1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_btree.h" 18 #include "xfs_ialloc.h" 19 #include "xfs_ialloc_btree.h" 20 #include "xfs_alloc.h" 21 #include "xfs_rtalloc.h" 22 #include "xfs_errortag.h" 23 #include "xfs_error.h" 24 #include "xfs_bmap.h" 25 #include "xfs_cksum.h" 26 #include "xfs_trans.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_icreate_item.h" 29 #include "xfs_icache.h" 30 #include "xfs_trace.h" 31 #include "xfs_log.h" 32 #include "xfs_rmap.h" 33 34 35 /* 36 * Allocation group level functions. 37 */ 38 int 39 xfs_ialloc_cluster_alignment( 40 struct xfs_mount *mp) 41 { 42 if (xfs_sb_version_hasalign(&mp->m_sb) && 43 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) 44 return mp->m_sb.sb_inoalignmt; 45 return 1; 46 } 47 48 /* 49 * Lookup a record by ino in the btree given by cur. 50 */ 51 int /* error */ 52 xfs_inobt_lookup( 53 struct xfs_btree_cur *cur, /* btree cursor */ 54 xfs_agino_t ino, /* starting inode of chunk */ 55 xfs_lookup_t dir, /* <=, >=, == */ 56 int *stat) /* success/failure */ 57 { 58 cur->bc_rec.i.ir_startino = ino; 59 cur->bc_rec.i.ir_holemask = 0; 60 cur->bc_rec.i.ir_count = 0; 61 cur->bc_rec.i.ir_freecount = 0; 62 cur->bc_rec.i.ir_free = 0; 63 return xfs_btree_lookup(cur, dir, stat); 64 } 65 66 /* 67 * Update the record referred to by cur to the value given. 68 * This either works (return 0) or gets an EFSCORRUPTED error. 69 */ 70 STATIC int /* error */ 71 xfs_inobt_update( 72 struct xfs_btree_cur *cur, /* btree cursor */ 73 xfs_inobt_rec_incore_t *irec) /* btree record */ 74 { 75 union xfs_btree_rec rec; 76 77 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 78 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { 79 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); 80 rec.inobt.ir_u.sp.ir_count = irec->ir_count; 81 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; 82 } else { 83 /* ir_holemask/ir_count not supported on-disk */ 84 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); 85 } 86 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 87 return xfs_btree_update(cur, &rec); 88 } 89 90 /* Convert on-disk btree record to incore inobt record. */ 91 void 92 xfs_inobt_btrec_to_irec( 93 struct xfs_mount *mp, 94 union xfs_btree_rec *rec, 95 struct xfs_inobt_rec_incore *irec) 96 { 97 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 98 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) { 99 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); 100 irec->ir_count = rec->inobt.ir_u.sp.ir_count; 101 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; 102 } else { 103 /* 104 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded 105 * values for full inode chunks. 106 */ 107 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; 108 irec->ir_count = XFS_INODES_PER_CHUNK; 109 irec->ir_freecount = 110 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); 111 } 112 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 113 } 114 115 /* 116 * Get the data from the pointed-to record. 117 */ 118 int 119 xfs_inobt_get_rec( 120 struct xfs_btree_cur *cur, 121 struct xfs_inobt_rec_incore *irec, 122 int *stat) 123 { 124 struct xfs_mount *mp = cur->bc_mp; 125 xfs_agnumber_t agno = cur->bc_private.a.agno; 126 union xfs_btree_rec *rec; 127 int error; 128 uint64_t realfree; 129 130 error = xfs_btree_get_rec(cur, &rec, stat); 131 if (error || *stat == 0) 132 return error; 133 134 xfs_inobt_btrec_to_irec(mp, rec, irec); 135 136 if (!xfs_verify_agino(mp, agno, irec->ir_startino)) 137 goto out_bad_rec; 138 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT || 139 irec->ir_count > XFS_INODES_PER_CHUNK) 140 goto out_bad_rec; 141 if (irec->ir_freecount > XFS_INODES_PER_CHUNK) 142 goto out_bad_rec; 143 144 /* if there are no holes, return the first available offset */ 145 if (!xfs_inobt_issparse(irec->ir_holemask)) 146 realfree = irec->ir_free; 147 else 148 realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec); 149 if (hweight64(realfree) != irec->ir_freecount) 150 goto out_bad_rec; 151 152 return 0; 153 154 out_bad_rec: 155 xfs_warn(mp, 156 "%s Inode BTree record corruption in AG %d detected!", 157 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno); 158 xfs_warn(mp, 159 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x", 160 irec->ir_startino, irec->ir_count, irec->ir_freecount, 161 irec->ir_free, irec->ir_holemask); 162 return -EFSCORRUPTED; 163 } 164 165 /* 166 * Insert a single inobt record. Cursor must already point to desired location. 167 */ 168 int 169 xfs_inobt_insert_rec( 170 struct xfs_btree_cur *cur, 171 uint16_t holemask, 172 uint8_t count, 173 int32_t freecount, 174 xfs_inofree_t free, 175 int *stat) 176 { 177 cur->bc_rec.i.ir_holemask = holemask; 178 cur->bc_rec.i.ir_count = count; 179 cur->bc_rec.i.ir_freecount = freecount; 180 cur->bc_rec.i.ir_free = free; 181 return xfs_btree_insert(cur, stat); 182 } 183 184 /* 185 * Insert records describing a newly allocated inode chunk into the inobt. 186 */ 187 STATIC int 188 xfs_inobt_insert( 189 struct xfs_mount *mp, 190 struct xfs_trans *tp, 191 struct xfs_buf *agbp, 192 xfs_agino_t newino, 193 xfs_agino_t newlen, 194 xfs_btnum_t btnum) 195 { 196 struct xfs_btree_cur *cur; 197 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 198 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 199 xfs_agino_t thisino; 200 int i; 201 int error; 202 203 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 204 205 for (thisino = newino; 206 thisino < newino + newlen; 207 thisino += XFS_INODES_PER_CHUNK) { 208 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 209 if (error) { 210 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 211 return error; 212 } 213 ASSERT(i == 0); 214 215 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, 216 XFS_INODES_PER_CHUNK, 217 XFS_INODES_PER_CHUNK, 218 XFS_INOBT_ALL_FREE, &i); 219 if (error) { 220 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 221 return error; 222 } 223 ASSERT(i == 1); 224 } 225 226 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 227 228 return 0; 229 } 230 231 /* 232 * Verify that the number of free inodes in the AGI is correct. 233 */ 234 #ifdef DEBUG 235 STATIC int 236 xfs_check_agi_freecount( 237 struct xfs_btree_cur *cur, 238 struct xfs_agi *agi) 239 { 240 if (cur->bc_nlevels == 1) { 241 xfs_inobt_rec_incore_t rec; 242 int freecount = 0; 243 int error; 244 int i; 245 246 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 247 if (error) 248 return error; 249 250 do { 251 error = xfs_inobt_get_rec(cur, &rec, &i); 252 if (error) 253 return error; 254 255 if (i) { 256 freecount += rec.ir_freecount; 257 error = xfs_btree_increment(cur, 0, &i); 258 if (error) 259 return error; 260 } 261 } while (i == 1); 262 263 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) 264 ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); 265 } 266 return 0; 267 } 268 #else 269 #define xfs_check_agi_freecount(cur, agi) 0 270 #endif 271 272 /* 273 * Initialise a new set of inodes. When called without a transaction context 274 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 275 * than logging them (which in a transaction context puts them into the AIL 276 * for writeback rather than the xfsbufd queue). 277 */ 278 int 279 xfs_ialloc_inode_init( 280 struct xfs_mount *mp, 281 struct xfs_trans *tp, 282 struct list_head *buffer_list, 283 int icount, 284 xfs_agnumber_t agno, 285 xfs_agblock_t agbno, 286 xfs_agblock_t length, 287 unsigned int gen) 288 { 289 struct xfs_buf *fbuf; 290 struct xfs_dinode *free; 291 int nbufs, blks_per_cluster, inodes_per_cluster; 292 int version; 293 int i, j; 294 xfs_daddr_t d; 295 xfs_ino_t ino = 0; 296 297 /* 298 * Loop over the new block(s), filling in the inodes. For small block 299 * sizes, manipulate the inodes in buffers which are multiples of the 300 * blocks size. 301 */ 302 blks_per_cluster = xfs_icluster_size_fsb(mp); 303 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 304 nbufs = length / blks_per_cluster; 305 306 /* 307 * Figure out what version number to use in the inodes we create. If 308 * the superblock version has caught up to the one that supports the new 309 * inode format, then use the new inode version. Otherwise use the old 310 * version so that old kernels will continue to be able to use the file 311 * system. 312 * 313 * For v3 inodes, we also need to write the inode number into the inode, 314 * so calculate the first inode number of the chunk here as 315 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not 316 * across multiple filesystem blocks (such as a cluster) and so cannot 317 * be used in the cluster buffer loop below. 318 * 319 * Further, because we are writing the inode directly into the buffer 320 * and calculating a CRC on the entire inode, we have ot log the entire 321 * inode so that the entire range the CRC covers is present in the log. 322 * That means for v3 inode we log the entire buffer rather than just the 323 * inode cores. 324 */ 325 if (xfs_sb_version_hascrc(&mp->m_sb)) { 326 version = 3; 327 ino = XFS_AGINO_TO_INO(mp, agno, 328 XFS_OFFBNO_TO_AGINO(mp, agbno, 0)); 329 330 /* 331 * log the initialisation that is about to take place as an 332 * logical operation. This means the transaction does not 333 * need to log the physical changes to the inode buffers as log 334 * recovery will know what initialisation is actually needed. 335 * Hence we only need to log the buffers as "ordered" buffers so 336 * they track in the AIL as if they were physically logged. 337 */ 338 if (tp) 339 xfs_icreate_log(tp, agno, agbno, icount, 340 mp->m_sb.sb_inodesize, length, gen); 341 } else 342 version = 2; 343 344 for (j = 0; j < nbufs; j++) { 345 /* 346 * Get the block. 347 */ 348 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster)); 349 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 350 mp->m_bsize * blks_per_cluster, 351 XBF_UNMAPPED); 352 if (!fbuf) 353 return -ENOMEM; 354 355 /* Initialize the inode buffers and log them appropriately. */ 356 fbuf->b_ops = &xfs_inode_buf_ops; 357 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 358 for (i = 0; i < inodes_per_cluster; i++) { 359 int ioffset = i << mp->m_sb.sb_inodelog; 360 uint isize = xfs_dinode_size(version); 361 362 free = xfs_make_iptr(mp, fbuf, i); 363 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 364 free->di_version = version; 365 free->di_gen = cpu_to_be32(gen); 366 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 367 368 if (version == 3) { 369 free->di_ino = cpu_to_be64(ino); 370 ino++; 371 uuid_copy(&free->di_uuid, 372 &mp->m_sb.sb_meta_uuid); 373 xfs_dinode_calc_crc(mp, free); 374 } else if (tp) { 375 /* just log the inode core */ 376 xfs_trans_log_buf(tp, fbuf, ioffset, 377 ioffset + isize - 1); 378 } 379 } 380 381 if (tp) { 382 /* 383 * Mark the buffer as an inode allocation buffer so it 384 * sticks in AIL at the point of this allocation 385 * transaction. This ensures the they are on disk before 386 * the tail of the log can be moved past this 387 * transaction (i.e. by preventing relogging from moving 388 * it forward in the log). 