1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_ialloc.h" 17 #include "xfs_ialloc_btree.h" 18 #include "xfs_alloc.h" 19 #include "xfs_errortag.h" 20 #include "xfs_error.h" 21 #include "xfs_bmap.h" 22 #include "xfs_trans.h" 23 #include "xfs_buf_item.h" 24 #include "xfs_icreate_item.h" 25 #include "xfs_icache.h" 26 #include "xfs_trace.h" 27 #include "xfs_log.h" 28 #include "xfs_rmap.h" 29 #include "xfs_ag.h" 30 31 /* 32 * Lookup a record by ino in the btree given by cur. 33 */ 34 int /* error */ 35 xfs_inobt_lookup( 36 struct xfs_btree_cur *cur, /* btree cursor */ 37 xfs_agino_t ino, /* starting inode of chunk */ 38 xfs_lookup_t dir, /* <=, >=, == */ 39 int *stat) /* success/failure */ 40 { 41 cur->bc_rec.i.ir_startino = ino; 42 cur->bc_rec.i.ir_holemask = 0; 43 cur->bc_rec.i.ir_count = 0; 44 cur->bc_rec.i.ir_freecount = 0; 45 cur->bc_rec.i.ir_free = 0; 46 return xfs_btree_lookup(cur, dir, stat); 47 } 48 49 /* 50 * Update the record referred to by cur to the value given. 51 * This either works (return 0) or gets an EFSCORRUPTED error. 52 */ 53 STATIC int /* error */ 54 xfs_inobt_update( 55 struct xfs_btree_cur *cur, /* btree cursor */ 56 xfs_inobt_rec_incore_t *irec) /* btree record */ 57 { 58 union xfs_btree_rec rec; 59 60 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 61 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { 62 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); 63 rec.inobt.ir_u.sp.ir_count = irec->ir_count; 64 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; 65 } else { 66 /* ir_holemask/ir_count not supported on-disk */ 67 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); 68 } 69 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 70 return xfs_btree_update(cur, &rec); 71 } 72 73 /* Convert on-disk btree record to incore inobt record. */ 74 void 75 xfs_inobt_btrec_to_irec( 76 struct xfs_mount *mp, 77 union xfs_btree_rec *rec, 78 struct xfs_inobt_rec_incore *irec) 79 { 80 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 81 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) { 82 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); 83 irec->ir_count = rec->inobt.ir_u.sp.ir_count; 84 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; 85 } else { 86 /* 87 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded 88 * values for full inode chunks. 89 */ 90 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; 91 irec->ir_count = XFS_INODES_PER_CHUNK; 92 irec->ir_freecount = 93 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); 94 } 95 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 96 } 97 98 /* 99 * Get the data from the pointed-to record. 100 */ 101 int 102 xfs_inobt_get_rec( 103 struct xfs_btree_cur *cur, 104 struct xfs_inobt_rec_incore *irec, 105 int *stat) 106 { 107 struct xfs_mount *mp = cur->bc_mp; 108 xfs_agnumber_t agno = cur->bc_ag.pag->pag_agno; 109 union xfs_btree_rec *rec; 110 int error; 111 uint64_t realfree; 112 113 error = xfs_btree_get_rec(cur, &rec, stat); 114 if (error || *stat == 0) 115 return error; 116 117 xfs_inobt_btrec_to_irec(mp, rec, irec); 118 119 if (!xfs_verify_agino(mp, agno, irec->ir_startino)) 120 goto out_bad_rec; 121 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT || 122 irec->ir_count > XFS_INODES_PER_CHUNK) 123 goto out_bad_rec; 124 if (irec->ir_freecount > XFS_INODES_PER_CHUNK) 125 goto out_bad_rec; 126 127 /* if there are no holes, return the first available offset */ 128 if (!xfs_inobt_issparse(irec->ir_holemask)) 129 realfree = irec->ir_free; 130 else 131 realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec); 132 if (hweight64(realfree) != irec->ir_freecount) 133 goto out_bad_rec; 134 135 return 0; 136 137 out_bad_rec: 138 xfs_warn(mp, 139 "%s Inode BTree record corruption in AG %d detected!", 140 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno); 141 xfs_warn(mp, 142 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x", 143 irec->ir_startino, irec->ir_count, irec->ir_freecount, 144 irec->ir_free, irec->ir_holemask); 145 return -EFSCORRUPTED; 146 } 147 148 /* 149 * Insert a single inobt record. Cursor must already point to desired location. 150 */ 151 int 152 xfs_inobt_insert_rec( 153 struct xfs_btree_cur *cur, 154 uint16_t holemask, 155 uint8_t count, 156 int32_t freecount, 157 xfs_inofree_t free, 158 int *stat) 159 { 160 cur->bc_rec.i.ir_holemask = holemask; 161 cur->bc_rec.i.ir_count = count; 162 cur->bc_rec.i.ir_freecount = freecount; 163 cur->bc_rec.i.ir_free = free; 164 return xfs_btree_insert(cur, stat); 165 } 166 167 /* 168 * Insert records describing a newly allocated inode chunk into the inobt. 169 */ 170 STATIC int 171 xfs_inobt_insert( 172 struct xfs_mount *mp, 173 struct xfs_trans *tp, 174 struct xfs_buf *agbp, 175 struct xfs_perag *pag, 176 xfs_agino_t newino, 177 xfs_agino_t newlen, 178 xfs_btnum_t btnum) 179 { 180 struct xfs_btree_cur *cur; 181 xfs_agino_t thisino; 182 int i; 183 int error; 184 185 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum); 186 187 for (thisino = newino; 188 thisino < newino + newlen; 189 thisino += XFS_INODES_PER_CHUNK) { 190 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 191 if (error) { 192 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 193 return error; 194 } 195 ASSERT(i == 0); 196 197 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, 198 XFS_INODES_PER_CHUNK, 199 XFS_INODES_PER_CHUNK, 200 XFS_INOBT_ALL_FREE, &i); 201 if (error) { 202 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 203 return error; 204 } 205 ASSERT(i == 1); 206 } 207 208 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 209 210 return 0; 211 } 212 213 /* 214 * Verify that the number of free inodes in the AGI is correct. 215 */ 216 #ifdef DEBUG 217 static int 218 xfs_check_agi_freecount( 219 struct xfs_btree_cur *cur) 220 { 221 if (cur->bc_nlevels == 1) { 222 xfs_inobt_rec_incore_t rec; 223 int freecount = 0; 224 int error; 225 int i; 226 227 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 228 if (error) 229 return error; 230 231 do { 232 error = xfs_inobt_get_rec(cur, &rec, &i); 233 if (error) 234 return error; 235 236 if (i) { 237 freecount += rec.ir_freecount; 238 error = xfs_btree_increment(cur, 0, &i); 239 if (error) 240 return error; 241 } 242 } while (i == 1); 243 244 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) 245 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount); 246 } 247 return 0; 248 } 249 #else 250 #define xfs_check_agi_freecount(cur) 0 251 #endif 252 253 /* 254 * Initialise a new set of inodes. When called without a transaction context 255 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 256 * than logging them (which in a transaction context puts them into the AIL 257 * for writeback rather than the xfsbufd queue). 258 */ 259 int 260 xfs_ialloc_inode_init( 261 struct xfs_mount *mp, 262 struct xfs_trans *tp, 263 struct list_head *buffer_list, 264 int icount, 265 xfs_agnumber_t agno, 266 xfs_agblock_t agbno, 267 xfs_agblock_t length, 268 unsigned int gen) 269 { 270 struct xfs_buf *fbuf; 271 struct xfs_dinode *free; 272 int nbufs; 273 int version; 274 int i, j; 275 xfs_daddr_t d; 276 xfs_ino_t ino = 0; 277 int error; 278 279 /* 280 * Loop over the new block(s), filling in the inodes. For small block 281 * sizes, manipulate the inodes in buffers which are multiples of the 282 * blocks size. 283 */ 284 nbufs = length / M_IGEO(mp)->blocks_per_cluster; 285 286 /* 287 * Figure out what version number to use in the inodes we create. If 288 * the superblock version has caught up to the one that supports the new 289 * inode format, then use the new inode version. Otherwise use the old 290 * version so that old kernels will continue to be able to use the file 291 * system. 292 * 293 * For v3 inodes, we also need to write the inode number into the inode, 294 * so calculate the first inode number of the chunk here as 295 * XFS_AGB_TO_AGINO() only works within a filesystem block, not 296 * across multiple filesystem blocks (such as a cluster) and so cannot 297 * be used in the cluster buffer loop below. 298 * 299 * Further, because we are writing the inode directly into the buffer 300 * and calculating a CRC on the entire inode, we have ot log the entire 301 * inode so that the entire range the CRC covers is present in the log. 302 * That means for v3 inode we log the entire buffer rather than just the 303 * inode cores. 304 */ 305 if (xfs_sb_version_has_v3inode(&mp->m_sb)) { 306 version = 3; 307 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno)); 308 309 /* 310 * log the initialisation that is about to take place as an 311 * logical operation. This means the transaction does not 312 * need to log the physical changes to the inode buffers as log 313 * recovery will know what initialisation is actually needed. 314 * Hence we only need to log the buffers as "ordered" buffers so 315 * they track in the AIL as if they were physically logged. 316 */ 317 if (tp) 318 xfs_icreate_log(tp, agno, agbno, icount, 319 mp->m_sb.sb_inodesize, length, gen); 320 } else 321 version = 2; 322 323 for (j = 0; j < nbufs; j++) { 324 /* 325 * Get the block. 326 */ 327 d = XFS_AGB_TO_DADDR(mp, agno, agbno + 328 (j * M_IGEO(mp)->blocks_per_cluster)); 329 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 330 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster, 331 XBF_UNMAPPED, &fbuf); 332 if (error) 333 return error; 334 335 /* Initialize the inode buffers and log them appropriately. */ 336 fbuf->b_ops = &xfs_inode_buf_ops; 337 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 338 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) { 339 int ioffset = i << mp->m_sb.sb_inodelog; 340 uint isize = XFS_DINODE_SIZE(&mp->m_sb); 341 342 free = xfs_make_iptr(mp, fbuf, i); 343 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 344 free->di_version = version; 345 free->di_gen = cpu_to_be32(gen); 346 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 347 348 if (version == 3) { 349 free->di_ino = cpu_to_be64(ino); 350 ino++; 351 uuid_copy(&free->di_uuid, 352 &mp->m_sb.sb_meta_uuid); 353 xfs_dinode_calc_crc(mp, free); 354 } else if (tp) { 355 /* just log the inode core */ 356 xfs_trans_log_buf(tp, fbuf, ioffset, 357 ioffset + isize - 1); 358 } 359 } 360 361 if (tp) { 362 /* 363 * Mark the buffer as an inode allocation buffer so it 364 * sticks in AIL at the point of this allocation 365 * transaction. This ensures the they are on disk before 366 * the tail of the log can be moved past this 367 * transaction (i.e. by preventing relogging from moving 368 * it forward in the log). 369 */ 370 xfs_trans_inode_alloc_buf(tp, fbuf); 371 if (version == 3) { 372 /* 373 * Mark the buffer as ordered so that they are 374 * not physically logged in the transaction but 375 * still tracked in the AIL as part of the 376 * transaction and pin the log appropriately. 377 */ 378 xfs_trans_ordered_buf(tp, fbuf); 379 } 380 } else { 381 fbuf->b_flags |= XBF_DONE; 382 xfs_buf_delwri_queue(fbuf, buffer_list); 383 xfs_buf_relse(fbuf); 384 } 385 } 386 return 0; 387 } 388 389 /* 390 * Align startino and allocmask for a recently allocated sparse chunk such that 391 * they are fit for insertion (or merge) into the on-disk inode btrees. 