 	 */
2154 	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2155 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2156 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2157 		error = xfs_btree_delete(cur, &i);
2158 		if (error)
2159 			goto error;
2160 		ASSERT(i == 1);
2161 	} else {
2162 		error = xfs_inobt_update(cur, &rec);
2163 		if (error)
2164 			goto error;
2165 	}
2166 
2167 out:
2168 	error = xfs_check_agi_freecount(cur, agi);
2169 	if (error)
2170 		goto error;
2171 
2172 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2173 	return 0;
2174 
2175 error:
2176 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2177 	return error;
2178 }
2179 
2180 /*
2181  * Free disk inode.  Carefully avoids touching the incore inode, all
2182  * manipulations incore are the caller's responsibility.
2183  * The on-disk inode is not changed by this operation, only the
2184  * btree (free inode mask) is changed.
2185  */
2186 int
2187 xfs_difree(
2188 	struct xfs_trans	*tp,		/* transaction pointer */
2189 	xfs_ino_t		inode,		/* inode to be freed */
2190 	struct xfs_icluster	*xic)	/* cluster info if deleted */
2191 {
2192 	/* REFERENCED */
2193 	xfs_agblock_t		agbno;	/* block number containing inode */
2194 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2195 	xfs_agino_t		agino;	/* allocation group inode number */
2196 	xfs_agnumber_t		agno;	/* allocation group number */
2197 	int			error;	/* error return value */
2198 	struct xfs_mount	*mp;	/* mount structure for filesystem */
2199 	struct xfs_inobt_rec_incore rec;/* btree record */
2200 
2201 	mp = tp->t_mountp;
2202 
2203 	/*
2204 	 * Break up inode number into its components.
2205 	 */
2206 	agno = XFS_INO_TO_AGNO(mp, inode);
2207 	if (agno >= mp->m_sb.sb_agcount)  {
2208 		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2209 			__func__, agno, mp->m_sb.sb_agcount);
2210 		ASSERT(0);
2211 		return -EINVAL;
2212 	}
2213 	agino = XFS_INO_TO_AGINO(mp, inode);
2214 	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2215 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2216 			__func__, (unsigned long long)inode,
2217 			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2218 		ASSERT(0);
2219 		return -EINVAL;
2220 	}
2221 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2222 	if (agbno >= mp->m_sb.sb_agblocks)  {
2223 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2224 			__func__, agbno, mp->m_sb.sb_agblocks);
2225 		ASSERT(0);
2226 		return -EINVAL;
2227 	}
2228 	/*
2229 	 * Get the allocation group header.
2230 	 */
2231 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2232 	if (error) {
2233 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2234 			__func__, error);
2235 		return error;
2236 	}
2237 
2238 	/*
2239 	 * Fix up the inode allocation btree.
2240 	 */
2241 	error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec);
2242 	if (error)
2243 		goto error0;
2244 
2245 	/*
2246 	 * Fix up the free inode btree.
2247 	 */
2248 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2249 		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2250 		if (error)
2251 			goto error0;
2252 	}
2253 
2254 	return 0;
2255 
2256 error0:
2257 	return error;
2258 }
2259 
2260 STATIC int
2261 xfs_imap_lookup(
2262 	struct xfs_mount	*mp,
2263 	struct xfs_trans	*tp,
2264 	xfs_agnumber_t		agno,
2265 	xfs_agino_t		agino,
2266 	xfs_agblock_t		agbno,
2267 	xfs_agblock_t		*chunk_agbno,
2268 	xfs_agblock_t		*offset_agbno,
2269 	int			flags)
2270 {
2271 	struct xfs_inobt_rec_incore rec;
2272 	struct xfs_btree_cur	*cur;
2273 	struct xfs_buf		*agbp;
2274 	int			error;
2275 	int			i;
2276 
2277 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2278 	if (error) {
2279 		xfs_alert(mp,
2280 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2281 			__func__, error, agno);
2282 		return error;
2283 	}
2284 
2285 	/*
2286 	 * Lookup the inode record for the given agino. If the record cannot be
2287 	 * found, then it's an invalid inode number and we should abort. Once
2288 	 * we have a record, we need to ensure it contains the inode number
2289 	 * we are looking up.