389 */ 390 xfs_trans_inode_alloc_buf(tp, fbuf); 391 if (version == 3) { 392 /* 393 * Mark the buffer as ordered so that they are 394 * not physically logged in the transaction but 395 * still tracked in the AIL as part of the 396 * transaction and pin the log appropriately. 397 */ 398 xfs_trans_ordered_buf(tp, fbuf); 399 } 400 } else { 401 fbuf->b_flags |= XBF_DONE; 402 xfs_buf_delwri_queue(fbuf, buffer_list); 403 xfs_buf_relse(fbuf); 404 } 405 } 406 return 0; 407 } 408 409 /* 410 * Align startino and allocmask for a recently allocated sparse chunk such that 411 * they are fit for insertion (or merge) into the on-disk inode btrees. 412 * 413 * Background: 414 * 415 * When enabled, sparse inode support increases the inode alignment from cluster 416 * size to inode chunk size. This means that the minimum range between two 417 * non-adjacent inode records in the inobt is large enough for a full inode 418 * record. This allows for cluster sized, cluster aligned block allocation 419 * without need to worry about whether the resulting inode record overlaps with 420 * another record in the tree. Without this basic rule, we would have to deal 421 * with the consequences of overlap by potentially undoing recent allocations in 422 * the inode allocation codepath. 423 * 424 * Because of this alignment rule (which is enforced on mount), there are two 425 * inobt possibilities for newly allocated sparse chunks. One is that the 426 * aligned inode record for the chunk covers a range of inodes not already 427 * covered in the inobt (i.e., it is safe to insert a new sparse record). The 428 * other is that a record already exists at the aligned startino that considers 429 * the newly allocated range as sparse. In the latter case, record content is 430 * merged in hope that sparse inode chunks fill to full chunks over time. 431 */ 432 STATIC void 433 xfs_align_sparse_ino( 434 struct xfs_mount *mp, 435 xfs_agino_t *startino, 436 uint16_t *allocmask) 437 { 438 xfs_agblock_t agbno; 439 xfs_agblock_t mod; 440 int offset; 441 442 agbno = XFS_AGINO_TO_AGBNO(mp, *startino); 443 mod = agbno % mp->m_sb.sb_inoalignmt; 444 if (!mod) 445 return; 446 447 /* calculate the inode offset and align startino */ 448 offset = mod << mp->m_sb.sb_inopblog; 449 *startino -= offset; 450 451 /* 452 * Since startino has been aligned down, left shift allocmask such that 453 * it continues to represent the same physical inodes relative to the 454 * new startino. 455 */ 456 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; 457 } 458 459 /* 460 * Determine whether the source inode record can merge into the target. Both 461 * records must be sparse, the inode ranges must match and there must be no 462 * allocation overlap between the records. 463 */ 464 STATIC bool 465 __xfs_inobt_can_merge( 466 struct xfs_inobt_rec_incore *trec, /* tgt record */ 467 struct xfs_inobt_rec_incore *srec) /* src record */ 468 { 469 uint64_t talloc; 470 uint64_t salloc; 471 472 /* records must cover the same inode range */ 473 if (trec->ir_startino != srec->ir_startino) 474 return false; 475 476 /* both records must be sparse */ 477 if (!xfs_inobt_issparse(trec->ir_holemask) || 478 !xfs_inobt_issparse(srec->ir_holemask)) 479 return false; 480 481 /* both records must track some inodes */ 482 if (!trec->ir_count || !srec->ir_count) 483 return false; 484 485 /* can't exceed capacity of a full record */ 486 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) 487 return false; 488 489 /* verify there is no allocation overlap */ 490 talloc = xfs_inobt_irec_to_allocmask(trec); 491 salloc = xfs_inobt_irec_to_allocmask(srec); 492 if (talloc & salloc) 493 return false; 494 495 return true; 496 } 497 498 /* 499 * Merge the source inode record into the target. The caller must call 500 * __xfs_inobt_can_merge() to ensure the merge is valid. 501 */ 502 STATIC void 503 __xfs_inobt_rec_merge( 504 struct xfs_inobt_rec_incore *trec, /* target */ 505 struct xfs_inobt_rec_incore *srec) /* src */ 506 { 507 ASSERT(trec->ir_startino == srec->ir_startino); 508 509 /* combine the counts */ 510 trec->ir_count += srec->ir_count; 511 trec->ir_freecount += srec->ir_freecount; 512 513 /* 514 * Merge the holemask and free mask. For both fields, 0 bits refer to 515 * allocated inodes. We combine the allocated ranges with bitwise AND. 516 */ 517 trec->ir_holemask &= srec->ir_holemask; 518 trec->ir_free &= srec->ir_free; 519 } 520 521 /* 522 * Insert a new sparse inode chunk into the associated inode btree. The inode 523 * record for the sparse chunk is pre-aligned to a startino that should match 524 * any pre-existing sparse inode record in the tree. This allows sparse chunks 525 * to fill over time. 526 * 527 * This function supports two modes of handling preexisting records depending on 528 * the merge flag. If merge is true, the provided record is merged with the 529 * existing record and updated in place. The merged record is returned in nrec. 530 * If merge is false, an existing record is replaced with the provided record. 531 * If no preexisting record exists, the provided record is always inserted. 532 * 533 * It is considered corruption if a merge is requested and not possible. Given 534 * the sparse inode alignment constraints, this should never happen. 535 */ 536 STATIC int 537 xfs_inobt_insert_sprec( 538 struct xfs_mount *mp, 539 struct xfs_trans *tp, 540 struct xfs_buf *agbp, 541 int btnum, 542 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ 543 bool merge) /* merge or replace */ 544 { 545 struct xfs_btree_cur *cur; 546 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 547 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 548 int error; 549 int i; 550 struct xfs_inobt_rec_incore rec; 551 552 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 553 554 /* the new record is pre-aligned so we know where to look */ 555 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); 556 if (error) 557 goto error; 558 /* if nothing there, insert a new record and return */ 559 if (i == 0) { 560 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, 561 nrec->ir_count, nrec->ir_freecount, 562 nrec->ir_free, &i); 563 if (error) 564 goto error; 565 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 566 567 goto out; 568 } 569 570 /* 571 * A record exists at this startino. Merge or replace the record 572 * depending on what we've been asked to do. 573 */ 574 if (merge) { 575 error = xfs_inobt_get_rec(cur, &rec, &i); 576 if (error) 577 goto error; 578 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 579 XFS_WANT_CORRUPTED_GOTO(mp, 580 rec.ir_startino == nrec->ir_startino, 581 error); 582 583 /* 584 * This should never fail. If we have coexisting records that 585 * cannot merge, something is seriously wrong. 586 */ 587 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec), 588 error); 589 590 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino, 591 rec.ir_holemask, nrec->ir_startino, 592 nrec->ir_holemask); 593 594 /* merge to nrec to output the updated record */ 595 __xfs_inobt_rec_merge(nrec, &rec); 596 597 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino, 598 nrec->ir_holemask); 599 600 error = xfs_inobt_rec_check_count(mp, nrec); 601 if (error) 602 goto error; 603 } 604 605 error = xfs_inobt_update(cur, nrec); 606 if (error) 607 goto error; 608 609 out: 610 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 611 return 0; 612 error: 613 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 614 return error; 615 } 616 617 /* 618 * Allocate new inodes in the allocation group specified by agbp. 619 * Return 0 for success, else error code. 620 */ 621 STATIC int /* error code or 0 */ 622 xfs_ialloc_ag_alloc( 623 xfs_trans_t *tp, /* transaction pointer */ 624 xfs_buf_t *agbp, /* alloc group buffer */ 625 int *alloc) 626 { 627 xfs_agi_t *agi; /* allocation group header */ 628 xfs_alloc_arg_t args; /* allocation argument structure */ 629 xfs_agnumber_t agno; 630 int error; 631 xfs_agino_t newino; /* new first inode's number */ 632 xfs_agino_t newlen; /* new number of inodes */ 633 int isaligned = 0; /* inode allocation at stripe unit */ 634 /* boundary */ 635 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */ 636 struct xfs_inobt_rec_incore rec; 637 struct xfs_perag *pag; 638 int do_sparse = 0; 639 640 memset(&args, 0, sizeof(args)); 641 args.tp = tp; 642 args.mp = tp->t_mountp; 643 args.fsbno = NULLFSBLOCK; 644 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES); 645 646 #ifdef DEBUG 647 /* randomly do sparse inode allocations */ 648 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) && 649 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks) 650 do_sparse = prandom_u32() & 1; 651 #endif 652 653 /* 654 * Locking will ensure that we don't have two callers in here 655 * at one time. 656 */ 657 newlen = args.mp->m_ialloc_inos; 658 if (args.mp->m_maxicount && 659 percpu_counter_read_positive(&args.mp->m_icount) + newlen > 660 args.mp->m_maxicount) 661 return -ENOSPC; 662 args.minlen = args.maxlen = args.mp->m_ialloc_blks; 663 /* 664 * First try to allocate inodes contiguous with the last-allocated 665 * chunk of inodes. If the filesystem is striped, this will fill 666 * an entire stripe unit with inodes. 667 */ 668 agi = XFS_BUF_TO_AGI(agbp); 669 newino = be32_to_cpu(agi->agi_newino); 670 agno = be32_to_cpu(agi->agi_seqno); 671 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 672 args.mp->m_ialloc_blks; 673 if (do_sparse) 674 goto sparse_alloc; 675 if (likely(newino != NULLAGINO && 676 (args.agbno < be32_to_cpu(agi->agi_length)))) { 677 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 678 args.type = XFS_ALLOCTYPE_THIS_BNO; 679 args.prod = 1; 680 681 /* 682 * We need to take into account alignment here to ensure that 683 * we don't modify the free list if we fail to have an exact 684 * block. If we don't have an exact match, and every oher 685 * attempt allocation attempt fails, we'll end up cancelling 686 * a dirty transaction and shutting down. 687 * 688 * For an exact allocation, alignment must be 1, 689 * however we need to take cluster alignment into account when 690 * fixing up the freelist. Use the minalignslop field to 691 * indicate that extra blocks might be required for alignment, 692 * but not to use them in the actual exact allocation. 