1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_inode.h" 28 #include "xfs_btree.h" 29 #include "xfs_ialloc.h" 30 #include "xfs_ialloc_btree.h" 31 #include "xfs_alloc.h" 32 #include "xfs_rtalloc.h" 33 #include "xfs_error.h" 34 #include "xfs_bmap.h" 35 #include "xfs_cksum.h" 36 #include "xfs_trans.h" 37 #include "xfs_buf_item.h" 38 #include "xfs_icreate_item.h" 39 #include "xfs_icache.h" 40 #include "xfs_trace.h" 41 42 43 /* 44 * Allocation group level functions. 45 */ 46 static inline int 47 xfs_ialloc_cluster_alignment( 48 struct xfs_mount *mp) 49 { 50 if (xfs_sb_version_hasalign(&mp->m_sb) && 51 mp->m_sb.sb_inoalignmt >= 52 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 53 return mp->m_sb.sb_inoalignmt; 54 return 1; 55 } 56 57 /* 58 * Lookup a record by ino in the btree given by cur. 59 */ 60 int /* error */ 61 xfs_inobt_lookup( 62 struct xfs_btree_cur *cur, /* btree cursor */ 63 xfs_agino_t ino, /* starting inode of chunk */ 64 xfs_lookup_t dir, /* <=, >=, == */ 65 int *stat) /* success/failure */ 66 { 67 cur->bc_rec.i.ir_startino = ino; 68 cur->bc_rec.i.ir_holemask = 0; 69 cur->bc_rec.i.ir_count = 0; 70 cur->bc_rec.i.ir_freecount = 0; 71 cur->bc_rec.i.ir_free = 0; 72 return xfs_btree_lookup(cur, dir, stat); 73 } 74 75 /* 76 * Update the record referred to by cur to the value given. 77 * This either works (return 0) or gets an EFSCORRUPTED error. 78 */ 79 STATIC int /* error */ 80 xfs_inobt_update( 81 struct xfs_btree_cur *cur, /* btree cursor */ 82 xfs_inobt_rec_incore_t *irec) /* btree record */ 83 { 84 union xfs_btree_rec rec; 85 86 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 87 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { 88 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); 89 rec.inobt.ir_u.sp.ir_count = irec->ir_count; 90 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; 91 } else { 92 /* ir_holemask/ir_count not supported on-disk */ 93 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); 94 } 95 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 96 return xfs_btree_update(cur, &rec); 97 } 98 99 /* 100 * Get the data from the pointed-to record. 101 */ 102 int /* error */ 103 xfs_inobt_get_rec( 104 struct xfs_btree_cur *cur, /* btree cursor */ 105 xfs_inobt_rec_incore_t *irec, /* btree record */ 106 int *stat) /* output: success/failure */ 107 { 108 union xfs_btree_rec *rec; 109 int error; 110 111 error = xfs_btree_get_rec(cur, &rec, stat); 112 if (error || *stat == 0) 113 return error; 114 115 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 116 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { 117 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); 118 irec->ir_count = rec->inobt.ir_u.sp.ir_count; 119 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; 120 } else { 121 /* 122 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded 123 * values for full inode chunks. 124 */ 125 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; 126 irec->ir_count = XFS_INODES_PER_CHUNK; 127 irec->ir_freecount = 128 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); 129 } 130 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 131 132 return 0; 133 } 134 135 /* 136 * Insert a single inobt record. Cursor must already point to desired location. 137 */ 138 STATIC int 139 xfs_inobt_insert_rec( 140 struct xfs_btree_cur *cur, 141 __uint16_t holemask, 142 __uint8_t count, 143 __int32_t freecount, 144 xfs_inofree_t free, 145 int *stat) 146 { 147 cur->bc_rec.i.ir_holemask = holemask; 148 cur->bc_rec.i.ir_count = count; 149 cur->bc_rec.i.ir_freecount = freecount; 150 cur->bc_rec.i.ir_free = free; 151 return xfs_btree_insert(cur, stat); 152 } 153 154 /* 155 * Insert records describing a newly allocated inode chunk into the inobt. 156 */ 157 STATIC int 158 xfs_inobt_insert( 159 struct xfs_mount *mp, 160 struct xfs_trans *tp, 161 struct xfs_buf *agbp, 162 xfs_agino_t newino, 163 xfs_agino_t newlen, 164 xfs_btnum_t btnum) 165 { 166 struct xfs_btree_cur *cur; 167 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 168 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 169 xfs_agino_t thisino; 170 int i; 171 int error; 172 173 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 174 175 for (thisino = newino; 176 thisino < newino + newlen; 177 thisino += XFS_INODES_PER_CHUNK) { 178 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 179 if (error) { 180 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 181 return error; 182 } 183 ASSERT(i == 0); 184 185 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, 186 XFS_INODES_PER_CHUNK, 187 XFS_INODES_PER_CHUNK, 188 XFS_INOBT_ALL_FREE, &i); 189 if (error) { 190 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 191 return error; 192 } 193 ASSERT(i == 1); 194 } 195 196 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 197 198 return 0; 199 } 200 201 /* 202 * Verify that the number of free inodes in the AGI is correct. 203 */ 204 #ifdef DEBUG 205 STATIC int 206 xfs_check_agi_freecount( 207 struct xfs_btree_cur *cur, 208 struct xfs_agi *agi) 209 { 210 if (cur->bc_nlevels == 1) { 211 xfs_inobt_rec_incore_t rec; 212 int freecount = 0; 213 int error; 214 int i; 215 216 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 217 if (error) 218 return error; 219 220 do { 221 error = xfs_inobt_get_rec(cur, &rec, &i); 222 if (error) 223 return error; 224 225 if (i) { 226 freecount += rec.ir_freecount; 227 error = xfs_btree_increment(cur, 0, &i); 228 if (error) 229 return error; 230 } 231 } while (i == 1); 232 233 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) 234 ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); 235 } 236 return 0; 237 } 238 #else 239 #define xfs_check_agi_freecount(cur, agi) 0 240 #endif 241 242 /* 243 * Initialise a new set of inodes. When called without a transaction context 244 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 245 * than logging them (which in a transaction context puts them into the AIL 246 * for writeback rather than the xfsbufd queue). 247 */ 248 int 249 xfs_ialloc_inode_init( 250 struct xfs_mount *mp, 251 struct xfs_trans *tp, 252 struct list_head *buffer_list, 253 int icount, 254 xfs_agnumber_t agno, 255 xfs_agblock_t agbno, 256 xfs_agblock_t length, 257 unsigned int gen) 258 { 259 struct xfs_buf *fbuf; 260 struct xfs_dinode *free; 261 int nbufs, blks_per_cluster, inodes_per_cluster; 262 int version; 263 int i, j; 264 xfs_daddr_t d; 265 xfs_ino_t ino = 0; 266 267 /* 268 * Loop over the new block(s), filling in the inodes. For small block 269 * sizes, manipulate the inodes in buffers which are multiples of the 270 * blocks size. 271 */ 272 blks_per_cluster = xfs_icluster_size_fsb(mp); 273 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 274 nbufs = length / blks_per_cluster; 275 276 /* 277 * Figure out what version number to use in the inodes we create. If 278 * the superblock version has caught up to the one that supports the new 279 * inode format, then use the new inode version. Otherwise use the old 280 * version so that old kernels will continue to be able to use the file 281 * system. 282 * 283 * For v3 inodes, we also need to write the inode number into the inode, 284 * so calculate the first inode number of the chunk here as 285 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not 286 * across multiple filesystem blocks (such as a cluster) and so cannot 287 * be used in the cluster buffer loop below. 288 * 289 * Further, because we are writing the inode directly into the buffer 290 * and calculating a CRC on the entire inode, we have ot log the entire 291 * inode so that the entire range the CRC covers is present in the log. 292 * That means for v3 inode we log the entire buffer rather than just the 293 * inode cores. 294 */ 295 if (xfs_sb_version_hascrc(&mp->m_sb)) { 296 version = 3; 297 ino = XFS_AGINO_TO_INO(mp, agno, 298 XFS_OFFBNO_TO_AGINO(mp, agbno, 0)); 299 300 /* 301 * log the initialisation that is about to take place as an 302 * logical operation. This means the transaction does not 303 * need to log the physical changes to the inode buffers as log 304 * recovery will know what initialisation is actually needed. 305 * Hence we only need to log the buffers as "ordered" buffers so 306 * they track in the AIL as if they were physically logged. 307 */ 308 if (tp) 309 xfs_icreate_log(tp, agno, agbno, icount, 310 mp->m_sb.sb_inodesize, length, gen); 311 } else 312 version = 2; 313 314 for (j = 0; j < nbufs; j++) { 315 /* 316 * Get the block. 