2290 	 */
2291 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2292 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2293 	if (!error) {
2294 		if (i)
2295 			error = xfs_inobt_get_rec(cur, &rec, &i);
2296 		if (!error && i == 0)
2297 			error = -EINVAL;
2298 	}
2299 
2300 	xfs_trans_brelse(tp, agbp);
2301 	xfs_btree_del_cursor(cur, error);
2302 	if (error)
2303 		return error;
2304 
2305 	/* check that the returned record contains the required inode */
2306 	if (rec.ir_startino > agino ||
2307 	    rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2308 		return -EINVAL;
2309 
2310 	/* for untrusted inodes check it is allocated first */
2311 	if ((flags & XFS_IGET_UNTRUSTED) &&
2312 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2313 		return -EINVAL;
2314 
2315 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2316 	*offset_agbno = agbno - *chunk_agbno;
2317 	return 0;
2318 }
2319 
2320 /*
2321  * Return the location of the inode in imap, for mapping it into a buffer.
2322  */
2323 int
2324 xfs_imap(
2325 	xfs_mount_t	 *mp,	/* file system mount structure */
2326 	xfs_trans_t	 *tp,	/* transaction pointer */
2327 	xfs_ino_t	ino,	/* inode to locate */
2328 	struct xfs_imap	*imap,	/* location map structure */
2329 	uint		flags)	/* flags for inode btree lookup */
2330 {
2331 	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
2332 	xfs_agino_t	agino;	/* inode number within alloc group */
2333 	xfs_agnumber_t	agno;	/* allocation group number */
2334 	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
2335 	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
2336 	int		error;	/* error code */
2337 	int		offset;	/* index of inode in its buffer */
2338 	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
2339 
2340 	ASSERT(ino != NULLFSINO);
2341 
2342 	/*
2343 	 * Split up the inode number into its parts.
2344 	 */
2345 	agno = XFS_INO_TO_AGNO(mp, ino);
2346 	agino = XFS_INO_TO_AGINO(mp, ino);
2347 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2348 	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2349 	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2350 #ifdef DEBUG
2351 		/*
2352 		 * Don't output diagnostic information for untrusted inodes
2353 		 * as they can be invalid without implying corruption.
2354 		 */
2355 		if (flags & XFS_IGET_UNTRUSTED)
2356 			return -EINVAL;
2357 		if (agno >= mp->m_sb.sb_agcount) {
2358 			xfs_alert(mp,
2359 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2360 				__func__, agno, mp->m_sb.sb_agcount);
2361 		}
2362 		if (agbno >= mp->m_sb.sb_agblocks) {
2363 			xfs_alert(mp,
2364 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2365 				__func__, (unsigned long long)agbno,
2366 				(unsigned long)mp->m_sb.sb_agblocks);
2367 		}
2368 		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2369 			xfs_alert(mp,
2370 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2371 				__func__, ino,
2372 				XFS_AGINO_TO_INO(mp, agno, agino));
2373 		}
2374 		xfs_stack_trace();
2375 #endif /* DEBUG */
2376 		return -EINVAL;
2377 	}
2378 
2379 	/*
2380 	 * For bulkstat and handle lookups, we have an untrusted inode number
2381 	 * that we have to verify is valid. We cannot do this just by reading
2382 	 * the inode buffer as it may have been unlinked and removed leaving
2383 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2384 	 * in all cases where an untrusted inode number is passed.
2385 	 */
2386 	if (flags & XFS_IGET_UNTRUSTED) {
2387 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2388 					&chunk_agbno, &offset_agbno, flags);
2389 		if (error)
2390 			return error;
2391 		goto out_map;
2392 	}
2393 
2394 	/*
2395 	 * If the inode cluster size is the same as the blocksize or
2396 	 * smaller we get to the buffer by simple arithmetics.
