xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc.c (revision de1a9ce2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_bmap.h"
22 #include "xfs_trans.h"
23 #include "xfs_buf_item.h"
24 #include "xfs_icreate_item.h"
25 #include "xfs_icache.h"
26 #include "xfs_trace.h"
27 #include "xfs_log.h"
28 #include "xfs_rmap.h"
29 #include "xfs_ag.h"
30 
31 /*
32  * Lookup a record by ino in the btree given by cur.
33  */
34 int					/* error */
35 xfs_inobt_lookup(
36 	struct xfs_btree_cur	*cur,	/* btree cursor */
37 	xfs_agino_t		ino,	/* starting inode of chunk */
38 	xfs_lookup_t		dir,	/* <=, >=, == */
39 	int			*stat)	/* success/failure */
40 {
41 	cur->bc_rec.i.ir_startino = ino;
42 	cur->bc_rec.i.ir_holemask = 0;
43 	cur->bc_rec.i.ir_count = 0;
44 	cur->bc_rec.i.ir_freecount = 0;
45 	cur->bc_rec.i.ir_free = 0;
46 	return xfs_btree_lookup(cur, dir, stat);
47 }
48 
49 /*
50  * Update the record referred to by cur to the value given.
51  * This either works (return 0) or gets an EFSCORRUPTED error.
52  */
53 STATIC int				/* error */
54 xfs_inobt_update(
55 	struct xfs_btree_cur	*cur,	/* btree cursor */
56 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
57 {
58 	union xfs_btree_rec	rec;
59 
60 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 	if (xfs_has_sparseinodes(cur->bc_mp)) {
62 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 	} else {
66 		/* ir_holemask/ir_count not supported on-disk */
67 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 	}
69 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 	return xfs_btree_update(cur, &rec);
71 }
72 
73 /* Convert on-disk btree record to incore inobt record. */
74 void
75 xfs_inobt_btrec_to_irec(
76 	struct xfs_mount		*mp,
77 	const union xfs_btree_rec	*rec,
78 	struct xfs_inobt_rec_incore	*irec)
79 {
80 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 	if (xfs_has_sparseinodes(mp)) {
82 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 	} else {
86 		/*
87 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 		 * values for full inode chunks.
89 		 */
90 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 		irec->ir_count = XFS_INODES_PER_CHUNK;
92 		irec->ir_freecount =
93 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 	}
95 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96 }
97 
98 /* Simple checks for inode records. */
99 xfs_failaddr_t
100 xfs_inobt_check_irec(
101 	struct xfs_btree_cur			*cur,
102 	const struct xfs_inobt_rec_incore	*irec)
103 {
104 	uint64_t			realfree;
105 
106 	/* Record has to be properly aligned within the AG. */
107 	if (!xfs_verify_agino(cur->bc_ag.pag, irec->ir_startino))
108 		return __this_address;
109 	if (!xfs_verify_agino(cur->bc_ag.pag,
110 				irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
111 		return __this_address;
112 	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
113 	    irec->ir_count > XFS_INODES_PER_CHUNK)
114 		return __this_address;
115 	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
116 		return __this_address;
117 
118 	/* if there are no holes, return the first available offset */
119 	if (!xfs_inobt_issparse(irec->ir_holemask))
120 		realfree = irec->ir_free;
121 	else
122 		realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
123 	if (hweight64(realfree) != irec->ir_freecount)
124 		return __this_address;
125 
126 	return NULL;
127 }
128 
129 static inline int
130 xfs_inobt_complain_bad_rec(
131 	struct xfs_btree_cur		*cur,
132 	xfs_failaddr_t			fa,
133 	const struct xfs_inobt_rec_incore *irec)
134 {
135 	struct xfs_mount		*mp = cur->bc_mp;
136 
137 	xfs_warn(mp,
138 		"%s Inode BTree record corruption in AG %d detected at %pS!",
139 		cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free",
140 		cur->bc_ag.pag->pag_agno, fa);
141 	xfs_warn(mp,
142 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 		irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 		irec->ir_free, irec->ir_holemask);
145 	return -EFSCORRUPTED;
146 }
147 
148 /*
149  * Get the data from the pointed-to record.
150  */
151 int
152 xfs_inobt_get_rec(
153 	struct xfs_btree_cur		*cur,
154 	struct xfs_inobt_rec_incore	*irec,
155 	int				*stat)
156 {
157 	struct xfs_mount		*mp = cur->bc_mp;
158 	union xfs_btree_rec		*rec;
159 	xfs_failaddr_t			fa;
160 	int				error;
161 
162 	error = xfs_btree_get_rec(cur, &rec, stat);
163 	if (error || *stat == 0)
164 		return error;
165 
166 	xfs_inobt_btrec_to_irec(mp, rec, irec);
167 	fa = xfs_inobt_check_irec(cur, irec);
168 	if (fa)
169 		return xfs_inobt_complain_bad_rec(cur, fa, irec);
170 
171 	return 0;
172 }
173 
174 /*
175  * Insert a single inobt record. Cursor must already point to desired location.
176  */
177 int
178 xfs_inobt_insert_rec(
179 	struct xfs_btree_cur	*cur,
180 	uint16_t		holemask,
181 	uint8_t			count,
182 	int32_t			freecount,
183 	xfs_inofree_t		free,
184 	int			*stat)
185 {
186 	cur->bc_rec.i.ir_holemask = holemask;
187 	cur->bc_rec.i.ir_count = count;
188 	cur->bc_rec.i.ir_freecount = freecount;
189 	cur->bc_rec.i.ir_free = free;
190 	return xfs_btree_insert(cur, stat);
191 }
192 
193 /*
194  * Insert records describing a newly allocated inode chunk into the inobt.
195  */
196 STATIC int
197 xfs_inobt_insert(
198 	struct xfs_perag	*pag,
199 	struct xfs_trans	*tp,
200 	struct xfs_buf		*agbp,
201 	xfs_agino_t		newino,
202 	xfs_agino_t		newlen,
203 	xfs_btnum_t		btnum)
204 {
205 	struct xfs_btree_cur	*cur;
206 	xfs_agino_t		thisino;
207 	int			i;
208 	int			error;
209 
210 	cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
211 
212 	for (thisino = newino;
213 	     thisino < newino + newlen;
214 	     thisino += XFS_INODES_PER_CHUNK) {
215 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
216 		if (error) {
217 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
218 			return error;
219 		}
220 		ASSERT(i == 0);
221 
222 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
223 					     XFS_INODES_PER_CHUNK,
224 					     XFS_INODES_PER_CHUNK,
225 					     XFS_INOBT_ALL_FREE, &i);
226 		if (error) {
227 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
228 			return error;
229 		}
230 		ASSERT(i == 1);
231 	}
232 
233 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
234 
235 	return 0;
236 }
237 
238 /*
239  * Verify that the number of free inodes in the AGI is correct.
240  */
241 #ifdef DEBUG
242 static int
243 xfs_check_agi_freecount(
244 	struct xfs_btree_cur	*cur)
245 {
246 	if (cur->bc_nlevels == 1) {
247 		xfs_inobt_rec_incore_t rec;
248 		int		freecount = 0;
249 		int		error;
250 		int		i;
251 
252 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
253 		if (error)
254 			return error;
255 
256 		do {
257 			error = xfs_inobt_get_rec(cur, &rec, &i);
258 			if (error)
259 				return error;
260 
261 			if (i) {
262 				freecount += rec.ir_freecount;
263 				error = xfs_btree_increment(cur, 0, &i);
264 				if (error)
265 					return error;
266 			}
267 		} while (i == 1);
268 
269 		if (!xfs_is_shutdown(cur->bc_mp))
270 			ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
271 	}
272 	return 0;
273 }
274 #else
275 #define xfs_check_agi_freecount(cur)	0
276 #endif
277 
278 /*
279  * Initialise a new set of inodes. When called without a transaction context
280  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
281  * than logging them (which in a transaction context puts them into the AIL
282  * for writeback rather than the xfsbufd queue).
283  */
284 int
285 xfs_ialloc_inode_init(
286 	struct xfs_mount	*mp,
287 	struct xfs_trans	*tp,
288 	struct list_head	*buffer_list,
289 	int			icount,
290 	xfs_agnumber_t		agno,
291 	xfs_agblock_t		agbno,
292 	xfs_agblock_t		length,
293 	unsigned int		gen)
294 {
295 	struct xfs_buf		*fbuf;
296 	struct xfs_dinode	*free;
297 	int			nbufs;
298 	int			version;
299 	int			i, j;
300 	xfs_daddr_t		d;
301 	xfs_ino_t		ino = 0;
302 	int			error;
303 
304 	/*
305 	 * Loop over the new block(s), filling in the inodes.  For small block
306 	 * sizes, manipulate the inodes in buffers  which are multiples of the
307 	 * blocks size.
308 	 */
309 	nbufs = length / M_IGEO(mp)->blocks_per_cluster;
310 
311 	/*
312 	 * Figure out what version number to use in the inodes we create.  If
313 	 * the superblock version has caught up to the one that supports the new
314 	 * inode format, then use the new inode version.  Otherwise use the old
315 	 * version so that old kernels will continue to be able to use the file
316 	 * system.
317 	 *
318 	 * For v3 inodes, we also need to write the inode number into the inode,
319 	 * so calculate the first inode number of the chunk here as
320 	 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
321 	 * across multiple filesystem blocks (such as a cluster) and so cannot
322 	 * be used in the cluster buffer loop below.
323 	 *
324 	 * Further, because we are writing the inode directly into the buffer
325 	 * and calculating a CRC on the entire inode, we have ot log the entire
326 	 * inode so that the entire range the CRC covers is present in the log.
327 	 * That means for v3 inode we log the entire buffer rather than just the
328 	 * inode cores.
329 	 */
330 	if (xfs_has_v3inodes(mp)) {
331 		version = 3;
332 		ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
333 
334 		/*
335 		 * log the initialisation that is about to take place as an
336 		 * logical operation. This means the transaction does not
337 		 * need to log the physical changes to the inode buffers as log
338 		 * recovery will know what initialisation is actually needed.
339 		 * Hence we only need to log the buffers as "ordered" buffers so
340 		 * they track in the AIL as if they were physically logged.
341 		 */
342 		if (tp)
343 			xfs_icreate_log(tp, agno, agbno, icount,
344 					mp->m_sb.sb_inodesize, length, gen);
345 	} else
346 		version = 2;
347 
348 	for (j = 0; j < nbufs; j++) {
349 		/*
350 		 * Get the block.
351 		 */
352 		d = XFS_AGB_TO_DADDR(mp, agno, agbno +
353 				(j * M_IGEO(mp)->blocks_per_cluster));
354 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
355 				mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
356 				XBF_UNMAPPED, &fbuf);
357 		if (error)
358 			return error;
359 
360 		/* Initialize the inode buffers and log them appropriately. */
361 		fbuf->b_ops = &xfs_inode_buf_ops;
362 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
363 		for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
364 			int	ioffset = i << mp->m_sb.sb_inodelog;
365 
366 			free = xfs_make_iptr(mp, fbuf, i);
367 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
368 			free->di_version = version;
369 			free->di_gen = cpu_to_be32(gen);
370 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
371 
372 			if (version == 3) {
373 				free->di_ino = cpu_to_be64(ino);
374 				ino++;
375 				uuid_copy(&free->di_uuid,
376 					  &mp->m_sb.sb_meta_uuid);
377 				xfs_dinode_calc_crc(mp, free);
378 			} else if (tp) {
379 				/* just log the inode core */
380 				xfs_trans_log_buf(tp, fbuf, ioffset,
381 					  ioffset + XFS_DINODE_SIZE(mp) - 1);
382 			}
383 		}
384 
385 		if (tp) {
386 			/*
387 			 * Mark the buffer as an inode allocation buffer so it
388 			 * sticks in AIL at the point of this allocation
389 			 * transaction. This ensures the they are on disk before
390 			 * the tail of the log can be moved past this
391 			 * transaction (i.e. by preventing relogging from moving
392 			 * it forward in the log).