392 * 393 * Background: 394 * 395 * When enabled, sparse inode support increases the inode alignment from cluster 396 * size to inode chunk size. This means that the minimum range between two 397 * non-adjacent inode records in the inobt is large enough for a full inode 398 * record. This allows for cluster sized, cluster aligned block allocation 399 * without need to worry about whether the resulting inode record overlaps with 400 * another record in the tree. Without this basic rule, we would have to deal 401 * with the consequences of overlap by potentially undoing recent allocations in 402 * the inode allocation codepath. 403 * 404 * Because of this alignment rule (which is enforced on mount), there are two 405 * inobt possibilities for newly allocated sparse chunks. One is that the 406 * aligned inode record for the chunk covers a range of inodes not already 407 * covered in the inobt (i.e., it is safe to insert a new sparse record). The 408 * other is that a record already exists at the aligned startino that considers 409 * the newly allocated range as sparse. In the latter case, record content is 410 * merged in hope that sparse inode chunks fill to full chunks over time. 411 */ 412 STATIC void 413 xfs_align_sparse_ino( 414 struct xfs_mount *mp, 415 xfs_agino_t *startino, 416 uint16_t *allocmask) 417 { 418 xfs_agblock_t agbno; 419 xfs_agblock_t mod; 420 int offset; 421 422 agbno = XFS_AGINO_TO_AGBNO(mp, *startino); 423 mod = agbno % mp->m_sb.sb_inoalignmt; 424 if (!mod) 425 return; 426 427 /* calculate the inode offset and align startino */ 428 offset = XFS_AGB_TO_AGINO(mp, mod); 429 *startino -= offset; 430 431 /* 432 * Since startino has been aligned down, left shift allocmask such that 433 * it continues to represent the same physical inodes relative to the 434 * new startino. 435 */ 436 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; 437 } 438 439 /* 440 * Determine whether the source inode record can merge into the target. Both 441 * records must be sparse, the inode ranges must match and there must be no 442 * allocation overlap between the records. 443 */ 444 STATIC bool 445 __xfs_inobt_can_merge( 446 struct xfs_inobt_rec_incore *trec, /* tgt record */ 447 struct xfs_inobt_rec_incore *srec) /* src record */ 448 { 449 uint64_t talloc; 450 uint64_t salloc; 451 452 /* records must cover the same inode range */ 453 if (trec->ir_startino != srec->ir_startino) 454 return false; 455 456 /* both records must be sparse */ 457 if (!xfs_inobt_issparse(trec->ir_holemask) || 458 !xfs_inobt_issparse(srec->ir_holemask)) 459 return false; 460 461 /* both records must track some inodes */ 462 if (!trec->ir_count || !srec->ir_count) 463 return false; 464 465 /* can't exceed capacity of a full record */ 466 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) 467 return false; 468 469 /* verify there is no allocation overlap */ 470 talloc = xfs_inobt_irec_to_allocmask(trec); 471 salloc = xfs_inobt_irec_to_allocmask(srec); 472 if (talloc & salloc) 473 return false; 474 475 return true; 476 } 477 478 /* 479 * Merge the source inode record into the target. The caller must call 480 * __xfs_inobt_can_merge() to ensure the merge is valid. 481 */ 482 STATIC void 483 __xfs_inobt_rec_merge( 484 struct xfs_inobt_rec_incore *trec, /* target */ 485 struct xfs_inobt_rec_incore *srec) /* src */ 486 { 487 ASSERT(trec->ir_startino == srec->ir_startino); 488 489 /* combine the counts */ 490 trec->ir_count += srec->ir_count; 491 trec->ir_freecount += srec->ir_freecount; 492 493 /* 494 * Merge the holemask and free mask. For both fields, 0 bits refer to 495 * allocated inodes. We combine the allocated ranges with bitwise AND. 496 */ 497 trec->ir_holemask &= srec->ir_holemask; 498 trec->ir_free &= srec->ir_free; 499 } 500 501 /* 502 * Insert a new sparse inode chunk into the associated inode btree. The inode 503 * record for the sparse chunk is pre-aligned to a startino that should match 504 * any pre-existing sparse inode record in the tree. This allows sparse chunks 505 * to fill over time. 506 * 507 * This function supports two modes of handling preexisting records depending on 508 * the merge flag. If merge is true, the provided record is merged with the 509 * existing record and updated in place. The merged record is returned in nrec. 510 * If merge is false, an existing record is replaced with the provided record. 511 * If no preexisting record exists, the provided record is always inserted. 512 * 513 * It is considered corruption if a merge is requested and not possible. Given 514 * the sparse inode alignment constraints, this should never happen. 515 */ 516 STATIC int 517 xfs_inobt_insert_sprec( 518 struct xfs_mount *mp, 519 struct xfs_trans *tp, 520 struct xfs_buf *agbp, 521 struct xfs_perag *pag, 522 int btnum, 523 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ 524 bool merge) /* merge or replace */ 525 { 526 struct xfs_btree_cur *cur; 527 int error; 528 int i; 529 struct xfs_inobt_rec_incore rec; 530 531 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum); 532 533 /* the new record is pre-aligned so we know where to look */ 534 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); 535 if (error) 536 goto error; 537 /* if nothing there, insert a new record and return */ 538 if (i == 0) { 539 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, 540 nrec->ir_count, nrec->ir_freecount, 541 nrec->ir_free, &i); 542 if (error) 543 goto error; 544 if (XFS_IS_CORRUPT(mp, i != 1)) { 545 error = -EFSCORRUPTED; 546 goto error; 547 } 548 549 goto out; 550 } 551 552 /* 553 * A record exists at this startino. Merge or replace the record 554 * depending on what we've been asked to do. 555 */ 556 if (merge) { 557 error = xfs_inobt_get_rec(cur, &rec, &i); 558 if (error) 559 goto error; 560 if (XFS_IS_CORRUPT(mp, i != 1)) { 561 error = -EFSCORRUPTED; 562 goto error; 563 } 564 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) { 565 error = -EFSCORRUPTED; 566 goto error; 567 } 568 569 /* 570 * This should never fail. If we have coexisting records that 571 * cannot merge, something is seriously wrong. 572 */ 573 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) { 574 error = -EFSCORRUPTED; 575 goto error; 576 } 577 578 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino, 579 rec.ir_holemask, nrec->ir_startino, 580 nrec->ir_holemask); 581 582 /* merge to nrec to output the updated record */ 583 __xfs_inobt_rec_merge(nrec, &rec); 584 585 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino, 586 nrec->ir_holemask); 587 588 error = xfs_inobt_rec_check_count(mp, nrec); 589 if (error) 590 goto error; 591 } 592 593 error = xfs_inobt_update(cur, nrec); 594 if (error) 595 goto error; 596 597 out: 598 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 599 return 0; 600 error: 601 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 602 return error; 603 } 604 605 /* 606 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if 607 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so 608 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum 609 * inode count threshold, or the usual negative error code for other errors. 610 */ 611 STATIC int 612 xfs_ialloc_ag_alloc( 613 struct xfs_trans *tp, 614 struct xfs_buf *agbp, 615 struct xfs_perag *pag) 616 { 617 struct xfs_agi *agi; 618 struct xfs_alloc_arg args; 619 int error; 620 xfs_agino_t newino; /* new first inode's number */ 621 xfs_agino_t newlen; /* new number of inodes */ 622 int isaligned = 0; /* inode allocation at stripe */ 623 /* unit boundary */ 624 /* init. to full chunk */ 625 struct xfs_inobt_rec_incore rec; 626 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp); 627 uint16_t allocmask = (uint16_t) -1; 628 int do_sparse = 0; 629 630 memset(&args, 0, sizeof(args)); 631 args.tp = tp; 632 args.mp = tp->t_mountp; 633 args.fsbno = NULLFSBLOCK; 634 args.oinfo = XFS_RMAP_OINFO_INODES; 635 636 #ifdef DEBUG 637 /* randomly do sparse inode allocations */ 638 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) && 639 igeo->ialloc_min_blks < igeo->ialloc_blks) 640 do_sparse = prandom_u32() & 1; 641 #endif 642 643 /* 644 * Locking will ensure that we don't have two callers in here 645 * at one time. 646 */ 647 newlen = igeo->ialloc_inos; 648 if (igeo->maxicount && 649 percpu_counter_read_positive(&args.mp->m_icount) + newlen > 650 igeo->maxicount) 651 return -ENOSPC; 652 args.minlen = args.maxlen = igeo->ialloc_blks; 653 /* 654 * First try to allocate inodes contiguous with the last-allocated 655 * chunk of inodes. If the filesystem is striped, this will fill 656 * an entire stripe unit with inodes. 657 */ 658 agi = agbp->b_addr; 659 newino = be32_to_cpu(agi->agi_newino); 660 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 661 igeo->ialloc_blks; 662 if (do_sparse) 663 goto sparse_alloc; 664 if (likely(newino != NULLAGINO && 665 (args.agbno < be32_to_cpu(agi->agi_length)))) { 666 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno); 667 args.type = XFS_ALLOCTYPE_THIS_BNO; 668 args.prod = 1; 669 670 /* 671 * We need to take into account alignment here to ensure that 672 * we don't modify the free list if we fail to have an exact 673 * block. If we don't have an exact match, and every oher 674 * attempt allocation attempt fails, we'll end up cancelling 675 * a dirty transaction and shutting down. 676 * 677 * For an exact allocation, alignment must be 1, 678 * however we need to take cluster alignment into account when 679 * fixing up the freelist. Use the minalignslop field to 680 * indicate that extra blocks might be required for alignment, 681 * but not to use them in the actual exact allocation. 682 */ 683 args.alignment = 1; 684 args.minalignslop = igeo->cluster_align - 1; 685 686 /* Allow space for the inode btree to split. */ 687 args.minleft = igeo->inobt_maxlevels; 688 if ((error = xfs_alloc_vextent(&args))) 689 return error; 690 691 /* 692 * This request might have dirtied the transaction if the AG can 693 * satisfy the request, but the exact block was not available. 694 * If the allocation did fail, subsequent requests will relax 695 * the exact agbno requirement and increase the alignment 696 * instead. It is critical that the total size of the request 697 * (len + alignment + slop) does not increase from this point 698 * on, so reset minalignslop to ensure it is not included in 699 * subsequent requests. 700 */ 701 args.minalignslop = 0; 702 } 703 704 if (unlikely(args.fsbno == NULLFSBLOCK)) { 705 /* 706 * Set the alignment for the allocation. 707 * If stripe alignment is turned on then align at stripe unit 708 * boundary. 709 * If the cluster size is smaller than a filesystem block 710 * then we're doing I/O for inodes in filesystem block size 711 * pieces, so don't need alignment anyway. 712 */ 713 isaligned = 0; 714 if (igeo->ialloc_align) { 715 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); 716 args.alignment = args.mp->m_dalign; 717 isaligned = 1; 718 } else 719 args.alignment = igeo->cluster_align; 720 /* 721 * Need to figure out where to allocate the inode blocks. 722 * Ideally they should be spaced out through the a.g. 723 * For now, just allocate blocks up front. 724 */ 725 args.agbno = be32_to_cpu(agi->agi_root); 726 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno); 727 /* 728 * Allocate a fixed-size extent of inodes. 