2397 	 */
2398 	if (M_IGEO(mp)->blocks_per_cluster == 1) {
2399 		offset = XFS_INO_TO_OFFSET(mp, ino);
2400 		ASSERT(offset < mp->m_sb.sb_inopblock);
2401 
2402 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2403 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2404 		imap->im_boffset = (unsigned short)(offset <<
2405 							mp->m_sb.sb_inodelog);
2406 		return 0;
2407 	}
2408 
2409 	/*
2410 	 * If the inode chunks are aligned then use simple maths to
2411 	 * find the location. Otherwise we have to do a btree
2412 	 * lookup to find the location.
2413 	 */
2414 	if (M_IGEO(mp)->inoalign_mask) {
2415 		offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2416 		chunk_agbno = agbno - offset_agbno;
2417 	} else {
2418 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2419 					&chunk_agbno, &offset_agbno, flags);
2420 		if (error)
2421 			return error;
2422 	}
2423 
2424 out_map:
2425 	ASSERT(agbno >= chunk_agbno);
2426 	cluster_agbno = chunk_agbno +
2427 		((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2428 		 M_IGEO(mp)->blocks_per_cluster);
2429 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2430 		XFS_INO_TO_OFFSET(mp, ino);
2431 
2432 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2433 	imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2434 	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2435 
2436 	/*
2437 	 * If the inode number maps to a block outside the bounds
2438 	 * of the file system then return NULL rather than calling
2439 	 * read_buf and panicing when we get an error from the
2440 	 * driver.
2441 	 */
2442 	if ((imap->im_blkno + imap->im_len) >
2443 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2444 		xfs_alert(mp,
2445 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2446 			__func__, (unsigned long long) imap->im_blkno,
2447 			(unsigned long long) imap->im_len,
2448 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2449 		return -EINVAL;
2450 	}
2451 	return 0;
2452 }
2453 
2454 /*
2455  * Log specified fields for the ag hdr (inode section). The growth of the agi
2456  * structure over time requires that we interpret the buffer as two logical
2457  * regions delineated by the end of the unlinked list. This is due to the size
2458  * of the hash table and its location in the middle of the agi.
2459  *
2460  * For example, a request to log a field before agi_unlinked and a field after
2461  * agi_unlinked could cause us to log the entire hash table and use an excessive
2462  * amount of log space. To avoid this behavior, log the region up through
2463  * agi_unlinked in one call and the region after agi_unlinked through the end of
2464  * the structure in another.
2465  */
2466 void
2467 xfs_ialloc_log_agi(
2468 	xfs_trans_t	*tp,		/* transaction pointer */
2469 	xfs_buf_t	*bp,		/* allocation group header buffer */
2470 	int		fields)		/* bitmask of fields to log */
2471 {
2472 	int			first;		/* first byte number */
2473 	int			last;		/* last byte number */
2474 	static const short	offsets[] = {	/* field starting offsets */
2475 					/* keep in sync with bit definitions */
2476 		offsetof(xfs_agi_t, agi_magicnum),
2477 		offsetof(xfs_agi_t, agi_versionnum),
2478 		offsetof(xfs_agi_t, agi_seqno),
2479 		offsetof(xfs_agi_t, agi_length),
2480 		offsetof(xfs_agi_t, agi_count),
2481 		offsetof(xfs_agi_t, agi_root),
2482 		offsetof(xfs_agi_t, agi_level),
2483 		offsetof(xfs_agi_t, agi_freecount),
2484 		offsetof(xfs_agi_t, agi_newino),
2485 		offsetof(xfs_agi_t, agi_dirino),
2486 		offsetof(xfs_agi_t, agi_unlinked),
2487 		offsetof(xfs_agi_t, agi_free_root),
2488 		offsetof(xfs_agi_t, agi_free_level),
2489 		sizeof(xfs_agi_t)
2490 	};
2491 #ifdef DEBUG
2492 	struct xfs_agi		*agi = bp->b_addr;
2493 
2494 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2495 #endif
2496 
2497 	/*
2498 	 * Compute byte offsets for the first and last fields in the first
2499 	 * region and log the agi buffer. This only logs up through
2500 	 * agi_unlinked.