393 			 */
394 			xfs_trans_inode_alloc_buf(tp, fbuf);
395 			if (version == 3) {
396 				/*
397 				 * Mark the buffer as ordered so that they are
398 				 * not physically logged in the transaction but
399 				 * still tracked in the AIL as part of the
400 				 * transaction and pin the log appropriately.
401 				 */
402 				xfs_trans_ordered_buf(tp, fbuf);
403 			}
404 		} else {
405 			fbuf->b_flags |= XBF_DONE;
406 			xfs_buf_delwri_queue(fbuf, buffer_list);
407 			xfs_buf_relse(fbuf);
408 		}
409 	}
410 	return 0;
411 }
412 
413 /*
414  * Align startino and allocmask for a recently allocated sparse chunk such that
415  * they are fit for insertion (or merge) into the on-disk inode btrees.
416  *
417  * Background:
418  *
419  * When enabled, sparse inode support increases the inode alignment from cluster
420  * size to inode chunk size. This means that the minimum range between two
421  * non-adjacent inode records in the inobt is large enough for a full inode
422  * record. This allows for cluster sized, cluster aligned block allocation
423  * without need to worry about whether the resulting inode record overlaps with
424  * another record in the tree. Without this basic rule, we would have to deal
425  * with the consequences of overlap by potentially undoing recent allocations in
426  * the inode allocation codepath.
427  *
428  * Because of this alignment rule (which is enforced on mount), there are two
429  * inobt possibilities for newly allocated sparse chunks. One is that the
430  * aligned inode record for the chunk covers a range of inodes not already
431  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
432  * other is that a record already exists at the aligned startino that considers
433  * the newly allocated range as sparse. In the latter case, record content is
434  * merged in hope that sparse inode chunks fill to full chunks over time.
435  */
436 STATIC void
437 xfs_align_sparse_ino(
438 	struct xfs_mount		*mp,
439 	xfs_agino_t			*startino,
440 	uint16_t			*allocmask)
441 {
442 	xfs_agblock_t			agbno;
443 	xfs_agblock_t			mod;
444 	int				offset;
445 
446 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
447 	mod = agbno % mp->m_sb.sb_inoalignmt;
448 	if (!mod)
449 		return;
450 
451 	/* calculate the inode offset and align startino */
452 	offset = XFS_AGB_TO_AGINO(mp, mod);
453 	*startino -= offset;
454 
455 	/*
456 	 * Since startino has been aligned down, left shift allocmask such that
457 	 * it continues to represent the same physical inodes relative to the
458 	 * new startino.
459 	 */
460 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
461 }
462 
463 /*
464  * Determine whether the source inode record can merge into the target. Both
465  * records must be sparse, the inode ranges must match and there must be no
466  * allocation overlap between the records.
467  */
468 STATIC bool
469 __xfs_inobt_can_merge(
470 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
471 	struct xfs_inobt_rec_incore	*srec)	/* src record */
472 {
473 	uint64_t			talloc;
474 	uint64_t			salloc;
475 
476 	/* records must cover the same inode range */
477 	if (trec->ir_startino != srec->ir_startino)
478 		return false;
479 
480 	/* both records must be sparse */
481 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
482 	    !xfs_inobt_issparse(srec->ir_holemask))
483 		return false;
484 
485 	/* both records must track some inodes */
486 	if (!trec->ir_count || !srec->ir_count)
487 		return false;
488 
489 	/* can't exceed capacity of a full record */
490 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
491 		return false;
492 
493 	/* verify there is no allocation overlap */
494 	talloc = xfs_inobt_irec_to_allocmask(trec);
495 	salloc = xfs_inobt_irec_to_allocmask(srec);
496 	if (talloc & salloc)
497 		return false;
498 
499 	return true;
500 }
501 
502 /*
503  * Merge the source inode record into the target. The caller must call
504  * __xfs_inobt_can_merge() to ensure the merge is valid.
505  */
506 STATIC void
507 __xfs_inobt_rec_merge(
508 	struct xfs_inobt_rec_incore	*trec,	/* target */
509 	struct xfs_inobt_rec_incore	*srec)	/* src */
510 {
511 	ASSERT(trec->ir_startino == srec->ir_startino);
512 
513 	/* combine the counts */
514 	trec->ir_count += srec->ir_count;
515 	trec->ir_freecount += srec->ir_freecount;
516 
517 	/*
518 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
519 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
520 	 */
521 	trec->ir_holemask &= srec->ir_holemask;
522 	trec->ir_free &= srec->ir_free;
523 }
524 
525 /*
526  * Insert a new sparse inode chunk into the associated inode btree. The inode
527  * record for the sparse chunk is pre-aligned to a startino that should match
528  * any pre-existing sparse inode record in the tree. This allows sparse chunks
529  * to fill over time.
530  *
531  * This function supports two modes of handling preexisting records depending on
532  * the merge flag. If merge is true, the provided record is merged with the
533  * existing record and updated in place. The merged record is returned in nrec.
534  * If merge is false, an existing record is replaced with the provided record.
535  * If no preexisting record exists, the provided record is always inserted.
536  *
537  * It is considered corruption if a merge is requested and not possible. Given
538  * the sparse inode alignment constraints, this should never happen.
539  */
540 STATIC int
541 xfs_inobt_insert_sprec(
542 	struct xfs_perag		*pag,
543 	struct xfs_trans		*tp,
544 	struct xfs_buf			*agbp,
545 	int				btnum,
546 	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
547 	bool				merge)	/* merge or replace */
548 {
549 	struct xfs_mount		*mp = pag->pag_mount;
550 	struct xfs_btree_cur		*cur;
551 	int				error;
552 	int				i;
553 	struct xfs_inobt_rec_incore	rec;
554 
555 	cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
556 
557 	/* the new record is pre-aligned so we know where to look */
558 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
559 	if (error)
560 		goto error;
561 	/* if nothing there, insert a new record and return */
562 	if (i == 0) {
563 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
564 					     nrec->ir_count, nrec->ir_freecount,
565 					     nrec->ir_free, &i);
566 		if (error)
567 			goto error;
568 		if (XFS_IS_CORRUPT(mp, i != 1)) {
569 			error = -EFSCORRUPTED;
570 			goto error;
571 		}
572 
573 		goto out;
574 	}
575 
576 	/*
577 	 * A record exists at this startino. Merge or replace the record
578 	 * depending on what we've been asked to do.
579 	 */
580 	if (merge) {
581 		error = xfs_inobt_get_rec(cur, &rec, &i);
582 		if (error)
583 			goto error;
584 		if (XFS_IS_CORRUPT(mp, i != 1)) {
585 			error = -EFSCORRUPTED;
586 			goto error;
587 		}
588 		if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
589 			error = -EFSCORRUPTED;
590 			goto error;
591 		}
592 
593 		/*
594 		 * This should never fail. If we have coexisting records that
595 		 * cannot merge, something is seriously wrong.
596 		 */
597 		if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
598 			error = -EFSCORRUPTED;
599 			goto error;
600 		}
601 
602 		trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
603 					 rec.ir_holemask, nrec->ir_startino,
604 					 nrec->ir_holemask);
605 
606 		/* merge to nrec to output the updated record */
607 		__xfs_inobt_rec_merge(nrec, &rec);
608 
609 		trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
610 					  nrec->ir_holemask);
611 
612 		error = xfs_inobt_rec_check_count(mp, nrec);
613 		if (error)
614 			goto error;
615 	}
616 
617 	error = xfs_inobt_update(cur, nrec);
618 	if (error)
619 		goto error;
620 
621 out:
622 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
623 	return 0;
624 error:
625 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
626 	return error;
627 }
628 
629 /*
630  * Allocate new inodes in the allocation group specified by agbp.  Returns 0 if
631  * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
632  * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
633  * inode count threshold, or the usual negative error code for other errors.
634  */
635 STATIC int
636 xfs_ialloc_ag_alloc(
637 	struct xfs_perag	*pag,
638 	struct xfs_trans	*tp,
639 	struct xfs_buf		*agbp)
640 {
641 	struct xfs_agi		*agi;
642 	struct xfs_alloc_arg	args;
643 	int			error;
644 	xfs_agino_t		newino;		/* new first inode's number */
645 	xfs_agino_t		newlen;		/* new number of inodes */
646 	int			isaligned = 0;	/* inode allocation at stripe */
647 						/* unit boundary */
648 	/* init. to full chunk */
649 	struct xfs_inobt_rec_incore rec;
650 	struct xfs_ino_geometry	*igeo = M_IGEO(tp->t_mountp);
651 	uint16_t		allocmask = (uint16_t) -1;
652 	int			do_sparse = 0;
653 
654 	memset(&args, 0, sizeof(args));
655 	args.tp = tp;
656 	args.mp = tp->t_mountp;
657 	args.fsbno = NULLFSBLOCK;
658 	args.oinfo = XFS_RMAP_OINFO_INODES;
659 	args.pag = pag;
660 
661 #ifdef DEBUG
662 	/* randomly do sparse inode allocations */
663 	if (xfs_has_sparseinodes(tp->t_mountp) &&
664 	    igeo->ialloc_min_blks < igeo->ialloc_blks)
665 		do_sparse = get_random_u32_below(2);
666 #endif
667 
668 	/*
669 	 * Locking will ensure that we don't have two callers in here
670 	 * at one time.
671 	 */
672 	newlen = igeo->ialloc_inos;
673 	if (igeo->maxicount &&
674 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
675 							igeo->maxicount)
676 		return -ENOSPC;
677 	args.minlen = args.maxlen = igeo->ialloc_blks;
678 	/*
679 	 * First try to allocate inodes contiguous with the last-allocated
680 	 * chunk of inodes.  If the filesystem is striped, this will fill
681 	 * an entire stripe unit with inodes.
682 	 */
683 	agi = agbp->b_addr;
684 	newino = be32_to_cpu(agi->agi_newino);
685 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
686 		     igeo->ialloc_blks;
687 	if (do_sparse)
688 		goto sparse_alloc;
689 	if (likely(newino != NULLAGINO &&
690 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
691 		args.prod = 1;
692 
693 		/*
694 		 * We need to take into account alignment here to ensure that
695 		 * we don't modify the free list if we fail to have an exact
696 		 * block. If we don't have an exact match, and every oher
697 		 * attempt allocation attempt fails, we'll end up cancelling
698 		 * a dirty transaction and shutting down.
699 		 *
700 		 * For an exact allocation, alignment must be 1,
701 		 * however we need to take cluster alignment into account when
702 		 * fixing up the freelist. Use the minalignslop field to
703 		 * indicate that extra blocks might be required for alignment,
704 		 * but not to use them in the actual exact allocation.
705 		 */
706 		args.alignment = 1;
707 		args.minalignslop = igeo->cluster_align - 1;
708 
709 		/* Allow space for the inode btree to split. */
710 		args.minleft = igeo->inobt_maxlevels;
711 		error = xfs_alloc_vextent_exact_bno(&args,
712 				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
713 						args.agbno));
714 		if (error)
715 			return error;
716 
717 		/*
718 		 * This request might have dirtied the transaction if the AG can
719 		 * satisfy the request, but the exact block was not available.
720 		 * If the allocation did fail, subsequent requests will relax
721 		 * the exact agbno requirement and increase the alignment
722 		 * instead. It is critical that the total size of the request
723 		 * (len + alignment + slop) does not increase from this point
724 		 * on, so reset minalignslop to ensure it is not included in
725 		 * subsequent requests.
726 		 */
727 		args.minalignslop = 0;
728 	}
729 
730 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
731 		/*
732 		 * Set the alignment for the allocation.
733 		 * If stripe alignment is turned on then align at stripe unit
734 		 * boundary.
735 		 * If the cluster size is smaller than a filesystem block
736 		 * then we're doing I/O for inodes in filesystem block size
737 		 * pieces, so don't need alignment anyway.