729 */ 730 args.type = XFS_ALLOCTYPE_NEAR_BNO; 731 args.prod = 1; 732 /* 733 * Allow space for the inode btree to split. 734 */ 735 args.minleft = igeo->inobt_maxlevels; 736 if ((error = xfs_alloc_vextent(&args))) 737 return error; 738 } 739 740 /* 741 * If stripe alignment is turned on, then try again with cluster 742 * alignment. 743 */ 744 if (isaligned && args.fsbno == NULLFSBLOCK) { 745 args.type = XFS_ALLOCTYPE_NEAR_BNO; 746 args.agbno = be32_to_cpu(agi->agi_root); 747 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno); 748 args.alignment = igeo->cluster_align; 749 if ((error = xfs_alloc_vextent(&args))) 750 return error; 751 } 752 753 /* 754 * Finally, try a sparse allocation if the filesystem supports it and 755 * the sparse allocation length is smaller than a full chunk. 756 */ 757 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) && 758 igeo->ialloc_min_blks < igeo->ialloc_blks && 759 args.fsbno == NULLFSBLOCK) { 760 sparse_alloc: 761 args.type = XFS_ALLOCTYPE_NEAR_BNO; 762 args.agbno = be32_to_cpu(agi->agi_root); 763 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno); 764 args.alignment = args.mp->m_sb.sb_spino_align; 765 args.prod = 1; 766 767 args.minlen = igeo->ialloc_min_blks; 768 args.maxlen = args.minlen; 769 770 /* 771 * The inode record will be aligned to full chunk size. We must 772 * prevent sparse allocation from AG boundaries that result in 773 * invalid inode records, such as records that start at agbno 0 774 * or extend beyond the AG. 775 * 776 * Set min agbno to the first aligned, non-zero agbno and max to 777 * the last aligned agbno that is at least one full chunk from 778 * the end of the AG. 779 */ 780 args.min_agbno = args.mp->m_sb.sb_inoalignmt; 781 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, 782 args.mp->m_sb.sb_inoalignmt) - 783 igeo->ialloc_blks; 784 785 error = xfs_alloc_vextent(&args); 786 if (error) 787 return error; 788 789 newlen = XFS_AGB_TO_AGINO(args.mp, args.len); 790 ASSERT(newlen <= XFS_INODES_PER_CHUNK); 791 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; 792 } 793 794 if (args.fsbno == NULLFSBLOCK) 795 return -EAGAIN; 796 797 ASSERT(args.len == args.minlen); 798 799 /* 800 * Stamp and write the inode buffers. 801 * 802 * Seed the new inode cluster with a random generation number. This 803 * prevents short-term reuse of generation numbers if a chunk is 804 * freed and then immediately reallocated. We use random numbers 805 * rather than a linear progression to prevent the next generation 806 * number from being easily guessable. 807 */ 808 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno, 809 args.agbno, args.len, prandom_u32()); 810 811 if (error) 812 return error; 813 /* 814 * Convert the results. 815 */ 816 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno); 817 818 if (xfs_inobt_issparse(~allocmask)) { 819 /* 820 * We've allocated a sparse chunk. Align the startino and mask. 821 */ 822 xfs_align_sparse_ino(args.mp, &newino, &allocmask); 823 824 rec.ir_startino = newino; 825 rec.ir_holemask = ~allocmask; 826 rec.ir_count = newlen; 827 rec.ir_freecount = newlen; 828 rec.ir_free = XFS_INOBT_ALL_FREE; 829 830 /* 831 * Insert the sparse record into the inobt and allow for a merge 832 * if necessary. If a merge does occur, rec is updated to the 833 * merged record. 834 */ 835 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag, 836 XFS_BTNUM_INO, &rec, true); 837 if (error == -EFSCORRUPTED) { 838 xfs_alert(args.mp, 839 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", 840 XFS_AGINO_TO_INO(args.mp, pag->pag_agno, 841 rec.ir_startino), 842 rec.ir_holemask, rec.ir_count); 843 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); 844 } 845 if (error) 846 return error; 847 848 /* 849 * We can't merge the part we've just allocated as for the inobt 850 * due to finobt semantics. The original record may or may not 851 * exist independent of whether physical inodes exist in this 852 * sparse chunk. 853 * 854 * We must update the finobt record based on the inobt record. 855 * rec contains the fully merged and up to date inobt record 856 * from the previous call. Set merge false to replace any 857 * existing record with this one. 858 */ 859 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 860 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag, 861 XFS_BTNUM_FINO, &rec, false); 862 if (error) 863 return error; 864 } 865 } else { 866 /* full chunk - insert new records to both btrees */ 867 error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino, newlen, 868 XFS_BTNUM_INO); 869 if (error) 870 return error; 871 872 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 873 error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino, 874 newlen, XFS_BTNUM_FINO); 875 if (error) 876 return error; 877 } 878 } 879 880 /* 881 * Update AGI counts and newino. 882 */ 883 be32_add_cpu(&agi->agi_count, newlen); 884 be32_add_cpu(&agi->agi_freecount, newlen); 885 pag->pagi_freecount += newlen; 886 pag->pagi_count += newlen; 887 agi->agi_newino = cpu_to_be32(newino); 888 889 /* 890 * Log allocation group header fields 891 */ 892 xfs_ialloc_log_agi(tp, agbp, 893 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 894 /* 895 * Modify/log superblock values for inode count and inode free count. 896 */ 897 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 898 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 899 return 0; 900 } 901 902 /* 903 * Try to retrieve the next record to the left/right from the current one. 904 */ 905 STATIC int 906 xfs_ialloc_next_rec( 907 struct xfs_btree_cur *cur, 908 xfs_inobt_rec_incore_t *rec, 909 int *done, 910 int left) 911 { 912 int error; 913 int i; 914 915 if (left) 916 error = xfs_btree_decrement(cur, 0, &i); 917 else 918 error = xfs_btree_increment(cur, 0, &i); 919 920 if (error) 921 return error; 922 *done = !i; 923 if (i) { 924 error = xfs_inobt_get_rec(cur, rec, &i); 925 if (error) 926 return error; 927 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 928 return -EFSCORRUPTED; 929 } 930 931 return 0; 932 } 933 934 STATIC int 935 xfs_ialloc_get_rec( 936 struct xfs_btree_cur *cur, 937 xfs_agino_t agino, 938 xfs_inobt_rec_incore_t *rec, 939 int *done) 940 { 941 int error; 942 int i; 943 944 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 945 if (error) 946 return error; 947 *done = !i; 948 if (i) { 949 error = xfs_inobt_get_rec(cur, rec, &i); 950 if (error) 951 return error; 952 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 953 return -EFSCORRUPTED; 954 } 955 956 return 0; 957 } 958 959 /* 960 * Return the offset of the first free inode in the record. If the inode chunk 961 * is sparsely allocated, we convert the record holemask to inode granularity 962 * and mask off the unallocated regions from the inode free mask. 963 */ 964 STATIC int 965 xfs_inobt_first_free_inode( 966 struct xfs_inobt_rec_incore *rec) 967 { 968 xfs_inofree_t realfree; 969 970 /* if there are no holes, return the first available offset */ 971 if (!xfs_inobt_issparse(rec->ir_holemask)) 972 return xfs_lowbit64(rec->ir_free); 973 974 realfree = xfs_inobt_irec_to_allocmask(rec); 975 realfree &= rec->ir_free; 976 977 return xfs_lowbit64(realfree); 978 } 979 980 /* 981 * Allocate an inode using the inobt-only algorithm. 982 */ 983 STATIC int 984 xfs_dialloc_ag_inobt( 985 struct xfs_trans *tp, 986 struct xfs_buf *agbp, 987 struct xfs_perag *pag, 988 xfs_ino_t parent, 989 xfs_ino_t *inop) 990 { 991 struct xfs_mount *mp = tp->t_mountp; 992 struct xfs_agi *agi = agbp->b_addr; 993 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 994 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 995 struct xfs_btree_cur *cur, *tcur; 996 struct xfs_inobt_rec_incore rec, trec; 997 xfs_ino_t ino; 998 int error; 999 int offset; 1000 int i, j; 1001 int searchdistance = 10; 1002 1003 ASSERT(pag->pagi_init); 1004 ASSERT(pag->pagi_inodeok); 1005 ASSERT(pag->pagi_freecount > 0); 1006 1007 restart_pagno: 1008 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO); 1009 /* 1010 * If pagino is 0 (this is the root inode allocation) use newino. 1011 * This must work because we've just allocated some. 1012 */ 1013 if (!pagino) 1014 pagino = be32_to_cpu(agi->agi_newino); 1015 1016 error = xfs_check_agi_freecount(cur); 1017 if (error) 1018 goto error0; 1019 1020 /* 1021 * If in the same AG as the parent, try to get near the parent. 1022 */ 1023 if (pagno == pag->pag_agno) { 1024 int doneleft; /* done, to the left */ 1025 int doneright; /* done, to the right */ 1026 1027 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 1028 if (error) 1029 goto error0; 1030 if (XFS_IS_CORRUPT(mp, i != 1)) { 1031 error = -EFSCORRUPTED; 1032 goto error0; 1033 } 1034 1035 error = xfs_inobt_get_rec(cur, &rec, &j); 1036 if (error) 1037 goto error0; 1038 if (XFS_IS_CORRUPT(mp, j != 1)) { 1039 error = -EFSCORRUPTED; 1040 goto error0; 1041 } 1042 1043 if (rec.ir_freecount > 0) { 1044 /* 1045 * Found a free inode in the same chunk 1046 * as the parent, done. 1047 */ 1048 goto alloc_inode; 1049 } 1050 1051 1052 /* 1053 * In the same AG as parent, but parent's chunk is full. 1054 */ 1055 1056 /* duplicate the cursor, search left & right simultaneously */ 1057 error = xfs_btree_dup_cursor(cur, &tcur); 1058 if (error) 1059 goto error0; 1060 1061 /* 1062 * Skip to last blocks looked up if same parent inode. 1063 */ 1064 if (pagino != NULLAGINO && 1065 pag->pagl_pagino == pagino && 1066 pag->pagl_leftrec != NULLAGINO && 1067 pag->pagl_rightrec != NULLAGINO) { 1068 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 1069 &trec, &doneleft); 1070 if (error) 1071 goto error1; 1072 1073 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 1074 &rec, &doneright); 1075 if (error) 1076 goto error1; 1077 } else { 1078 /* search left with tcur, back up 1 record */ 1079 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 1080 if (error) 1081 goto error1; 1082 1083 /* search right with cur, go forward 1 record. */ 1084 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 1085 if (error) 1086 goto error1; 1087 } 1088 1089 /* 1090 * Loop until we find an inode chunk with a free inode. 1091 */ 1092 while (--searchdistance > 0 && (!doneleft || !doneright)) { 1093 int useleft; /* using left inode chunk this time */ 1094 1095 /* figure out the closer block if both are valid. */ 1096 if (!doneleft && !doneright) { 1097 useleft = pagino - 1098 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 1099 rec.ir_startino - pagino; 1100 } else { 1101 useleft = !doneleft; 1102 } 1103 1104 /* free inodes to the left? */ 1105 if (useleft && trec.ir_freecount) { 1106 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1107 cur = tcur; 1108 1109 pag->pagl_leftrec = trec.ir_startino; 1110 pag->pagl_rightrec = rec.ir_startino; 1111 pag->pagl_pagino = pagino; 1112 rec = trec; 1113 goto alloc_inode; 1114 } 1115 1116 /* free inodes to the right? */ 1117 if (!useleft && rec.ir_freecount) { 1118 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1119 1120 pag->pagl_leftrec = trec.ir_startino; 1121 pag->pagl_rightrec = rec.ir_startino; 1122 pag->pagl_pagino = pagino; 1123 goto alloc_inode; 1124 } 1125 1126 /* get next record to check */ 1127 if (useleft) { 1128 error = xfs_ialloc_next_rec(tcur, &trec, 1129 &doneleft, 1); 1130 } else { 1131 error = xfs_ialloc_next_rec(cur, &rec, 1132 &doneright, 0); 1133 } 1134 if (error) 1135 goto error1; 1136 } 1137 1138 if (searchdistance <= 0) { 1139 /* 1140 * Not in range - save last search 1141 * location and allocate a new inode 1142 */ 1143 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1144 pag->pagl_leftrec = trec.ir_startino; 1145 pag->pagl_rightrec = rec.ir_startino; 1146 pag->pagl_pagino = pagino; 1147 1148 } else { 1149 /* 1150 * We've reached the end of the btree. because 1151 * we are only searching a small chunk of the 1152 * btree each search, there is obviously free 1153 * inodes closer to the parent inode than we 1154 * are now. restart the search again. 