317 */ 318 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster)); 319 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 320 mp->m_bsize * blks_per_cluster, 321 XBF_UNMAPPED); 322 if (!fbuf) 323 return -ENOMEM; 324 325 /* Initialize the inode buffers and log them appropriately. */ 326 fbuf->b_ops = &xfs_inode_buf_ops; 327 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 328 for (i = 0; i < inodes_per_cluster; i++) { 329 int ioffset = i << mp->m_sb.sb_inodelog; 330 uint isize = xfs_dinode_size(version); 331 332 free = xfs_make_iptr(mp, fbuf, i); 333 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 334 free->di_version = version; 335 free->di_gen = cpu_to_be32(gen); 336 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 337 338 if (version == 3) { 339 free->di_ino = cpu_to_be64(ino); 340 ino++; 341 uuid_copy(&free->di_uuid, 342 &mp->m_sb.sb_meta_uuid); 343 xfs_dinode_calc_crc(mp, free); 344 } else if (tp) { 345 /* just log the inode core */ 346 xfs_trans_log_buf(tp, fbuf, ioffset, 347 ioffset + isize - 1); 348 } 349 } 350 351 if (tp) { 352 /* 353 * Mark the buffer as an inode allocation buffer so it 354 * sticks in AIL at the point of this allocation 355 * transaction. This ensures the they are on disk before 356 * the tail of the log can be moved past this 357 * transaction (i.e. by preventing relogging from moving 358 * it forward in the log). 359 */ 360 xfs_trans_inode_alloc_buf(tp, fbuf); 361 if (version == 3) { 362 /* 363 * Mark the buffer as ordered so that they are 364 * not physically logged in the transaction but 365 * still tracked in the AIL as part of the 366 * transaction and pin the log appropriately. 367 */ 368 xfs_trans_ordered_buf(tp, fbuf); 369 xfs_trans_log_buf(tp, fbuf, 0, 370 BBTOB(fbuf->b_length) - 1); 371 } 372 } else { 373 fbuf->b_flags |= XBF_DONE; 374 xfs_buf_delwri_queue(fbuf, buffer_list); 375 xfs_buf_relse(fbuf); 376 } 377 } 378 return 0; 379 } 380 381 /* 382 * Align startino and allocmask for a recently allocated sparse chunk such that 383 * they are fit for insertion (or merge) into the on-disk inode btrees. 384 * 385 * Background: 386 * 387 * When enabled, sparse inode support increases the inode alignment from cluster 388 * size to inode chunk size. This means that the minimum range between two 389 * non-adjacent inode records in the inobt is large enough for a full inode 390 * record. This allows for cluster sized, cluster aligned block allocation 391 * without need to worry about whether the resulting inode record overlaps with 392 * another record in the tree. Without this basic rule, we would have to deal 393 * with the consequences of overlap by potentially undoing recent allocations in 394 * the inode allocation codepath. 395 * 396 * Because of this alignment rule (which is enforced on mount), there are two 397 * inobt possibilities for newly allocated sparse chunks. One is that the 398 * aligned inode record for the chunk covers a range of inodes not already 399 * covered in the inobt (i.e., it is safe to insert a new sparse record). The 400 * other is that a record already exists at the aligned startino that considers 401 * the newly allocated range as sparse. In the latter case, record content is 402 * merged in hope that sparse inode chunks fill to full chunks over time. 403 */ 404 STATIC void 405 xfs_align_sparse_ino( 406 struct xfs_mount *mp, 407 xfs_agino_t *startino, 408 uint16_t *allocmask) 409 { 410 xfs_agblock_t agbno; 411 xfs_agblock_t mod; 412 int offset; 413 414 agbno = XFS_AGINO_TO_AGBNO(mp, *startino); 415 mod = agbno % mp->m_sb.sb_inoalignmt; 416 if (!mod) 417 return; 418 419 /* calculate the inode offset and align startino */ 420 offset = mod << mp->m_sb.sb_inopblog; 421 *startino -= offset; 422 423 /* 424 * Since startino has been aligned down, left shift allocmask such that 425 * it continues to represent the same physical inodes relative to the 426 * new startino. 427 */ 428 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; 429 } 430 431 /* 432 * Determine whether the source inode record can merge into the target. Both 433 * records must be sparse, the inode ranges must match and there must be no 434 * allocation overlap between the records. 435 */ 436 STATIC bool 437 __xfs_inobt_can_merge( 438 struct xfs_inobt_rec_incore *trec, /* tgt record */ 439 struct xfs_inobt_rec_incore *srec) /* src record */ 440 { 441 uint64_t talloc; 442 uint64_t salloc; 443 444 /* records must cover the same inode range */ 445 if (trec->ir_startino != srec->ir_startino) 446 return false; 447 448 /* both records must be sparse */ 449 if (!xfs_inobt_issparse(trec->ir_holemask) || 450 !xfs_inobt_issparse(srec->ir_holemask)) 451 return false; 452 453 /* both records must track some inodes */ 454 if (!trec->ir_count || !srec->ir_count) 455 return false; 456 457 /* can't exceed capacity of a full record */ 458 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) 459 return false; 460 461 /* verify there is no allocation overlap */ 462 talloc = xfs_inobt_irec_to_allocmask(trec); 463 salloc = xfs_inobt_irec_to_allocmask(srec); 464 if (talloc & salloc) 465 return false; 466 467 return true; 468 } 469 470 /* 471 * Merge the source inode record into the target. The caller must call 472 * __xfs_inobt_can_merge() to ensure the merge is valid. 473 */ 474 STATIC void 475 __xfs_inobt_rec_merge( 476 struct xfs_inobt_rec_incore *trec, /* target */ 477 struct xfs_inobt_rec_incore *srec) /* src */ 478 { 479 ASSERT(trec->ir_startino == srec->ir_startino); 480 481 /* combine the counts */ 482 trec->ir_count += srec->ir_count; 483 trec->ir_freecount += srec->ir_freecount; 484 485 /* 486 * Merge the holemask and free mask. For both fields, 0 bits refer to 487 * allocated inodes. We combine the allocated ranges with bitwise AND. 488 */ 489 trec->ir_holemask &= srec->ir_holemask; 490 trec->ir_free &= srec->ir_free; 491 } 492 493 /* 494 * Insert a new sparse inode chunk into the associated inode btree. The inode 495 * record for the sparse chunk is pre-aligned to a startino that should match 496 * any pre-existing sparse inode record in the tree. This allows sparse chunks 497 * to fill over time. 498 * 499 * This function supports two modes of handling preexisting records depending on 500 * the merge flag. If merge is true, the provided record is merged with the 501 * existing record and updated in place. The merged record is returned in nrec. 502 * If merge is false, an existing record is replaced with the provided record. 503 * If no preexisting record exists, the provided record is always inserted. 504 * 505 * It is considered corruption if a merge is requested and not possible. Given 506 * the sparse inode alignment constraints, this should never happen. 507 */ 508 STATIC int 509 xfs_inobt_insert_sprec( 510 struct xfs_mount *mp, 511 struct xfs_trans *tp, 512 struct xfs_buf *agbp, 513 int btnum, 514 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ 515 bool merge) /* merge or replace */ 516 { 517 struct xfs_btree_cur *cur; 518 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 519 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 520 int error; 521 int i; 522 struct xfs_inobt_rec_incore rec; 523 524 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 525 526 /* the new record is pre-aligned so we know where to look */ 527 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); 528 if (error) 529 goto error; 530 /* if nothing there, insert a new record and return */ 531 if (i == 0) { 532 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, 533 nrec->ir_count, nrec->ir_freecount, 534 nrec->ir_free, &i); 535 if (error) 536 goto error; 537 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 538 539 goto out; 540 } 541 542 /* 543 * A record exists at this startino. Merge or replace the record 544 * depending on what we've been asked to do. 545 */ 546 if (merge) { 547 error = xfs_inobt_get_rec(cur, &rec, &i); 548 if (error) 549 goto error; 550 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 551 XFS_WANT_CORRUPTED_GOTO(mp, 552 rec.ir_startino == nrec->ir_startino, 553 error); 554 555 /* 556 * This should never fail. If we have coexisting records that 557 * cannot merge, something is seriously wrong. 558 */ 559 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec), 560 error); 561 562 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino, 563 rec.ir_holemask, nrec->ir_startino, 564 nrec->ir_holemask); 565 566 /* merge to nrec to output the updated record */ 567 __xfs_inobt_rec_merge(nrec, &rec); 568 569 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino, 570 nrec->ir_holemask); 571 572 error = xfs_inobt_rec_check_count(mp, nrec); 573 if (error) 574 goto error; 575 } 576 577 error = xfs_inobt_update(cur, nrec); 578 if (error) 579 goto error; 580 581 out: 582 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 583 return 0; 584 error: 585 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 586 return error; 587 } 588 589 /* 590 * Allocate new inodes in the allocation group specified by agbp. 591 * Return 0 for success, else error code. 592 */ 593 STATIC int /* error code or 0 */ 594 xfs_ialloc_ag_alloc( 595 xfs_trans_t *tp, /* transaction pointer */ 596 xfs_buf_t *agbp, /* alloc group buffer */ 597 int *alloc) 598 { 599 xfs_agi_t *agi; /* allocation group header */ 600 xfs_alloc_arg_t args; /* allocation argument structure */ 601 xfs_agnumber_t agno; 602 int error; 603 xfs_agino_t newino; /* new first inode's number */ 604 xfs_agino_t newlen; /* new number of inodes */ 605 int isaligned = 0; /* inode allocation at stripe unit */ 606 /* boundary */ 607 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */ 608 struct xfs_inobt_rec_incore rec; 609 struct xfs_perag *pag; 610 int do_sparse = 0; 611 612 memset(&args, 0, sizeof(args)); 613 args.tp = tp; 614 args.mp = tp->t_mountp; 615 args.fsbno = NULLFSBLOCK; 616 617 #ifdef DEBUG 618 /* randomly do sparse inode allocations */ 619 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) && 620 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks) 621 do_sparse = prandom_u32() & 1; 622 #endif 623 624 /* 625 * Locking will ensure that we don't have two callers in here 626 * at one time. 627 */ 628 newlen = args.mp->m_ialloc_inos; 629 if (args.mp->m_maxicount && 630 percpu_counter_read_positive(&args.mp->m_icount) + newlen > 631 args.mp->m_maxicount) 632 return -ENOSPC; 633 args.minlen = args.maxlen = args.mp->m_ialloc_blks; 634 /* 635 * First try to allocate inodes contiguous with the last-allocated 636 * chunk of inodes. If the filesystem is striped, this will fill 637 * an entire stripe unit with inodes. 