738 		 */
739 		isaligned = 0;
740 		if (igeo->ialloc_align) {
741 			ASSERT(!xfs_has_noalign(args.mp));
742 			args.alignment = args.mp->m_dalign;
743 			isaligned = 1;
744 		} else
745 			args.alignment = igeo->cluster_align;
746 		/*
747 		 * Allocate a fixed-size extent of inodes.
748 		 */
749 		args.prod = 1;
750 		/*
751 		 * Allow space for the inode btree to split.
752 		 */
753 		args.minleft = igeo->inobt_maxlevels;
754 		error = xfs_alloc_vextent_near_bno(&args,
755 				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
756 						be32_to_cpu(agi->agi_root)));
757 		if (error)
758 			return error;
759 	}
760 
761 	/*
762 	 * If stripe alignment is turned on, then try again with cluster
763 	 * alignment.
764 	 */
765 	if (isaligned && args.fsbno == NULLFSBLOCK) {
766 		args.alignment = igeo->cluster_align;
767 		error = xfs_alloc_vextent_near_bno(&args,
768 				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
769 						be32_to_cpu(agi->agi_root)));
770 		if (error)
771 			return error;
772 	}
773 
774 	/*
775 	 * Finally, try a sparse allocation if the filesystem supports it and
776 	 * the sparse allocation length is smaller than a full chunk.
777 	 */
778 	if (xfs_has_sparseinodes(args.mp) &&
779 	    igeo->ialloc_min_blks < igeo->ialloc_blks &&
780 	    args.fsbno == NULLFSBLOCK) {
781 sparse_alloc:
782 		args.alignment = args.mp->m_sb.sb_spino_align;
783 		args.prod = 1;
784 
785 		args.minlen = igeo->ialloc_min_blks;
786 		args.maxlen = args.minlen;
787 
788 		/*
789 		 * The inode record will be aligned to full chunk size. We must
790 		 * prevent sparse allocation from AG boundaries that result in
791 		 * invalid inode records, such as records that start at agbno 0
792 		 * or extend beyond the AG.
793 		 *
794 		 * Set min agbno to the first aligned, non-zero agbno and max to
795 		 * the last aligned agbno that is at least one full chunk from
796 		 * the end of the AG.
797 		 */
798 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
799 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
800 					    args.mp->m_sb.sb_inoalignmt) -
801 				 igeo->ialloc_blks;
802 
803 		error = xfs_alloc_vextent_near_bno(&args,
804 				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
805 						be32_to_cpu(agi->agi_root)));
806 		if (error)
807 			return error;
808 
809 		newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
810 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
811 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
812 	}
813 
814 	if (args.fsbno == NULLFSBLOCK)
815 		return -EAGAIN;
816 
817 	ASSERT(args.len == args.minlen);
818 
819 	/*
820 	 * Stamp and write the inode buffers.
821 	 *
822 	 * Seed the new inode cluster with a random generation number. This
823 	 * prevents short-term reuse of generation numbers if a chunk is
824 	 * freed and then immediately reallocated. We use random numbers
825 	 * rather than a linear progression to prevent the next generation
826 	 * number from being easily guessable.
827 	 */
828 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
829 			args.agbno, args.len, get_random_u32());
830 
831 	if (error)
832 		return error;
833 	/*
834 	 * Convert the results.
835 	 */
836 	newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
837 
838 	if (xfs_inobt_issparse(~allocmask)) {
839 		/*
840 		 * We've allocated a sparse chunk. Align the startino and mask.
841 		 */
842 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
843 
844 		rec.ir_startino = newino;
845 		rec.ir_holemask = ~allocmask;
846 		rec.ir_count = newlen;
847 		rec.ir_freecount = newlen;
848 		rec.ir_free = XFS_INOBT_ALL_FREE;
849 
850 		/*
851 		 * Insert the sparse record into the inobt and allow for a merge
852 		 * if necessary. If a merge does occur, rec is updated to the
853 		 * merged record.
854 		 */
855 		error = xfs_inobt_insert_sprec(pag, tp, agbp,
856 				XFS_BTNUM_INO, &rec, true);
857 		if (error == -EFSCORRUPTED) {
858 			xfs_alert(args.mp,
859 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
860 				  XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
861 						   rec.ir_startino),
862 				  rec.ir_holemask, rec.ir_count);
863 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
864 		}
865 		if (error)
866 			return error;
867 
868 		/*
869 		 * We can't merge the part we've just allocated as for the inobt
870 		 * due to finobt semantics. The original record may or may not
871 		 * exist independent of whether physical inodes exist in this
872 		 * sparse chunk.
873 		 *
874 		 * We must update the finobt record based on the inobt record.
875 		 * rec contains the fully merged and up to date inobt record
876 		 * from the previous call. Set merge false to replace any
877 		 * existing record with this one.
878 		 */
879 		if (xfs_has_finobt(args.mp)) {
880 			error = xfs_inobt_insert_sprec(pag, tp, agbp,
881 				       XFS_BTNUM_FINO, &rec, false);
882 			if (error)
883 				return error;
884 		}
885 	} else {
886 		/* full chunk - insert new records to both btrees */
887 		error = xfs_inobt_insert(pag, tp, agbp, newino, newlen,
888 					 XFS_BTNUM_INO);
889 		if (error)
890 			return error;
891 
892 		if (xfs_has_finobt(args.mp)) {
893 			error = xfs_inobt_insert(pag, tp, agbp, newino,
894 						 newlen, XFS_BTNUM_FINO);
895 			if (error)
896 				return error;
897 		}
898 	}
899 
900 	/*
901 	 * Update AGI counts and newino.
902 	 */
903 	be32_add_cpu(&agi->agi_count, newlen);
904 	be32_add_cpu(&agi->agi_freecount, newlen);
905 	pag->pagi_freecount += newlen;
906 	pag->pagi_count += newlen;
907 	agi->agi_newino = cpu_to_be32(newino);
908 
909 	/*
910 	 * Log allocation group header fields
911 	 */
912 	xfs_ialloc_log_agi(tp, agbp,
913 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
914 	/*
915 	 * Modify/log superblock values for inode count and inode free count.
916 	 */
917 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
918 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
919 	return 0;
920 }
921 
922 /*
923  * Try to retrieve the next record to the left/right from the current one.
924  */
925 STATIC int
926 xfs_ialloc_next_rec(
927 	struct xfs_btree_cur	*cur,
928 	xfs_inobt_rec_incore_t	*rec,
929 	int			*done,
930 	int			left)
931 {
932 	int                     error;
933 	int			i;
934 
935 	if (left)
936 		error = xfs_btree_decrement(cur, 0, &i);
937 	else
938 		error = xfs_btree_increment(cur, 0, &i);
939 
940 	if (error)
941 		return error;
942 	*done = !i;
943 	if (i) {
944 		error = xfs_inobt_get_rec(cur, rec, &i);
945 		if (error)
946 			return error;
947 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
948 			return -EFSCORRUPTED;
949 	}
950 
951 	return 0;
952 }
953 
954 STATIC int
955 xfs_ialloc_get_rec(
956 	struct xfs_btree_cur	*cur,
957 	xfs_agino_t		agino,
958 	xfs_inobt_rec_incore_t	*rec,
959 	int			*done)
960 {
961 	int                     error;
962 	int			i;
963 
964 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
965 	if (error)
966 		return error;
967 	*done = !i;
968 	if (i) {
969 		error = xfs_inobt_get_rec(cur, rec, &i);
970 		if (error)
971 			return error;
972 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
973 			return -EFSCORRUPTED;
974 	}
975 
976 	return 0;
977 }
978 
979 /*
980  * Return the offset of the first free inode in the record. If the inode chunk
981  * is sparsely allocated, we convert the record holemask to inode granularity
982  * and mask off the unallocated regions from the inode free mask.
983  */
984 STATIC int
985 xfs_inobt_first_free_inode(
986 	struct xfs_inobt_rec_incore	*rec)
987 {
988 	xfs_inofree_t			realfree;
989 
990 	/* if there are no holes, return the first available offset */
991 	if (!xfs_inobt_issparse(rec->ir_holemask))
992 		return xfs_lowbit64(rec->ir_free);
993 
994 	realfree = xfs_inobt_irec_to_allocmask(rec);
995 	realfree &= rec->ir_free;
996 
997 	return xfs_lowbit64(realfree);
998 }
999 
1000 /*
1001  * Allocate an inode using the inobt-only algorithm.
1002  */
1003 STATIC int
1004 xfs_dialloc_ag_inobt(
1005 	struct xfs_perag	*pag,
1006 	struct xfs_trans	*tp,
1007 	struct xfs_buf		*agbp,
1008 	xfs_ino_t		parent,
1009 	xfs_ino_t		*inop)
1010 {
1011 	struct xfs_mount	*mp = tp->t_mountp;
1012 	struct xfs_agi		*agi = agbp->b_addr;
1013 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1014 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1015 	struct xfs_btree_cur	*cur, *tcur;
1016 	struct xfs_inobt_rec_incore rec, trec;
1017 	xfs_ino_t		ino;
1018 	int			error;
1019 	int			offset;
1020 	int			i, j;
1021 	int			searchdistance = 10;
1022 
1023 	ASSERT(xfs_perag_initialised_agi(pag));
1024 	ASSERT(xfs_perag_allows_inodes(pag));
1025 	ASSERT(pag->pagi_freecount > 0);
1026 
1027  restart_pagno:
1028 	cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1029 	/*
1030 	 * If pagino is 0 (this is the root inode allocation) use newino.
1031 	 * This must work because we've just allocated some.
1032 	 */
1033 	if (!pagino)
1034 		pagino = be32_to_cpu(agi->agi_newino);
1035 
1036 	error = xfs_check_agi_freecount(cur);
1037 	if (error)
1038 		goto error0;
1039 
1040 	/*
1041 	 * If in the same AG as the parent, try to get near the parent.
1042 	 */
1043 	if (pagno == pag->pag_agno) {
1044 		int		doneleft;	/* done, to the left */
1045 		int		doneright;	/* done, to the right */
1046 
1047 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1048 		if (error)
1049 			goto error0;
1050 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1051 			error = -EFSCORRUPTED;
1052 			goto error0;
1053 		}
1054 
1055 		error = xfs_inobt_get_rec(cur, &rec, &j);
1056 		if (error)
1057 			goto error0;
1058 		if (XFS_IS_CORRUPT(mp, j != 1)) {
1059 			error = -EFSCORRUPTED;
1060 			goto error0;
1061 		}
1062 
1063 		if (rec.ir_freecount > 0) {
1064 			/*
1065 			 * Found a free inode in the same chunk
1066 			 * as the parent, done.
1067 			 */
1068 			goto alloc_inode;
1069 		}
1070 
1071 
1072 		/*
1073 		 * In the same AG as parent, but parent's chunk is full.
1074 		 */
1075 
1076 		/* duplicate the cursor, search left & right simultaneously */
1077 		error = xfs_btree_dup_cursor(cur, &tcur);
1078 		if (error)
1079 			goto error0;
1080 
1081 		/*
1082 		 * Skip to last blocks looked up if same parent inode.
1083 		 */
1084 		if (pagino != NULLAGINO &&
1085 		    pag->pagl_pagino == pagino &&
1086 		    pag->pagl_leftrec != NULLAGINO &&
1087 		    pag->pagl_rightrec != NULLAGINO) {
1088 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1089 						   &trec, &doneleft);
1090 			if (error)
1091 				goto error1;
1092 
1093 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1094 						   &rec, &doneright);
1095 			if (error)
1096 				goto error1;
1097 		} else {
1098 			/* search left with tcur, back up 1 record */
1099 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1100 			if (error)
1101 				goto error1;
1102 
1103 			/* search right with cur, go forward 1 record. */
1104 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1105 			if (error)
1106 				goto error1;
1107 		}
1108 
1109 		/*
1110 		 * Loop until we find an inode chunk with a free inode.