693 */ 694 args.alignment = 1; 695 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1; 696 697 /* Allow space for the inode btree to split. */ 698 args.minleft = args.mp->m_in_maxlevels - 1; 699 if ((error = xfs_alloc_vextent(&args))) 700 return error; 701 702 /* 703 * This request might have dirtied the transaction if the AG can 704 * satisfy the request, but the exact block was not available. 705 * If the allocation did fail, subsequent requests will relax 706 * the exact agbno requirement and increase the alignment 707 * instead. It is critical that the total size of the request 708 * (len + alignment + slop) does not increase from this point 709 * on, so reset minalignslop to ensure it is not included in 710 * subsequent requests. 711 */ 712 args.minalignslop = 0; 713 } 714 715 if (unlikely(args.fsbno == NULLFSBLOCK)) { 716 /* 717 * Set the alignment for the allocation. 718 * If stripe alignment is turned on then align at stripe unit 719 * boundary. 720 * If the cluster size is smaller than a filesystem block 721 * then we're doing I/O for inodes in filesystem block size 722 * pieces, so don't need alignment anyway. 723 */ 724 isaligned = 0; 725 if (args.mp->m_sinoalign) { 726 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); 727 args.alignment = args.mp->m_dalign; 728 isaligned = 1; 729 } else 730 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 731 /* 732 * Need to figure out where to allocate the inode blocks. 733 * Ideally they should be spaced out through the a.g. 734 * For now, just allocate blocks up front. 735 */ 736 args.agbno = be32_to_cpu(agi->agi_root); 737 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 738 /* 739 * Allocate a fixed-size extent of inodes. 740 */ 741 args.type = XFS_ALLOCTYPE_NEAR_BNO; 742 args.prod = 1; 743 /* 744 * Allow space for the inode btree to split. 745 */ 746 args.minleft = args.mp->m_in_maxlevels - 1; 747 if ((error = xfs_alloc_vextent(&args))) 748 return error; 749 } 750 751 /* 752 * If stripe alignment is turned on, then try again with cluster 753 * alignment. 754 */ 755 if (isaligned && args.fsbno == NULLFSBLOCK) { 756 args.type = XFS_ALLOCTYPE_NEAR_BNO; 757 args.agbno = be32_to_cpu(agi->agi_root); 758 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 759 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 760 if ((error = xfs_alloc_vextent(&args))) 761 return error; 762 } 763 764 /* 765 * Finally, try a sparse allocation if the filesystem supports it and 766 * the sparse allocation length is smaller than a full chunk. 767 */ 768 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) && 769 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks && 770 args.fsbno == NULLFSBLOCK) { 771 sparse_alloc: 772 args.type = XFS_ALLOCTYPE_NEAR_BNO; 773 args.agbno = be32_to_cpu(agi->agi_root); 774 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 775 args.alignment = args.mp->m_sb.sb_spino_align; 776 args.prod = 1; 777 778 args.minlen = args.mp->m_ialloc_min_blks; 779 args.maxlen = args.minlen; 780 781 /* 782 * The inode record will be aligned to full chunk size. We must 783 * prevent sparse allocation from AG boundaries that result in 784 * invalid inode records, such as records that start at agbno 0 785 * or extend beyond the AG. 786 * 787 * Set min agbno to the first aligned, non-zero agbno and max to 788 * the last aligned agbno that is at least one full chunk from 789 * the end of the AG. 790 */ 791 args.min_agbno = args.mp->m_sb.sb_inoalignmt; 792 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, 793 args.mp->m_sb.sb_inoalignmt) - 794 args.mp->m_ialloc_blks; 795 796 error = xfs_alloc_vextent(&args); 797 if (error) 798 return error; 799 800 newlen = args.len << args.mp->m_sb.sb_inopblog; 801 ASSERT(newlen <= XFS_INODES_PER_CHUNK); 802 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; 803 } 804 805 if (args.fsbno == NULLFSBLOCK) { 806 *alloc = 0; 807 return 0; 808 } 809 ASSERT(args.len == args.minlen); 810 811 /* 812 * Stamp and write the inode buffers. 813 * 814 * Seed the new inode cluster with a random generation number. This 815 * prevents short-term reuse of generation numbers if a chunk is 816 * freed and then immediately reallocated. We use random numbers 817 * rather than a linear progression to prevent the next generation 818 * number from being easily guessable. 819 */ 820 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno, 821 args.agbno, args.len, prandom_u32()); 822 823 if (error) 824 return error; 825 /* 826 * Convert the results. 827 */ 828 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); 829 830 if (xfs_inobt_issparse(~allocmask)) { 831 /* 832 * We've allocated a sparse chunk. Align the startino and mask. 833 */ 834 xfs_align_sparse_ino(args.mp, &newino, &allocmask); 835 836 rec.ir_startino = newino; 837 rec.ir_holemask = ~allocmask; 838 rec.ir_count = newlen; 839 rec.ir_freecount = newlen; 840 rec.ir_free = XFS_INOBT_ALL_FREE; 841 842 /* 843 * Insert the sparse record into the inobt and allow for a merge 844 * if necessary. If a merge does occur, rec is updated to the 845 * merged record. 846 */ 847 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO, 848 &rec, true); 849 if (error == -EFSCORRUPTED) { 850 xfs_alert(args.mp, 851 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", 852 XFS_AGINO_TO_INO(args.mp, agno, 853 rec.ir_startino), 854 rec.ir_holemask, rec.ir_count); 855 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); 856 } 857 if (error) 858 return error; 859 860 /* 861 * We can't merge the part we've just allocated as for the inobt 862 * due to finobt semantics. The original record may or may not 863 * exist independent of whether physical inodes exist in this 864 * sparse chunk. 865 * 866 * We must update the finobt record based on the inobt record. 867 * rec contains the fully merged and up to date inobt record 868 * from the previous call. Set merge false to replace any 869 * existing record with this one. 870 */ 871 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 872 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, 873 XFS_BTNUM_FINO, &rec, 874 false); 875 if (error) 876 return error; 877 } 878 } else { 879 /* full chunk - insert new records to both btrees */ 880 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 881 XFS_BTNUM_INO); 882 if (error) 883 return error; 884 885 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 886 error = xfs_inobt_insert(args.mp, tp, agbp, newino, 887 newlen, XFS_BTNUM_FINO); 888 if (error) 889 return error; 890 } 891 } 892 893 /* 894 * Update AGI counts and newino. 895 */ 896 be32_add_cpu(&agi->agi_count, newlen); 897 be32_add_cpu(&agi->agi_freecount, newlen); 898 pag = xfs_perag_get(args.mp, agno); 899 pag->pagi_freecount += newlen; 900 pag->pagi_count += newlen; 901 xfs_perag_put(pag); 902 agi->agi_newino = cpu_to_be32(newino); 903 904 /* 905 * Log allocation group header fields 906 */ 907 xfs_ialloc_log_agi(tp, agbp, 908 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 909 /* 910 * Modify/log superblock values for inode count and inode free count. 911 */ 912 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 913 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 914 *alloc = 1; 915 return 0; 916 } 917 918 STATIC xfs_agnumber_t 919 xfs_ialloc_next_ag( 920 xfs_mount_t *mp) 921 { 922 xfs_agnumber_t agno; 923 924 spin_lock(&mp->m_agirotor_lock); 925 agno = mp->m_agirotor; 926 if (++mp->m_agirotor >= mp->m_maxagi) 927 mp->m_agirotor = 0; 928 spin_unlock(&mp->m_agirotor_lock); 929 930 return agno; 931 } 932 933 /* 934 * Select an allocation group to look for a free inode in, based on the parent 935 * inode and the mode. Return the allocation group buffer. 936 */ 937 STATIC xfs_agnumber_t 938 xfs_ialloc_ag_select( 939 xfs_trans_t *tp, /* transaction pointer */ 940 xfs_ino_t parent, /* parent directory inode number */ 941 umode_t mode) /* bits set to indicate file type */ 942 { 943 xfs_agnumber_t agcount; /* number of ag's in the filesystem */ 944 xfs_agnumber_t agno; /* current ag number */ 945 int flags; /* alloc buffer locking flags */ 946 xfs_extlen_t ineed; /* blocks needed for inode allocation */ 947 xfs_extlen_t longest = 0; /* longest extent available */ 948 xfs_mount_t *mp; /* mount point structure */ 949 int needspace; /* file mode implies space allocated */ 950 xfs_perag_t *pag; /* per allocation group data */ 951 xfs_agnumber_t pagno; /* parent (starting) ag number */ 952 int error; 953 954 /* 955 * Files of these types need at least one block if length > 0 956 * (and they won't fit in the inode, but that's hard to figure out). 957 */ 958 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 959 mp = tp->t_mountp; 960 agcount = mp->m_maxagi; 961 if (S_ISDIR(mode)) 962 pagno = xfs_ialloc_next_ag(mp); 963 else { 964 pagno = XFS_INO_TO_AGNO(mp, parent); 965 if (pagno >= agcount) 966 pagno = 0; 967 } 968 969 ASSERT(pagno < agcount); 970 971 /* 972 * Loop through allocation groups, looking for one with a little 973 * free space in it. Note we don't look for free inodes, exactly. 974 * Instead, we include whether there is a need to allocate inodes 975 * to mean that blocks must be allocated for them, 976 * if none are currently free. 977 */ 978 agno = pagno; 979 flags = XFS_ALLOC_FLAG_TRYLOCK; 980 for (;;) { 981 pag = xfs_perag_get(mp, agno); 982 if (!pag->pagi_inodeok) { 983 xfs_ialloc_next_ag(mp); 984 goto nextag; 985 } 986 987 if (!pag->pagi_init) { 988 error = xfs_ialloc_pagi_init(mp, tp, agno); 989 if (error) 990 goto nextag; 991 } 992 993 if (pag->pagi_freecount) { 994 xfs_perag_put(pag); 995 return agno; 996 } 997 998 if (!pag->pagf_init) { 999 error = xfs_alloc_pagf_init(mp, tp, agno, flags); 1000 if (error) 1001 goto nextag; 1002 } 1003 1004 /* 1005 * Check that there is enough free space for the file plus a 1006 * chunk of inodes if we need to allocate some. If this is the 1007 * first pass across the AGs, take into account the potential 1008 * space needed for alignment of inode chunks when checking the 1009 * longest contiguous free space in the AG - this prevents us 1010 * from getting ENOSPC because we have free space larger than 1011 * m_ialloc_blks but alignment constraints prevent us from using 1012 * it. 1013 * 1014 * If we can't find an AG with space for full alignment slack to 1015 * be taken into account, we must be near ENOSPC in all AGs. 1016 * Hence we don't include alignment for the second pass and so 1017 * if we fail allocation due to alignment issues then it is most 1018 * likely a real ENOSPC condition. 