638 */ 639 agi = XFS_BUF_TO_AGI(agbp); 640 newino = be32_to_cpu(agi->agi_newino); 641 agno = be32_to_cpu(agi->agi_seqno); 642 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 643 args.mp->m_ialloc_blks; 644 if (do_sparse) 645 goto sparse_alloc; 646 if (likely(newino != NULLAGINO && 647 (args.agbno < be32_to_cpu(agi->agi_length)))) { 648 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 649 args.type = XFS_ALLOCTYPE_THIS_BNO; 650 args.prod = 1; 651 652 /* 653 * We need to take into account alignment here to ensure that 654 * we don't modify the free list if we fail to have an exact 655 * block. If we don't have an exact match, and every oher 656 * attempt allocation attempt fails, we'll end up cancelling 657 * a dirty transaction and shutting down. 658 * 659 * For an exact allocation, alignment must be 1, 660 * however we need to take cluster alignment into account when 661 * fixing up the freelist. Use the minalignslop field to 662 * indicate that extra blocks might be required for alignment, 663 * but not to use them in the actual exact allocation. 664 */ 665 args.alignment = 1; 666 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1; 667 668 /* Allow space for the inode btree to split. */ 669 args.minleft = args.mp->m_in_maxlevels - 1; 670 if ((error = xfs_alloc_vextent(&args))) 671 return error; 672 673 /* 674 * This request might have dirtied the transaction if the AG can 675 * satisfy the request, but the exact block was not available. 676 * If the allocation did fail, subsequent requests will relax 677 * the exact agbno requirement and increase the alignment 678 * instead. It is critical that the total size of the request 679 * (len + alignment + slop) does not increase from this point 680 * on, so reset minalignslop to ensure it is not included in 681 * subsequent requests. 682 */ 683 args.minalignslop = 0; 684 } 685 686 if (unlikely(args.fsbno == NULLFSBLOCK)) { 687 /* 688 * Set the alignment for the allocation. 689 * If stripe alignment is turned on then align at stripe unit 690 * boundary. 691 * If the cluster size is smaller than a filesystem block 692 * then we're doing I/O for inodes in filesystem block size 693 * pieces, so don't need alignment anyway. 694 */ 695 isaligned = 0; 696 if (args.mp->m_sinoalign) { 697 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); 698 args.alignment = args.mp->m_dalign; 699 isaligned = 1; 700 } else 701 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 702 /* 703 * Need to figure out where to allocate the inode blocks. 704 * Ideally they should be spaced out through the a.g. 705 * For now, just allocate blocks up front. 706 */ 707 args.agbno = be32_to_cpu(agi->agi_root); 708 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 709 /* 710 * Allocate a fixed-size extent of inodes. 711 */ 712 args.type = XFS_ALLOCTYPE_NEAR_BNO; 713 args.prod = 1; 714 /* 715 * Allow space for the inode btree to split. 716 */ 717 args.minleft = args.mp->m_in_maxlevels - 1; 718 if ((error = xfs_alloc_vextent(&args))) 719 return error; 720 } 721 722 /* 723 * If stripe alignment is turned on, then try again with cluster 724 * alignment. 725 */ 726 if (isaligned && args.fsbno == NULLFSBLOCK) { 727 args.type = XFS_ALLOCTYPE_NEAR_BNO; 728 args.agbno = be32_to_cpu(agi->agi_root); 729 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 730 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 731 if ((error = xfs_alloc_vextent(&args))) 732 return error; 733 } 734 735 /* 736 * Finally, try a sparse allocation if the filesystem supports it and 737 * the sparse allocation length is smaller than a full chunk. 738 */ 739 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) && 740 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks && 741 args.fsbno == NULLFSBLOCK) { 742 sparse_alloc: 743 args.type = XFS_ALLOCTYPE_NEAR_BNO; 744 args.agbno = be32_to_cpu(agi->agi_root); 745 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 746 args.alignment = args.mp->m_sb.sb_spino_align; 747 args.prod = 1; 748 749 args.minlen = args.mp->m_ialloc_min_blks; 750 args.maxlen = args.minlen; 751 752 /* 753 * The inode record will be aligned to full chunk size. We must 754 * prevent sparse allocation from AG boundaries that result in 755 * invalid inode records, such as records that start at agbno 0 756 * or extend beyond the AG. 757 * 758 * Set min agbno to the first aligned, non-zero agbno and max to 759 * the last aligned agbno that is at least one full chunk from 760 * the end of the AG. 761 */ 762 args.min_agbno = args.mp->m_sb.sb_inoalignmt; 763 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, 764 args.mp->m_sb.sb_inoalignmt) - 765 args.mp->m_ialloc_blks; 766 767 error = xfs_alloc_vextent(&args); 768 if (error) 769 return error; 770 771 newlen = args.len << args.mp->m_sb.sb_inopblog; 772 ASSERT(newlen <= XFS_INODES_PER_CHUNK); 773 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; 774 } 775 776 if (args.fsbno == NULLFSBLOCK) { 777 *alloc = 0; 778 return 0; 779 } 780 ASSERT(args.len == args.minlen); 781 782 /* 783 * Stamp and write the inode buffers. 784 * 785 * Seed the new inode cluster with a random generation number. This 786 * prevents short-term reuse of generation numbers if a chunk is 787 * freed and then immediately reallocated. We use random numbers 788 * rather than a linear progression to prevent the next generation 789 * number from being easily guessable. 790 */ 791 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno, 792 args.agbno, args.len, prandom_u32()); 793 794 if (error) 795 return error; 796 /* 797 * Convert the results. 798 */ 799 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); 800 801 if (xfs_inobt_issparse(~allocmask)) { 802 /* 803 * We've allocated a sparse chunk. Align the startino and mask. 804 */ 805 xfs_align_sparse_ino(args.mp, &newino, &allocmask); 806 807 rec.ir_startino = newino; 808 rec.ir_holemask = ~allocmask; 809 rec.ir_count = newlen; 810 rec.ir_freecount = newlen; 811 rec.ir_free = XFS_INOBT_ALL_FREE; 812 813 /* 814 * Insert the sparse record into the inobt and allow for a merge 815 * if necessary. If a merge does occur, rec is updated to the 816 * merged record. 817 */ 818 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO, 819 &rec, true); 820 if (error == -EFSCORRUPTED) { 821 xfs_alert(args.mp, 822 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", 823 XFS_AGINO_TO_INO(args.mp, agno, 824 rec.ir_startino), 825 rec.ir_holemask, rec.ir_count); 826 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); 827 } 828 if (error) 829 return error; 830 831 /* 832 * We can't merge the part we've just allocated as for the inobt 833 * due to finobt semantics. The original record may or may not 834 * exist independent of whether physical inodes exist in this 835 * sparse chunk. 836 * 837 * We must update the finobt record based on the inobt record. 838 * rec contains the fully merged and up to date inobt record 839 * from the previous call. Set merge false to replace any 840 * existing record with this one. 841 */ 842 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 843 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, 844 XFS_BTNUM_FINO, &rec, 845 false); 846 if (error) 847 return error; 848 } 849 } else { 850 /* full chunk - insert new records to both btrees */ 851 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 852 XFS_BTNUM_INO); 853 if (error) 854 return error; 855 856 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 857 error = xfs_inobt_insert(args.mp, tp, agbp, newino, 858 newlen, XFS_BTNUM_FINO); 859 if (error) 860 return error; 861 } 862 } 863 864 /* 865 * Update AGI counts and newino. 866 */ 867 be32_add_cpu(&agi->agi_count, newlen); 868 be32_add_cpu(&agi->agi_freecount, newlen); 869 pag = xfs_perag_get(args.mp, agno); 870 pag->pagi_freecount += newlen; 871 xfs_perag_put(pag); 872 agi->agi_newino = cpu_to_be32(newino); 873 874 /* 875 * Log allocation group header fields 876 */ 877 xfs_ialloc_log_agi(tp, agbp, 878 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 879 /* 880 * Modify/log superblock values for inode count and inode free count. 