1111 		 */
1112 		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1113 			int	useleft;  /* using left inode chunk this time */
1114 
1115 			/* figure out the closer block if both are valid. */
1116 			if (!doneleft && !doneright) {
1117 				useleft = pagino -
1118 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1119 				  rec.ir_startino - pagino;
1120 			} else {
1121 				useleft = !doneleft;
1122 			}
1123 
1124 			/* free inodes to the left? */
1125 			if (useleft && trec.ir_freecount) {
1126 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1127 				cur = tcur;
1128 
1129 				pag->pagl_leftrec = trec.ir_startino;
1130 				pag->pagl_rightrec = rec.ir_startino;
1131 				pag->pagl_pagino = pagino;
1132 				rec = trec;
1133 				goto alloc_inode;
1134 			}
1135 
1136 			/* free inodes to the right? */
1137 			if (!useleft && rec.ir_freecount) {
1138 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1139 
1140 				pag->pagl_leftrec = trec.ir_startino;
1141 				pag->pagl_rightrec = rec.ir_startino;
1142 				pag->pagl_pagino = pagino;
1143 				goto alloc_inode;
1144 			}
1145 
1146 			/* get next record to check */
1147 			if (useleft) {
1148 				error = xfs_ialloc_next_rec(tcur, &trec,
1149 								 &doneleft, 1);
1150 			} else {
1151 				error = xfs_ialloc_next_rec(cur, &rec,
1152 								 &doneright, 0);
1153 			}
1154 			if (error)
1155 				goto error1;
1156 		}
1157 
1158 		if (searchdistance <= 0) {
1159 			/*
1160 			 * Not in range - save last search
1161 			 * location and allocate a new inode
1162 			 */
1163 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1164 			pag->pagl_leftrec = trec.ir_startino;
1165 			pag->pagl_rightrec = rec.ir_startino;
1166 			pag->pagl_pagino = pagino;
1167 
1168 		} else {
1169 			/*
1170 			 * We've reached the end of the btree. because
1171 			 * we are only searching a small chunk of the
1172 			 * btree each search, there is obviously free
1173 			 * inodes closer to the parent inode than we
1174 			 * are now. restart the search again.
1175 			 */
1176 			pag->pagl_pagino = NULLAGINO;
1177 			pag->pagl_leftrec = NULLAGINO;
1178 			pag->pagl_rightrec = NULLAGINO;
1179 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1180 			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1181 			goto restart_pagno;
1182 		}
1183 	}
1184 
1185 	/*
1186 	 * In a different AG from the parent.
1187 	 * See if the most recently allocated block has any free.
1188 	 */
1189 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1190 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1191 					 XFS_LOOKUP_EQ, &i);
1192 		if (error)
1193 			goto error0;
1194 
1195 		if (i == 1) {
1196 			error = xfs_inobt_get_rec(cur, &rec, &j);
1197 			if (error)
1198 				goto error0;
1199 
1200 			if (j == 1 && rec.ir_freecount > 0) {
1201 				/*
1202 				 * The last chunk allocated in the group
1203 				 * still has a free inode.
1204 				 */
1205 				goto alloc_inode;
1206 			}
1207 		}
1208 	}
1209 
1210 	/*
1211 	 * None left in the last group, search the whole AG
1212 	 */
1213 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1214 	if (error)
1215 		goto error0;
1216 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1217 		error = -EFSCORRUPTED;
1218 		goto error0;
1219 	}
1220 
1221 	for (;;) {
1222 		error = xfs_inobt_get_rec(cur, &rec, &i);
1223 		if (error)
1224 			goto error0;
1225 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1226 			error = -EFSCORRUPTED;
1227 			goto error0;
1228 		}
1229 		if (rec.ir_freecount > 0)
1230 			break;
1231 		error = xfs_btree_increment(cur, 0, &i);
1232 		if (error)
1233 			goto error0;
1234 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1235 			error = -EFSCORRUPTED;
1236 			goto error0;
1237 		}
1238 	}
1239 
1240 alloc_inode:
1241 	offset = xfs_inobt_first_free_inode(&rec);
1242 	ASSERT(offset >= 0);
1243 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1244 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1245 				   XFS_INODES_PER_CHUNK) == 0);
1246 	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1247 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1248 	rec.ir_freecount--;
1249 	error = xfs_inobt_update(cur, &rec);
1250 	if (error)
1251 		goto error0;
1252 	be32_add_cpu(&agi->agi_freecount, -1);
1253 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1254 	pag->pagi_freecount--;
1255 
1256 	error = xfs_check_agi_freecount(cur);
1257 	if (error)
1258 		goto error0;
1259 
1260 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1261 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1262 	*inop = ino;
1263 	return 0;
1264 error1:
1265 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1266 error0:
1267 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1268 	return error;
1269 }
1270 
1271 /*
1272  * Use the free inode btree to allocate an inode based on distance from the
1273  * parent. Note that the provided cursor may be deleted and replaced.
1274  */
1275 STATIC int
1276 xfs_dialloc_ag_finobt_near(
1277 	xfs_agino_t			pagino,
1278 	struct xfs_btree_cur		**ocur,
1279 	struct xfs_inobt_rec_incore	*rec)
1280 {
1281 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1282 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1283 	struct xfs_inobt_rec_incore	rrec;
1284 	int				error;
1285 	int				i, j;
1286 
1287 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1288 	if (error)
1289 		return error;
1290 
1291 	if (i == 1) {
1292 		error = xfs_inobt_get_rec(lcur, rec, &i);
1293 		if (error)
1294 			return error;
1295 		if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1296 			return -EFSCORRUPTED;
1297 
1298 		/*
1299 		 * See if we've landed in the parent inode record. The finobt
1300 		 * only tracks chunks with at least one free inode, so record
1301 		 * existence is enough.
1302 		 */
1303 		if (pagino >= rec->ir_startino &&
1304 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1305 			return 0;
1306 	}
1307 
1308 	error = xfs_btree_dup_cursor(lcur, &rcur);
1309 	if (error)
1310 		return error;
1311 
1312 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1313 	if (error)
1314 		goto error_rcur;
1315 	if (j == 1) {
1316 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1317 		if (error)
1318 			goto error_rcur;
1319 		if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1320 			error = -EFSCORRUPTED;
1321 			goto error_rcur;
1322 		}
1323 	}
1324 
1325 	if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1326 		error = -EFSCORRUPTED;
1327 		goto error_rcur;
1328 	}
1329 	if (i == 1 && j == 1) {
1330 		/*
1331 		 * Both the left and right records are valid. Choose the closer
1332 		 * inode chunk to the target.
1333 		 */
1334 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1335 		    (rrec.ir_startino - pagino)) {
1336 			*rec = rrec;
1337 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1338 			*ocur = rcur;
1339 		} else {
1340 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1341 		}
1342 	} else if (j == 1) {
1343 		/* only the right record is valid */
1344 		*rec = rrec;
1345 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1346 		*ocur = rcur;
1347 	} else if (i == 1) {
1348 		/* only the left record is valid */
1349 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1350 	}
1351 
1352 	return 0;
1353 
1354 error_rcur:
1355 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1356 	return error;
1357 }
1358 
1359 /*
1360  * Use the free inode btree to find a free inode based on a newino hint. If
1361  * the hint is NULL, find the first free inode in the AG.
1362  */
1363 STATIC int
1364 xfs_dialloc_ag_finobt_newino(
1365 	struct xfs_agi			*agi,
1366 	struct xfs_btree_cur		*cur,
1367 	struct xfs_inobt_rec_incore	*rec)
1368 {
1369 	int error;
1370 	int i;
1371 
1372 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1373 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1374 					 XFS_LOOKUP_EQ, &i);
1375 		if (error)
1376 			return error;
1377 		if (i == 1) {
1378 			error = xfs_inobt_get_rec(cur, rec, &i);
1379 			if (error)
1380 				return error;
1381 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1382 				return -EFSCORRUPTED;
1383 			return 0;
1384 		}
1385 	}
1386 
1387 	/*
1388 	 * Find the first inode available in the AG.
1389 	 */
1390 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1391 	if (error)
1392 		return error;
1393 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1394 		return -EFSCORRUPTED;
1395 
1396 	error = xfs_inobt_get_rec(cur, rec, &i);
1397 	if (error)
1398 		return error;
1399 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1400 		return -EFSCORRUPTED;
1401 
1402 	return 0;
1403 }
1404 
1405 /*
1406  * Update the inobt based on a modification made to the finobt. Also ensure that
1407  * the records from both trees are equivalent post-modification.
1408  */
1409 STATIC int
1410 xfs_dialloc_ag_update_inobt(
1411 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1412 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1413 	int				offset) /* inode offset */
1414 {
1415 	struct xfs_inobt_rec_incore	rec;
1416 	int				error;
1417 	int				i;
1418 
1419 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1420 	if (error)
1421 		return error;
1422 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1423 		return -EFSCORRUPTED;
1424 
1425 	error = xfs_inobt_get_rec(cur, &rec, &i);
1426 	if (error)
1427 		return error;
1428 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1429 		return -EFSCORRUPTED;
1430 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1431 				   XFS_INODES_PER_CHUNK) == 0);
1432 
1433 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1434 	rec.ir_freecount--;
1435 
1436 	if (XFS_IS_CORRUPT(cur->bc_mp,
1437 			   rec.ir_free != frec->ir_free ||
1438 			   rec.ir_freecount != frec->ir_freecount))
1439 		return -EFSCORRUPTED;
1440 
1441 	return xfs_inobt_update(cur, &rec);
1442 }
1443 
1444 /*
1445  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1446  * back to the inobt search algorithm.
1447  *
1448  * The caller selected an AG for us, and made sure that free inodes are
1449  * available.
1450  */
1451 static int
1452 xfs_dialloc_ag(
1453 	struct xfs_perag	*pag,
1454 	struct xfs_trans	*tp,
1455 	struct xfs_buf		*agbp,
1456 	xfs_ino_t		parent,
1457 	xfs_ino_t		*inop)
1458 {
1459 	struct xfs_mount		*mp = tp->t_mountp;
1460 	struct xfs_agi			*agi = agbp->b_addr;
1461 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1462 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1463 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1464 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1465 	struct xfs_inobt_rec_incore	rec;
1466 	xfs_ino_t			ino;
1467 	int				error;
1468 	int				offset;
1469 	int				i;
1470 
1471 	if (!xfs_has_finobt(mp))
1472 		return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1473 
1474 	/*
1475 	 * If pagino is 0 (this is the root inode allocation) use newino.
1476 	 * This must work because we've just allocated some.
1477 	 */
1478 	if (!pagino)
1479 		pagino = be32_to_cpu(agi->agi_newino);
1480 
1481 	cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
1482 
1483 	error = xfs_check_agi_freecount(cur);
1484 	if (error)
1485 		goto error_cur;
1486 
1487 	/*
1488 	 * The search algorithm depends on whether we're in the same AG as the
1489 	 * parent. If so, find the closest available inode to the parent. If
1490 	 * not, consider the agi hint or find the first free inode in the AG.
1491 	 */
1492 	if (pag->pag_agno == pagno)
1493 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1494 	else
1495 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1496 	if (error)
1497 		goto error_cur;
1498 
1499 	offset = xfs_inobt_first_free_inode(&rec);
1500 	ASSERT(offset >= 0);
1501 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1502 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1503 				   XFS_INODES_PER_CHUNK) == 0);
1504 	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1505 
1506 	/*
1507 	 * Modify or remove the finobt record.
1508 	 */
1509 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1510 	rec.ir_freecount--;
1511 	if (rec.ir_freecount)
1512 		error = xfs_inobt_update(cur, &rec);
1513 	else
1514 		error = xfs_btree_delete(cur, &i);
1515 	if (error)
1516 		goto error_cur;
1517 
1518 	/*
1519 	 * The finobt has now been updated appropriately. We haven't updated the
1520 	 * agi and superblock yet, so we can create an inobt cursor and validate
1521 	 * the original freecount. If all is well, make the equivalent update to
1522 	 * the inobt using the finobt record and offset information.