2501 	 */
2502 	if (fields & XFS_AGI_ALL_BITS_R1) {
2503 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2504 				  &first, &last);
2505 		xfs_trans_log_buf(tp, bp, first, last);
2506 	}
2507 
2508 	/*
2509 	 * Mask off the bits in the first region and calculate the first and
2510 	 * last field offsets for any bits in the second region.
2511 	 */
2512 	fields &= ~XFS_AGI_ALL_BITS_R1;
2513 	if (fields) {
2514 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2515 				  &first, &last);
2516 		xfs_trans_log_buf(tp, bp, first, last);
2517 	}
2518 }
2519 
2520 static xfs_failaddr_t
2521 xfs_agi_verify(
2522 	struct xfs_buf	*bp)
2523 {
2524 	struct xfs_mount *mp = bp->b_mount;
2525 	struct xfs_agi	*agi = bp->b_addr;
2526 	int		i;
2527 
2528 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2529 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2530 			return __this_address;
2531 		if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2532 			return __this_address;
2533 	}
2534 
2535 	/*
2536 	 * Validate the magic number of the agi block.
2537 	 */
2538 	if (!xfs_verify_magic(bp, agi->agi_magicnum))
2539 		return __this_address;
2540 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2541 		return __this_address;
2542 
2543 	if (be32_to_cpu(agi->agi_level) < 1 ||
2544 	    be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2545 		return __this_address;
2546 
2547 	if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2548 	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2549 	     be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2550 		return __this_address;
2551 
2552 	/*
2553 	 * during growfs operations, the perag is not fully initialised,
2554 	 * so we can't use it for any useful checking. growfs ensures we can't
2555 	 * use it by using uncached buffers that don't have the perag attached
2556 	 * so we can detect and avoid this problem.
2557 	 */
2558 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2559 		return __this_address;
2560 
2561 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2562 		if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2563 			continue;
2564 		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2565 			return __this_address;
2566 	}
2567 
2568 	return NULL;
2569 }
2570 
2571 static void
2572 xfs_agi_read_verify(
2573 	struct xfs_buf	*bp)
2574 {
2575 	struct xfs_mount *mp = bp->b_mount;
2576 	xfs_failaddr_t	fa;
2577 
2578 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2579 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2580 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2581 	else {
2582 		fa = xfs_agi_verify(bp);
2583 		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2584 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2585 	}
2586 }
2587 
2588 static void
2589 xfs_agi_write_verify(
2590 	struct xfs_buf	*bp)
2591 {
2592 	struct xfs_mount	*mp = bp->b_mount;
2593 	struct xfs_buf_log_item	*bip = bp->b_log_item;
2594 	struct xfs_agi		*agi = bp->b_addr;
2595 	xfs_failaddr_t		fa;
2596 
2597 	fa = xfs_agi_verify(bp);
2598 	if (fa) {
2599 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2600 		return;
2601 	}
2602 
2603 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2604 		return;
2605 
2606 	if (bip)
2607 		agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2608 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2609 }
2610 
2611 const struct xfs_buf_ops xfs_agi_buf_ops = {
2612 	.name = "xfs_agi",
2613 	.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2614 	.verify_read = xfs_agi_read_verify,
2615 	.verify_write = xfs_agi_write_verify,
2616 	.verify_struct = xfs_agi_verify,
2617 };
2618 
2619 /*
2620  * Read in the allocation group header (inode allocation section)
2621  */
2622 int
2623 xfs_read_agi(
2624 	struct xfs_mount	*mp,	/* file system mount structure */