881 */ 882 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 883 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 884 *alloc = 1; 885 return 0; 886 } 887 888 STATIC xfs_agnumber_t 889 xfs_ialloc_next_ag( 890 xfs_mount_t *mp) 891 { 892 xfs_agnumber_t agno; 893 894 spin_lock(&mp->m_agirotor_lock); 895 agno = mp->m_agirotor; 896 if (++mp->m_agirotor >= mp->m_maxagi) 897 mp->m_agirotor = 0; 898 spin_unlock(&mp->m_agirotor_lock); 899 900 return agno; 901 } 902 903 /* 904 * Select an allocation group to look for a free inode in, based on the parent 905 * inode and the mode. Return the allocation group buffer. 906 */ 907 STATIC xfs_agnumber_t 908 xfs_ialloc_ag_select( 909 xfs_trans_t *tp, /* transaction pointer */ 910 xfs_ino_t parent, /* parent directory inode number */ 911 umode_t mode, /* bits set to indicate file type */ 912 int okalloc) /* ok to allocate more space */ 913 { 914 xfs_agnumber_t agcount; /* number of ag's in the filesystem */ 915 xfs_agnumber_t agno; /* current ag number */ 916 int flags; /* alloc buffer locking flags */ 917 xfs_extlen_t ineed; /* blocks needed for inode allocation */ 918 xfs_extlen_t longest = 0; /* longest extent available */ 919 xfs_mount_t *mp; /* mount point structure */ 920 int needspace; /* file mode implies space allocated */ 921 xfs_perag_t *pag; /* per allocation group data */ 922 xfs_agnumber_t pagno; /* parent (starting) ag number */ 923 int error; 924 925 /* 926 * Files of these types need at least one block if length > 0 927 * (and they won't fit in the inode, but that's hard to figure out). 928 */ 929 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 930 mp = tp->t_mountp; 931 agcount = mp->m_maxagi; 932 if (S_ISDIR(mode)) 933 pagno = xfs_ialloc_next_ag(mp); 934 else { 935 pagno = XFS_INO_TO_AGNO(mp, parent); 936 if (pagno >= agcount) 937 pagno = 0; 938 } 939 940 ASSERT(pagno < agcount); 941 942 /* 943 * Loop through allocation groups, looking for one with a little 944 * free space in it. Note we don't look for free inodes, exactly. 945 * Instead, we include whether there is a need to allocate inodes 946 * to mean that blocks must be allocated for them, 947 * if none are currently free. 948 */ 949 agno = pagno; 950 flags = XFS_ALLOC_FLAG_TRYLOCK; 951 for (;;) { 952 pag = xfs_perag_get(mp, agno); 953 if (!pag->pagi_inodeok) { 954 xfs_ialloc_next_ag(mp); 955 goto nextag; 956 } 957 958 if (!pag->pagi_init) { 959 error = xfs_ialloc_pagi_init(mp, tp, agno); 960 if (error) 961 goto nextag; 962 } 963 964 if (pag->pagi_freecount) { 965 xfs_perag_put(pag); 966 return agno; 967 } 968 969 if (!okalloc) 970 goto nextag; 971 972 if (!pag->pagf_init) { 973 error = xfs_alloc_pagf_init(mp, tp, agno, flags); 974 if (error) 975 goto nextag; 976 } 977 978 /* 979 * Check that there is enough free space for the file plus a 980 * chunk of inodes if we need to allocate some. If this is the 981 * first pass across the AGs, take into account the potential 982 * space needed for alignment of inode chunks when checking the 983 * longest contiguous free space in the AG - this prevents us 984 * from getting ENOSPC because we have free space larger than 985 * m_ialloc_blks but alignment constraints prevent us from using 986 * it. 987 * 988 * If we can't find an AG with space for full alignment slack to 989 * be taken into account, we must be near ENOSPC in all AGs. 990 * Hence we don't include alignment for the second pass and so 991 * if we fail allocation due to alignment issues then it is most 992 * likely a real ENOSPC condition. 993 */ 994 ineed = mp->m_ialloc_min_blks; 995 if (flags && ineed > 1) 996 ineed += xfs_ialloc_cluster_alignment(mp); 997 longest = pag->pagf_longest; 998 if (!longest) 999 longest = pag->pagf_flcount > 0; 1000 1001 if (pag->pagf_freeblks >= needspace + ineed && 1002 longest >= ineed) { 1003 xfs_perag_put(pag); 1004 return agno; 1005 } 1006 nextag: 1007 xfs_perag_put(pag); 1008 /* 1009 * No point in iterating over the rest, if we're shutting 1010 * down. 1011 */ 1012 if (XFS_FORCED_SHUTDOWN(mp)) 1013 return NULLAGNUMBER; 1014 agno++; 1015 if (agno >= agcount) 1016 agno = 0; 1017 if (agno == pagno) { 1018 if (flags == 0) 1019 return NULLAGNUMBER; 1020 flags = 0; 1021 } 1022 } 1023 } 1024 1025 /* 1026 * Try to retrieve the next record to the left/right from the current one. 1027 */ 1028 STATIC int 1029 xfs_ialloc_next_rec( 1030 struct xfs_btree_cur *cur, 1031 xfs_inobt_rec_incore_t *rec, 1032 int *done, 1033 int left) 1034 { 1035 int error; 1036 int i; 1037 1038 if (left) 1039 error = xfs_btree_decrement(cur, 0, &i); 1040 else 1041 error = xfs_btree_increment(cur, 0, &i); 1042 1043 if (error) 1044 return error; 1045 *done = !i; 1046 if (i) { 1047 error = xfs_inobt_get_rec(cur, rec, &i); 1048 if (error) 1049 return error; 1050 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1051 } 1052 1053 return 0; 1054 } 1055 1056 STATIC int 1057 xfs_ialloc_get_rec( 1058 struct xfs_btree_cur *cur, 1059 xfs_agino_t agino, 1060 xfs_inobt_rec_incore_t *rec, 1061 int *done) 1062 { 1063 int error; 1064 int i; 1065 1066 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 1067 if (error) 1068 return error; 1069 *done = !i; 1070 if (i) { 1071 error = xfs_inobt_get_rec(cur, rec, &i); 1072 if (error) 1073 return error; 1074 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1075 } 1076 1077 return 0; 1078 } 1079 1080 /* 1081 * Return the offset of the first free inode in the record. If the inode chunk 1082 * is sparsely allocated, we convert the record holemask to inode granularity 1083 * and mask off the unallocated regions from the inode free mask. 1084 */ 1085 STATIC int 1086 xfs_inobt_first_free_inode( 1087 struct xfs_inobt_rec_incore *rec) 1088 { 1089 xfs_inofree_t realfree; 1090 1091 /* if there are no holes, return the first available offset */ 1092 if (!xfs_inobt_issparse(rec->ir_holemask)) 1093 return xfs_lowbit64(rec->ir_free); 1094 1095 realfree = xfs_inobt_irec_to_allocmask(rec); 1096 realfree &= rec->ir_free; 1097 1098 return xfs_lowbit64(realfree); 1099 } 1100 1101 /* 1102 * Allocate an inode using the inobt-only algorithm. 1103 */ 1104 STATIC int 1105 xfs_dialloc_ag_inobt( 1106 struct xfs_trans *tp, 1107 struct xfs_buf *agbp, 1108 xfs_ino_t parent, 1109 xfs_ino_t *inop) 1110 { 1111 struct xfs_mount *mp = tp->t_mountp; 1112 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1113 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1114 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1115 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1116 struct xfs_perag *pag; 1117 struct xfs_btree_cur *cur, *tcur; 1118 struct xfs_inobt_rec_incore rec, trec; 1119 xfs_ino_t ino; 1120 int error; 1121 int offset; 1122 int i, j; 1123 1124 pag = xfs_perag_get(mp, agno); 1125 1126 ASSERT(pag->pagi_init); 1127 ASSERT(pag->pagi_inodeok); 1128 ASSERT(pag->pagi_freecount > 0); 1129 1130 restart_pagno: 1131 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1132 /* 1133 * If pagino is 0 (this is the root inode allocation) use newino. 1134 * This must work because we've just allocated some. 1135 */ 1136 if (!pagino) 1137 pagino = be32_to_cpu(agi->agi_newino); 1138 1139 error = xfs_check_agi_freecount(cur, agi); 1140 if (error) 1141 goto error0; 1142 1143 /* 1144 * If in the same AG as the parent, try to get near the parent. 1145 */ 1146 if (pagno == agno) { 1147 int doneleft; /* done, to the left */ 1148 int doneright; /* done, to the right */ 1149 int searchdistance = 10; 1150 1151 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 1152 if (error) 1153 goto error0; 1154 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1155 1156 error = xfs_inobt_get_rec(cur, &rec, &j); 1157 if (error) 1158 goto error0; 1159 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0); 1160 1161 if (rec.ir_freecount > 0) { 1162 /* 1163 * Found a free inode in the same chunk 1164 * as the parent, done. 1165 */ 1166 goto alloc_inode; 1167 } 1168 1169 1170 /* 1171 * In the same AG as parent, but parent's chunk is full. 1172 */ 1173 1174 /* duplicate the cursor, search left & right simultaneously */ 1175 error = xfs_btree_dup_cursor(cur, &tcur); 1176 if (error) 1177 goto error0; 1178 1179 /* 1180 * Skip to last blocks looked up if same parent inode. 1181 */ 1182 if (pagino != NULLAGINO && 1183 pag->pagl_pagino == pagino && 1184 pag->pagl_leftrec != NULLAGINO && 1185 pag->pagl_rightrec != NULLAGINO) { 1186 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 1187 &trec, &doneleft); 1188 if (error) 1189 goto error1; 1190 1191 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 1192 &rec, &doneright); 1193 if (error) 1194 goto error1; 1195 } else { 1196 /* search left with tcur, back up 1 record */ 1197 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 1198 if (error) 1199 goto error1; 1200 1201 /* search right with cur, go forward 1 record. */ 1202 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 1203 if (error) 1204 goto error1; 1205 } 1206 1207 /* 1208 * Loop until we find an inode chunk with a free inode. 