1155 */ 1156 pag->pagl_pagino = NULLAGINO; 1157 pag->pagl_leftrec = NULLAGINO; 1158 pag->pagl_rightrec = NULLAGINO; 1159 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1160 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1161 goto restart_pagno; 1162 } 1163 } 1164 1165 /* 1166 * In a different AG from the parent. 1167 * See if the most recently allocated block has any free. 1168 */ 1169 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1170 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1171 XFS_LOOKUP_EQ, &i); 1172 if (error) 1173 goto error0; 1174 1175 if (i == 1) { 1176 error = xfs_inobt_get_rec(cur, &rec, &j); 1177 if (error) 1178 goto error0; 1179 1180 if (j == 1 && rec.ir_freecount > 0) { 1181 /* 1182 * The last chunk allocated in the group 1183 * still has a free inode. 1184 */ 1185 goto alloc_inode; 1186 } 1187 } 1188 } 1189 1190 /* 1191 * None left in the last group, search the whole AG 1192 */ 1193 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1194 if (error) 1195 goto error0; 1196 if (XFS_IS_CORRUPT(mp, i != 1)) { 1197 error = -EFSCORRUPTED; 1198 goto error0; 1199 } 1200 1201 for (;;) { 1202 error = xfs_inobt_get_rec(cur, &rec, &i); 1203 if (error) 1204 goto error0; 1205 if (XFS_IS_CORRUPT(mp, i != 1)) { 1206 error = -EFSCORRUPTED; 1207 goto error0; 1208 } 1209 if (rec.ir_freecount > 0) 1210 break; 1211 error = xfs_btree_increment(cur, 0, &i); 1212 if (error) 1213 goto error0; 1214 if (XFS_IS_CORRUPT(mp, i != 1)) { 1215 error = -EFSCORRUPTED; 1216 goto error0; 1217 } 1218 } 1219 1220 alloc_inode: 1221 offset = xfs_inobt_first_free_inode(&rec); 1222 ASSERT(offset >= 0); 1223 ASSERT(offset < XFS_INODES_PER_CHUNK); 1224 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1225 XFS_INODES_PER_CHUNK) == 0); 1226 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); 1227 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1228 rec.ir_freecount--; 1229 error = xfs_inobt_update(cur, &rec); 1230 if (error) 1231 goto error0; 1232 be32_add_cpu(&agi->agi_freecount, -1); 1233 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1234 pag->pagi_freecount--; 1235 1236 error = xfs_check_agi_freecount(cur); 1237 if (error) 1238 goto error0; 1239 1240 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1241 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1242 *inop = ino; 1243 return 0; 1244 error1: 1245 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 1246 error0: 1247 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1248 return error; 1249 } 1250 1251 /* 1252 * Use the free inode btree to allocate an inode based on distance from the 1253 * parent. Note that the provided cursor may be deleted and replaced. 1254 */ 1255 STATIC int 1256 xfs_dialloc_ag_finobt_near( 1257 xfs_agino_t pagino, 1258 struct xfs_btree_cur **ocur, 1259 struct xfs_inobt_rec_incore *rec) 1260 { 1261 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 1262 struct xfs_btree_cur *rcur; /* right search cursor */ 1263 struct xfs_inobt_rec_incore rrec; 1264 int error; 1265 int i, j; 1266 1267 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1268 if (error) 1269 return error; 1270 1271 if (i == 1) { 1272 error = xfs_inobt_get_rec(lcur, rec, &i); 1273 if (error) 1274 return error; 1275 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) 1276 return -EFSCORRUPTED; 1277 1278 /* 1279 * See if we've landed in the parent inode record. The finobt 1280 * only tracks chunks with at least one free inode, so record 1281 * existence is enough. 1282 */ 1283 if (pagino >= rec->ir_startino && 1284 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1285 return 0; 1286 } 1287 1288 error = xfs_btree_dup_cursor(lcur, &rcur); 1289 if (error) 1290 return error; 1291 1292 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1293 if (error) 1294 goto error_rcur; 1295 if (j == 1) { 1296 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1297 if (error) 1298 goto error_rcur; 1299 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) { 1300 error = -EFSCORRUPTED; 1301 goto error_rcur; 1302 } 1303 } 1304 1305 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) { 1306 error = -EFSCORRUPTED; 1307 goto error_rcur; 1308 } 1309 if (i == 1 && j == 1) { 1310 /* 1311 * Both the left and right records are valid. Choose the closer 1312 * inode chunk to the target. 1313 */ 1314 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1315 (rrec.ir_startino - pagino)) { 1316 *rec = rrec; 1317 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1318 *ocur = rcur; 1319 } else { 1320 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1321 } 1322 } else if (j == 1) { 1323 /* only the right record is valid */ 1324 *rec = rrec; 1325 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1326 *ocur = rcur; 1327 } else if (i == 1) { 1328 /* only the left record is valid */ 1329 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1330 } 1331 1332 return 0; 1333 1334 error_rcur: 1335 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1336 return error; 1337 } 1338 1339 /* 1340 * Use the free inode btree to find a free inode based on a newino hint. If 1341 * the hint is NULL, find the first free inode in the AG. 1342 */ 1343 STATIC int 1344 xfs_dialloc_ag_finobt_newino( 1345 struct xfs_agi *agi, 1346 struct xfs_btree_cur *cur, 1347 struct xfs_inobt_rec_incore *rec) 1348 { 1349 int error; 1350 int i; 1351 1352 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1353 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1354 XFS_LOOKUP_EQ, &i); 1355 if (error) 1356 return error; 1357 if (i == 1) { 1358 error = xfs_inobt_get_rec(cur, rec, &i); 1359 if (error) 1360 return error; 1361 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1362 return -EFSCORRUPTED; 1363 return 0; 1364 } 1365 } 1366 1367 /* 1368 * Find the first inode available in the AG. 1369 */ 1370 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1371 if (error) 1372 return error; 1373 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1374 return -EFSCORRUPTED; 1375 1376 error = xfs_inobt_get_rec(cur, rec, &i); 1377 if (error) 1378 return error; 1379 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1380 return -EFSCORRUPTED; 1381 1382 return 0; 1383 } 1384 1385 /* 1386 * Update the inobt based on a modification made to the finobt. Also ensure that 1387 * the records from both trees are equivalent post-modification. 1388 */ 1389 STATIC int 1390 xfs_dialloc_ag_update_inobt( 1391 struct xfs_btree_cur *cur, /* inobt cursor */ 1392 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1393 int offset) /* inode offset */ 1394 { 1395 struct xfs_inobt_rec_incore rec; 1396 int error; 1397 int i; 1398 1399 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1400 if (error) 1401 return error; 1402 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1403 return -EFSCORRUPTED; 1404 1405 error = xfs_inobt_get_rec(cur, &rec, &i); 1406 if (error) 1407 return error; 1408 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1409 return -EFSCORRUPTED; 1410 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1411 XFS_INODES_PER_CHUNK) == 0); 1412 1413 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1414 rec.ir_freecount--; 1415 1416 if (XFS_IS_CORRUPT(cur->bc_mp, 1417 rec.ir_free != frec->ir_free || 1418 rec.ir_freecount != frec->ir_freecount)) 1419 return -EFSCORRUPTED; 1420 1421 return xfs_inobt_update(cur, &rec); 1422 } 1423 1424 /* 1425 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1426 * back to the inobt search algorithm. 1427 * 1428 * The caller selected an AG for us, and made sure that free inodes are 1429 * available. 1430 */ 1431 static int 1432 xfs_dialloc_ag( 1433 struct xfs_trans *tp, 1434 struct xfs_buf *agbp, 1435 struct xfs_perag *pag, 1436 xfs_ino_t parent, 1437 xfs_ino_t *inop) 1438 { 1439 struct xfs_mount *mp = tp->t_mountp; 1440 struct xfs_agi *agi = agbp->b_addr; 1441 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1442 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1443 struct xfs_btree_cur *cur; /* finobt cursor */ 1444 struct xfs_btree_cur *icur; /* inobt cursor */ 1445 struct xfs_inobt_rec_incore rec; 1446 xfs_ino_t ino; 1447 int error; 1448 int offset; 1449 int i; 1450 1451 if (!xfs_sb_version_hasfinobt(&mp->m_sb)) 1452 return xfs_dialloc_ag_inobt(tp, agbp, pag, parent, inop); 1453 1454 /* 1455 * If pagino is 0 (this is the root inode allocation) use newino. 1456 * This must work because we've just allocated some. 1457 */ 1458 if (!pagino) 1459 pagino = be32_to_cpu(agi->agi_newino); 1460 1461 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO); 1462 1463 error = xfs_check_agi_freecount(cur); 1464 if (error) 1465 goto error_cur; 1466 1467 /* 1468 * The search algorithm depends on whether we're in the same AG as the 1469 * parent. If so, find the closest available inode to the parent. If 1470 * not, consider the agi hint or find the first free inode in the AG. 1471 */ 1472 if (pag->pag_agno == pagno) 1473 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1474 else 1475 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1476 if (error) 1477 goto error_cur; 1478 1479 offset = xfs_inobt_first_free_inode(&rec); 1480 ASSERT(offset >= 0); 1481 ASSERT(offset < XFS_INODES_PER_CHUNK); 1482 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1483 XFS_INODES_PER_CHUNK) == 0); 1484 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); 1485 1486 /* 1487 * Modify or remove the finobt record. 1488 */ 1489 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1490 rec.ir_freecount--; 1491 if (rec.ir_freecount) 1492 error = xfs_inobt_update(cur, &rec); 1493 else 1494 error = xfs_btree_delete(cur, &i); 1495 if (error) 1496 goto error_cur; 1497 1498 /* 1499 * The finobt has now been updated appropriately. We haven't updated the 1500 * agi and superblock yet, so we can create an inobt cursor and validate 1501 * the original freecount. If all is well, make the equivalent update to 1502 * the inobt using the finobt record and offset information. 1503 */ 1504 icur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO); 1505 1506 error = xfs_check_agi_freecount(icur); 1507 if (error) 1508 goto error_icur; 1509 1510 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1511 if (error) 1512 goto error_icur; 1513 1514 /* 1515 * Both trees have now been updated. We must update the perag and 1516 * superblock before we can check the freecount for each btree. 