2625 	struct xfs_trans	*tp,	/* transaction pointer */
2626 	xfs_agnumber_t		agno,	/* allocation group number */
2627 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2628 {
2629 	int			error;
2630 
2631 	trace_xfs_read_agi(mp, agno);
2632 
2633 	ASSERT(agno != NULLAGNUMBER);
2634 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2635 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2636 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2637 	if (error)
2638 		return error;
2639 	if (tp)
2640 		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2641 
2642 	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2643 	return 0;
2644 }
2645 
2646 int
2647 xfs_ialloc_read_agi(
2648 	struct xfs_mount	*mp,	/* file system mount structure */
2649 	struct xfs_trans	*tp,	/* transaction pointer */
2650 	xfs_agnumber_t		agno,	/* allocation group number */
2651 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2652 {
2653 	struct xfs_agi		*agi;	/* allocation group header */
2654 	struct xfs_perag	*pag;	/* per allocation group data */
2655 	int			error;
2656 
2657 	trace_xfs_ialloc_read_agi(mp, agno);
2658 
2659 	error = xfs_read_agi(mp, tp, agno, bpp);
2660 	if (error)
2661 		return error;
2662 
2663 	agi = (*bpp)->b_addr;
2664 	pag = xfs_perag_get(mp, agno);
2665 	if (!pag->pagi_init) {
2666 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2667 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2668 		pag->pagi_init = 1;
2669 	}
2670 
2671 	/*
2672 	 * It's possible for these to be out of sync if
2673 	 * we are in the middle of a forced shutdown.
2674 	 */
2675 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2676 		XFS_FORCED_SHUTDOWN(mp));
2677 	xfs_perag_put(pag);
2678 	return 0;
2679 }
2680 
2681 /*
2682  * Read in the agi to initialise the per-ag data in the mount structure
2683  */
2684 int
2685 xfs_ialloc_pagi_init(
2686 	xfs_mount_t	*mp,		/* file system mount structure */
2687 	xfs_trans_t	*tp,		/* transaction pointer */
2688 	xfs_agnumber_t	agno)		/* allocation group number */
2689 {
2690 	xfs_buf_t	*bp = NULL;
2691 	int		error;
2692 
2693 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2694 	if (error)
2695 		return error;
2696 	if (bp)
2697 		xfs_trans_brelse(tp, bp);
2698 	return 0;
2699 }
2700 
2701 /* Is there an inode record covering a given range of inode numbers? */
2702 int
2703 xfs_ialloc_has_inode_record(
2704 	struct xfs_btree_cur	*cur,
2705 	xfs_agino_t		low,
2706 	xfs_agino_t		high,
2707 	bool			*exists)
2708 {
2709 	struct xfs_inobt_rec_incore	irec;
2710 	xfs_agino_t		agino;
2711 	uint16_t		holemask;
2712 	int			has_record;
2713 	int			i;
2714 	int			error;
2715 
2716 	*exists = false;
2717 	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2718 	while (error == 0 && has_record) {
2719 		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2720 		if (error || irec.ir_startino > high)
2721 			break;
2722 
2723 		agino = irec.ir_startino;
2724 		holemask = irec.ir_holemask;
2725 		for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2726 				i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2727 			if (holemask & 1)
2728 				continue;
2729 			if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2730 					agino <= high) {
2731 				*exists = true;
2732 				return 0;
2733 			}
2734 		}
2735 
2736 		error = xfs_btree_increment(cur, 0, &has_record);
2737 	}
2738 	return error;
2739 }
2740 
2741 /* Is there an inode record covering a given extent? */
2742 int
2743 xfs_ialloc_has_inodes_at_extent(
2744 	struct xfs_btree_cur	*cur,
2745 	xfs_agblock_t		bno,
2746 	xfs_extlen_t		len,
2747 	bool			*exists)
2748 {
2749 	xfs_agino_t		low;
2750 	xfs_agino_t		high;
2751 
2752 	low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2753 	high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2754 