1209 */ 1210 while (!doneleft || !doneright) { 1211 int useleft; /* using left inode chunk this time */ 1212 1213 if (!--searchdistance) { 1214 /* 1215 * Not in range - save last search 1216 * location and allocate a new inode 1217 */ 1218 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1219 pag->pagl_leftrec = trec.ir_startino; 1220 pag->pagl_rightrec = rec.ir_startino; 1221 pag->pagl_pagino = pagino; 1222 goto newino; 1223 } 1224 1225 /* figure out the closer block if both are valid. */ 1226 if (!doneleft && !doneright) { 1227 useleft = pagino - 1228 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 1229 rec.ir_startino - pagino; 1230 } else { 1231 useleft = !doneleft; 1232 } 1233 1234 /* free inodes to the left? */ 1235 if (useleft && trec.ir_freecount) { 1236 rec = trec; 1237 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1238 cur = tcur; 1239 1240 pag->pagl_leftrec = trec.ir_startino; 1241 pag->pagl_rightrec = rec.ir_startino; 1242 pag->pagl_pagino = pagino; 1243 goto alloc_inode; 1244 } 1245 1246 /* free inodes to the right? */ 1247 if (!useleft && rec.ir_freecount) { 1248 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1249 1250 pag->pagl_leftrec = trec.ir_startino; 1251 pag->pagl_rightrec = rec.ir_startino; 1252 pag->pagl_pagino = pagino; 1253 goto alloc_inode; 1254 } 1255 1256 /* get next record to check */ 1257 if (useleft) { 1258 error = xfs_ialloc_next_rec(tcur, &trec, 1259 &doneleft, 1); 1260 } else { 1261 error = xfs_ialloc_next_rec(cur, &rec, 1262 &doneright, 0); 1263 } 1264 if (error) 1265 goto error1; 1266 } 1267 1268 /* 1269 * We've reached the end of the btree. because 1270 * we are only searching a small chunk of the 1271 * btree each search, there is obviously free 1272 * inodes closer to the parent inode than we 1273 * are now. restart the search again. 1274 */ 1275 pag->pagl_pagino = NULLAGINO; 1276 pag->pagl_leftrec = NULLAGINO; 1277 pag->pagl_rightrec = NULLAGINO; 1278 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1279 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1280 goto restart_pagno; 1281 } 1282 1283 /* 1284 * In a different AG from the parent. 1285 * See if the most recently allocated block has any free. 1286 */ 1287 newino: 1288 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1289 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1290 XFS_LOOKUP_EQ, &i); 1291 if (error) 1292 goto error0; 1293 1294 if (i == 1) { 1295 error = xfs_inobt_get_rec(cur, &rec, &j); 1296 if (error) 1297 goto error0; 1298 1299 if (j == 1 && rec.ir_freecount > 0) { 1300 /* 1301 * The last chunk allocated in the group 1302 * still has a free inode. 1303 */ 1304 goto alloc_inode; 1305 } 1306 } 1307 } 1308 1309 /* 1310 * None left in the last group, search the whole AG 1311 */ 1312 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1313 if (error) 1314 goto error0; 1315 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1316 1317 for (;;) { 1318 error = xfs_inobt_get_rec(cur, &rec, &i); 1319 if (error) 1320 goto error0; 1321 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1322 if (rec.ir_freecount > 0) 1323 break; 1324 error = xfs_btree_increment(cur, 0, &i); 1325 if (error) 1326 goto error0; 1327 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1328 } 1329 1330 alloc_inode: 1331 offset = xfs_inobt_first_free_inode(&rec); 1332 ASSERT(offset >= 0); 1333 ASSERT(offset < XFS_INODES_PER_CHUNK); 1334 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1335 XFS_INODES_PER_CHUNK) == 0); 1336 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1337 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1338 rec.ir_freecount--; 1339 error = xfs_inobt_update(cur, &rec); 1340 if (error) 1341 goto error0; 1342 be32_add_cpu(&agi->agi_freecount, -1); 1343 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1344 pag->pagi_freecount--; 1345 1346 error = xfs_check_agi_freecount(cur, agi); 1347 if (error) 1348 goto error0; 1349 1350 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1351 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1352 xfs_perag_put(pag); 1353 *inop = ino; 1354 return 0; 1355 error1: 1356 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 1357 error0: 1358 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1359 xfs_perag_put(pag); 1360 return error; 1361 } 1362 1363 /* 1364 * Use the free inode btree to allocate an inode based on distance from the 1365 * parent. Note that the provided cursor may be deleted and replaced. 1366 */ 1367 STATIC int 1368 xfs_dialloc_ag_finobt_near( 1369 xfs_agino_t pagino, 1370 struct xfs_btree_cur **ocur, 1371 struct xfs_inobt_rec_incore *rec) 1372 { 1373 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 1374 struct xfs_btree_cur *rcur; /* right search cursor */ 1375 struct xfs_inobt_rec_incore rrec; 1376 int error; 1377 int i, j; 1378 1379 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1380 if (error) 1381 return error; 1382 1383 if (i == 1) { 1384 error = xfs_inobt_get_rec(lcur, rec, &i); 1385 if (error) 1386 return error; 1387 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1); 1388 1389 /* 1390 * See if we've landed in the parent inode record. The finobt 1391 * only tracks chunks with at least one free inode, so record 1392 * existence is enough. 1393 */ 1394 if (pagino >= rec->ir_startino && 1395 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1396 return 0; 1397 } 1398 1399 error = xfs_btree_dup_cursor(lcur, &rcur); 1400 if (error) 1401 return error; 1402 1403 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1404 if (error) 1405 goto error_rcur; 1406 if (j == 1) { 1407 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1408 if (error) 1409 goto error_rcur; 1410 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur); 1411 } 1412 1413 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur); 1414 if (i == 1 && j == 1) { 1415 /* 1416 * Both the left and right records are valid. Choose the closer 1417 * inode chunk to the target. 1418 */ 1419 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1420 (rrec.ir_startino - pagino)) { 1421 *rec = rrec; 1422 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1423 *ocur = rcur; 1424 } else { 1425 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1426 } 1427 } else if (j == 1) { 1428 /* only the right record is valid */ 1429 *rec = rrec; 1430 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1431 *ocur = rcur; 1432 } else if (i == 1) { 1433 /* only the left record is valid */ 1434 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1435 } 1436 1437 return 0; 1438 1439 error_rcur: 1440 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1441 return error; 1442 } 1443 1444 /* 1445 * Use the free inode btree to find a free inode based on a newino hint. If 1446 * the hint is NULL, find the first free inode in the AG. 1447 */ 1448 STATIC int 1449 xfs_dialloc_ag_finobt_newino( 1450 struct xfs_agi *agi, 1451 struct xfs_btree_cur *cur, 1452 struct xfs_inobt_rec_incore *rec) 1453 { 1454 int error; 1455 int i; 1456 1457 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1458 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1459 XFS_LOOKUP_EQ, &i); 1460 if (error) 1461 return error; 1462 if (i == 1) { 1463 error = xfs_inobt_get_rec(cur, rec, &i); 1464 if (error) 1465 return error; 1466 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1467 return 0; 1468 } 1469 } 1470 1471 /* 1472 * Find the first inode available in the AG. 1473 */ 1474 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1475 if (error) 1476 return error; 1477 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1478 1479 error = xfs_inobt_get_rec(cur, rec, &i); 1480 if (error) 1481 return error; 1482 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1483 1484 return 0; 1485 } 1486 1487 /* 1488 * Update the inobt based on a modification made to the finobt. Also ensure that 1489 * the records from both trees are equivalent post-modification. 1490 */ 1491 STATIC int 1492 xfs_dialloc_ag_update_inobt( 1493 struct xfs_btree_cur *cur, /* inobt cursor */ 1494 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1495 int offset) /* inode offset */ 1496 { 1497 struct xfs_inobt_rec_incore rec; 1498 int error; 1499 int i; 1500 1501 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1502 if (error) 1503 return error; 1504 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1505 1506 error = xfs_inobt_get_rec(cur, &rec, &i); 1507 if (error) 1508 return error; 1509 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1510 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1511 XFS_INODES_PER_CHUNK) == 0); 1512 1513 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1514 rec.ir_freecount--; 1515 1516 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) && 1517 (rec.ir_freecount == frec->ir_freecount)); 1518 1519 return xfs_inobt_update(cur, &rec); 1520 } 1521 1522 /* 1523 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1524 * back to the inobt search algorithm. 