1019 */ 1020 ineed = mp->m_ialloc_min_blks; 1021 if (flags && ineed > 1) 1022 ineed += xfs_ialloc_cluster_alignment(mp); 1023 longest = pag->pagf_longest; 1024 if (!longest) 1025 longest = pag->pagf_flcount > 0; 1026 1027 if (pag->pagf_freeblks >= needspace + ineed && 1028 longest >= ineed) { 1029 xfs_perag_put(pag); 1030 return agno; 1031 } 1032 nextag: 1033 xfs_perag_put(pag); 1034 /* 1035 * No point in iterating over the rest, if we're shutting 1036 * down. 1037 */ 1038 if (XFS_FORCED_SHUTDOWN(mp)) 1039 return NULLAGNUMBER; 1040 agno++; 1041 if (agno >= agcount) 1042 agno = 0; 1043 if (agno == pagno) { 1044 if (flags == 0) 1045 return NULLAGNUMBER; 1046 flags = 0; 1047 } 1048 } 1049 } 1050 1051 /* 1052 * Try to retrieve the next record to the left/right from the current one. 1053 */ 1054 STATIC int 1055 xfs_ialloc_next_rec( 1056 struct xfs_btree_cur *cur, 1057 xfs_inobt_rec_incore_t *rec, 1058 int *done, 1059 int left) 1060 { 1061 int error; 1062 int i; 1063 1064 if (left) 1065 error = xfs_btree_decrement(cur, 0, &i); 1066 else 1067 error = xfs_btree_increment(cur, 0, &i); 1068 1069 if (error) 1070 return error; 1071 *done = !i; 1072 if (i) { 1073 error = xfs_inobt_get_rec(cur, rec, &i); 1074 if (error) 1075 return error; 1076 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1077 } 1078 1079 return 0; 1080 } 1081 1082 STATIC int 1083 xfs_ialloc_get_rec( 1084 struct xfs_btree_cur *cur, 1085 xfs_agino_t agino, 1086 xfs_inobt_rec_incore_t *rec, 1087 int *done) 1088 { 1089 int error; 1090 int i; 1091 1092 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 1093 if (error) 1094 return error; 1095 *done = !i; 1096 if (i) { 1097 error = xfs_inobt_get_rec(cur, rec, &i); 1098 if (error) 1099 return error; 1100 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1101 } 1102 1103 return 0; 1104 } 1105 1106 /* 1107 * Return the offset of the first free inode in the record. If the inode chunk 1108 * is sparsely allocated, we convert the record holemask to inode granularity 1109 * and mask off the unallocated regions from the inode free mask. 1110 */ 1111 STATIC int 1112 xfs_inobt_first_free_inode( 1113 struct xfs_inobt_rec_incore *rec) 1114 { 1115 xfs_inofree_t realfree; 1116 1117 /* if there are no holes, return the first available offset */ 1118 if (!xfs_inobt_issparse(rec->ir_holemask)) 1119 return xfs_lowbit64(rec->ir_free); 1120 1121 realfree = xfs_inobt_irec_to_allocmask(rec); 1122 realfree &= rec->ir_free; 1123 1124 return xfs_lowbit64(realfree); 1125 } 1126 1127 /* 1128 * Allocate an inode using the inobt-only algorithm. 1129 */ 1130 STATIC int 1131 xfs_dialloc_ag_inobt( 1132 struct xfs_trans *tp, 1133 struct xfs_buf *agbp, 1134 xfs_ino_t parent, 1135 xfs_ino_t *inop) 1136 { 1137 struct xfs_mount *mp = tp->t_mountp; 1138 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1139 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1140 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1141 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1142 struct xfs_perag *pag; 1143 struct xfs_btree_cur *cur, *tcur; 1144 struct xfs_inobt_rec_incore rec, trec; 1145 xfs_ino_t ino; 1146 int error; 1147 int offset; 1148 int i, j; 1149 int searchdistance = 10; 1150 1151 pag = xfs_perag_get(mp, agno); 1152 1153 ASSERT(pag->pagi_init); 1154 ASSERT(pag->pagi_inodeok); 1155 ASSERT(pag->pagi_freecount > 0); 1156 1157 restart_pagno: 1158 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1159 /* 1160 * If pagino is 0 (this is the root inode allocation) use newino. 1161 * This must work because we've just allocated some. 1162 */ 1163 if (!pagino) 1164 pagino = be32_to_cpu(agi->agi_newino); 1165 1166 error = xfs_check_agi_freecount(cur, agi); 1167 if (error) 1168 goto error0; 1169 1170 /* 1171 * If in the same AG as the parent, try to get near the parent. 1172 */ 1173 if (pagno == agno) { 1174 int doneleft; /* done, to the left */ 1175 int doneright; /* done, to the right */ 1176 1177 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 1178 if (error) 1179 goto error0; 1180 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1181 1182 error = xfs_inobt_get_rec(cur, &rec, &j); 1183 if (error) 1184 goto error0; 1185 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0); 1186 1187 if (rec.ir_freecount > 0) { 1188 /* 1189 * Found a free inode in the same chunk 1190 * as the parent, done. 1191 */ 1192 goto alloc_inode; 1193 } 1194 1195 1196 /* 1197 * In the same AG as parent, but parent's chunk is full. 1198 */ 1199 1200 /* duplicate the cursor, search left & right simultaneously */ 1201 error = xfs_btree_dup_cursor(cur, &tcur); 1202 if (error) 1203 goto error0; 1204 1205 /* 1206 * Skip to last blocks looked up if same parent inode. 1207 */ 1208 if (pagino != NULLAGINO && 1209 pag->pagl_pagino == pagino && 1210 pag->pagl_leftrec != NULLAGINO && 1211 pag->pagl_rightrec != NULLAGINO) { 1212 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 1213 &trec, &doneleft); 1214 if (error) 1215 goto error1; 1216 1217 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 1218 &rec, &doneright); 1219 if (error) 1220 goto error1; 1221 } else { 1222 /* search left with tcur, back up 1 record */ 1223 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 1224 if (error) 1225 goto error1; 1226 1227 /* search right with cur, go forward 1 record. */ 1228 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 1229 if (error) 1230 goto error1; 1231 } 1232 1233 /* 1234 * Loop until we find an inode chunk with a free inode. 1235 */ 1236 while (--searchdistance > 0 && (!doneleft || !doneright)) { 1237 int useleft; /* using left inode chunk this time */ 1238 1239 /* figure out the closer block if both are valid. */ 1240 if (!doneleft && !doneright) { 1241 useleft = pagino - 1242 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 1243 rec.ir_startino - pagino; 1244 } else { 1245 useleft = !doneleft; 1246 } 1247 1248 /* free inodes to the left? */ 1249 if (useleft && trec.ir_freecount) { 1250 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1251 cur = tcur; 1252 1253 pag->pagl_leftrec = trec.ir_startino; 1254 pag->pagl_rightrec = rec.ir_startino; 1255 pag->pagl_pagino = pagino; 1256 rec = trec; 1257 goto alloc_inode; 1258 } 1259 1260 /* free inodes to the right? */ 1261 if (!useleft && rec.ir_freecount) { 1262 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1263 1264 pag->pagl_leftrec = trec.ir_startino; 1265 pag->pagl_rightrec = rec.ir_startino; 1266 pag->pagl_pagino = pagino; 1267 goto alloc_inode; 1268 } 1269 1270 /* get next record to check */ 1271 if (useleft) { 1272 error = xfs_ialloc_next_rec(tcur, &trec, 1273 &doneleft, 1); 1274 } else { 1275 error = xfs_ialloc_next_rec(cur, &rec, 1276 &doneright, 0); 1277 } 1278 if (error) 1279 goto error1; 1280 } 1281 1282 if (searchdistance <= 0) { 1283 /* 1284 * Not in range - save last search 1285 * location and allocate a new inode 1286 */ 1287 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1288 pag->pagl_leftrec = trec.ir_startino; 1289 pag->pagl_rightrec = rec.ir_startino; 1290 pag->pagl_pagino = pagino; 1291 1292 } else { 1293 /* 1294 * We've reached the end of the btree. because 1295 * we are only searching a small chunk of the 1296 * btree each search, there is obviously free 1297 * inodes closer to the parent inode than we 1298 * are now. restart the search again. 1299 */ 1300 pag->pagl_pagino = NULLAGINO; 1301 pag->pagl_leftrec = NULLAGINO; 1302 pag->pagl_rightrec = NULLAGINO; 1303 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1304 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1305 goto restart_pagno; 1306 } 1307 } 1308 1309 /* 1310 * In a different AG from the parent. 1311 * See if the most recently allocated block has any free. 1312 */ 1313 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1314 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1315 XFS_LOOKUP_EQ, &i); 1316 if (error) 1317 goto error0; 1318 1319 if (i == 1) { 1320 error = xfs_inobt_get_rec(cur, &rec, &j); 1321 if (error) 1322 goto error0; 1323 1324 if (j == 1 && rec.ir_freecount > 0) { 1325 /* 1326 * The last chunk allocated in the group 1327 * still has a free inode. 1328 */ 1329 goto alloc_inode; 1330 } 1331 } 1332 } 1333 1334 /* 1335 * None left in the last group, search the whole AG 1336 */ 1337 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1338 if (error) 1339 goto error0; 1340 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1341 1342 for (;;) { 1343 error = xfs_inobt_get_rec(cur, &rec, &i); 1344 if (error) 1345 goto error0; 1346 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1347 if (rec.ir_freecount > 0) 1348 break; 1349 error = xfs_btree_increment(cur, 0, &i); 1350 if (error) 1351 goto error0; 1352 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1353 } 1354 1355 alloc_inode: 1356 offset = xfs_inobt_first_free_inode(&rec); 1357 ASSERT(offset >= 0); 1358 ASSERT(offset < XFS_INODES_PER_CHUNK); 1359 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1360 XFS_INODES_PER_CHUNK) == 0); 1361 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1362 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1363 rec.ir_freecount--; 1364 error = xfs_inobt_update(cur, &rec); 1365 if (error) 1366 goto error0; 1367 be32_add_cpu(&agi->agi_freecount, -1); 1368 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1369 pag->pagi_freecount--; 1370 1371 error = xfs_check_agi_freecount(cur, agi); 1372 if (error) 1373 goto error0; 1374 1375 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1376 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1377 xfs_perag_put(pag); 1378 *inop = ino; 1379 return 0; 1380 error1: 1381 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 1382 error0: 1383 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1384 xfs_perag_put(pag); 1385 return error; 1386 } 1387 1388 /* 1389 * Use the free inode btree to allocate an inode based on distance from the 1390 * parent. Note that the provided cursor may be deleted and replaced. 