1517 */ 1518 be32_add_cpu(&agi->agi_freecount, -1); 1519 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1520 pag->pagi_freecount--; 1521 1522 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1523 1524 error = xfs_check_agi_freecount(icur); 1525 if (error) 1526 goto error_icur; 1527 error = xfs_check_agi_freecount(cur); 1528 if (error) 1529 goto error_icur; 1530 1531 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1532 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1533 *inop = ino; 1534 return 0; 1535 1536 error_icur: 1537 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1538 error_cur: 1539 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1540 return error; 1541 } 1542 1543 static int 1544 xfs_dialloc_roll( 1545 struct xfs_trans **tpp, 1546 struct xfs_buf *agibp) 1547 { 1548 struct xfs_trans *tp = *tpp; 1549 struct xfs_dquot_acct *dqinfo; 1550 int error; 1551 1552 /* 1553 * Hold to on to the agibp across the commit so no other allocation can 1554 * come in and take the free inodes we just allocated for our caller. 1555 */ 1556 xfs_trans_bhold(tp, agibp); 1557 1558 /* 1559 * We want the quota changes to be associated with the next transaction, 1560 * NOT this one. So, detach the dqinfo from this and attach it to the 1561 * next transaction. 1562 */ 1563 dqinfo = tp->t_dqinfo; 1564 tp->t_dqinfo = NULL; 1565 1566 error = xfs_trans_roll(&tp); 1567 1568 /* Re-attach the quota info that we detached from prev trx. */ 1569 tp->t_dqinfo = dqinfo; 1570 1571 /* 1572 * Join the buffer even on commit error so that the buffer is released 1573 * when the caller cancels the transaction and doesn't have to handle 1574 * this error case specially. 1575 */ 1576 xfs_trans_bjoin(tp, agibp); 1577 *tpp = tp; 1578 return error; 1579 } 1580 1581 static xfs_agnumber_t 1582 xfs_ialloc_next_ag( 1583 xfs_mount_t *mp) 1584 { 1585 xfs_agnumber_t agno; 1586 1587 spin_lock(&mp->m_agirotor_lock); 1588 agno = mp->m_agirotor; 1589 if (++mp->m_agirotor >= mp->m_maxagi) 1590 mp->m_agirotor = 0; 1591 spin_unlock(&mp->m_agirotor_lock); 1592 1593 return agno; 1594 } 1595 1596 static bool 1597 xfs_dialloc_good_ag( 1598 struct xfs_trans *tp, 1599 struct xfs_perag *pag, 1600 umode_t mode, 1601 int flags, 1602 bool ok_alloc) 1603 { 1604 struct xfs_mount *mp = tp->t_mountp; 1605 xfs_extlen_t ineed; 1606 xfs_extlen_t longest = 0; 1607 int needspace; 1608 int error; 1609 1610 if (!pag->pagi_inodeok) 1611 return false; 1612 1613 if (!pag->pagi_init) { 1614 error = xfs_ialloc_pagi_init(mp, tp, pag->pag_agno); 1615 if (error) 1616 return false; 1617 } 1618 1619 if (pag->pagi_freecount) 1620 return true; 1621 if (!ok_alloc) 1622 return false; 1623 1624 if (!pag->pagf_init) { 1625 error = xfs_alloc_pagf_init(mp, tp, pag->pag_agno, flags); 1626 if (error) 1627 return false; 1628 } 1629 1630 /* 1631 * Check that there is enough free space for the file plus a chunk of 1632 * inodes if we need to allocate some. If this is the first pass across 1633 * the AGs, take into account the potential space needed for alignment 1634 * of inode chunks when checking the longest contiguous free space in 1635 * the AG - this prevents us from getting ENOSPC because we have free 1636 * space larger than ialloc_blks but alignment constraints prevent us 1637 * from using it. 1638 * 1639 * If we can't find an AG with space for full alignment slack to be 1640 * taken into account, we must be near ENOSPC in all AGs. Hence we 1641 * don't include alignment for the second pass and so if we fail 1642 * allocation due to alignment issues then it is most likely a real 1643 * ENOSPC condition. 1644 * 1645 * XXX(dgc): this calculation is now bogus thanks to the per-ag 1646 * reservations that xfs_alloc_fix_freelist() now does via 1647 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will 1648 * be more than large enough for the check below to succeed, but 1649 * xfs_alloc_space_available() will fail because of the non-zero 1650 * metadata reservation and hence we won't actually be able to allocate 1651 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC 1652 * because of this. 1653 */ 1654 ineed = M_IGEO(mp)->ialloc_min_blks; 1655 if (flags && ineed > 1) 1656 ineed += M_IGEO(mp)->cluster_align; 1657 longest = pag->pagf_longest; 1658 if (!longest) 1659 longest = pag->pagf_flcount > 0; 1660 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 1661 1662 if (pag->pagf_freeblks < needspace + ineed || longest < ineed) 1663 return false; 1664 return true; 1665 } 1666 1667 static int 1668 xfs_dialloc_try_ag( 1669 struct xfs_trans **tpp, 1670 struct xfs_perag *pag, 1671 xfs_ino_t parent, 1672 xfs_ino_t *new_ino, 1673 bool ok_alloc) 1674 { 1675 struct xfs_buf *agbp; 1676 xfs_ino_t ino; 1677 int error; 1678 1679 /* 1680 * Then read in the AGI buffer and recheck with the AGI buffer 1681 * lock held. 1682 */ 1683 error = xfs_ialloc_read_agi(pag->pag_mount, *tpp, pag->pag_agno, &agbp); 1684 if (error) 1685 return error; 1686 1687 if (!pag->pagi_freecount) { 1688 if (!ok_alloc) { 1689 error = -EAGAIN; 1690 goto out_release; 1691 } 1692 1693 error = xfs_ialloc_ag_alloc(*tpp, agbp, pag); 1694 if (error < 0) 1695 goto out_release; 1696 1697 /* 1698 * We successfully allocated space for an inode cluster in this 1699 * AG. Roll the transaction so that we can allocate one of the 1700 * new inodes. 1701 */ 1702 ASSERT(pag->pagi_freecount > 0); 1703 error = xfs_dialloc_roll(tpp, agbp); 1704 if (error) 1705 goto out_release; 1706 } 1707 1708 /* Allocate an inode in the found AG */ 1709 error = xfs_dialloc_ag(*tpp, agbp, pag, parent, &ino); 1710 if (!error) 1711 *new_ino = ino; 1712 return error; 1713 1714 out_release: 1715 xfs_trans_brelse(*tpp, agbp); 1716 return error; 1717 } 1718 1719 /* 1720 * Allocate an on-disk inode. 1721 * 1722 * Mode is used to tell whether the new inode is a directory and hence where to 1723 * locate it. The on-disk inode that is allocated will be returned in @new_ino 1724 * on success, otherwise an error will be set to indicate the failure (e.g. 1725 * -ENOSPC). 1726 */ 1727 int 1728 xfs_dialloc( 1729 struct xfs_trans **tpp, 1730 xfs_ino_t parent, 1731 umode_t mode, 1732 xfs_ino_t *new_ino) 1733 { 1734 struct xfs_mount *mp = (*tpp)->t_mountp; 1735 xfs_agnumber_t agno; 1736 int error = 0; 1737 xfs_agnumber_t start_agno; 1738 struct xfs_perag *pag; 1739 struct xfs_ino_geometry *igeo = M_IGEO(mp); 1740 bool ok_alloc = true; 1741 int flags; 1742 xfs_ino_t ino; 1743 1744 /* 1745 * Directories, symlinks, and regular files frequently allocate at least 1746 * one block, so factor that potential expansion when we examine whether 1747 * an AG has enough space for file creation. 1748 */ 1749 if (S_ISDIR(mode)) 1750 start_agno = xfs_ialloc_next_ag(mp); 1751 else { 1752 start_agno = XFS_INO_TO_AGNO(mp, parent); 1753 if (start_agno >= mp->m_maxagi) 1754 start_agno = 0; 1755 } 1756 1757 /* 1758 * If we have already hit the ceiling of inode blocks then clear 1759 * ok_alloc so we scan all available agi structures for a free 1760 * inode. 1761 * 1762 * Read rough value of mp->m_icount by percpu_counter_read_positive, 1763 * which will sacrifice the preciseness but improve the performance. 1764 */ 1765 if (igeo->maxicount && 1766 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos 1767 > igeo->maxicount) { 1768 ok_alloc = false; 1769 } 1770 1771 /* 1772 * Loop until we find an allocation group that either has free inodes 1773 * or in which we can allocate some inodes. Iterate through the 1774 * allocation groups upward, wrapping at the end. 1775 */ 1776 agno = start_agno; 1777 flags = XFS_ALLOC_FLAG_TRYLOCK; 1778 for (;;) { 1779 pag = xfs_perag_get(mp, agno); 1780 if (xfs_dialloc_good_ag(*tpp, pag, mode, flags, ok_alloc)) { 1781 error = xfs_dialloc_try_ag(tpp, pag, parent, 1782 &ino, ok_alloc); 1783 if (error != -EAGAIN) 1784 break; 1785 } 1786 1787 if (XFS_FORCED_SHUTDOWN(mp)) { 1788 error = -EFSCORRUPTED; 1789 break; 1790 } 1791 if (++agno == mp->m_maxagi) 1792 agno = 0; 1793 if (agno == start_agno) { 1794 if (!flags) { 1795 error = -ENOSPC; 1796 break; 1797 } 1798 flags = 0; 1799 } 1800 xfs_perag_put(pag); 1801 } 1802 1803 if (!error) 1804 *new_ino = ino; 1805 xfs_perag_put(pag); 1806 return error; 1807 } 1808 1809 /* 1810 * Free the blocks of an inode chunk. We must consider that the inode chunk 1811 * might be sparse and only free the regions that are allocated as part of the 1812 * chunk. 1813 */ 1814 STATIC void 1815 xfs_difree_inode_chunk( 1816 struct xfs_trans *tp, 1817 xfs_agnumber_t agno, 1818 struct xfs_inobt_rec_incore *rec) 1819 { 1820 struct xfs_mount *mp = tp->t_mountp; 1821 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, 1822 rec->ir_startino); 1823 int startidx, endidx; 1824 int nextbit; 1825 xfs_agblock_t agbno; 1826 int contigblk; 1827 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); 1828 1829 if (!xfs_inobt_issparse(rec->ir_holemask)) { 1830 /* not sparse, calculate extent info directly */ 1831 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno), 1832 M_IGEO(mp)->ialloc_blks, 1833 &XFS_RMAP_OINFO_INODES); 1834 return; 1835 } 1836 1837 /* holemask is only 16-bits (fits in an unsigned long) */ 1838 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); 1839 holemask[0] = rec->ir_holemask; 1840 1841 /* 1842 * Find contiguous ranges of zeroes (i.e., allocated regions) in the 1843 * holemask and convert the start/end index of each range to an extent. 1844 * We start with the start and end index both pointing at the first 0 in 1845 * the mask. 1846 */ 1847 startidx = endidx = find_first_zero_bit(holemask, 1848 XFS_INOBT_HOLEMASK_BITS); 1849 nextbit = startidx + 1; 1850 while (startidx < XFS_INOBT_HOLEMASK_BITS) { 1851 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, 1852 nextbit); 1853 /* 1854 * If the next zero bit is contiguous, update the end index of 1855 * the current range and continue. 1856 */ 1857 if (nextbit != XFS_INOBT_HOLEMASK_BITS && 1858 nextbit == endidx + 1) { 1859 endidx = nextbit; 1860 goto next; 1861 } 1862 1863 /* 1864 * nextbit is not contiguous with the current end index. Convert 1865 * the current start/end to an extent and add it to the free 1866 * list. 1867 */ 1868 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / 1869 mp->m_sb.sb_inopblock; 1870 contigblk = ((endidx - startidx + 1) * 1871 XFS_INODES_PER_HOLEMASK_BIT) / 1872 mp->m_sb.sb_inopblock; 1873 1874 ASSERT(agbno % mp->m_sb.sb_spino_align == 0); 1875 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); 1876 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno), 1877 contigblk, &XFS_RMAP_OINFO_INODES); 1878 1879 /* reset range to current bit and carry on... */ 1880 startidx = endidx = nextbit; 1881 1882 next: 1883 nextbit++; 1884 } 1885 } 1886 1887 STATIC int 1888 xfs_difree_inobt( 1889 struct xfs_mount *mp, 1890 struct xfs_trans *tp, 1891 struct xfs_buf *agbp, 1892 struct xfs_perag *pag, 1893 xfs_agino_t agino, 1894 struct xfs_icluster *xic, 1895 struct xfs_inobt_rec_incore *orec) 1896 { 1897 struct xfs_agi *agi = agbp->b_addr; 1898 struct xfs_btree_cur *cur; 1899 struct xfs_inobt_rec_incore rec; 1900 int ilen; 1901 int error; 1902 int i; 1903 int off; 1904 1905 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1906 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 1907 1908 /* 1909 * Initialize the cursor. 1910 */ 1911 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO); 1912 1913 error = xfs_check_agi_freecount(cur); 1914 if (error) 1915 goto error0; 1916 1917 /* 1918 * Look for the entry describing this inode. 