2755 	return xfs_ialloc_has_inode_record(cur, low, high, exists);
2756 }
2757 
2758 struct xfs_ialloc_count_inodes {
2759 	xfs_agino_t			count;
2760 	xfs_agino_t			freecount;
2761 };
2762 
2763 /* Record inode counts across all inobt records. */
2764 STATIC int
2765 xfs_ialloc_count_inodes_rec(
2766 	struct xfs_btree_cur		*cur,
2767 	union xfs_btree_rec		*rec,
2768 	void				*priv)
2769 {
2770 	struct xfs_inobt_rec_incore	irec;
2771 	struct xfs_ialloc_count_inodes	*ci = priv;
2772 
2773 	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2774 	ci->count += irec.ir_count;
2775 	ci->freecount += irec.ir_freecount;
2776 
2777 	return 0;
2778 }
2779 
2780 /* Count allocated and free inodes under an inobt. */
2781 int
2782 xfs_ialloc_count_inodes(
2783 	struct xfs_btree_cur		*cur,
2784 	xfs_agino_t			*count,
2785 	xfs_agino_t			*freecount)
2786 {
2787 	struct xfs_ialloc_count_inodes	ci = {0};
2788 	int				error;
2789 
2790 	ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2791 	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2792 	if (error)
2793 		return error;
2794 
2795 	*count = ci.count;
2796 	*freecount = ci.freecount;
2797 	return 0;
2798 }
2799 
2800 /*
2801  * Initialize inode-related geometry information.
2802  *
2803  * Compute the inode btree min and max levels and set maxicount.
2804  *
2805  * Set the inode cluster size.  This may still be overridden by the file
2806  * system block size if it is larger than the chosen cluster size.
2807  *
2808  * For v5 filesystems, scale the cluster size with the inode size to keep a
2809  * constant ratio of inode per cluster buffer, but only if mkfs has set the
2810  * inode alignment value appropriately for larger cluster sizes.
2811  *
2812  * Then compute the inode cluster alignment information.
2813  */
2814 void
2815 xfs_ialloc_setup_geometry(
2816 	struct xfs_mount	*mp)
2817 {
2818 	struct xfs_sb		*sbp = &mp->m_sb;
2819 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2820 	uint64_t		icount;
2821 	uint			inodes;
2822 
2823 	/* Compute inode btree geometry. */
2824 	igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2825 	igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2826 	igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2827 	igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2828 	igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2829 
2830 	igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2831 			sbp->sb_inopblock);
2832 	igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2833 
2834 	if (sbp->sb_spino_align)
2835 		igeo->ialloc_min_blks = sbp->sb_spino_align;
2836 	else
2837 		igeo->ialloc_min_blks = igeo->ialloc_blks;
2838 
2839 	/* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2840 	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2841 	igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2842 			inodes);
2843 
2844 	/*
2845 	 * Set the maximum inode count for this filesystem, being careful not
2846 	 * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2847 	 * users should never get here due to failing sb verification, but
2848 	 * certain users (xfs_db) need to be usable even with corrupt metadata.
2849 	 */
2850 	if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2851 		/*
2852 		 * Make sure the maximum inode count is a multiple
2853 		 * of the units we allocate inodes in.
2854 		 */
2855 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2856 		do_div(icount, 100);
2857 		do_div(icount, igeo->ialloc_blks);
2858 		igeo->maxicount = XFS_FSB_TO_INO(mp,
2859 				icount * igeo->ialloc_blks);
2860 	} else {
2861 		igeo->maxicount = 0;
2862 	}
2863 
2864 	/*
2865 	 * Compute the desired size of an inode cluster buffer size, which
2866 	 * starts at 8K and (on v5 filesystems) scales up with larger inode
2867 	 * sizes.