1391 */ 1392 STATIC int 1393 xfs_dialloc_ag_finobt_near( 1394 xfs_agino_t pagino, 1395 struct xfs_btree_cur **ocur, 1396 struct xfs_inobt_rec_incore *rec) 1397 { 1398 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 1399 struct xfs_btree_cur *rcur; /* right search cursor */ 1400 struct xfs_inobt_rec_incore rrec; 1401 int error; 1402 int i, j; 1403 1404 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1405 if (error) 1406 return error; 1407 1408 if (i == 1) { 1409 error = xfs_inobt_get_rec(lcur, rec, &i); 1410 if (error) 1411 return error; 1412 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1); 1413 1414 /* 1415 * See if we've landed in the parent inode record. The finobt 1416 * only tracks chunks with at least one free inode, so record 1417 * existence is enough. 1418 */ 1419 if (pagino >= rec->ir_startino && 1420 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1421 return 0; 1422 } 1423 1424 error = xfs_btree_dup_cursor(lcur, &rcur); 1425 if (error) 1426 return error; 1427 1428 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1429 if (error) 1430 goto error_rcur; 1431 if (j == 1) { 1432 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1433 if (error) 1434 goto error_rcur; 1435 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur); 1436 } 1437 1438 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur); 1439 if (i == 1 && j == 1) { 1440 /* 1441 * Both the left and right records are valid. Choose the closer 1442 * inode chunk to the target. 1443 */ 1444 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1445 (rrec.ir_startino - pagino)) { 1446 *rec = rrec; 1447 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1448 *ocur = rcur; 1449 } else { 1450 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1451 } 1452 } else if (j == 1) { 1453 /* only the right record is valid */ 1454 *rec = rrec; 1455 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1456 *ocur = rcur; 1457 } else if (i == 1) { 1458 /* only the left record is valid */ 1459 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1460 } 1461 1462 return 0; 1463 1464 error_rcur: 1465 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1466 return error; 1467 } 1468 1469 /* 1470 * Use the free inode btree to find a free inode based on a newino hint. If 1471 * the hint is NULL, find the first free inode in the AG. 1472 */ 1473 STATIC int 1474 xfs_dialloc_ag_finobt_newino( 1475 struct xfs_agi *agi, 1476 struct xfs_btree_cur *cur, 1477 struct xfs_inobt_rec_incore *rec) 1478 { 1479 int error; 1480 int i; 1481 1482 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1483 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1484 XFS_LOOKUP_EQ, &i); 1485 if (error) 1486 return error; 1487 if (i == 1) { 1488 error = xfs_inobt_get_rec(cur, rec, &i); 1489 if (error) 1490 return error; 1491 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1492 return 0; 1493 } 1494 } 1495 1496 /* 1497 * Find the first inode available in the AG. 1498 */ 1499 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1500 if (error) 1501 return error; 1502 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1503 1504 error = xfs_inobt_get_rec(cur, rec, &i); 1505 if (error) 1506 return error; 1507 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1508 1509 return 0; 1510 } 1511 1512 /* 1513 * Update the inobt based on a modification made to the finobt. Also ensure that 1514 * the records from both trees are equivalent post-modification. 1515 */ 1516 STATIC int 1517 xfs_dialloc_ag_update_inobt( 1518 struct xfs_btree_cur *cur, /* inobt cursor */ 1519 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1520 int offset) /* inode offset */ 1521 { 1522 struct xfs_inobt_rec_incore rec; 1523 int error; 1524 int i; 1525 1526 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1527 if (error) 1528 return error; 1529 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1530 1531 error = xfs_inobt_get_rec(cur, &rec, &i); 1532 if (error) 1533 return error; 1534 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1535 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1536 XFS_INODES_PER_CHUNK) == 0); 1537 1538 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1539 rec.ir_freecount--; 1540 1541 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) && 1542 (rec.ir_freecount == frec->ir_freecount)); 1543 1544 return xfs_inobt_update(cur, &rec); 1545 } 1546 1547 /* 1548 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1549 * back to the inobt search algorithm. 1550 * 1551 * The caller selected an AG for us, and made sure that free inodes are 1552 * available. 1553 */ 1554 STATIC int 1555 xfs_dialloc_ag( 1556 struct xfs_trans *tp, 1557 struct xfs_buf *agbp, 1558 xfs_ino_t parent, 1559 xfs_ino_t *inop) 1560 { 1561 struct xfs_mount *mp = tp->t_mountp; 1562 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1563 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1564 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1565 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1566 struct xfs_perag *pag; 1567 struct xfs_btree_cur *cur; /* finobt cursor */ 1568 struct xfs_btree_cur *icur; /* inobt cursor */ 1569 struct xfs_inobt_rec_incore rec; 1570 xfs_ino_t ino; 1571 int error; 1572 int offset; 1573 int i; 1574 1575 if (!xfs_sb_version_hasfinobt(&mp->m_sb)) 1576 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); 1577 1578 pag = xfs_perag_get(mp, agno); 1579 1580 /* 1581 * If pagino is 0 (this is the root inode allocation) use newino. 1582 * This must work because we've just allocated some. 1583 */ 1584 if (!pagino) 1585 pagino = be32_to_cpu(agi->agi_newino); 1586 1587 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1588 1589 error = xfs_check_agi_freecount(cur, agi); 1590 if (error) 1591 goto error_cur; 1592 1593 /* 1594 * The search algorithm depends on whether we're in the same AG as the 1595 * parent. If so, find the closest available inode to the parent. If 1596 * not, consider the agi hint or find the first free inode in the AG. 1597 */ 1598 if (agno == pagno) 1599 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1600 else 1601 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1602 if (error) 1603 goto error_cur; 1604 1605 offset = xfs_inobt_first_free_inode(&rec); 1606 ASSERT(offset >= 0); 1607 ASSERT(offset < XFS_INODES_PER_CHUNK); 1608 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1609 XFS_INODES_PER_CHUNK) == 0); 1610 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1611 1612 /* 1613 * Modify or remove the finobt record. 1614 */ 1615 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1616 rec.ir_freecount--; 1617 if (rec.ir_freecount) 1618 error = xfs_inobt_update(cur, &rec); 1619 else 1620 error = xfs_btree_delete(cur, &i); 1621 if (error) 1622 goto error_cur; 1623 1624 /* 1625 * The finobt has now been updated appropriately. We haven't updated the 1626 * agi and superblock yet, so we can create an inobt cursor and validate 1627 * the original freecount. If all is well, make the equivalent update to 1628 * the inobt using the finobt record and offset information. 1629 */ 1630 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1631 1632 error = xfs_check_agi_freecount(icur, agi); 1633 if (error) 1634 goto error_icur; 1635 1636 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1637 if (error) 1638 goto error_icur; 1639 1640 /* 1641 * Both trees have now been updated. We must update the perag and 1642 * superblock before we can check the freecount for each btree. 1643 */ 1644 be32_add_cpu(&agi->agi_freecount, -1); 1645 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1646 pag->pagi_freecount--; 1647 1648 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1649 1650 error = xfs_check_agi_freecount(icur, agi); 1651 if (error) 1652 goto error_icur; 1653 error = xfs_check_agi_freecount(cur, agi); 1654 if (error) 1655 goto error_icur; 1656 1657 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1658 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1659 xfs_perag_put(pag); 1660 *inop = ino; 1661 return 0; 1662 1663 error_icur: 1664 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1665 error_cur: 1666 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1667 xfs_perag_put(pag); 1668 return error; 1669 } 1670 1671 /* 1672 * Allocate an inode on disk. 1673 * 1674 * Mode is used to tell whether the new inode will need space, and whether it 1675 * is a directory. 1676 * 1677 * This function is designed to be called twice if it has to do an allocation 1678 * to make more free inodes. On the first call, *IO_agbp should be set to NULL. 1679 * If an inode is available without having to performn an allocation, an inode 1680 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation 1681 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. 1682 * The caller should then commit the current transaction, allocate a 1683 * new transaction, and call xfs_dialloc() again, passing in the previous value 1684 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI 1685 * buffer is locked across the two calls, the second call is guaranteed to have 1686 * a free inode available. 1687 * 1688 * Once we successfully pick an inode its number is returned and the on-disk 1689 * data structures are updated. The inode itself is not read in, since doing so 1690 * would break ordering constraints with xfs_reclaim. 1691 */ 1692 int 1693 xfs_dialloc( 1694 struct xfs_trans *tp, 1695 xfs_ino_t parent, 1696 umode_t mode, 1697 struct xfs_buf **IO_agbp, 1698 xfs_ino_t *inop) 1699 { 1700 struct xfs_mount *mp = tp->t_mountp; 1701 struct xfs_buf *agbp; 1702 xfs_agnumber_t agno; 1703 int error; 1704 int ialloced; 1705 int noroom = 0; 1706 xfs_agnumber_t start_agno; 1707 struct xfs_perag *pag; 1708 int okalloc = 1; 1709 1710 if (*IO_agbp) { 1711 /* 1712 * If the caller passes in a pointer to the AGI buffer, 1713 * continue where we left off before. In this case, we 1714 * know that the allocation group has free inodes. 1715 */ 1716 agbp = *IO_agbp; 1717 goto out_alloc; 1718 } 1719 1720 /* 1721 * We do not have an agbp, so select an initial allocation 1722 * group for inode allocation. 1723 */ 1724 start_agno = xfs_ialloc_ag_select(tp, parent, mode); 1725 if (start_agno == NULLAGNUMBER) { 1726 *inop = NULLFSINO; 1727 return 0; 1728 } 1729 1730 /* 1731 * If we have already hit the ceiling of inode blocks then clear 1732 * okalloc so we scan all available agi structures for a free 1733 * inode. 1734 * 1735 * Read rough value of mp->m_icount by percpu_counter_read_positive, 1736 * which will sacrifice the preciseness but improve the performance. 