1525 * 1526 * The caller selected an AG for us, and made sure that free inodes are 1527 * available. 1528 */ 1529 STATIC int 1530 xfs_dialloc_ag( 1531 struct xfs_trans *tp, 1532 struct xfs_buf *agbp, 1533 xfs_ino_t parent, 1534 xfs_ino_t *inop) 1535 { 1536 struct xfs_mount *mp = tp->t_mountp; 1537 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1538 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1539 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1540 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1541 struct xfs_perag *pag; 1542 struct xfs_btree_cur *cur; /* finobt cursor */ 1543 struct xfs_btree_cur *icur; /* inobt cursor */ 1544 struct xfs_inobt_rec_incore rec; 1545 xfs_ino_t ino; 1546 int error; 1547 int offset; 1548 int i; 1549 1550 if (!xfs_sb_version_hasfinobt(&mp->m_sb)) 1551 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); 1552 1553 pag = xfs_perag_get(mp, agno); 1554 1555 /* 1556 * If pagino is 0 (this is the root inode allocation) use newino. 1557 * This must work because we've just allocated some. 1558 */ 1559 if (!pagino) 1560 pagino = be32_to_cpu(agi->agi_newino); 1561 1562 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1563 1564 error = xfs_check_agi_freecount(cur, agi); 1565 if (error) 1566 goto error_cur; 1567 1568 /* 1569 * The search algorithm depends on whether we're in the same AG as the 1570 * parent. If so, find the closest available inode to the parent. If 1571 * not, consider the agi hint or find the first free inode in the AG. 1572 */ 1573 if (agno == pagno) 1574 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1575 else 1576 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1577 if (error) 1578 goto error_cur; 1579 1580 offset = xfs_inobt_first_free_inode(&rec); 1581 ASSERT(offset >= 0); 1582 ASSERT(offset < XFS_INODES_PER_CHUNK); 1583 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1584 XFS_INODES_PER_CHUNK) == 0); 1585 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1586 1587 /* 1588 * Modify or remove the finobt record. 1589 */ 1590 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1591 rec.ir_freecount--; 1592 if (rec.ir_freecount) 1593 error = xfs_inobt_update(cur, &rec); 1594 else 1595 error = xfs_btree_delete(cur, &i); 1596 if (error) 1597 goto error_cur; 1598 1599 /* 1600 * The finobt has now been updated appropriately. We haven't updated the 1601 * agi and superblock yet, so we can create an inobt cursor and validate 1602 * the original freecount. If all is well, make the equivalent update to 1603 * the inobt using the finobt record and offset information. 1604 */ 1605 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1606 1607 error = xfs_check_agi_freecount(icur, agi); 1608 if (error) 1609 goto error_icur; 1610 1611 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1612 if (error) 1613 goto error_icur; 1614 1615 /* 1616 * Both trees have now been updated. We must update the perag and 1617 * superblock before we can check the freecount for each btree. 1618 */ 1619 be32_add_cpu(&agi->agi_freecount, -1); 1620 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1621 pag->pagi_freecount--; 1622 1623 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1624 1625 error = xfs_check_agi_freecount(icur, agi); 1626 if (error) 1627 goto error_icur; 1628 error = xfs_check_agi_freecount(cur, agi); 1629 if (error) 1630 goto error_icur; 1631 1632 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1633 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1634 xfs_perag_put(pag); 1635 *inop = ino; 1636 return 0; 1637 1638 error_icur: 1639 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1640 error_cur: 1641 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1642 xfs_perag_put(pag); 1643 return error; 1644 } 1645 1646 /* 1647 * Allocate an inode on disk. 1648 * 1649 * Mode is used to tell whether the new inode will need space, and whether it 1650 * is a directory. 1651 * 1652 * This function is designed to be called twice if it has to do an allocation 1653 * to make more free inodes. On the first call, *IO_agbp should be set to NULL. 1654 * If an inode is available without having to performn an allocation, an inode 1655 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation 1656 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. 1657 * The caller should then commit the current transaction, allocate a 1658 * new transaction, and call xfs_dialloc() again, passing in the previous value 1659 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI 1660 * buffer is locked across the two calls, the second call is guaranteed to have 1661 * a free inode available. 1662 * 1663 * Once we successfully pick an inode its number is returned and the on-disk 1664 * data structures are updated. The inode itself is not read in, since doing so 1665 * would break ordering constraints with xfs_reclaim. 1666 */ 1667 int 1668 xfs_dialloc( 1669 struct xfs_trans *tp, 1670 xfs_ino_t parent, 1671 umode_t mode, 1672 int okalloc, 1673 struct xfs_buf **IO_agbp, 1674 xfs_ino_t *inop) 1675 { 1676 struct xfs_mount *mp = tp->t_mountp; 1677 struct xfs_buf *agbp; 1678 xfs_agnumber_t agno; 1679 int error; 1680 int ialloced; 1681 int noroom = 0; 1682 xfs_agnumber_t start_agno; 1683 struct xfs_perag *pag; 1684 1685 if (*IO_agbp) { 1686 /* 1687 * If the caller passes in a pointer to the AGI buffer, 1688 * continue where we left off before. In this case, we 1689 * know that the allocation group has free inodes. 1690 */ 1691 agbp = *IO_agbp; 1692 goto out_alloc; 1693 } 1694 1695 /* 1696 * We do not have an agbp, so select an initial allocation 1697 * group for inode allocation. 1698 */ 1699 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc); 1700 if (start_agno == NULLAGNUMBER) { 1701 *inop = NULLFSINO; 1702 return 0; 1703 } 1704 1705 /* 1706 * If we have already hit the ceiling of inode blocks then clear 1707 * okalloc so we scan all available agi structures for a free 1708 * inode. 1709 * 1710 * Read rough value of mp->m_icount by percpu_counter_read_positive, 1711 * which will sacrifice the preciseness but improve the performance. 1712 */ 1713 if (mp->m_maxicount && 1714 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos 1715 > mp->m_maxicount) { 1716 noroom = 1; 1717 okalloc = 0; 1718 } 1719 1720 /* 1721 * Loop until we find an allocation group that either has free inodes 1722 * or in which we can allocate some inodes. Iterate through the 1723 * allocation groups upward, wrapping at the end. 1724 */ 1725 agno = start_agno; 1726 for (;;) { 1727 pag = xfs_perag_get(mp, agno); 1728 if (!pag->pagi_inodeok) { 1729 xfs_ialloc_next_ag(mp); 1730 goto nextag; 1731 } 1732 1733 if (!pag->pagi_init) { 1734 error = xfs_ialloc_pagi_init(mp, tp, agno); 1735 if (error) 1736 goto out_error; 1737 } 1738 1739 /* 1740 * Do a first racy fast path check if this AG is usable. 1741 */ 1742 if (!pag->pagi_freecount && !okalloc) 1743 goto nextag; 1744 1745 /* 1746 * Then read in the AGI buffer and recheck with the AGI buffer 1747 * lock held. 1748 */ 1749 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1750 if (error) 1751 goto out_error; 1752 1753 if (pag->pagi_freecount) { 1754 xfs_perag_put(pag); 1755 goto out_alloc; 1756 } 1757 1758 if (!okalloc) 1759 goto nextag_relse_buffer; 1760 1761 1762 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); 1763 if (error) { 1764 xfs_trans_brelse(tp, agbp); 1765 1766 if (error != -ENOSPC) 1767 goto out_error; 1768 1769 xfs_perag_put(pag); 1770 *inop = NULLFSINO; 1771 return 0; 1772 } 1773 1774 if (ialloced) { 1775 /* 1776 * We successfully allocated some inodes, return 1777 * the current context to the caller so that it 1778 * can commit the current transaction and call 1779 * us again where we left off. 1780 */ 1781 ASSERT(pag->pagi_freecount > 0); 1782 xfs_perag_put(pag); 1783 1784 *IO_agbp = agbp; 1785 *inop = NULLFSINO; 1786 return 0; 1787 } 1788 1789 nextag_relse_buffer: 1790 xfs_trans_brelse(tp, agbp); 1791 nextag: 1792 xfs_perag_put(pag); 1793 if (++agno == mp->m_sb.sb_agcount) 1794 agno = 0; 1795 if (agno == start_agno) { 1796 *inop = NULLFSINO; 1797 return noroom ? -ENOSPC : 0; 1798 } 1799 } 1800 1801 out_alloc: 1802 *IO_agbp = NULL; 1803 return xfs_dialloc_ag(tp, agbp, parent, inop); 1804 out_error: 1805 xfs_perag_put(pag); 1806 return error; 1807 } 1808 1809 /* 1810 * Free the blocks of an inode chunk. We must consider that the inode chunk 1811 * might be sparse and only free the regions that are allocated as part of the 1812 * chunk. 