2868 	 *
2869 	 * Preserve the desired inode cluster size because the sparse inodes
2870 	 * feature uses that desired size (not the actual size) to compute the
2871 	 * sparse inode alignment.  The mount code validates this value, so we
2872 	 * cannot change the behavior.
2873 	 */
2874 	igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2875 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
2876 		int	new_size = igeo->inode_cluster_size_raw;
2877 
2878 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2879 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2880 			igeo->inode_cluster_size_raw = new_size;
2881 	}
2882 
2883 	/* Calculate inode cluster ratios. */
2884 	if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2885 		igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2886 				igeo->inode_cluster_size_raw);
2887 	else
2888 		igeo->blocks_per_cluster = 1;
2889 	igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2890 	igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2891 
2892 	/* Calculate inode cluster alignment. */
2893 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
2894 	    mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2895 		igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2896 	else
2897 		igeo->cluster_align = 1;
2898 	igeo->inoalign_mask = igeo->cluster_align - 1;
2899 	igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2900 
2901 	/*
2902 	 * If we are using stripe alignment, check whether
2903 	 * the stripe unit is a multiple of the inode alignment
2904 	 */
2905 	if (mp->m_dalign && igeo->inoalign_mask &&
2906 	    !(mp->m_dalign & igeo->inoalign_mask))
2907 		igeo->ialloc_align = mp->m_dalign;
2908 	else
2909 		igeo->ialloc_align = 0;
2910 }
2911 
2912 /* Compute the location of the root directory inode that is laid out by mkfs. */
2913 xfs_ino_t
2914 xfs_ialloc_calc_rootino(
2915 	struct xfs_mount	*mp,
2916 	int			sunit)
2917 {
2918 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2919 	xfs_agblock_t		first_bno;
2920 
2921 	/*
2922 	 * Pre-calculate the geometry of AG 0.  We know what it looks like
2923 	 * because libxfs knows how to create allocation groups now.
2924 	 *
2925 	 * first_bno is the first block in which mkfs could possibly have
2926 	 * allocated the root directory inode, once we factor in the metadata
2927 	 * that mkfs formats before it.  Namely, the four AG headers...
2928 	 */
2929 	first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2930 
2931 	/* ...the two free space btree roots... */
2932 	first_bno += 2;
2933 
2934 	/* ...the inode btree root... */
2935 	first_bno += 1;
2936 
2937 	/* ...the initial AGFL... */
2938 	first_bno += xfs_alloc_min_freelist(mp, NULL);
2939 
2940 	/* ...the free inode btree root... */
2941 	if (xfs_sb_version_hasfinobt(&mp->m_sb))
2942 		first_bno++;
2943 
2944 	/* ...the reverse mapping btree root... */
2945 	if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2946 		first_bno++;
2947 
2948 	/* ...the reference count btree... */
2949 	if (xfs_sb_version_hasreflink(&mp->m_sb))
2950 		first_bno++;
2951 
2952 	/*
2953 	 * ...and the log, if it is allocated in the first allocation group.
2954 	 *
2955 	 * This can happen with filesystems that only have a single
2956 	 * allocation group, or very odd geometries created by old mkfs
2957 	 * versions on very small filesystems.
2958 	 */
2959 	if (mp->m_sb.sb_logstart &&
2960 	    XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0)
2961 		 first_bno += mp->m_sb.sb_logblocks;
2962 
2963 	/*
2964 	 * Now round first_bno up to whatever allocation alignment is given
2965 	 * by the filesystem or was passed in.
2966 	 */
2967 	if (xfs_sb_version_hasdalign(&mp->m_sb) && igeo->ialloc_align > 0)
2968 		first_bno = roundup(first_bno, sunit);
2969 	else if (xfs_sb_version_hasalign(&mp->m_sb) &&
2970 			mp->m_sb.sb_inoalignmt > 1)
2971 		first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2972 
2973 	return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2974 }
2975