1737 */ 1738 if (mp->m_maxicount && 1739 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos 1740 > mp->m_maxicount) { 1741 noroom = 1; 1742 okalloc = 0; 1743 } 1744 1745 /* 1746 * Loop until we find an allocation group that either has free inodes 1747 * or in which we can allocate some inodes. Iterate through the 1748 * allocation groups upward, wrapping at the end. 1749 */ 1750 agno = start_agno; 1751 for (;;) { 1752 pag = xfs_perag_get(mp, agno); 1753 if (!pag->pagi_inodeok) { 1754 xfs_ialloc_next_ag(mp); 1755 goto nextag; 1756 } 1757 1758 if (!pag->pagi_init) { 1759 error = xfs_ialloc_pagi_init(mp, tp, agno); 1760 if (error) 1761 goto out_error; 1762 } 1763 1764 /* 1765 * Do a first racy fast path check if this AG is usable. 1766 */ 1767 if (!pag->pagi_freecount && !okalloc) 1768 goto nextag; 1769 1770 /* 1771 * Then read in the AGI buffer and recheck with the AGI buffer 1772 * lock held. 1773 */ 1774 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1775 if (error) 1776 goto out_error; 1777 1778 if (pag->pagi_freecount) { 1779 xfs_perag_put(pag); 1780 goto out_alloc; 1781 } 1782 1783 if (!okalloc) 1784 goto nextag_relse_buffer; 1785 1786 1787 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); 1788 if (error) { 1789 xfs_trans_brelse(tp, agbp); 1790 1791 if (error != -ENOSPC) 1792 goto out_error; 1793 1794 xfs_perag_put(pag); 1795 *inop = NULLFSINO; 1796 return 0; 1797 } 1798 1799 if (ialloced) { 1800 /* 1801 * We successfully allocated some inodes, return 1802 * the current context to the caller so that it 1803 * can commit the current transaction and call 1804 * us again where we left off. 1805 */ 1806 ASSERT(pag->pagi_freecount > 0); 1807 xfs_perag_put(pag); 1808 1809 *IO_agbp = agbp; 1810 *inop = NULLFSINO; 1811 return 0; 1812 } 1813 1814 nextag_relse_buffer: 1815 xfs_trans_brelse(tp, agbp); 1816 nextag: 1817 xfs_perag_put(pag); 1818 if (++agno == mp->m_sb.sb_agcount) 1819 agno = 0; 1820 if (agno == start_agno) { 1821 *inop = NULLFSINO; 1822 return noroom ? -ENOSPC : 0; 1823 } 1824 } 1825 1826 out_alloc: 1827 *IO_agbp = NULL; 1828 return xfs_dialloc_ag(tp, agbp, parent, inop); 1829 out_error: 1830 xfs_perag_put(pag); 1831 return error; 1832 } 1833 1834 /* 1835 * Free the blocks of an inode chunk. We must consider that the inode chunk 1836 * might be sparse and only free the regions that are allocated as part of the 1837 * chunk. 1838 */ 1839 STATIC void 1840 xfs_difree_inode_chunk( 1841 struct xfs_trans *tp, 1842 xfs_agnumber_t agno, 1843 struct xfs_inobt_rec_incore *rec) 1844 { 1845 struct xfs_mount *mp = tp->t_mountp; 1846 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, 1847 rec->ir_startino); 1848 int startidx, endidx; 1849 int nextbit; 1850 xfs_agblock_t agbno; 1851 int contigblk; 1852 struct xfs_owner_info oinfo; 1853 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); 1854 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES); 1855 1856 if (!xfs_inobt_issparse(rec->ir_holemask)) { 1857 /* not sparse, calculate extent info directly */ 1858 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno), 1859 mp->m_ialloc_blks, &oinfo); 1860 return; 1861 } 1862 1863 /* holemask is only 16-bits (fits in an unsigned long) */ 1864 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); 1865 holemask[0] = rec->ir_holemask; 1866 1867 /* 1868 * Find contiguous ranges of zeroes (i.e., allocated regions) in the 1869 * holemask and convert the start/end index of each range to an extent. 1870 * We start with the start and end index both pointing at the first 0 in 1871 * the mask. 1872 */ 1873 startidx = endidx = find_first_zero_bit(holemask, 1874 XFS_INOBT_HOLEMASK_BITS); 1875 nextbit = startidx + 1; 1876 while (startidx < XFS_INOBT_HOLEMASK_BITS) { 1877 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, 1878 nextbit); 1879 /* 1880 * If the next zero bit is contiguous, update the end index of 1881 * the current range and continue. 1882 */ 1883 if (nextbit != XFS_INOBT_HOLEMASK_BITS && 1884 nextbit == endidx + 1) { 1885 endidx = nextbit; 1886 goto next; 1887 } 1888 1889 /* 1890 * nextbit is not contiguous with the current end index. Convert 1891 * the current start/end to an extent and add it to the free 1892 * list. 1893 */ 1894 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / 1895 mp->m_sb.sb_inopblock; 1896 contigblk = ((endidx - startidx + 1) * 1897 XFS_INODES_PER_HOLEMASK_BIT) / 1898 mp->m_sb.sb_inopblock; 1899 1900 ASSERT(agbno % mp->m_sb.sb_spino_align == 0); 1901 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); 1902 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno), 1903 contigblk, &oinfo); 1904 1905 /* reset range to current bit and carry on... */ 1906 startidx = endidx = nextbit; 1907 1908 next: 1909 nextbit++; 1910 } 1911 } 1912 1913 STATIC int 1914 xfs_difree_inobt( 1915 struct xfs_mount *mp, 1916 struct xfs_trans *tp, 1917 struct xfs_buf *agbp, 1918 xfs_agino_t agino, 1919 struct xfs_icluster *xic, 1920 struct xfs_inobt_rec_incore *orec) 1921 { 1922 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1923 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1924 struct xfs_perag *pag; 1925 struct xfs_btree_cur *cur; 1926 struct xfs_inobt_rec_incore rec; 1927 int ilen; 1928 int error; 1929 int i; 1930 int off; 1931 1932 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1933 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 1934 1935 /* 1936 * Initialize the cursor. 1937 */ 1938 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1939 1940 error = xfs_check_agi_freecount(cur, agi); 1941 if (error) 1942 goto error0; 1943 1944 /* 1945 * Look for the entry describing this inode. 1946 */ 1947 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 1948 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 1949 __func__, error); 1950 goto error0; 1951 } 1952 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1953 error = xfs_inobt_get_rec(cur, &rec, &i); 1954 if (error) { 1955 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 1956 __func__, error); 1957 goto error0; 1958 } 1959 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1960 /* 1961 * Get the offset in the inode chunk. 1962 */ 1963 off = agino - rec.ir_startino; 1964 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 1965 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 1966 /* 1967 * Mark the inode free & increment the count. 1968 */ 1969 rec.ir_free |= XFS_INOBT_MASK(off); 1970 rec.ir_freecount++; 1971 1972 /* 1973 * When an inode chunk is free, it becomes eligible for removal. Don't 1974 * remove the chunk if the block size is large enough for multiple inode 1975 * chunks (that might not be free). 1976 */ 1977 if (!(mp->m_flags & XFS_MOUNT_IKEEP) && 1978 rec.ir_free == XFS_INOBT_ALL_FREE && 1979 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 1980 xic->deleted = true; 1981 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); 1982 xic->alloc = xfs_inobt_irec_to_allocmask(&rec); 1983 1984 /* 1985 * Remove the inode cluster from the AGI B+Tree, adjust the 1986 * AGI and Superblock inode counts, and mark the disk space 1987 * to be freed when the transaction is committed. 1988 */ 1989 ilen = rec.ir_freecount; 1990 be32_add_cpu(&agi->agi_count, -ilen); 1991 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 1992 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 1993 pag = xfs_perag_get(mp, agno); 1994 pag->pagi_freecount -= ilen - 1; 1995 pag->pagi_count -= ilen; 1996 xfs_perag_put(pag); 1997 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 1998 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 1999 2000 if ((error = xfs_btree_delete(cur, &i))) { 2001 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 2002 __func__, error); 2003 goto error0; 2004 } 2005 2006 xfs_difree_inode_chunk(tp, agno, &rec); 2007 } else { 2008 xic->deleted = false; 2009 2010 error = xfs_inobt_update(cur, &rec); 2011 if (error) { 2012 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 2013 __func__, error); 2014 goto error0; 2015 } 2016 2017 /* 2018 * Change the inode free counts and log the ag/sb changes. 2019 */ 2020 be32_add_cpu(&agi->agi_freecount, 1); 2021 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 2022 pag = xfs_perag_get(mp, agno); 2023 pag->pagi_freecount++; 2024 xfs_perag_put(pag); 2025 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 2026 } 2027 2028 error = xfs_check_agi_freecount(cur, agi); 2029 if (error) 2030 goto error0; 2031 2032 *orec = rec; 2033 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2034 return 0; 2035 2036 error0: 2037 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2038 return error; 2039 } 2040 2041 /* 2042 * Free an inode in the free inode btree. 2043 */ 2044 STATIC int 2045 xfs_difree_finobt( 2046 struct xfs_mount *mp, 2047 struct xfs_trans *tp, 2048 struct xfs_buf *agbp, 2049 xfs_agino_t agino, 2050 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 2051 { 2052 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 2053 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 2054 struct xfs_btree_cur *cur; 2055 struct xfs_inobt_rec_incore rec; 2056 int offset = agino - ibtrec->ir_startino; 2057 int error; 2058 int i; 2059 2060 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 2061 2062 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 2063 if (error) 2064 goto error; 2065 if (i == 0) { 2066 /* 2067 * If the record does not exist in the finobt, we must have just 2068 * freed an inode in a previously fully allocated chunk. If not, 2069 * something is out of sync. 2070 */ 2071 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error); 2072 2073 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, 2074 ibtrec->ir_count, 2075 ibtrec->ir_freecount, 2076 ibtrec->ir_free, &i); 2077 if (error) 2078 goto error; 2079 ASSERT(i == 1); 2080 2081 goto out; 2082 } 2083 2084 /* 2085 * Read and update the existing record. We could just copy the ibtrec 2086 * across here, but that would defeat the purpose of having redundant 2087 * metadata. By making the modifications independently, we can catch 2088 * corruptions that we wouldn't see if we just copied from one record 2089 * to another. 