1919 */ 1920 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 1921 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 1922 __func__, error); 1923 goto error0; 1924 } 1925 if (XFS_IS_CORRUPT(mp, i != 1)) { 1926 error = -EFSCORRUPTED; 1927 goto error0; 1928 } 1929 error = xfs_inobt_get_rec(cur, &rec, &i); 1930 if (error) { 1931 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 1932 __func__, error); 1933 goto error0; 1934 } 1935 if (XFS_IS_CORRUPT(mp, i != 1)) { 1936 error = -EFSCORRUPTED; 1937 goto error0; 1938 } 1939 /* 1940 * Get the offset in the inode chunk. 1941 */ 1942 off = agino - rec.ir_startino; 1943 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 1944 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 1945 /* 1946 * Mark the inode free & increment the count. 1947 */ 1948 rec.ir_free |= XFS_INOBT_MASK(off); 1949 rec.ir_freecount++; 1950 1951 /* 1952 * When an inode chunk is free, it becomes eligible for removal. Don't 1953 * remove the chunk if the block size is large enough for multiple inode 1954 * chunks (that might not be free). 1955 */ 1956 if (!(mp->m_flags & XFS_MOUNT_IKEEP) && 1957 rec.ir_free == XFS_INOBT_ALL_FREE && 1958 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 1959 struct xfs_perag *pag = agbp->b_pag; 1960 1961 xic->deleted = true; 1962 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, 1963 rec.ir_startino); 1964 xic->alloc = xfs_inobt_irec_to_allocmask(&rec); 1965 1966 /* 1967 * Remove the inode cluster from the AGI B+Tree, adjust the 1968 * AGI and Superblock inode counts, and mark the disk space 1969 * to be freed when the transaction is committed. 1970 */ 1971 ilen = rec.ir_freecount; 1972 be32_add_cpu(&agi->agi_count, -ilen); 1973 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 1974 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 1975 pag->pagi_freecount -= ilen - 1; 1976 pag->pagi_count -= ilen; 1977 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 1978 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 1979 1980 if ((error = xfs_btree_delete(cur, &i))) { 1981 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 1982 __func__, error); 1983 goto error0; 1984 } 1985 1986 xfs_difree_inode_chunk(tp, pag->pag_agno, &rec); 1987 } else { 1988 xic->deleted = false; 1989 1990 error = xfs_inobt_update(cur, &rec); 1991 if (error) { 1992 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 1993 __func__, error); 1994 goto error0; 1995 } 1996 1997 /* 1998 * Change the inode free counts and log the ag/sb changes. 1999 */ 2000 be32_add_cpu(&agi->agi_freecount, 1); 2001 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 2002 pag->pagi_freecount++; 2003 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 2004 } 2005 2006 error = xfs_check_agi_freecount(cur); 2007 if (error) 2008 goto error0; 2009 2010 *orec = rec; 2011 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2012 return 0; 2013 2014 error0: 2015 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2016 return error; 2017 } 2018 2019 /* 2020 * Free an inode in the free inode btree. 2021 */ 2022 STATIC int 2023 xfs_difree_finobt( 2024 struct xfs_mount *mp, 2025 struct xfs_trans *tp, 2026 struct xfs_buf *agbp, 2027 struct xfs_perag *pag, 2028 xfs_agino_t agino, 2029 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 2030 { 2031 struct xfs_btree_cur *cur; 2032 struct xfs_inobt_rec_incore rec; 2033 int offset = agino - ibtrec->ir_startino; 2034 int error; 2035 int i; 2036 2037 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO); 2038 2039 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 2040 if (error) 2041 goto error; 2042 if (i == 0) { 2043 /* 2044 * If the record does not exist in the finobt, we must have just 2045 * freed an inode in a previously fully allocated chunk. If not, 2046 * something is out of sync. 2047 */ 2048 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) { 2049 error = -EFSCORRUPTED; 2050 goto error; 2051 } 2052 2053 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, 2054 ibtrec->ir_count, 2055 ibtrec->ir_freecount, 2056 ibtrec->ir_free, &i); 2057 if (error) 2058 goto error; 2059 ASSERT(i == 1); 2060 2061 goto out; 2062 } 2063 2064 /* 2065 * Read and update the existing record. We could just copy the ibtrec 2066 * across here, but that would defeat the purpose of having redundant 2067 * metadata. By making the modifications independently, we can catch 2068 * corruptions that we wouldn't see if we just copied from one record 2069 * to another. 2070 */ 2071 error = xfs_inobt_get_rec(cur, &rec, &i); 2072 if (error) 2073 goto error; 2074 if (XFS_IS_CORRUPT(mp, i != 1)) { 2075 error = -EFSCORRUPTED; 2076 goto error; 2077 } 2078 2079 rec.ir_free |= XFS_INOBT_MASK(offset); 2080 rec.ir_freecount++; 2081 2082 if (XFS_IS_CORRUPT(mp, 2083 rec.ir_free != ibtrec->ir_free || 2084 rec.ir_freecount != ibtrec->ir_freecount)) { 2085 error = -EFSCORRUPTED; 2086 goto error; 2087 } 2088 2089 /* 2090 * The content of inobt records should always match between the inobt 2091 * and finobt. The lifecycle of records in the finobt is different from 2092 * the inobt in that the finobt only tracks records with at least one 2093 * free inode. Hence, if all of the inodes are free and we aren't 2094 * keeping inode chunks permanently on disk, remove the record. 2095 * Otherwise, update the record with the new information. 2096 * 2097 * Note that we currently can't free chunks when the block size is large 2098 * enough for multiple chunks. Leave the finobt record to remain in sync 2099 * with the inobt. 2100 */ 2101 if (rec.ir_free == XFS_INOBT_ALL_FREE && 2102 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK && 2103 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 2104 error = xfs_btree_delete(cur, &i); 2105 if (error) 2106 goto error; 2107 ASSERT(i == 1); 2108 } else { 2109 error = xfs_inobt_update(cur, &rec); 2110 if (error) 2111 goto error; 2112 } 2113 2114 out: 2115 error = xfs_check_agi_freecount(cur); 2116 if (error) 2117 goto error; 2118 2119 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2120 return 0; 2121 2122 error: 2123 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2124 return error; 2125 } 2126 2127 /* 2128 * Free disk inode. Carefully avoids touching the incore inode, all 2129 * manipulations incore are the caller's responsibility. 2130 * The on-disk inode is not changed by this operation, only the 2131 * btree (free inode mask) is changed. 2132 */ 2133 int 2134 xfs_difree( 2135 struct xfs_trans *tp, 2136 struct xfs_perag *pag, 2137 xfs_ino_t inode, 2138 struct xfs_icluster *xic) 2139 { 2140 /* REFERENCED */ 2141 xfs_agblock_t agbno; /* block number containing inode */ 2142 struct xfs_buf *agbp; /* buffer for allocation group header */ 2143 xfs_agino_t agino; /* allocation group inode number */ 2144 int error; /* error return value */ 2145 struct xfs_mount *mp = tp->t_mountp; 2146 struct xfs_inobt_rec_incore rec;/* btree record */ 2147 2148 /* 2149 * Break up inode number into its components. 2150 */ 2151 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) { 2152 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).", 2153 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno); 2154 ASSERT(0); 2155 return -EINVAL; 2156 } 2157 agino = XFS_INO_TO_AGINO(mp, inode); 2158 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { 2159 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 2160 __func__, (unsigned long long)inode, 2161 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); 2162 ASSERT(0); 2163 return -EINVAL; 2164 } 2165 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2166 if (agbno >= mp->m_sb.sb_agblocks) { 2167 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 2168 __func__, agbno, mp->m_sb.sb_agblocks); 2169 ASSERT(0); 2170 return -EINVAL; 2171 } 2172 /* 2173 * Get the allocation group header. 2174 */ 2175 error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp); 2176 if (error) { 2177 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 2178 __func__, error); 2179 return error; 2180 } 2181 2182 /* 2183 * Fix up the inode allocation btree. 2184 */ 2185 error = xfs_difree_inobt(mp, tp, agbp, pag, agino, xic, &rec); 2186 if (error) 2187 goto error0; 2188 2189 /* 2190 * Fix up the free inode btree. 2191 */ 2192 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 2193 error = xfs_difree_finobt(mp, tp, agbp, pag, agino, &rec); 2194 if (error) 2195 goto error0; 2196 } 2197 2198 return 0; 2199 2200 error0: 2201 return error; 2202 } 2203 2204 STATIC int 2205 xfs_imap_lookup( 2206 struct xfs_mount *mp, 2207 struct xfs_trans *tp, 2208 struct xfs_perag *pag, 2209 xfs_agino_t agino, 2210 xfs_agblock_t agbno, 2211 xfs_agblock_t *chunk_agbno, 2212 xfs_agblock_t *offset_agbno, 2213 int flags) 2214 { 2215 struct xfs_inobt_rec_incore rec; 2216 struct xfs_btree_cur *cur; 2217 struct xfs_buf *agbp; 2218 int error; 2219 int i; 2220 2221 error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp); 2222 if (error) { 2223 xfs_alert(mp, 2224 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 2225 __func__, error, pag->pag_agno); 2226 return error; 2227 } 2228 2229 /* 2230 * Lookup the inode record for the given agino. If the record cannot be 2231 * found, then it's an invalid inode number and we should abort. Once 2232 * we have a record, we need to ensure it contains the inode number 2233 * we are looking up. 2234 */ 2235 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO); 2236 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 2237 if (!error) { 2238 if (i) 2239 error = xfs_inobt_get_rec(cur, &rec, &i); 2240 if (!error && i == 0) 2241 error = -EINVAL; 2242 } 2243 2244 xfs_trans_brelse(tp, agbp); 2245 xfs_btree_del_cursor(cur, error); 2246 if (error) 2247 return error; 2248 2249 /* check that the returned record contains the required inode */ 2250 if (rec.ir_startino > agino || 2251 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino) 2252 return -EINVAL; 2253 2254 /* for untrusted inodes check it is allocated first */ 2255 if ((flags & XFS_IGET_UNTRUSTED) && 2256 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 2257 return -EINVAL; 2258 2259 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 2260 *offset_agbno = agbno - *chunk_agbno; 2261 return 0; 2262 } 2263 2264 /* 2265 * Return the location of the inode in imap, for mapping it into a buffer. 2266 */ 2267 int 2268 xfs_imap( 2269 struct xfs_mount *mp, /* file system mount structure */ 2270 struct xfs_trans *tp, /* transaction pointer */ 2271 xfs_ino_t ino, /* inode to locate */ 2272 struct xfs_imap *imap, /* location map structure */ 2273 uint flags) /* flags for inode btree lookup */ 2274 { 2275 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 2276 xfs_agino_t agino; /* inode number within alloc group */ 2277 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 2278 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 2279 int error; /* error code */ 2280 int offset; /* index of inode in its buffer */ 2281 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 2282 struct xfs_perag *pag; 2283 2284 ASSERT(ino != NULLFSINO); 2285 2286 /* 2287 * Split up the inode number into its parts. 