1523 	 */
1524 	icur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1525 
1526 	error = xfs_check_agi_freecount(icur);
1527 	if (error)
1528 		goto error_icur;
1529 
1530 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1531 	if (error)
1532 		goto error_icur;
1533 
1534 	/*
1535 	 * Both trees have now been updated. We must update the perag and
1536 	 * superblock before we can check the freecount for each btree.
1537 	 */
1538 	be32_add_cpu(&agi->agi_freecount, -1);
1539 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1540 	pag->pagi_freecount--;
1541 
1542 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1543 
1544 	error = xfs_check_agi_freecount(icur);
1545 	if (error)
1546 		goto error_icur;
1547 	error = xfs_check_agi_freecount(cur);
1548 	if (error)
1549 		goto error_icur;
1550 
1551 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1552 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1553 	*inop = ino;
1554 	return 0;
1555 
1556 error_icur:
1557 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1558 error_cur:
1559 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1560 	return error;
1561 }
1562 
1563 static int
1564 xfs_dialloc_roll(
1565 	struct xfs_trans	**tpp,
1566 	struct xfs_buf		*agibp)
1567 {
1568 	struct xfs_trans	*tp = *tpp;
1569 	struct xfs_dquot_acct	*dqinfo;
1570 	int			error;
1571 
1572 	/*
1573 	 * Hold to on to the agibp across the commit so no other allocation can
1574 	 * come in and take the free inodes we just allocated for our caller.
1575 	 */
1576 	xfs_trans_bhold(tp, agibp);
1577 
1578 	/*
1579 	 * We want the quota changes to be associated with the next transaction,
1580 	 * NOT this one. So, detach the dqinfo from this and attach it to the
1581 	 * next transaction.
1582 	 */
1583 	dqinfo = tp->t_dqinfo;
1584 	tp->t_dqinfo = NULL;
1585 
1586 	error = xfs_trans_roll(&tp);
1587 
1588 	/* Re-attach the quota info that we detached from prev trx. */
1589 	tp->t_dqinfo = dqinfo;
1590 
1591 	/*
1592 	 * Join the buffer even on commit error so that the buffer is released
1593 	 * when the caller cancels the transaction and doesn't have to handle
1594 	 * this error case specially.
1595 	 */
1596 	xfs_trans_bjoin(tp, agibp);
1597 	*tpp = tp;
1598 	return error;
1599 }
1600 
1601 static bool
1602 xfs_dialloc_good_ag(
1603 	struct xfs_perag	*pag,
1604 	struct xfs_trans	*tp,
1605 	umode_t			mode,
1606 	int			flags,
1607 	bool			ok_alloc)
1608 {
1609 	struct xfs_mount	*mp = tp->t_mountp;
1610 	xfs_extlen_t		ineed;
1611 	xfs_extlen_t		longest = 0;
1612 	int			needspace;
1613 	int			error;
1614 
1615 	if (!pag)
1616 		return false;
1617 	if (!xfs_perag_allows_inodes(pag))
1618 		return false;
1619 
1620 	if (!xfs_perag_initialised_agi(pag)) {
1621 		error = xfs_ialloc_read_agi(pag, tp, NULL);
1622 		if (error)
1623 			return false;
1624 	}
1625 
1626 	if (pag->pagi_freecount)
1627 		return true;
1628 	if (!ok_alloc)
1629 		return false;
1630 
1631 	if (!xfs_perag_initialised_agf(pag)) {
1632 		error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1633 		if (error)
1634 			return false;
1635 	}
1636 
1637 	/*
1638 	 * Check that there is enough free space for the file plus a chunk of
1639 	 * inodes if we need to allocate some. If this is the first pass across
1640 	 * the AGs, take into account the potential space needed for alignment
1641 	 * of inode chunks when checking the longest contiguous free space in
1642 	 * the AG - this prevents us from getting ENOSPC because we have free
1643 	 * space larger than ialloc_blks but alignment constraints prevent us
1644 	 * from using it.
1645 	 *
1646 	 * If we can't find an AG with space for full alignment slack to be
1647 	 * taken into account, we must be near ENOSPC in all AGs.  Hence we
1648 	 * don't include alignment for the second pass and so if we fail
1649 	 * allocation due to alignment issues then it is most likely a real
1650 	 * ENOSPC condition.
1651 	 *
1652 	 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1653 	 * reservations that xfs_alloc_fix_freelist() now does via
1654 	 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1655 	 * be more than large enough for the check below to succeed, but
1656 	 * xfs_alloc_space_available() will fail because of the non-zero
1657 	 * metadata reservation and hence we won't actually be able to allocate
1658 	 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1659 	 * because of this.
1660 	 */
1661 	ineed = M_IGEO(mp)->ialloc_min_blks;
1662 	if (flags && ineed > 1)
1663 		ineed += M_IGEO(mp)->cluster_align;
1664 	longest = pag->pagf_longest;
1665 	if (!longest)
1666 		longest = pag->pagf_flcount > 0;
1667 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1668 
1669 	if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1670 		return false;
1671 	return true;
1672 }
1673 
1674 static int
1675 xfs_dialloc_try_ag(
1676 	struct xfs_perag	*pag,
1677 	struct xfs_trans	**tpp,
1678 	xfs_ino_t		parent,
1679 	xfs_ino_t		*new_ino,
1680 	bool			ok_alloc)
1681 {
1682 	struct xfs_buf		*agbp;
1683 	xfs_ino_t		ino;
1684 	int			error;
1685 
1686 	/*
1687 	 * Then read in the AGI buffer and recheck with the AGI buffer
1688 	 * lock held.
1689 	 */
1690 	error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
1691 	if (error)
1692 		return error;
1693 
1694 	if (!pag->pagi_freecount) {
1695 		if (!ok_alloc) {
1696 			error = -EAGAIN;
1697 			goto out_release;
1698 		}
1699 
1700 		error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1701 		if (error < 0)
1702 			goto out_release;
1703 
1704 		/*
1705 		 * We successfully allocated space for an inode cluster in this
1706 		 * AG.  Roll the transaction so that we can allocate one of the
1707 		 * new inodes.
1708 		 */
1709 		ASSERT(pag->pagi_freecount > 0);
1710 		error = xfs_dialloc_roll(tpp, agbp);
1711 		if (error)
1712 			goto out_release;
1713 	}
1714 
1715 	/* Allocate an inode in the found AG */
1716 	error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1717 	if (!error)
1718 		*new_ino = ino;
1719 	return error;
1720 
1721 out_release:
1722 	xfs_trans_brelse(*tpp, agbp);
1723 	return error;
1724 }
1725 
1726 /*
1727  * Allocate an on-disk inode.
1728  *
1729  * Mode is used to tell whether the new inode is a directory and hence where to
1730  * locate it. The on-disk inode that is allocated will be returned in @new_ino
1731  * on success, otherwise an error will be set to indicate the failure (e.g.
1732  * -ENOSPC).
1733  */
1734 int
1735 xfs_dialloc(
1736 	struct xfs_trans	**tpp,
1737 	xfs_ino_t		parent,
1738 	umode_t			mode,
1739 	xfs_ino_t		*new_ino)
1740 {
1741 	struct xfs_mount	*mp = (*tpp)->t_mountp;
1742 	xfs_agnumber_t		agno;
1743 	int			error = 0;
1744 	xfs_agnumber_t		start_agno;
1745 	struct xfs_perag	*pag;
1746 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1747 	bool			ok_alloc = true;
1748 	bool			low_space = false;
1749 	int			flags;
1750 	xfs_ino_t		ino = NULLFSINO;
1751 
1752 	/*
1753 	 * Directories, symlinks, and regular files frequently allocate at least
1754 	 * one block, so factor that potential expansion when we examine whether
1755 	 * an AG has enough space for file creation.
1756 	 */
1757 	if (S_ISDIR(mode))
1758 		start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1759 				mp->m_maxagi;
1760 	else {
1761 		start_agno = XFS_INO_TO_AGNO(mp, parent);
1762 		if (start_agno >= mp->m_maxagi)
1763 			start_agno = 0;
1764 	}
1765 
1766 	/*
1767 	 * If we have already hit the ceiling of inode blocks then clear
1768 	 * ok_alloc so we scan all available agi structures for a free
1769 	 * inode.
1770 	 *
1771 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1772 	 * which will sacrifice the preciseness but improve the performance.
1773 	 */
1774 	if (igeo->maxicount &&
1775 	    percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1776 							> igeo->maxicount) {
1777 		ok_alloc = false;
1778 	}
1779 
1780 	/*
1781 	 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1782 	 * have free inodes in them rather than use up free space allocating new
1783 	 * inode chunks. Hence we turn off allocation for the first non-blocking
1784 	 * pass through the AGs if we are near ENOSPC to consume free inodes
1785 	 * that we can immediately allocate, but then we allow allocation on the
1786 	 * second pass if we fail to find an AG with free inodes in it.
1787 	 */
1788 	if (percpu_counter_read_positive(&mp->m_fdblocks) <
1789 			mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1790 		ok_alloc = false;
1791 		low_space = true;
1792 	}
1793 
1794 	/*
1795 	 * Loop until we find an allocation group that either has free inodes
1796 	 * or in which we can allocate some inodes.  Iterate through the
1797 	 * allocation groups upward, wrapping at the end.
1798 	 */
1799 	flags = XFS_ALLOC_FLAG_TRYLOCK;
1800 retry:
1801 	for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1802 		if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1803 			error = xfs_dialloc_try_ag(pag, tpp, parent,
1804 					&ino, ok_alloc);
1805 			if (error != -EAGAIN)
1806 				break;
1807 			error = 0;
1808 		}
1809 
1810 		if (xfs_is_shutdown(mp)) {
1811 			error = -EFSCORRUPTED;
1812 			break;
1813 		}
1814 	}
1815 	if (pag)
1816 		xfs_perag_rele(pag);
1817 	if (error)
1818 		return error;
1819 	if (ino == NULLFSINO) {
1820 		if (flags) {
1821 			flags = 0;
1822 			if (low_space)
1823 				ok_alloc = true;
1824 			goto retry;
1825 		}
1826 		return -ENOSPC;
1827 	}
1828 	*new_ino = ino;
1829 	return 0;
1830 }
1831 
1832 /*
1833  * Free the blocks of an inode chunk. We must consider that the inode chunk
1834  * might be sparse and only free the regions that are allocated as part of the
1835  * chunk.
1836  */
1837 STATIC void
1838 xfs_difree_inode_chunk(
1839 	struct xfs_trans		*tp,
1840 	xfs_agnumber_t			agno,
1841 	struct xfs_inobt_rec_incore	*rec)
1842 {
1843 	struct xfs_mount		*mp = tp->t_mountp;
1844 	xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp,
1845 							rec->ir_startino);
1846 	int				startidx, endidx;
1847 	int				nextbit;
1848 	xfs_agblock_t			agbno;
1849 	int				contigblk;
1850 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1851 
1852 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1853 		/* not sparse, calculate extent info directly */
1854 		xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1855 				  M_IGEO(mp)->ialloc_blks,
1856 				  &XFS_RMAP_OINFO_INODES);
1857 		return;
1858 	}
1859 
1860 	/* holemask is only 16-bits (fits in an unsigned long) */
1861 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1862 	holemask[0] = rec->ir_holemask;
1863 
1864 	/*
1865 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1866 	 * holemask and convert the start/end index of each range to an extent.
1867 	 * We start with the start and end index both pointing at the first 0 in
1868 	 * the mask.
1869 	 */
1870 	startidx = endidx = find_first_zero_bit(holemask,
1871 						XFS_INOBT_HOLEMASK_BITS);
1872 	nextbit = startidx + 1;
1873 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1874 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1875 					     nextbit);
1876 		/*
1877 		 * If the next zero bit is contiguous, update the end index of
1878 		 * the current range and continue.