2090 */ 2091 error = xfs_inobt_get_rec(cur, &rec, &i); 2092 if (error) 2093 goto error; 2094 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 2095 2096 rec.ir_free |= XFS_INOBT_MASK(offset); 2097 rec.ir_freecount++; 2098 2099 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) && 2100 (rec.ir_freecount == ibtrec->ir_freecount), 2101 error); 2102 2103 /* 2104 * The content of inobt records should always match between the inobt 2105 * and finobt. The lifecycle of records in the finobt is different from 2106 * the inobt in that the finobt only tracks records with at least one 2107 * free inode. Hence, if all of the inodes are free and we aren't 2108 * keeping inode chunks permanently on disk, remove the record. 2109 * Otherwise, update the record with the new information. 2110 * 2111 * Note that we currently can't free chunks when the block size is large 2112 * enough for multiple chunks. Leave the finobt record to remain in sync 2113 * with the inobt. 2114 */ 2115 if (rec.ir_free == XFS_INOBT_ALL_FREE && 2116 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK && 2117 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 2118 error = xfs_btree_delete(cur, &i); 2119 if (error) 2120 goto error; 2121 ASSERT(i == 1); 2122 } else { 2123 error = xfs_inobt_update(cur, &rec); 2124 if (error) 2125 goto error; 2126 } 2127 2128 out: 2129 error = xfs_check_agi_freecount(cur, agi); 2130 if (error) 2131 goto error; 2132 2133 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2134 return 0; 2135 2136 error: 2137 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2138 return error; 2139 } 2140 2141 /* 2142 * Free disk inode. Carefully avoids touching the incore inode, all 2143 * manipulations incore are the caller's responsibility. 2144 * The on-disk inode is not changed by this operation, only the 2145 * btree (free inode mask) is changed. 2146 */ 2147 int 2148 xfs_difree( 2149 struct xfs_trans *tp, /* transaction pointer */ 2150 xfs_ino_t inode, /* inode to be freed */ 2151 struct xfs_icluster *xic) /* cluster info if deleted */ 2152 { 2153 /* REFERENCED */ 2154 xfs_agblock_t agbno; /* block number containing inode */ 2155 struct xfs_buf *agbp; /* buffer for allocation group header */ 2156 xfs_agino_t agino; /* allocation group inode number */ 2157 xfs_agnumber_t agno; /* allocation group number */ 2158 int error; /* error return value */ 2159 struct xfs_mount *mp; /* mount structure for filesystem */ 2160 struct xfs_inobt_rec_incore rec;/* btree record */ 2161 2162 mp = tp->t_mountp; 2163 2164 /* 2165 * Break up inode number into its components. 2166 */ 2167 agno = XFS_INO_TO_AGNO(mp, inode); 2168 if (agno >= mp->m_sb.sb_agcount) { 2169 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", 2170 __func__, agno, mp->m_sb.sb_agcount); 2171 ASSERT(0); 2172 return -EINVAL; 2173 } 2174 agino = XFS_INO_TO_AGINO(mp, inode); 2175 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { 2176 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 2177 __func__, (unsigned long long)inode, 2178 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); 2179 ASSERT(0); 2180 return -EINVAL; 2181 } 2182 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2183 if (agbno >= mp->m_sb.sb_agblocks) { 2184 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 2185 __func__, agbno, mp->m_sb.sb_agblocks); 2186 ASSERT(0); 2187 return -EINVAL; 2188 } 2189 /* 2190 * Get the allocation group header. 2191 */ 2192 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2193 if (error) { 2194 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 2195 __func__, error); 2196 return error; 2197 } 2198 2199 /* 2200 * Fix up the inode allocation btree. 2201 */ 2202 error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec); 2203 if (error) 2204 goto error0; 2205 2206 /* 2207 * Fix up the free inode btree. 2208 */ 2209 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 2210 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); 2211 if (error) 2212 goto error0; 2213 } 2214 2215 return 0; 2216 2217 error0: 2218 return error; 2219 } 2220 2221 STATIC int 2222 xfs_imap_lookup( 2223 struct xfs_mount *mp, 2224 struct xfs_trans *tp, 2225 xfs_agnumber_t agno, 2226 xfs_agino_t agino, 2227 xfs_agblock_t agbno, 2228 xfs_agblock_t *chunk_agbno, 2229 xfs_agblock_t *offset_agbno, 2230 int flags) 2231 { 2232 struct xfs_inobt_rec_incore rec; 2233 struct xfs_btree_cur *cur; 2234 struct xfs_buf *agbp; 2235 int error; 2236 int i; 2237 2238 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2239 if (error) { 2240 xfs_alert(mp, 2241 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 2242 __func__, error, agno); 2243 return error; 2244 } 2245 2246 /* 2247 * Lookup the inode record for the given agino. If the record cannot be 2248 * found, then it's an invalid inode number and we should abort. Once 2249 * we have a record, we need to ensure it contains the inode number 2250 * we are looking up. 2251 */ 2252 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 2253 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 2254 if (!error) { 2255 if (i) 2256 error = xfs_inobt_get_rec(cur, &rec, &i); 2257 if (!error && i == 0) 2258 error = -EINVAL; 2259 } 2260 2261 xfs_trans_brelse(tp, agbp); 2262 xfs_btree_del_cursor(cur, error); 2263 if (error) 2264 return error; 2265 2266 /* check that the returned record contains the required inode */ 2267 if (rec.ir_startino > agino || 2268 rec.ir_startino + mp->m_ialloc_inos <= agino) 2269 return -EINVAL; 2270 2271 /* for untrusted inodes check it is allocated first */ 2272 if ((flags & XFS_IGET_UNTRUSTED) && 2273 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 2274 return -EINVAL; 2275 2276 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 2277 *offset_agbno = agbno - *chunk_agbno; 2278 return 0; 2279 } 2280 2281 /* 2282 * Return the location of the inode in imap, for mapping it into a buffer. 2283 */ 2284 int 2285 xfs_imap( 2286 xfs_mount_t *mp, /* file system mount structure */ 2287 xfs_trans_t *tp, /* transaction pointer */ 2288 xfs_ino_t ino, /* inode to locate */ 2289 struct xfs_imap *imap, /* location map structure */ 2290 uint flags) /* flags for inode btree lookup */ 2291 { 2292 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 2293 xfs_agino_t agino; /* inode number within alloc group */ 2294 xfs_agnumber_t agno; /* allocation group number */ 2295 int blks_per_cluster; /* num blocks per inode cluster */ 2296 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 2297 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 2298 int error; /* error code */ 2299 int offset; /* index of inode in its buffer */ 2300 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 2301 2302 ASSERT(ino != NULLFSINO); 2303 2304 /* 2305 * Split up the inode number into its parts. 2306 */ 2307 agno = XFS_INO_TO_AGNO(mp, ino); 2308 agino = XFS_INO_TO_AGINO(mp, ino); 2309 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2310 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || 2311 ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2312 #ifdef DEBUG 2313 /* 2314 * Don't output diagnostic information for untrusted inodes 2315 * as they can be invalid without implying corruption. 2316 */ 2317 if (flags & XFS_IGET_UNTRUSTED) 2318 return -EINVAL; 2319 if (agno >= mp->m_sb.sb_agcount) { 2320 xfs_alert(mp, 2321 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", 2322 __func__, agno, mp->m_sb.sb_agcount); 2323 } 2324 if (agbno >= mp->m_sb.sb_agblocks) { 2325 xfs_alert(mp, 2326 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 2327 __func__, (unsigned long long)agbno, 2328 (unsigned long)mp->m_sb.sb_agblocks); 2329 } 2330 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2331 xfs_alert(mp, 2332 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 2333 __func__, ino, 2334 XFS_AGINO_TO_INO(mp, agno, agino)); 2335 } 2336 xfs_stack_trace(); 2337 #endif /* DEBUG */ 2338 return -EINVAL; 2339 } 2340 2341 blks_per_cluster = xfs_icluster_size_fsb(mp); 2342 2343 /* 2344 * For bulkstat and handle lookups, we have an untrusted inode number 2345 * that we have to verify is valid. We cannot do this just by reading 2346 * the inode buffer as it may have been unlinked and removed leaving 2347 * inodes in stale state on disk. Hence we have to do a btree lookup 2348 * in all cases where an untrusted inode number is passed. 2349 */ 2350 if (flags & XFS_IGET_UNTRUSTED) { 2351 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2352 &chunk_agbno, &offset_agbno, flags); 2353 if (error) 2354 return error; 2355 goto out_map; 2356 } 2357 2358 /* 2359 * If the inode cluster size is the same as the blocksize or 2360 * smaller we get to the buffer by simple arithmetics. 2361 */ 2362 if (blks_per_cluster == 1) { 2363 offset = XFS_INO_TO_OFFSET(mp, ino); 2364 ASSERT(offset < mp->m_sb.sb_inopblock); 2365 2366 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); 2367 imap->im_len = XFS_FSB_TO_BB(mp, 1); 2368 imap->im_boffset = (unsigned short)(offset << 2369 mp->m_sb.sb_inodelog); 2370 return 0; 2371 } 2372 2373 /* 2374 * If the inode chunks are aligned then use simple maths to 2375 * find the location. Otherwise we have to do a btree 2376 * lookup to find the location. 2377 */ 2378 if (mp->m_inoalign_mask) { 2379 offset_agbno = agbno & mp->m_inoalign_mask; 2380 chunk_agbno = agbno - offset_agbno; 2381 } else { 2382 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2383 &chunk_agbno, &offset_agbno, flags); 2384 if (error) 2385 return error; 2386 } 2387 2388 out_map: 2389 ASSERT(agbno >= chunk_agbno); 2390 cluster_agbno = chunk_agbno + 2391 ((offset_agbno / blks_per_cluster) * blks_per_cluster); 2392 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 2393 XFS_INO_TO_OFFSET(mp, ino); 2394 2395 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); 2396 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster); 2397 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); 2398 2399 /* 2400 * If the inode number maps to a block outside the bounds 2401 * of the file system then return NULL rather than calling 2402 * read_buf and panicing when we get an error from the 2403 * driver. 2404 */ 2405 if ((imap->im_blkno + imap->im_len) > 2406 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 2407 xfs_alert(mp, 2408 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 2409 __func__, (unsigned long long) imap->im_blkno, 2410 (unsigned long long) imap->im_len, 2411 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 2412 return -EINVAL; 2413 } 2414 return 0; 2415 } 2416 2417 /* 2418 * Compute and fill in value of m_in_maxlevels. 