2288 */ 2289 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 2290 agino = XFS_INO_TO_AGINO(mp, ino); 2291 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2292 if (!pag || agbno >= mp->m_sb.sb_agblocks || 2293 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { 2294 error = -EINVAL; 2295 #ifdef DEBUG 2296 /* 2297 * Don't output diagnostic information for untrusted inodes 2298 * as they can be invalid without implying corruption. 2299 */ 2300 if (flags & XFS_IGET_UNTRUSTED) 2301 goto out_drop; 2302 if (!pag) { 2303 xfs_alert(mp, 2304 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", 2305 __func__, XFS_INO_TO_AGNO(mp, ino), 2306 mp->m_sb.sb_agcount); 2307 } 2308 if (agbno >= mp->m_sb.sb_agblocks) { 2309 xfs_alert(mp, 2310 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 2311 __func__, (unsigned long long)agbno, 2312 (unsigned long)mp->m_sb.sb_agblocks); 2313 } 2314 if (pag && ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { 2315 xfs_alert(mp, 2316 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 2317 __func__, ino, 2318 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); 2319 } 2320 xfs_stack_trace(); 2321 #endif /* DEBUG */ 2322 goto out_drop; 2323 } 2324 2325 /* 2326 * For bulkstat and handle lookups, we have an untrusted inode number 2327 * that we have to verify is valid. We cannot do this just by reading 2328 * the inode buffer as it may have been unlinked and removed leaving 2329 * inodes in stale state on disk. Hence we have to do a btree lookup 2330 * in all cases where an untrusted inode number is passed. 2331 */ 2332 if (flags & XFS_IGET_UNTRUSTED) { 2333 error = xfs_imap_lookup(mp, tp, pag, agino, agbno, 2334 &chunk_agbno, &offset_agbno, flags); 2335 if (error) 2336 goto out_drop; 2337 goto out_map; 2338 } 2339 2340 /* 2341 * If the inode cluster size is the same as the blocksize or 2342 * smaller we get to the buffer by simple arithmetics. 2343 */ 2344 if (M_IGEO(mp)->blocks_per_cluster == 1) { 2345 offset = XFS_INO_TO_OFFSET(mp, ino); 2346 ASSERT(offset < mp->m_sb.sb_inopblock); 2347 2348 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno); 2349 imap->im_len = XFS_FSB_TO_BB(mp, 1); 2350 imap->im_boffset = (unsigned short)(offset << 2351 mp->m_sb.sb_inodelog); 2352 error = 0; 2353 goto out_drop; 2354 } 2355 2356 /* 2357 * If the inode chunks are aligned then use simple maths to 2358 * find the location. Otherwise we have to do a btree 2359 * lookup to find the location. 2360 */ 2361 if (M_IGEO(mp)->inoalign_mask) { 2362 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask; 2363 chunk_agbno = agbno - offset_agbno; 2364 } else { 2365 error = xfs_imap_lookup(mp, tp, pag, agino, agbno, 2366 &chunk_agbno, &offset_agbno, flags); 2367 if (error) 2368 goto out_drop; 2369 } 2370 2371 out_map: 2372 ASSERT(agbno >= chunk_agbno); 2373 cluster_agbno = chunk_agbno + 2374 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) * 2375 M_IGEO(mp)->blocks_per_cluster); 2376 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 2377 XFS_INO_TO_OFFSET(mp, ino); 2378 2379 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno); 2380 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster); 2381 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); 2382 2383 /* 2384 * If the inode number maps to a block outside the bounds 2385 * of the file system then return NULL rather than calling 2386 * read_buf and panicing when we get an error from the 2387 * driver. 2388 */ 2389 if ((imap->im_blkno + imap->im_len) > 2390 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 2391 xfs_alert(mp, 2392 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 2393 __func__, (unsigned long long) imap->im_blkno, 2394 (unsigned long long) imap->im_len, 2395 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 2396 error = -EINVAL; 2397 goto out_drop; 2398 } 2399 error = 0; 2400 out_drop: 2401 if (pag) 2402 xfs_perag_put(pag); 2403 return error; 2404 } 2405 2406 /* 2407 * Log specified fields for the ag hdr (inode section). The growth of the agi 2408 * structure over time requires that we interpret the buffer as two logical 2409 * regions delineated by the end of the unlinked list. This is due to the size 2410 * of the hash table and its location in the middle of the agi. 2411 * 2412 * For example, a request to log a field before agi_unlinked and a field after 2413 * agi_unlinked could cause us to log the entire hash table and use an excessive 2414 * amount of log space. To avoid this behavior, log the region up through 2415 * agi_unlinked in one call and the region after agi_unlinked through the end of 2416 * the structure in another. 2417 */ 2418 void 2419 xfs_ialloc_log_agi( 2420 xfs_trans_t *tp, /* transaction pointer */ 2421 struct xfs_buf *bp, /* allocation group header buffer */ 2422 int fields) /* bitmask of fields to log */ 2423 { 2424 int first; /* first byte number */ 2425 int last; /* last byte number */ 2426 static const short offsets[] = { /* field starting offsets */ 2427 /* keep in sync with bit definitions */ 2428 offsetof(xfs_agi_t, agi_magicnum), 2429 offsetof(xfs_agi_t, agi_versionnum), 2430 offsetof(xfs_agi_t, agi_seqno), 2431 offsetof(xfs_agi_t, agi_length), 2432 offsetof(xfs_agi_t, agi_count), 2433 offsetof(xfs_agi_t, agi_root), 2434 offsetof(xfs_agi_t, agi_level), 2435 offsetof(xfs_agi_t, agi_freecount), 2436 offsetof(xfs_agi_t, agi_newino), 2437 offsetof(xfs_agi_t, agi_dirino), 2438 offsetof(xfs_agi_t, agi_unlinked), 2439 offsetof(xfs_agi_t, agi_free_root), 2440 offsetof(xfs_agi_t, agi_free_level), 2441 offsetof(xfs_agi_t, agi_iblocks), 2442 sizeof(xfs_agi_t) 2443 }; 2444 #ifdef DEBUG 2445 struct xfs_agi *agi = bp->b_addr; 2446 2447 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2448 #endif 2449 2450 /* 2451 * Compute byte offsets for the first and last fields in the first 2452 * region and log the agi buffer. This only logs up through 2453 * agi_unlinked. 2454 */ 2455 if (fields & XFS_AGI_ALL_BITS_R1) { 2456 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2457 &first, &last); 2458 xfs_trans_log_buf(tp, bp, first, last); 2459 } 2460 2461 /* 2462 * Mask off the bits in the first region and calculate the first and 2463 * last field offsets for any bits in the second region. 2464 */ 2465 fields &= ~XFS_AGI_ALL_BITS_R1; 2466 if (fields) { 2467 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2468 &first, &last); 2469 xfs_trans_log_buf(tp, bp, first, last); 2470 } 2471 } 2472 2473 static xfs_failaddr_t 2474 xfs_agi_verify( 2475 struct xfs_buf *bp) 2476 { 2477 struct xfs_mount *mp = bp->b_mount; 2478 struct xfs_agi *agi = bp->b_addr; 2479 int i; 2480 2481 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2482 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) 2483 return __this_address; 2484 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn))) 2485 return __this_address; 2486 } 2487 2488 /* 2489 * Validate the magic number of the agi block. 2490 */ 2491 if (!xfs_verify_magic(bp, agi->agi_magicnum)) 2492 return __this_address; 2493 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2494 return __this_address; 2495 2496 if (be32_to_cpu(agi->agi_level) < 1 || 2497 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels) 2498 return __this_address; 2499 2500 if (xfs_sb_version_hasfinobt(&mp->m_sb) && 2501 (be32_to_cpu(agi->agi_free_level) < 1 || 2502 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels)) 2503 return __this_address; 2504 2505 /* 2506 * during growfs operations, the perag is not fully initialised, 2507 * so we can't use it for any useful checking. growfs ensures we can't 2508 * use it by using uncached buffers that don't have the perag attached 2509 * so we can detect and avoid this problem. 2510 */ 2511 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) 2512 return __this_address; 2513 2514 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { 2515 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO)) 2516 continue; 2517 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i]))) 2518 return __this_address; 2519 } 2520 2521 return NULL; 2522 } 2523 2524 static void 2525 xfs_agi_read_verify( 2526 struct xfs_buf *bp) 2527 { 2528 struct xfs_mount *mp = bp->b_mount; 2529 xfs_failaddr_t fa; 2530 2531 if (xfs_sb_version_hascrc(&mp->m_sb) && 2532 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2533 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 2534 else { 2535 fa = xfs_agi_verify(bp); 2536 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI)) 2537 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 2538 } 2539 } 2540 2541 static void 2542 xfs_agi_write_verify( 2543 struct xfs_buf *bp) 2544 { 2545 struct xfs_mount *mp = bp->b_mount; 2546 struct xfs_buf_log_item *bip = bp->b_log_item; 2547 struct xfs_agi *agi = bp->b_addr; 2548 xfs_failaddr_t fa; 2549 2550 fa = xfs_agi_verify(bp); 2551 if (fa) { 2552 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 2553 return; 2554 } 2555 2556 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2557 return; 2558 2559 if (bip) 2560 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2561 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2562 } 2563 2564 const struct xfs_buf_ops xfs_agi_buf_ops = { 2565 .name = "xfs_agi", 2566 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) }, 2567 .verify_read = xfs_agi_read_verify, 2568 .verify_write = xfs_agi_write_verify, 2569 .verify_struct = xfs_agi_verify, 2570 }; 2571 2572 /* 2573 * Read in the allocation group header (inode allocation section) 2574 */ 2575 int 2576 xfs_read_agi( 2577 struct xfs_mount *mp, /* file system mount structure */ 2578 struct xfs_trans *tp, /* transaction pointer */ 2579 xfs_agnumber_t agno, /* allocation group number */ 2580 struct xfs_buf **bpp) /* allocation group hdr buf */ 2581 { 2582 int error; 2583 2584 trace_xfs_read_agi(mp, agno); 2585 2586 ASSERT(agno != NULLAGNUMBER); 2587 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2588 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 2589 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); 2590 if (error) 2591 return error; 2592 if (tp) 2593 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF); 2594 2595 xfs_buf_set_ref(*bpp, XFS_AGI_REF); 2596 return 0; 2597 } 2598 2599 int 2600 xfs_ialloc_read_agi( 2601 struct xfs_mount *mp, /* file system mount structure */ 2602 struct xfs_trans *tp, /* transaction pointer */ 2603 xfs_agnumber_t agno, /* allocation group number */ 2604 struct xfs_buf **bpp) /* allocation group hdr buf */ 2605 { 2606 struct xfs_agi *agi; /* allocation group header */ 2607 struct xfs_perag *pag; /* per allocation group data */ 2608 int error; 2609 2610 trace_xfs_ialloc_read_agi(mp, agno); 2611 2612 error = xfs_read_agi(mp, tp, agno, bpp); 2613 if (error) 2614 return error; 2615 2616 agi = (*bpp)->b_addr; 2617 pag = (*bpp)->b_pag; 2618 if (!pag->pagi_init) { 2619 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2620 pag->pagi_count = be32_to_cpu(agi->agi_count); 2621 pag->pagi_init = 1; 2622 } 2623 2624 /* 2625 * It's possible for these to be out of sync if 2626 * we are in the middle of a forced shutdown. 