1813 */ 1814 STATIC void 1815 xfs_difree_inode_chunk( 1816 struct xfs_mount *mp, 1817 xfs_agnumber_t agno, 1818 struct xfs_inobt_rec_incore *rec, 1819 struct xfs_bmap_free *flist) 1820 { 1821 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino); 1822 int startidx, endidx; 1823 int nextbit; 1824 xfs_agblock_t agbno; 1825 int contigblk; 1826 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); 1827 1828 if (!xfs_inobt_issparse(rec->ir_holemask)) { 1829 /* not sparse, calculate extent info directly */ 1830 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, 1831 XFS_AGINO_TO_AGBNO(mp, rec->ir_startino)), 1832 mp->m_ialloc_blks, flist, mp); 1833 return; 1834 } 1835 1836 /* holemask is only 16-bits (fits in an unsigned long) */ 1837 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); 1838 holemask[0] = rec->ir_holemask; 1839 1840 /* 1841 * Find contiguous ranges of zeroes (i.e., allocated regions) in the 1842 * holemask and convert the start/end index of each range to an extent. 1843 * We start with the start and end index both pointing at the first 0 in 1844 * the mask. 1845 */ 1846 startidx = endidx = find_first_zero_bit(holemask, 1847 XFS_INOBT_HOLEMASK_BITS); 1848 nextbit = startidx + 1; 1849 while (startidx < XFS_INOBT_HOLEMASK_BITS) { 1850 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, 1851 nextbit); 1852 /* 1853 * If the next zero bit is contiguous, update the end index of 1854 * the current range and continue. 1855 */ 1856 if (nextbit != XFS_INOBT_HOLEMASK_BITS && 1857 nextbit == endidx + 1) { 1858 endidx = nextbit; 1859 goto next; 1860 } 1861 1862 /* 1863 * nextbit is not contiguous with the current end index. Convert 1864 * the current start/end to an extent and add it to the free 1865 * list. 1866 */ 1867 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / 1868 mp->m_sb.sb_inopblock; 1869 contigblk = ((endidx - startidx + 1) * 1870 XFS_INODES_PER_HOLEMASK_BIT) / 1871 mp->m_sb.sb_inopblock; 1872 1873 ASSERT(agbno % mp->m_sb.sb_spino_align == 0); 1874 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); 1875 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, agbno), contigblk, 1876 flist, mp); 1877 1878 /* reset range to current bit and carry on... */ 1879 startidx = endidx = nextbit; 1880 1881 next: 1882 nextbit++; 1883 } 1884 } 1885 1886 STATIC int 1887 xfs_difree_inobt( 1888 struct xfs_mount *mp, 1889 struct xfs_trans *tp, 1890 struct xfs_buf *agbp, 1891 xfs_agino_t agino, 1892 struct xfs_bmap_free *flist, 1893 struct xfs_icluster *xic, 1894 struct xfs_inobt_rec_incore *orec) 1895 { 1896 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1897 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1898 struct xfs_perag *pag; 1899 struct xfs_btree_cur *cur; 1900 struct xfs_inobt_rec_incore rec; 1901 int ilen; 1902 int error; 1903 int i; 1904 int off; 1905 1906 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1907 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 1908 1909 /* 1910 * Initialize the cursor. 1911 */ 1912 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1913 1914 error = xfs_check_agi_freecount(cur, agi); 1915 if (error) 1916 goto error0; 1917 1918 /* 1919 * Look for the entry describing this inode. 1920 */ 1921 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 1922 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 1923 __func__, error); 1924 goto error0; 1925 } 1926 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1927 error = xfs_inobt_get_rec(cur, &rec, &i); 1928 if (error) { 1929 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 1930 __func__, error); 1931 goto error0; 1932 } 1933 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1934 /* 1935 * Get the offset in the inode chunk. 1936 */ 1937 off = agino - rec.ir_startino; 1938 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 1939 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 1940 /* 1941 * Mark the inode free & increment the count. 1942 */ 1943 rec.ir_free |= XFS_INOBT_MASK(off); 1944 rec.ir_freecount++; 1945 1946 /* 1947 * When an inode chunk is free, it becomes eligible for removal. Don't 1948 * remove the chunk if the block size is large enough for multiple inode 1949 * chunks (that might not be free). 1950 */ 1951 if (!(mp->m_flags & XFS_MOUNT_IKEEP) && 1952 rec.ir_free == XFS_INOBT_ALL_FREE && 1953 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 1954 xic->deleted = 1; 1955 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); 1956 xic->alloc = xfs_inobt_irec_to_allocmask(&rec); 1957 1958 /* 1959 * Remove the inode cluster from the AGI B+Tree, adjust the 1960 * AGI and Superblock inode counts, and mark the disk space 1961 * to be freed when the transaction is committed. 1962 */ 1963 ilen = rec.ir_freecount; 1964 be32_add_cpu(&agi->agi_count, -ilen); 1965 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 1966 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 1967 pag = xfs_perag_get(mp, agno); 1968 pag->pagi_freecount -= ilen - 1; 1969 xfs_perag_put(pag); 1970 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 1971 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 1972 1973 if ((error = xfs_btree_delete(cur, &i))) { 1974 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 1975 __func__, error); 1976 goto error0; 1977 } 1978 1979 xfs_difree_inode_chunk(mp, agno, &rec, flist); 1980 } else { 1981 xic->deleted = 0; 1982 1983 error = xfs_inobt_update(cur, &rec); 1984 if (error) { 1985 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 1986 __func__, error); 1987 goto error0; 1988 } 1989 1990 /* 1991 * Change the inode free counts and log the ag/sb changes. 1992 */ 1993 be32_add_cpu(&agi->agi_freecount, 1); 1994 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1995 pag = xfs_perag_get(mp, agno); 1996 pag->pagi_freecount++; 1997 xfs_perag_put(pag); 1998 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 1999 } 2000 2001 error = xfs_check_agi_freecount(cur, agi); 2002 if (error) 2003 goto error0; 2004 2005 *orec = rec; 2006 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2007 return 0; 2008 2009 error0: 2010 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2011 return error; 2012 } 2013 2014 /* 2015 * Free an inode in the free inode btree. 2016 */ 2017 STATIC int 2018 xfs_difree_finobt( 2019 struct xfs_mount *mp, 2020 struct xfs_trans *tp, 2021 struct xfs_buf *agbp, 2022 xfs_agino_t agino, 2023 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 2024 { 2025 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 2026 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 2027 struct xfs_btree_cur *cur; 2028 struct xfs_inobt_rec_incore rec; 2029 int offset = agino - ibtrec->ir_startino; 2030 int error; 2031 int i; 2032 2033 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 2034 2035 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 2036 if (error) 2037 goto error; 2038 if (i == 0) { 2039 /* 2040 * If the record does not exist in the finobt, we must have just 2041 * freed an inode in a previously fully allocated chunk. If not, 2042 * something is out of sync. 2043 */ 2044 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error); 2045 2046 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, 2047 ibtrec->ir_count, 2048 ibtrec->ir_freecount, 2049 ibtrec->ir_free, &i); 2050 if (error) 2051 goto error; 2052 ASSERT(i == 1); 2053 2054 goto out; 2055 } 2056 2057 /* 2058 * Read and update the existing record. We could just copy the ibtrec 2059 * across here, but that would defeat the purpose of having redundant 2060 * metadata. By making the modifications independently, we can catch 2061 * corruptions that we wouldn't see if we just copied from one record 2062 * to another. 2063 */ 2064 error = xfs_inobt_get_rec(cur, &rec, &i); 2065 if (error) 2066 goto error; 2067 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 2068 2069 rec.ir_free |= XFS_INOBT_MASK(offset); 2070 rec.ir_freecount++; 2071 2072 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) && 2073 (rec.ir_freecount == ibtrec->ir_freecount), 2074 error); 2075 2076 /* 2077 * The content of inobt records should always match between the inobt 2078 * and finobt. The lifecycle of records in the finobt is different from 2079 * the inobt in that the finobt only tracks records with at least one 2080 * free inode. Hence, if all of the inodes are free and we aren't 2081 * keeping inode chunks permanently on disk, remove the record. 2082 * Otherwise, update the record with the new information. 2083 * 2084 * Note that we currently can't free chunks when the block size is large 2085 * enough for multiple chunks. Leave the finobt record to remain in sync 2086 * with the inobt. 2087 */ 2088 if (rec.ir_free == XFS_INOBT_ALL_FREE && 2089 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK && 2090 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 2091 error = xfs_btree_delete(cur, &i); 2092 if (error) 2093 goto error; 2094 ASSERT(i == 1); 2095 } else { 2096 error = xfs_inobt_update(cur, &rec); 2097 if (error) 2098 goto error; 2099 } 2100 2101 out: 2102 error = xfs_check_agi_freecount(cur, agi); 2103 if (error) 2104 goto error; 2105 2106 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2107 return 0; 2108 2109 error: 2110 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2111 return error; 2112 } 2113 2114 /* 2115 * Free disk inode. Carefully avoids touching the incore inode, all 2116 * manipulations incore are the caller's responsibility. 