1879 		 */
1880 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1881 		    nextbit == endidx + 1) {
1882 			endidx = nextbit;
1883 			goto next;
1884 		}
1885 
1886 		/*
1887 		 * nextbit is not contiguous with the current end index. Convert
1888 		 * the current start/end to an extent and add it to the free
1889 		 * list.
1890 		 */
1891 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1892 				  mp->m_sb.sb_inopblock;
1893 		contigblk = ((endidx - startidx + 1) *
1894 			     XFS_INODES_PER_HOLEMASK_BIT) /
1895 			    mp->m_sb.sb_inopblock;
1896 
1897 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1898 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1899 		xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1900 				  contigblk, &XFS_RMAP_OINFO_INODES);
1901 
1902 		/* reset range to current bit and carry on... */
1903 		startidx = endidx = nextbit;
1904 
1905 next:
1906 		nextbit++;
1907 	}
1908 }
1909 
1910 STATIC int
1911 xfs_difree_inobt(
1912 	struct xfs_perag		*pag,
1913 	struct xfs_trans		*tp,
1914 	struct xfs_buf			*agbp,
1915 	xfs_agino_t			agino,
1916 	struct xfs_icluster		*xic,
1917 	struct xfs_inobt_rec_incore	*orec)
1918 {
1919 	struct xfs_mount		*mp = pag->pag_mount;
1920 	struct xfs_agi			*agi = agbp->b_addr;
1921 	struct xfs_btree_cur		*cur;
1922 	struct xfs_inobt_rec_incore	rec;
1923 	int				ilen;
1924 	int				error;
1925 	int				i;
1926 	int				off;
1927 
1928 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1929 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1930 
1931 	/*
1932 	 * Initialize the cursor.
1933 	 */
1934 	cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1935 
1936 	error = xfs_check_agi_freecount(cur);
1937 	if (error)
1938 		goto error0;
1939 
1940 	/*
1941 	 * Look for the entry describing this inode.
1942 	 */
1943 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1944 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1945 			__func__, error);
1946 		goto error0;
1947 	}
1948 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1949 		error = -EFSCORRUPTED;
1950 		goto error0;
1951 	}
1952 	error = xfs_inobt_get_rec(cur, &rec, &i);
1953 	if (error) {
1954 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1955 			__func__, error);
1956 		goto error0;
1957 	}
1958 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1959 		error = -EFSCORRUPTED;
1960 		goto error0;
1961 	}
1962 	/*
1963 	 * Get the offset in the inode chunk.
1964 	 */
1965 	off = agino - rec.ir_startino;
1966 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1967 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1968 	/*
1969 	 * Mark the inode free & increment the count.
1970 	 */
1971 	rec.ir_free |= XFS_INOBT_MASK(off);
1972 	rec.ir_freecount++;
1973 
1974 	/*
1975 	 * When an inode chunk is free, it becomes eligible for removal. Don't
1976 	 * remove the chunk if the block size is large enough for multiple inode
1977 	 * chunks (that might not be free).
1978 	 */
1979 	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
1980 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1981 		struct xfs_perag	*pag = agbp->b_pag;
1982 
1983 		xic->deleted = true;
1984 		xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1985 				rec.ir_startino);
1986 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1987 
1988 		/*
1989 		 * Remove the inode cluster from the AGI B+Tree, adjust the
1990 		 * AGI and Superblock inode counts, and mark the disk space
1991 		 * to be freed when the transaction is committed.
1992 		 */
1993 		ilen = rec.ir_freecount;
1994 		be32_add_cpu(&agi->agi_count, -ilen);
1995 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1996 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1997 		pag->pagi_freecount -= ilen - 1;
1998 		pag->pagi_count -= ilen;
1999 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2000 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2001 
2002 		if ((error = xfs_btree_delete(cur, &i))) {
2003 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2004 				__func__, error);
2005 			goto error0;
2006 		}
2007 
2008 		xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
2009 	} else {
2010 		xic->deleted = false;
2011 
2012 		error = xfs_inobt_update(cur, &rec);
2013 		if (error) {
2014 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2015 				__func__, error);
2016 			goto error0;
2017 		}
2018 
2019 		/*
2020 		 * Change the inode free counts and log the ag/sb changes.
2021 		 */
2022 		be32_add_cpu(&agi->agi_freecount, 1);
2023 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2024 		pag->pagi_freecount++;
2025 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2026 	}
2027 
2028 	error = xfs_check_agi_freecount(cur);
2029 	if (error)
2030 		goto error0;
2031 
2032 	*orec = rec;
2033 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2034 	return 0;
2035 
2036 error0:
2037 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2038 	return error;
2039 }
2040 
2041 /*
2042  * Free an inode in the free inode btree.
2043  */
2044 STATIC int
2045 xfs_difree_finobt(
2046 	struct xfs_perag		*pag,
2047 	struct xfs_trans		*tp,
2048 	struct xfs_buf			*agbp,
2049 	xfs_agino_t			agino,
2050 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2051 {
2052 	struct xfs_mount		*mp = pag->pag_mount;
2053 	struct xfs_btree_cur		*cur;
2054 	struct xfs_inobt_rec_incore	rec;
2055 	int				offset = agino - ibtrec->ir_startino;
2056 	int				error;
2057 	int				i;
2058 
2059 	cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
2060 
2061 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2062 	if (error)
2063 		goto error;
2064 	if (i == 0) {
2065 		/*
2066 		 * If the record does not exist in the finobt, we must have just
2067 		 * freed an inode in a previously fully allocated chunk. If not,
2068 		 * something is out of sync.
2069 		 */
2070 		if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2071 			error = -EFSCORRUPTED;
2072 			goto error;
2073 		}
2074 
2075 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2076 					     ibtrec->ir_count,
2077 					     ibtrec->ir_freecount,
2078 					     ibtrec->ir_free, &i);
2079 		if (error)
2080 			goto error;
2081 		ASSERT(i == 1);
2082 
2083 		goto out;
2084 	}
2085 
2086 	/*
2087 	 * Read and update the existing record. We could just copy the ibtrec
2088 	 * across here, but that would defeat the purpose of having redundant
2089 	 * metadata. By making the modifications independently, we can catch
2090 	 * corruptions that we wouldn't see if we just copied from one record
2091 	 * to another.
2092 	 */
2093 	error = xfs_inobt_get_rec(cur, &rec, &i);
2094 	if (error)
2095 		goto error;
2096 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2097 		error = -EFSCORRUPTED;
2098 		goto error;
2099 	}
2100 
2101 	rec.ir_free |= XFS_INOBT_MASK(offset);
2102 	rec.ir_freecount++;
2103 
2104 	if (XFS_IS_CORRUPT(mp,
2105 			   rec.ir_free != ibtrec->ir_free ||
2106 			   rec.ir_freecount != ibtrec->ir_freecount)) {
2107 		error = -EFSCORRUPTED;
2108 		goto error;
2109 	}
2110 
2111 	/*
2112 	 * The content of inobt records should always match between the inobt
2113 	 * and finobt. The lifecycle of records in the finobt is different from
2114 	 * the inobt in that the finobt only tracks records with at least one
2115 	 * free inode. Hence, if all of the inodes are free and we aren't
2116 	 * keeping inode chunks permanently on disk, remove the record.
2117 	 * Otherwise, update the record with the new information.
2118 	 *
2119 	 * Note that we currently can't free chunks when the block size is large
2120 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2121 	 * with the inobt.
2122 	 */
2123 	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2124 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2125 		error = xfs_btree_delete(cur, &i);
2126 		if (error)
2127 			goto error;
2128 		ASSERT(i == 1);
2129 	} else {
2130 		error = xfs_inobt_update(cur, &rec);
2131 		if (error)
2132 			goto error;
2133 	}
2134 
2135 out:
2136 	error = xfs_check_agi_freecount(cur);
2137 	if (error)
2138 		goto error;
2139 
2140 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2141 	return 0;
2142 
2143 error:
2144 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2145 	return error;
2146 }
2147 
2148 /*
2149  * Free disk inode.  Carefully avoids touching the incore inode, all
2150  * manipulations incore are the caller's responsibility.
2151  * The on-disk inode is not changed by this operation, only the
2152  * btree (free inode mask) is changed.
2153  */
2154 int
2155 xfs_difree(
2156 	struct xfs_trans	*tp,
2157 	struct xfs_perag	*pag,
2158 	xfs_ino_t		inode,
2159 	struct xfs_icluster	*xic)
2160 {
2161 	/* REFERENCED */
2162 	xfs_agblock_t		agbno;	/* block number containing inode */
2163 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2164 	xfs_agino_t		agino;	/* allocation group inode number */
2165 	int			error;	/* error return value */
2166 	struct xfs_mount	*mp = tp->t_mountp;
2167 	struct xfs_inobt_rec_incore rec;/* btree record */
2168 
2169 	/*
2170 	 * Break up inode number into its components.
2171 	 */
2172 	if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2173 		xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2174 			__func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2175 		ASSERT(0);
2176 		return -EINVAL;
2177 	}
2178 	agino = XFS_INO_TO_AGINO(mp, inode);
2179 	if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino))  {
2180 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2181 			__func__, (unsigned long long)inode,
2182 			(unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2183 		ASSERT(0);
2184 		return -EINVAL;
2185 	}
2186 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2187 	if (agbno >= mp->m_sb.sb_agblocks)  {
2188 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2189 			__func__, agbno, mp->m_sb.sb_agblocks);
2190 		ASSERT(0);
2191 		return -EINVAL;
2192 	}
2193 	/*
2194 	 * Get the allocation group header.
2195 	 */
2196 	error = xfs_ialloc_read_agi(pag, tp, &agbp);
2197 	if (error) {
2198 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2199 			__func__, error);
2200 		return error;
2201 	}
2202 
2203 	/*
2204 	 * Fix up the inode allocation btree.
2205 	 */
2206 	error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2207 	if (error)
2208 		goto error0;
2209 
2210 	/*
2211 	 * Fix up the free inode btree.
2212 	 */
2213 	if (xfs_has_finobt(mp)) {
2214 		error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2215 		if (error)
2216 			goto error0;
2217 	}
2218 
2219 	return 0;
2220 
2221 error0:
2222 	return error;
2223 }
2224 
2225 STATIC int
2226 xfs_imap_lookup(
2227 	struct xfs_perag	*pag,
2228 	struct xfs_trans	*tp,
2229 	xfs_agino_t		agino,
2230 	xfs_agblock_t		agbno,
2231 	xfs_agblock_t		*chunk_agbno,
2232 	xfs_agblock_t		*offset_agbno,
2233 	int			flags)
2234 {
2235 	struct xfs_mount	*mp = pag->pag_mount;
2236 	struct xfs_inobt_rec_incore rec;
2237 	struct xfs_btree_cur	*cur;
2238 	struct xfs_buf		*agbp;
2239 	int			error;
2240 	int			i;
2241 
2242 	error = xfs_ialloc_read_agi(pag, tp, &agbp);
2243 	if (error) {
2244 		xfs_alert(mp,
2245 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2246 			__func__, error, pag->pag_agno);
2247 		return error;
2248 	}
2249 
2250 	/*
2251 	 * Lookup the inode record for the given agino. If the record cannot be
2252 	 * found, then it's an invalid inode number and we should abort. Once
2253 	 * we have a record, we need to ensure it contains the inode number
2254 	 * we are looking up.