2627 */ 2628 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2629 XFS_FORCED_SHUTDOWN(mp)); 2630 return 0; 2631 } 2632 2633 /* 2634 * Read in the agi to initialise the per-ag data in the mount structure 2635 */ 2636 int 2637 xfs_ialloc_pagi_init( 2638 xfs_mount_t *mp, /* file system mount structure */ 2639 xfs_trans_t *tp, /* transaction pointer */ 2640 xfs_agnumber_t agno) /* allocation group number */ 2641 { 2642 struct xfs_buf *bp = NULL; 2643 int error; 2644 2645 error = xfs_ialloc_read_agi(mp, tp, agno, &bp); 2646 if (error) 2647 return error; 2648 if (bp) 2649 xfs_trans_brelse(tp, bp); 2650 return 0; 2651 } 2652 2653 /* Is there an inode record covering a given range of inode numbers? */ 2654 int 2655 xfs_ialloc_has_inode_record( 2656 struct xfs_btree_cur *cur, 2657 xfs_agino_t low, 2658 xfs_agino_t high, 2659 bool *exists) 2660 { 2661 struct xfs_inobt_rec_incore irec; 2662 xfs_agino_t agino; 2663 uint16_t holemask; 2664 int has_record; 2665 int i; 2666 int error; 2667 2668 *exists = false; 2669 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record); 2670 while (error == 0 && has_record) { 2671 error = xfs_inobt_get_rec(cur, &irec, &has_record); 2672 if (error || irec.ir_startino > high) 2673 break; 2674 2675 agino = irec.ir_startino; 2676 holemask = irec.ir_holemask; 2677 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1, 2678 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) { 2679 if (holemask & 1) 2680 continue; 2681 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low && 2682 agino <= high) { 2683 *exists = true; 2684 return 0; 2685 } 2686 } 2687 2688 error = xfs_btree_increment(cur, 0, &has_record); 2689 } 2690 return error; 2691 } 2692 2693 /* Is there an inode record covering a given extent? */ 2694 int 2695 xfs_ialloc_has_inodes_at_extent( 2696 struct xfs_btree_cur *cur, 2697 xfs_agblock_t bno, 2698 xfs_extlen_t len, 2699 bool *exists) 2700 { 2701 xfs_agino_t low; 2702 xfs_agino_t high; 2703 2704 low = XFS_AGB_TO_AGINO(cur->bc_mp, bno); 2705 high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1; 2706 2707 return xfs_ialloc_has_inode_record(cur, low, high, exists); 2708 } 2709 2710 struct xfs_ialloc_count_inodes { 2711 xfs_agino_t count; 2712 xfs_agino_t freecount; 2713 }; 2714 2715 /* Record inode counts across all inobt records. */ 2716 STATIC int 2717 xfs_ialloc_count_inodes_rec( 2718 struct xfs_btree_cur *cur, 2719 union xfs_btree_rec *rec, 2720 void *priv) 2721 { 2722 struct xfs_inobt_rec_incore irec; 2723 struct xfs_ialloc_count_inodes *ci = priv; 2724 2725 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec); 2726 ci->count += irec.ir_count; 2727 ci->freecount += irec.ir_freecount; 2728 2729 return 0; 2730 } 2731 2732 /* Count allocated and free inodes under an inobt. */ 2733 int 2734 xfs_ialloc_count_inodes( 2735 struct xfs_btree_cur *cur, 2736 xfs_agino_t *count, 2737 xfs_agino_t *freecount) 2738 { 2739 struct xfs_ialloc_count_inodes ci = {0}; 2740 int error; 2741 2742 ASSERT(cur->bc_btnum == XFS_BTNUM_INO); 2743 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci); 2744 if (error) 2745 return error; 2746 2747 *count = ci.count; 2748 *freecount = ci.freecount; 2749 return 0; 2750 } 2751 2752 /* 2753 * Initialize inode-related geometry information. 2754 * 2755 * Compute the inode btree min and max levels and set maxicount. 2756 * 2757 * Set the inode cluster size. This may still be overridden by the file 2758 * system block size if it is larger than the chosen cluster size. 2759 * 2760 * For v5 filesystems, scale the cluster size with the inode size to keep a 2761 * constant ratio of inode per cluster buffer, but only if mkfs has set the 2762 * inode alignment value appropriately for larger cluster sizes. 2763 * 2764 * Then compute the inode cluster alignment information. 2765 */ 2766 void 2767 xfs_ialloc_setup_geometry( 2768 struct xfs_mount *mp) 2769 { 2770 struct xfs_sb *sbp = &mp->m_sb; 2771 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2772 uint64_t icount; 2773 uint inodes; 2774 2775 igeo->new_diflags2 = 0; 2776 if (xfs_sb_version_hasbigtime(&mp->m_sb)) 2777 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME; 2778 2779 /* Compute inode btree geometry. */ 2780 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 2781 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 2782 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 2783 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2; 2784 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2; 2785 2786 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK, 2787 sbp->sb_inopblock); 2788 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog; 2789 2790 if (sbp->sb_spino_align) 2791 igeo->ialloc_min_blks = sbp->sb_spino_align; 2792 else 2793 igeo->ialloc_min_blks = igeo->ialloc_blks; 2794 2795 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */ 2796 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; 2797 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr, 2798 inodes); 2799 2800 /* 2801 * Set the maximum inode count for this filesystem, being careful not 2802 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular 2803 * users should never get here due to failing sb verification, but 2804 * certain users (xfs_db) need to be usable even with corrupt metadata. 2805 */ 2806 if (sbp->sb_imax_pct && igeo->ialloc_blks) { 2807 /* 2808 * Make sure the maximum inode count is a multiple 2809 * of the units we allocate inodes in. 2810 */ 2811 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 2812 do_div(icount, 100); 2813 do_div(icount, igeo->ialloc_blks); 2814 igeo->maxicount = XFS_FSB_TO_INO(mp, 2815 icount * igeo->ialloc_blks); 2816 } else { 2817 igeo->maxicount = 0; 2818 } 2819 2820 /* 2821 * Compute the desired size of an inode cluster buffer size, which 2822 * starts at 8K and (on v5 filesystems) scales up with larger inode 2823 * sizes. 2824 * 2825 * Preserve the desired inode cluster size because the sparse inodes 2826 * feature uses that desired size (not the actual size) to compute the 2827 * sparse inode alignment. The mount code validates this value, so we 2828 * cannot change the behavior. 2829 */ 2830 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE; 2831 if (xfs_sb_version_has_v3inode(&mp->m_sb)) { 2832 int new_size = igeo->inode_cluster_size_raw; 2833 2834 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 2835 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 2836 igeo->inode_cluster_size_raw = new_size; 2837 } 2838 2839 /* Calculate inode cluster ratios. */ 2840 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize) 2841 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp, 2842 igeo->inode_cluster_size_raw); 2843 else 2844 igeo->blocks_per_cluster = 1; 2845 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster); 2846 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster); 2847 2848 /* Calculate inode cluster alignment. */ 2849 if (xfs_sb_version_hasalign(&mp->m_sb) && 2850 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster) 2851 igeo->cluster_align = mp->m_sb.sb_inoalignmt; 2852 else 2853 igeo->cluster_align = 1; 2854 igeo->inoalign_mask = igeo->cluster_align - 1; 2855 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align); 2856 2857 /* 2858 * If we are using stripe alignment, check whether 2859 * the stripe unit is a multiple of the inode alignment 2860 */ 2861 if (mp->m_dalign && igeo->inoalign_mask && 2862 !(mp->m_dalign & igeo->inoalign_mask)) 2863 igeo->ialloc_align = mp->m_dalign; 2864 else 2865 igeo->ialloc_align = 0; 2866 } 2867 2868 /* Compute the location of the root directory inode that is laid out by mkfs. */ 2869 xfs_ino_t 2870 xfs_ialloc_calc_rootino( 2871 struct xfs_mount *mp, 2872 int sunit) 2873 { 2874 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2875 xfs_agblock_t first_bno; 2876 2877 /* 2878 * Pre-calculate the geometry of AG 0. We know what it looks like 2879 * because libxfs knows how to create allocation groups now. 2880 * 2881 * first_bno is the first block in which mkfs could possibly have 2882 * allocated the root directory inode, once we factor in the metadata 2883 * that mkfs formats before it. Namely, the four AG headers... 2884 */ 2885 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize); 2886 2887 /* ...the two free space btree roots... */ 2888 first_bno += 2; 2889 2890 /* ...the inode btree root... */ 2891 first_bno += 1; 2892 2893 /* ...the initial AGFL... */ 2894 first_bno += xfs_alloc_min_freelist(mp, NULL); 2895 2896 /* ...the free inode btree root... */ 2897 if (xfs_sb_version_hasfinobt(&mp->m_sb)) 2898 first_bno++; 2899 2900 /* ...the reverse mapping btree root... */ 2901 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) 2902 first_bno++; 2903 2904 /* ...the reference count btree... */ 2905 if (xfs_sb_version_hasreflink(&mp->m_sb)) 2906 first_bno++; 2907 2908 /* 2909 * ...and the log, if it is allocated in the first allocation group. 2910 * 2911 * This can happen with filesystems that only have a single 2912 * allocation group, or very odd geometries created by old mkfs 2913 * versions on very small filesystems. 2914 */ 2915 if (mp->m_sb.sb_logstart && 2916 XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0) 2917 first_bno += mp->m_sb.sb_logblocks; 2918 2919 /* 2920 * Now round first_bno up to whatever allocation alignment is given 2921 * by the filesystem or was passed in. 2922 */ 2923 if (xfs_sb_version_hasdalign(&mp->m_sb) && igeo->ialloc_align > 0) 2924 first_bno = roundup(first_bno, sunit); 2925 else if (xfs_sb_version_hasalign(&mp->m_sb) && 2926 mp->m_sb.sb_inoalignmt > 1) 2927 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt); 2928 2929 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno)); 2930 } 2931 2932 /* 2933 * Ensure there are not sparse inode clusters that cross the new EOAG. 2934 * 2935 * This is a no-op for non-spinode filesystems since clusters are always fully 2936 * allocated and checking the bnobt suffices. However, a spinode filesystem 2937 * could have a record where the upper inodes are free blocks. If those blocks 2938 * were removed from the filesystem, the inode record would extend beyond EOAG, 2939 * which will be flagged as corruption. 2940 */ 2941 int 2942 xfs_ialloc_check_shrink( 2943 struct xfs_trans *tp, 2944 xfs_agnumber_t agno, 2945 struct xfs_buf *agibp, 2946 xfs_agblock_t new_length) 2947 { 2948 struct xfs_inobt_rec_incore rec; 2949 struct xfs_btree_cur *cur; 2950 struct xfs_mount *mp = tp->t_mountp; 2951 struct xfs_perag *pag; 2952 xfs_agino_t agino = XFS_AGB_TO_AGINO(mp, new_length); 2953 int has; 2954 int error; 2955 2956 if (!xfs_sb_version_hassparseinodes(&mp->m_sb)) 2957 return 0; 2958 2959 pag = xfs_perag_get(mp, agno); 2960 cur = xfs_inobt_init_cursor(mp, tp, agibp, pag, XFS_BTNUM_INO); 2961 2962 /* Look up the inobt record that would correspond to the new EOFS. */ 2963 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has); 2964 if (error || !has) 2965 goto out; 2966 2967 error = xfs_inobt_get_rec(cur, &rec, &has); 2968 if (error) 2969 goto out; 2970 2971 if (!has) { 2972 error = -EFSCORRUPTED; 2973 goto out; 2974 } 2975 2976 /* If the record covers inodes that would be beyond EOFS, bail out. */ 2977 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) { 2978 error = -ENOSPC; 2979 goto out; 2980 } 2981 out: 2982 xfs_btree_del_cursor(cur, error); 2983 xfs_perag_put(pag); 2984 return error; 2985 } 2986