2419 */ 2420 void 2421 xfs_ialloc_compute_maxlevels( 2422 xfs_mount_t *mp) /* file system mount structure */ 2423 { 2424 uint inodes; 2425 2426 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; 2427 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp->m_inobt_mnr, 2428 inodes); 2429 } 2430 2431 /* 2432 * Log specified fields for the ag hdr (inode section). The growth of the agi 2433 * structure over time requires that we interpret the buffer as two logical 2434 * regions delineated by the end of the unlinked list. This is due to the size 2435 * of the hash table and its location in the middle of the agi. 2436 * 2437 * For example, a request to log a field before agi_unlinked and a field after 2438 * agi_unlinked could cause us to log the entire hash table and use an excessive 2439 * amount of log space. To avoid this behavior, log the region up through 2440 * agi_unlinked in one call and the region after agi_unlinked through the end of 2441 * the structure in another. 2442 */ 2443 void 2444 xfs_ialloc_log_agi( 2445 xfs_trans_t *tp, /* transaction pointer */ 2446 xfs_buf_t *bp, /* allocation group header buffer */ 2447 int fields) /* bitmask of fields to log */ 2448 { 2449 int first; /* first byte number */ 2450 int last; /* last byte number */ 2451 static const short offsets[] = { /* field starting offsets */ 2452 /* keep in sync with bit definitions */ 2453 offsetof(xfs_agi_t, agi_magicnum), 2454 offsetof(xfs_agi_t, agi_versionnum), 2455 offsetof(xfs_agi_t, agi_seqno), 2456 offsetof(xfs_agi_t, agi_length), 2457 offsetof(xfs_agi_t, agi_count), 2458 offsetof(xfs_agi_t, agi_root), 2459 offsetof(xfs_agi_t, agi_level), 2460 offsetof(xfs_agi_t, agi_freecount), 2461 offsetof(xfs_agi_t, agi_newino), 2462 offsetof(xfs_agi_t, agi_dirino), 2463 offsetof(xfs_agi_t, agi_unlinked), 2464 offsetof(xfs_agi_t, agi_free_root), 2465 offsetof(xfs_agi_t, agi_free_level), 2466 sizeof(xfs_agi_t) 2467 }; 2468 #ifdef DEBUG 2469 xfs_agi_t *agi; /* allocation group header */ 2470 2471 agi = XFS_BUF_TO_AGI(bp); 2472 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2473 #endif 2474 2475 /* 2476 * Compute byte offsets for the first and last fields in the first 2477 * region and log the agi buffer. This only logs up through 2478 * agi_unlinked. 2479 */ 2480 if (fields & XFS_AGI_ALL_BITS_R1) { 2481 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2482 &first, &last); 2483 xfs_trans_log_buf(tp, bp, first, last); 2484 } 2485 2486 /* 2487 * Mask off the bits in the first region and calculate the first and 2488 * last field offsets for any bits in the second region. 2489 */ 2490 fields &= ~XFS_AGI_ALL_BITS_R1; 2491 if (fields) { 2492 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2493 &first, &last); 2494 xfs_trans_log_buf(tp, bp, first, last); 2495 } 2496 } 2497 2498 static xfs_failaddr_t 2499 xfs_agi_verify( 2500 struct xfs_buf *bp) 2501 { 2502 struct xfs_mount *mp = bp->b_target->bt_mount; 2503 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); 2504 int i; 2505 2506 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2507 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) 2508 return __this_address; 2509 if (!xfs_log_check_lsn(mp, 2510 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn))) 2511 return __this_address; 2512 } 2513 2514 /* 2515 * Validate the magic number of the agi block. 2516 */ 2517 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC)) 2518 return __this_address; 2519 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2520 return __this_address; 2521 2522 if (be32_to_cpu(agi->agi_level) < 1 || 2523 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS) 2524 return __this_address; 2525 2526 if (xfs_sb_version_hasfinobt(&mp->m_sb) && 2527 (be32_to_cpu(agi->agi_free_level) < 1 || 2528 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS)) 2529 return __this_address; 2530 2531 /* 2532 * during growfs operations, the perag is not fully initialised, 2533 * so we can't use it for any useful checking. growfs ensures we can't 2534 * use it by using uncached buffers that don't have the perag attached 2535 * so we can detect and avoid this problem. 2536 */ 2537 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) 2538 return __this_address; 2539 2540 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { 2541 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO)) 2542 continue; 2543 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i]))) 2544 return __this_address; 2545 } 2546 2547 return NULL; 2548 } 2549 2550 static void 2551 xfs_agi_read_verify( 2552 struct xfs_buf *bp) 2553 { 2554 struct xfs_mount *mp = bp->b_target->bt_mount; 2555 xfs_failaddr_t fa; 2556 2557 if (xfs_sb_version_hascrc(&mp->m_sb) && 2558 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2559 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 2560 else { 2561 fa = xfs_agi_verify(bp); 2562 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI)) 2563 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 2564 } 2565 } 2566 2567 static void 2568 xfs_agi_write_verify( 2569 struct xfs_buf *bp) 2570 { 2571 struct xfs_mount *mp = bp->b_target->bt_mount; 2572 struct xfs_buf_log_item *bip = bp->b_log_item; 2573 xfs_failaddr_t fa; 2574 2575 fa = xfs_agi_verify(bp); 2576 if (fa) { 2577 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 2578 return; 2579 } 2580 2581 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2582 return; 2583 2584 if (bip) 2585 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2586 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2587 } 2588 2589 const struct xfs_buf_ops xfs_agi_buf_ops = { 2590 .name = "xfs_agi", 2591 .verify_read = xfs_agi_read_verify, 2592 .verify_write = xfs_agi_write_verify, 2593 .verify_struct = xfs_agi_verify, 2594 }; 2595 2596 /* 2597 * Read in the allocation group header (inode allocation section) 2598 */ 2599 int 2600 xfs_read_agi( 2601 struct xfs_mount *mp, /* file system mount structure */ 2602 struct xfs_trans *tp, /* transaction pointer */ 2603 xfs_agnumber_t agno, /* allocation group number */ 2604 struct xfs_buf **bpp) /* allocation group hdr buf */ 2605 { 2606 int error; 2607 2608 trace_xfs_read_agi(mp, agno); 2609 2610 ASSERT(agno != NULLAGNUMBER); 2611 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2612 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 2613 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); 2614 if (error) 2615 return error; 2616 if (tp) 2617 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF); 2618 2619 xfs_buf_set_ref(*bpp, XFS_AGI_REF); 2620 return 0; 2621 } 2622 2623 int 2624 xfs_ialloc_read_agi( 2625 struct xfs_mount *mp, /* file system mount structure */ 2626 struct xfs_trans *tp, /* transaction pointer */ 2627 xfs_agnumber_t agno, /* allocation group number */ 2628 struct xfs_buf **bpp) /* allocation group hdr buf */ 2629 { 2630 struct xfs_agi *agi; /* allocation group header */ 2631 struct xfs_perag *pag; /* per allocation group data */ 2632 int error; 2633 2634 trace_xfs_ialloc_read_agi(mp, agno); 2635 2636 error = xfs_read_agi(mp, tp, agno, bpp); 2637 if (error) 2638 return error; 2639 2640 agi = XFS_BUF_TO_AGI(*bpp); 2641 pag = xfs_perag_get(mp, agno); 2642 if (!pag->pagi_init) { 2643 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2644 pag->pagi_count = be32_to_cpu(agi->agi_count); 2645 pag->pagi_init = 1; 2646 } 2647 2648 /* 2649 * It's possible for these to be out of sync if 2650 * we are in the middle of a forced shutdown. 2651 */ 2652 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2653 XFS_FORCED_SHUTDOWN(mp)); 2654 xfs_perag_put(pag); 2655 return 0; 2656 } 2657 2658 /* 2659 * Read in the agi to initialise the per-ag data in the mount structure 2660 */ 2661 int 2662 xfs_ialloc_pagi_init( 2663 xfs_mount_t *mp, /* file system mount structure */ 2664 xfs_trans_t *tp, /* transaction pointer */ 2665 xfs_agnumber_t agno) /* allocation group number */ 2666 { 2667 xfs_buf_t *bp = NULL; 2668 int error; 2669 2670 error = xfs_ialloc_read_agi(mp, tp, agno, &bp); 2671 if (error) 2672 return error; 2673 if (bp) 2674 xfs_trans_brelse(tp, bp); 2675 return 0; 2676 } 2677 2678 /* Is there an inode record covering a given range of inode numbers? */ 2679 int 2680 xfs_ialloc_has_inode_record( 2681 struct xfs_btree_cur *cur, 2682 xfs_agino_t low, 2683 xfs_agino_t high, 2684 bool *exists) 2685 { 2686 struct xfs_inobt_rec_incore irec; 2687 xfs_agino_t agino; 2688 uint16_t holemask; 2689 int has_record; 2690 int i; 2691 int error; 2692 2693 *exists = false; 2694 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record); 2695 while (error == 0 && has_record) { 2696 error = xfs_inobt_get_rec(cur, &irec, &has_record); 2697 if (error || irec.ir_startino > high) 2698 break; 2699 2700 agino = irec.ir_startino; 2701 holemask = irec.ir_holemask; 2702 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1, 2703 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) { 2704 if (holemask & 1) 2705 continue; 2706 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low && 2707 agino <= high) { 2708 *exists = true; 2709 return 0; 2710 } 2711 } 2712 2713 error = xfs_btree_increment(cur, 0, &has_record); 2714 } 2715 return error; 2716 } 2717 2718 /* Is there an inode record covering a given extent? */ 2719 int 2720 xfs_ialloc_has_inodes_at_extent( 2721 struct xfs_btree_cur *cur, 2722 xfs_agblock_t bno, 2723 xfs_extlen_t len, 2724 bool *exists) 2725 { 2726 xfs_agino_t low; 2727 xfs_agino_t high; 2728 2729 low = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno, 0); 2730 high = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno + len, 0) - 1; 2731 2732 return xfs_ialloc_has_inode_record(cur, low, high, exists); 2733 } 2734 2735 struct xfs_ialloc_count_inodes { 2736 xfs_agino_t count; 2737 xfs_agino_t freecount; 2738 }; 2739 2740 /* Record inode counts across all inobt records. */ 2741 STATIC int 2742 xfs_ialloc_count_inodes_rec( 2743 struct xfs_btree_cur *cur, 2744 union xfs_btree_rec *rec, 2745 void *priv) 2746 { 2747 struct xfs_inobt_rec_incore irec; 2748 struct xfs_ialloc_count_inodes *ci = priv; 2749 2750 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec); 2751 ci->count += irec.ir_count; 2752 ci->freecount += irec.ir_freecount; 2753 2754 return 0; 2755 } 2756 2757 /* Count allocated and free inodes under an inobt. */ 2758 int 2759 xfs_ialloc_count_inodes( 2760 struct xfs_btree_cur *cur, 2761 xfs_agino_t *count, 2762 xfs_agino_t *freecount) 2763 { 2764 struct xfs_ialloc_count_inodes ci = {0}; 2765 int error; 2766 2767 ASSERT(cur->bc_btnum == XFS_BTNUM_INO); 2768 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci); 2769 if (error) 2770 return error; 2771 2772 *count = ci.count; 2773 *freecount = ci.freecount; 2774 return 0; 2775 } 2776