2255 	 */
2256 	cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
2257 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2258 	if (!error) {
2259 		if (i)
2260 			error = xfs_inobt_get_rec(cur, &rec, &i);
2261 		if (!error && i == 0)
2262 			error = -EINVAL;
2263 	}
2264 
2265 	xfs_trans_brelse(tp, agbp);
2266 	xfs_btree_del_cursor(cur, error);
2267 	if (error)
2268 		return error;
2269 
2270 	/* check that the returned record contains the required inode */
2271 	if (rec.ir_startino > agino ||
2272 	    rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2273 		return -EINVAL;
2274 
2275 	/* for untrusted inodes check it is allocated first */
2276 	if ((flags & XFS_IGET_UNTRUSTED) &&
2277 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2278 		return -EINVAL;
2279 
2280 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2281 	*offset_agbno = agbno - *chunk_agbno;
2282 	return 0;
2283 }
2284 
2285 /*
2286  * Return the location of the inode in imap, for mapping it into a buffer.
2287  */
2288 int
2289 xfs_imap(
2290 	struct xfs_perag	*pag,
2291 	struct xfs_trans	*tp,
2292 	xfs_ino_t		ino,	/* inode to locate */
2293 	struct xfs_imap		*imap,	/* location map structure */
2294 	uint			flags)	/* flags for inode btree lookup */
2295 {
2296 	struct xfs_mount	*mp = pag->pag_mount;
2297 	xfs_agblock_t		agbno;	/* block number of inode in the alloc group */
2298 	xfs_agino_t		agino;	/* inode number within alloc group */
2299 	xfs_agblock_t		chunk_agbno;	/* first block in inode chunk */
2300 	xfs_agblock_t		cluster_agbno;	/* first block in inode cluster */
2301 	int			error;	/* error code */
2302 	int			offset;	/* index of inode in its buffer */
2303 	xfs_agblock_t		offset_agbno;	/* blks from chunk start to inode */
2304 
2305 	ASSERT(ino != NULLFSINO);
2306 
2307 	/*
2308 	 * Split up the inode number into its parts.
2309 	 */
2310 	agino = XFS_INO_TO_AGINO(mp, ino);
2311 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2312 	if (agbno >= mp->m_sb.sb_agblocks ||
2313 	    ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2314 		error = -EINVAL;
2315 #ifdef DEBUG
2316 		/*
2317 		 * Don't output diagnostic information for untrusted inodes
2318 		 * as they can be invalid without implying corruption.
2319 		 */
2320 		if (flags & XFS_IGET_UNTRUSTED)
2321 			return error;
2322 		if (agbno >= mp->m_sb.sb_agblocks) {
2323 			xfs_alert(mp,
2324 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2325 				__func__, (unsigned long long)agbno,
2326 				(unsigned long)mp->m_sb.sb_agblocks);
2327 		}
2328 		if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2329 			xfs_alert(mp,
2330 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2331 				__func__, ino,
2332 				XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2333 		}
2334 		xfs_stack_trace();
2335 #endif /* DEBUG */
2336 		return error;
2337 	}
2338 
2339 	/*
2340 	 * For bulkstat and handle lookups, we have an untrusted inode number
2341 	 * that we have to verify is valid. We cannot do this just by reading
2342 	 * the inode buffer as it may have been unlinked and removed leaving
2343 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2344 	 * in all cases where an untrusted inode number is passed.
2345 	 */
2346 	if (flags & XFS_IGET_UNTRUSTED) {
2347 		error = xfs_imap_lookup(pag, tp, agino, agbno,
2348 					&chunk_agbno, &offset_agbno, flags);
2349 		if (error)
2350 			return error;
2351 		goto out_map;
2352 	}
2353 
2354 	/*
2355 	 * If the inode cluster size is the same as the blocksize or
2356 	 * smaller we get to the buffer by simple arithmetics.
2357 	 */
2358 	if (M_IGEO(mp)->blocks_per_cluster == 1) {
2359 		offset = XFS_INO_TO_OFFSET(mp, ino);
2360 		ASSERT(offset < mp->m_sb.sb_inopblock);
2361 
2362 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2363 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2364 		imap->im_boffset = (unsigned short)(offset <<
2365 							mp->m_sb.sb_inodelog);
2366 		return 0;
2367 	}
2368 
2369 	/*
2370 	 * If the inode chunks are aligned then use simple maths to
2371 	 * find the location. Otherwise we have to do a btree
2372 	 * lookup to find the location.
2373 	 */
2374 	if (M_IGEO(mp)->inoalign_mask) {
2375 		offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2376 		chunk_agbno = agbno - offset_agbno;
2377 	} else {
2378 		error = xfs_imap_lookup(pag, tp, agino, agbno,
2379 					&chunk_agbno, &offset_agbno, flags);
2380 		if (error)
2381 			return error;
2382 	}
2383 
2384 out_map:
2385 	ASSERT(agbno >= chunk_agbno);
2386 	cluster_agbno = chunk_agbno +
2387 		((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2388 		 M_IGEO(mp)->blocks_per_cluster);
2389 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2390 		XFS_INO_TO_OFFSET(mp, ino);
2391 
2392 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2393 	imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2394 	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2395 
2396 	/*
2397 	 * If the inode number maps to a block outside the bounds
2398 	 * of the file system then return NULL rather than calling
2399 	 * read_buf and panicing when we get an error from the
2400 	 * driver.
2401 	 */
2402 	if ((imap->im_blkno + imap->im_len) >
2403 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2404 		xfs_alert(mp,
2405 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2406 			__func__, (unsigned long long) imap->im_blkno,
2407 			(unsigned long long) imap->im_len,
2408 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2409 		return -EINVAL;
2410 	}
2411 	return 0;
2412 }
2413 
2414 /*
2415  * Log specified fields for the ag hdr (inode section). The growth of the agi
2416  * structure over time requires that we interpret the buffer as two logical
2417  * regions delineated by the end of the unlinked list. This is due to the size
2418  * of the hash table and its location in the middle of the agi.
2419  *
2420  * For example, a request to log a field before agi_unlinked and a field after
2421  * agi_unlinked could cause us to log the entire hash table and use an excessive
2422  * amount of log space. To avoid this behavior, log the region up through
2423  * agi_unlinked in one call and the region after agi_unlinked through the end of
2424  * the structure in another.
2425  */
2426 void
2427 xfs_ialloc_log_agi(
2428 	struct xfs_trans	*tp,
2429 	struct xfs_buf		*bp,
2430 	uint32_t		fields)
2431 {
2432 	int			first;		/* first byte number */
2433 	int			last;		/* last byte number */
2434 	static const short	offsets[] = {	/* field starting offsets */
2435 					/* keep in sync with bit definitions */
2436 		offsetof(xfs_agi_t, agi_magicnum),
2437 		offsetof(xfs_agi_t, agi_versionnum),
2438 		offsetof(xfs_agi_t, agi_seqno),
2439 		offsetof(xfs_agi_t, agi_length),
2440 		offsetof(xfs_agi_t, agi_count),
2441 		offsetof(xfs_agi_t, agi_root),
2442 		offsetof(xfs_agi_t, agi_level),
2443 		offsetof(xfs_agi_t, agi_freecount),
2444 		offsetof(xfs_agi_t, agi_newino),
2445 		offsetof(xfs_agi_t, agi_dirino),
2446 		offsetof(xfs_agi_t, agi_unlinked),
2447 		offsetof(xfs_agi_t, agi_free_root),
2448 		offsetof(xfs_agi_t, agi_free_level),
2449 		offsetof(xfs_agi_t, agi_iblocks),
2450 		sizeof(xfs_agi_t)
2451 	};
2452 #ifdef DEBUG
2453 	struct xfs_agi		*agi = bp->b_addr;
2454 
2455 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2456 #endif
2457 
2458 	/*
2459 	 * Compute byte offsets for the first and last fields in the first
2460 	 * region and log the agi buffer. This only logs up through
2461 	 * agi_unlinked.
2462 	 */
2463 	if (fields & XFS_AGI_ALL_BITS_R1) {
2464 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2465 				  &first, &last);
2466 		xfs_trans_log_buf(tp, bp, first, last);
2467 	}
2468 
2469 	/*
2470 	 * Mask off the bits in the first region and calculate the first and
2471 	 * last field offsets for any bits in the second region.
2472 	 */
2473 	fields &= ~XFS_AGI_ALL_BITS_R1;
2474 	if (fields) {
2475 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2476 				  &first, &last);
2477 		xfs_trans_log_buf(tp, bp, first, last);
2478 	}
2479 }
2480 
2481 static xfs_failaddr_t
2482 xfs_agi_verify(
2483 	struct xfs_buf	*bp)
2484 {
2485 	struct xfs_mount *mp = bp->b_mount;
2486 	struct xfs_agi	*agi = bp->b_addr;
2487 	int		i;
2488 
2489 	if (xfs_has_crc(mp)) {
2490 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2491 			return __this_address;
2492 		if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2493 			return __this_address;
2494 	}
2495 
2496 	/*
2497 	 * Validate the magic number of the agi block.
2498 	 */
2499 	if (!xfs_verify_magic(bp, agi->agi_magicnum))
2500 		return __this_address;
2501 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2502 		return __this_address;
2503 
2504 	if (be32_to_cpu(agi->agi_level) < 1 ||
2505 	    be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2506 		return __this_address;
2507 
2508 	if (xfs_has_finobt(mp) &&
2509 	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2510 	     be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2511 		return __this_address;
2512 
2513 	/*
2514 	 * during growfs operations, the perag is not fully initialised,
2515 	 * so we can't use it for any useful checking. growfs ensures we can't
2516 	 * use it by using uncached buffers that don't have the perag attached
2517 	 * so we can detect and avoid this problem.
2518 	 */
2519 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2520 		return __this_address;
2521 
2522 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2523 		if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2524 			continue;
2525 		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2526 			return __this_address;
2527 	}
2528 
2529 	return NULL;
2530 }
2531 
2532 static void
2533 xfs_agi_read_verify(
2534 	struct xfs_buf	*bp)
2535 {
2536 	struct xfs_mount *mp = bp->b_mount;
2537 	xfs_failaddr_t	fa;
2538 
2539 	if (xfs_has_crc(mp) &&
2540 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2541 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2542 	else {
2543 		fa = xfs_agi_verify(bp);
2544 		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2545 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2546 	}
2547 }
2548 
2549 static void
2550 xfs_agi_write_verify(
2551 	struct xfs_buf	*bp)
2552 {
2553 	struct xfs_mount	*mp = bp->b_mount;
2554 	struct xfs_buf_log_item	*bip = bp->b_log_item;
2555 	struct xfs_agi		*agi = bp->b_addr;
2556 	xfs_failaddr_t		fa;
2557 
2558 	fa = xfs_agi_verify(bp);
2559 	if (fa) {
2560 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2561 		return;
2562 	}
2563 
2564 	if (!xfs_has_crc(mp))
2565 		return;
2566 
2567 	if (bip)
2568 		agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2569 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2570 }
2571 
2572 const struct xfs_buf_ops xfs_agi_buf_ops = {
2573 	.name = "xfs_agi",
2574 	.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2575 	.verify_read = xfs_agi_read_verify,
2576 	.verify_write = xfs_agi_write_verify,
2577 	.verify_struct = xfs_agi_verify,
2578 };
2579 
2580 /*
2581  * Read in the allocation group header (inode allocation section)
2582  */
2583 int
2584 xfs_read_agi(
2585 	struct xfs_perag	*pag,
2586 	struct xfs_trans	*tp,
2587 	struct xfs_buf		**agibpp)
2588 {
2589 	struct xfs_mount	*mp = pag->pag_mount;
2590 	int			error;
2591 
2592 	trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2593 
2594 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2595 			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2596 			XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
2597 	if (error)
2598 		return error;
2599 	if (tp)
2600 		xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2601 
2602 	xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2603 	return 0;
2604 }
2605 
2606 /*
2607  * Read in the agi and initialise the per-ag data. If the caller supplies a
2608  * @agibpp, return the locked AGI buffer to them, otherwise release it.
2609  */
2610 int
2611 xfs_ialloc_read_agi(
2612 	struct xfs_perag	*pag,
2613 	struct xfs_trans	*tp,
2614 	struct xfs_buf		**agibpp)
2615 {
2616 	struct xfs_buf		*agibp;
2617 	struct xfs_agi		*agi;
2618 	int			error;
2619 
2620 	trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2621 
2622 	error = xfs_read_agi(pag, tp, &agibp);
2623 	if (error)
2624 		return error;
2625 
2626 	agi = agibp->b_addr;
2627 	if (!xfs_perag_initialised_agi(pag)) {
2628 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2629 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2630 		set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2631 	}
2632 
2633 	/*
2634 	 * It's possible for these to be out of sync if
2635 	 * we are in the middle of a forced shutdown.
2636 	 */
2637 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2638 		xfs_is_shutdown(pag->pag_mount));
2639 	if (agibpp)
2640 		*agibpp = agibp;
2641 	else
2642 		xfs_trans_brelse(tp, agibp);
2643 	return 0;
2644 }
2645 
2646 /* Is there an inode record covering a given range of inode numbers? */
2647 int
2648 xfs_ialloc_has_inode_record(
2649 	struct xfs_btree_cur	*cur,
2650 	xfs_agino_t		low,
2651 	xfs_agino_t		high,
2652 	bool			*exists)
2653 {
2654 	struct xfs_inobt_rec_incore	irec;
2655 	xfs_agino_t		agino;
2656 	uint16_t		holemask;
2657 	int			has_record;
2658 	int			i;
2659 	int			error;
2660 
2661 	*exists = false;
2662 	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2663 	while (error == 0 && has_record) {
2664 		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2665 		if (error || irec.ir_startino > high)
2666 			break;
2667 
2668 		agino = irec.ir_startino;
2669 		holemask = irec.ir_holemask;
2670 		for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2671 				i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2672 			if (holemask & 1)
2673 				continue;
2674 			if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2675 					agino <= high) {
2676 				*exists = true;
2677 				return 0;
2678 			}
2679 		}
2680 
2681 		error = xfs_btree_increment(cur, 0, &has_record);
2682 	}
2683 	return error;
2684 }
2685 
2686 /* Is there an inode record covering a given extent? */
2687 int
2688 xfs_ialloc_has_inodes_at_extent(
2689 	struct xfs_btree_cur	*cur,
2690 	xfs_agblock_t		bno,
2691 	xfs_extlen_t		len,
2692 	bool			*exists)
2693 {
2694 	xfs_agino_t		low;
2695 	xfs_agino_t		high;
2696 
2697 	low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2698 	high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2699 
2700 	return xfs_ialloc_has_inode_record(cur, low, high, exists);
2701 }
2702 
2703 struct xfs_ialloc_count_inodes {
2704 	xfs_agino_t			count;
2705 	xfs_agino_t			freecount;
2706 };
2707 
2708 /* Record inode counts across all inobt records. */
2709 STATIC int
2710 xfs_ialloc_count_inodes_rec(
2711 	struct xfs_btree_cur		*cur,
2712 	const union xfs_btree_rec	*rec,
2713 	void				*priv)
2714 {
2715 	struct xfs_inobt_rec_incore	irec;
2716 	struct xfs_ialloc_count_inodes	*ci = priv;
2717 	xfs_failaddr_t			fa;
2718 
2719 	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2720 	fa = xfs_inobt_check_irec(cur, &irec);
2721 	if (fa)
2722 		return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2723 
2724 	ci->count += irec.ir_count;
2725 	ci->freecount += irec.ir_freecount;
2726 
2727 	return 0;
2728 }
2729 
2730 /* Count allocated and free inodes under an inobt. */
2731 int
2732 xfs_ialloc_count_inodes(
2733 	struct xfs_btree_cur		*cur,
2734 	xfs_agino_t			*count,
2735 	xfs_agino_t			*freecount)
2736 {
2737 	struct xfs_ialloc_count_inodes	ci = {0};
2738 	int				error;
2739 
2740 	ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2741 	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2742 	if (error)
2743 		return error;
2744 
2745 	*count = ci.count;
2746 	*freecount = ci.freecount;
2747 	return 0;
2748 }
2749 
2750 /*
2751  * Initialize inode-related geometry information.
2752  *
2753  * Compute the inode btree min and max levels and set maxicount.
2754  *
2755  * Set the inode cluster size.  This may still be overridden by the file
2756  * system block size if it is larger than the chosen cluster size.
2757  *
2758  * For v5 filesystems, scale the cluster size with the inode size to keep a
2759  * constant ratio of inode per cluster buffer, but only if mkfs has set the
2760  * inode alignment value appropriately for larger cluster sizes.
2761  *
2762  * Then compute the inode cluster alignment information.
2763  */
2764 void
2765 xfs_ialloc_setup_geometry(
2766 	struct xfs_mount	*mp)
2767 {
2768 	struct xfs_sb		*sbp = &mp->m_sb;
2769 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2770 	uint64_t		icount;
2771 	uint			inodes;
2772 
2773 	igeo->new_diflags2 = 0;
2774 	if (xfs_has_bigtime(mp))
2775 		igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2776 	if (xfs_has_large_extent_counts(mp))
2777 		igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2778 
2779 	/* Compute inode btree geometry. */
2780 	igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2781 	igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2782 	igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2783 	igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2784 	igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2785 
2786 	igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2787 			sbp->sb_inopblock);
2788 	igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2789 
2790 	if (sbp->sb_spino_align)
2791 		igeo->ialloc_min_blks = sbp->sb_spino_align;
2792 	else
2793 		igeo->ialloc_min_blks = igeo->ialloc_blks;
2794 
2795 	/* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2796 	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2797 	igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2798 			inodes);
2799 	ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2800 
2801 	/*
2802 	 * Set the maximum inode count for this filesystem, being careful not
2803 	 * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2804 	 * users should never get here due to failing sb verification, but
2805 	 * certain users (xfs_db) need to be usable even with corrupt metadata.
2806 	 */
2807 	if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2808 		/*
2809 		 * Make sure the maximum inode count is a multiple
2810 		 * of the units we allocate inodes in.
2811 		 */
2812 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2813 		do_div(icount, 100);
2814 		do_div(icount, igeo->ialloc_blks);
2815 		igeo->maxicount = XFS_FSB_TO_INO(mp,
2816 				icount * igeo->ialloc_blks);
2817 	} else {
2818 		igeo->maxicount = 0;
2819 	}
2820 
2821 	/*
2822 	 * Compute the desired size of an inode cluster buffer size, which
2823 	 * starts at 8K and (on v5 filesystems) scales up with larger inode
2824 	 * sizes.
2825 	 *
2826 	 * Preserve the desired inode cluster size because the sparse inodes
2827 	 * feature uses that desired size (not the actual size) to compute the
2828 	 * sparse inode alignment.  The mount code validates this value, so we
2829 	 * cannot change the behavior.
2830 	 */
2831 	igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2832 	if (xfs_has_v3inodes(mp)) {
2833 		int	new_size = igeo->inode_cluster_size_raw;
2834 
2835 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2836 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2837 			igeo->inode_cluster_size_raw = new_size;
2838 	}
2839 
2840 	/* Calculate inode cluster ratios. */
2841 	if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2842 		igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2843 				igeo->inode_cluster_size_raw);
2844 	else
2845 		igeo->blocks_per_cluster = 1;
2846 	igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2847 	igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2848 
2849 	/* Calculate inode cluster alignment. */
2850 	if (xfs_has_align(mp) &&
2851 	    mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2852 		igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2853 	else
2854 		igeo->cluster_align = 1;
2855 	igeo->inoalign_mask = igeo->cluster_align - 1;
2856 	igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2857 
2858 	/*
2859 	 * If we are using stripe alignment, check whether
2860 	 * the stripe unit is a multiple of the inode alignment
2861 	 */
2862 	if (mp->m_dalign && igeo->inoalign_mask &&
2863 	    !(mp->m_dalign & igeo->inoalign_mask))
2864 		igeo->ialloc_align = mp->m_dalign;
2865 	else
2866 		igeo->ialloc_align = 0;
2867 }
2868 
2869 /* Compute the location of the root directory inode that is laid out by mkfs. */
2870 xfs_ino_t
2871 xfs_ialloc_calc_rootino(
2872 	struct xfs_mount	*mp,
2873 	int			sunit)
2874 {
2875 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2876 	xfs_agblock_t		first_bno;
2877 
2878 	/*
2879 	 * Pre-calculate the geometry of AG 0.  We know what it looks like
2880 	 * because libxfs knows how to create allocation groups now.
2881 	 *
2882 	 * first_bno is the first block in which mkfs could possibly have
2883 	 * allocated the root directory inode, once we factor in the metadata
2884 	 * that mkfs formats before it.  Namely, the four AG headers...
2885 	 */
2886 	first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2887 
2888 	/* ...the two free space btree roots... */
2889 	first_bno += 2;
2890 
2891 	/* ...the inode btree root... */
2892 	first_bno += 1;
2893 
2894 	/* ...the initial AGFL... */
2895 	first_bno += xfs_alloc_min_freelist(mp, NULL);
2896 
2897 	/* ...the free inode btree root... */
2898 	if (xfs_has_finobt(mp))
2899 		first_bno++;
2900 
2901 	/* ...the reverse mapping btree root... */
2902 	if (xfs_has_rmapbt(mp))
2903 		first_bno++;
2904 
2905 	/* ...the reference count btree... */
2906 	if (xfs_has_reflink(mp))
2907 		first_bno++;
2908 
2909 	/*
2910 	 * ...and the log, if it is allocated in the first allocation group.
2911 	 *
2912 	 * This can happen with filesystems that only have a single
2913 	 * allocation group, or very odd geometries created by old mkfs
2914 	 * versions on very small filesystems.
2915 	 */
2916 	if (xfs_ag_contains_log(mp, 0))
2917 		 first_bno += mp->m_sb.sb_logblocks;
2918 
2919 	/*
2920 	 * Now round first_bno up to whatever allocation alignment is given
2921 	 * by the filesystem or was passed in.
2922 	 */
2923 	if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
2924 		first_bno = roundup(first_bno, sunit);
2925 	else if (xfs_has_align(mp) &&
2926 			mp->m_sb.sb_inoalignmt > 1)
2927 		first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2928 
2929 	return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2930 }
2931 
2932 /*
2933  * Ensure there are not sparse inode clusters that cross the new EOAG.
2934  *
2935  * This is a no-op for non-spinode filesystems since clusters are always fully
2936  * allocated and checking the bnobt suffices.  However, a spinode filesystem
2937  * could have a record where the upper inodes are free blocks.  If those blocks
2938  * were removed from the filesystem, the inode record would extend beyond EOAG,
2939  * which will be flagged as corruption.
2940  */
2941 int
2942 xfs_ialloc_check_shrink(
2943 	struct xfs_perag	*pag,
2944 	struct xfs_trans	*tp,
2945 	struct xfs_buf		*agibp,
2946 	xfs_agblock_t		new_length)
2947 {
2948 	struct xfs_inobt_rec_incore rec;
2949 	struct xfs_btree_cur	*cur;
2950 	xfs_agino_t		agino;
2951 	int			has;
2952 	int			error;
2953 
2954 	if (!xfs_has_sparseinodes(pag->pag_mount))
2955 		return 0;
2956 
2957 	cur = xfs_inobt_init_cursor(pag, tp, agibp, XFS_BTNUM_INO);
2958 
2959 	/* Look up the inobt record that would correspond to the new EOFS. */
2960 	agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
2961 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
2962 	if (error || !has)
2963 		goto out;
2964 
2965 	error = xfs_inobt_get_rec(cur, &rec, &has);
2966 	if (error)
2967 		goto out;
2968 
2969 	if (!has) {
2970 		error = -EFSCORRUPTED;
2971 		goto out;
2972 	}
2973 
2974 	/* If the record covers inodes that would be beyond EOFS, bail out. */
2975 	if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
2976 		error = -ENOSPC;
2977 		goto out;
2978 	}
2979 out:
2980 	xfs_btree_del_cursor(cur, error);
2981 	return error;
2982 }
2983