2117 * The on-disk inode is not changed by this operation, only the 2118 * btree (free inode mask) is changed. 2119 */ 2120 int 2121 xfs_difree( 2122 struct xfs_trans *tp, /* transaction pointer */ 2123 xfs_ino_t inode, /* inode to be freed */ 2124 struct xfs_bmap_free *flist, /* extents to free */ 2125 struct xfs_icluster *xic) /* cluster info if deleted */ 2126 { 2127 /* REFERENCED */ 2128 xfs_agblock_t agbno; /* block number containing inode */ 2129 struct xfs_buf *agbp; /* buffer for allocation group header */ 2130 xfs_agino_t agino; /* allocation group inode number */ 2131 xfs_agnumber_t agno; /* allocation group number */ 2132 int error; /* error return value */ 2133 struct xfs_mount *mp; /* mount structure for filesystem */ 2134 struct xfs_inobt_rec_incore rec;/* btree record */ 2135 2136 mp = tp->t_mountp; 2137 2138 /* 2139 * Break up inode number into its components. 2140 */ 2141 agno = XFS_INO_TO_AGNO(mp, inode); 2142 if (agno >= mp->m_sb.sb_agcount) { 2143 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", 2144 __func__, agno, mp->m_sb.sb_agcount); 2145 ASSERT(0); 2146 return -EINVAL; 2147 } 2148 agino = XFS_INO_TO_AGINO(mp, inode); 2149 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { 2150 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 2151 __func__, (unsigned long long)inode, 2152 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); 2153 ASSERT(0); 2154 return -EINVAL; 2155 } 2156 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2157 if (agbno >= mp->m_sb.sb_agblocks) { 2158 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 2159 __func__, agbno, mp->m_sb.sb_agblocks); 2160 ASSERT(0); 2161 return -EINVAL; 2162 } 2163 /* 2164 * Get the allocation group header. 2165 */ 2166 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2167 if (error) { 2168 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 2169 __func__, error); 2170 return error; 2171 } 2172 2173 /* 2174 * Fix up the inode allocation btree. 2175 */ 2176 error = xfs_difree_inobt(mp, tp, agbp, agino, flist, xic, &rec); 2177 if (error) 2178 goto error0; 2179 2180 /* 2181 * Fix up the free inode btree. 2182 */ 2183 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 2184 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); 2185 if (error) 2186 goto error0; 2187 } 2188 2189 return 0; 2190 2191 error0: 2192 return error; 2193 } 2194 2195 STATIC int 2196 xfs_imap_lookup( 2197 struct xfs_mount *mp, 2198 struct xfs_trans *tp, 2199 xfs_agnumber_t agno, 2200 xfs_agino_t agino, 2201 xfs_agblock_t agbno, 2202 xfs_agblock_t *chunk_agbno, 2203 xfs_agblock_t *offset_agbno, 2204 int flags) 2205 { 2206 struct xfs_inobt_rec_incore rec; 2207 struct xfs_btree_cur *cur; 2208 struct xfs_buf *agbp; 2209 int error; 2210 int i; 2211 2212 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2213 if (error) { 2214 xfs_alert(mp, 2215 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 2216 __func__, error, agno); 2217 return error; 2218 } 2219 2220 /* 2221 * Lookup the inode record for the given agino. If the record cannot be 2222 * found, then it's an invalid inode number and we should abort. Once 2223 * we have a record, we need to ensure it contains the inode number 2224 * we are looking up. 2225 */ 2226 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 2227 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 2228 if (!error) { 2229 if (i) 2230 error = xfs_inobt_get_rec(cur, &rec, &i); 2231 if (!error && i == 0) 2232 error = -EINVAL; 2233 } 2234 2235 xfs_trans_brelse(tp, agbp); 2236 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); 2237 if (error) 2238 return error; 2239 2240 /* check that the returned record contains the required inode */ 2241 if (rec.ir_startino > agino || 2242 rec.ir_startino + mp->m_ialloc_inos <= agino) 2243 return -EINVAL; 2244 2245 /* for untrusted inodes check it is allocated first */ 2246 if ((flags & XFS_IGET_UNTRUSTED) && 2247 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 2248 return -EINVAL; 2249 2250 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 2251 *offset_agbno = agbno - *chunk_agbno; 2252 return 0; 2253 } 2254 2255 /* 2256 * Return the location of the inode in imap, for mapping it into a buffer. 2257 */ 2258 int 2259 xfs_imap( 2260 xfs_mount_t *mp, /* file system mount structure */ 2261 xfs_trans_t *tp, /* transaction pointer */ 2262 xfs_ino_t ino, /* inode to locate */ 2263 struct xfs_imap *imap, /* location map structure */ 2264 uint flags) /* flags for inode btree lookup */ 2265 { 2266 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 2267 xfs_agino_t agino; /* inode number within alloc group */ 2268 xfs_agnumber_t agno; /* allocation group number */ 2269 int blks_per_cluster; /* num blocks per inode cluster */ 2270 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 2271 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 2272 int error; /* error code */ 2273 int offset; /* index of inode in its buffer */ 2274 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 2275 2276 ASSERT(ino != NULLFSINO); 2277 2278 /* 2279 * Split up the inode number into its parts. 2280 */ 2281 agno = XFS_INO_TO_AGNO(mp, ino); 2282 agino = XFS_INO_TO_AGINO(mp, ino); 2283 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2284 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || 2285 ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2286 #ifdef DEBUG 2287 /* 2288 * Don't output diagnostic information for untrusted inodes 2289 * as they can be invalid without implying corruption. 2290 */ 2291 if (flags & XFS_IGET_UNTRUSTED) 2292 return -EINVAL; 2293 if (agno >= mp->m_sb.sb_agcount) { 2294 xfs_alert(mp, 2295 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", 2296 __func__, agno, mp->m_sb.sb_agcount); 2297 } 2298 if (agbno >= mp->m_sb.sb_agblocks) { 2299 xfs_alert(mp, 2300 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 2301 __func__, (unsigned long long)agbno, 2302 (unsigned long)mp->m_sb.sb_agblocks); 2303 } 2304 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2305 xfs_alert(mp, 2306 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 2307 __func__, ino, 2308 XFS_AGINO_TO_INO(mp, agno, agino)); 2309 } 2310 xfs_stack_trace(); 2311 #endif /* DEBUG */ 2312 return -EINVAL; 2313 } 2314 2315 blks_per_cluster = xfs_icluster_size_fsb(mp); 2316 2317 /* 2318 * For bulkstat and handle lookups, we have an untrusted inode number 2319 * that we have to verify is valid. We cannot do this just by reading 2320 * the inode buffer as it may have been unlinked and removed leaving 2321 * inodes in stale state on disk. Hence we have to do a btree lookup 2322 * in all cases where an untrusted inode number is passed. 2323 */ 2324 if (flags & XFS_IGET_UNTRUSTED) { 2325 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2326 &chunk_agbno, &offset_agbno, flags); 2327 if (error) 2328 return error; 2329 goto out_map; 2330 } 2331 2332 /* 2333 * If the inode cluster size is the same as the blocksize or 2334 * smaller we get to the buffer by simple arithmetics. 2335 */ 2336 if (blks_per_cluster == 1) { 2337 offset = XFS_INO_TO_OFFSET(mp, ino); 2338 ASSERT(offset < mp->m_sb.sb_inopblock); 2339 2340 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); 2341 imap->im_len = XFS_FSB_TO_BB(mp, 1); 2342 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog); 2343 return 0; 2344 } 2345 2346 /* 2347 * If the inode chunks are aligned then use simple maths to 2348 * find the location. Otherwise we have to do a btree 2349 * lookup to find the location. 2350 */ 2351 if (mp->m_inoalign_mask) { 2352 offset_agbno = agbno & mp->m_inoalign_mask; 2353 chunk_agbno = agbno - offset_agbno; 2354 } else { 2355 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2356 &chunk_agbno, &offset_agbno, flags); 2357 if (error) 2358 return error; 2359 } 2360 2361 out_map: 2362 ASSERT(agbno >= chunk_agbno); 2363 cluster_agbno = chunk_agbno + 2364 ((offset_agbno / blks_per_cluster) * blks_per_cluster); 2365 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 2366 XFS_INO_TO_OFFSET(mp, ino); 2367 2368 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); 2369 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster); 2370 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog); 2371 2372 /* 2373 * If the inode number maps to a block outside the bounds 2374 * of the file system then return NULL rather than calling 2375 * read_buf and panicing when we get an error from the 2376 * driver. 2377 */ 2378 if ((imap->im_blkno + imap->im_len) > 2379 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 2380 xfs_alert(mp, 2381 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 2382 __func__, (unsigned long long) imap->im_blkno, 2383 (unsigned long long) imap->im_len, 2384 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 2385 return -EINVAL; 2386 } 2387 return 0; 2388 } 2389 2390 /* 2391 * Compute and fill in value of m_in_maxlevels. 2392 */ 2393 void 2394 xfs_ialloc_compute_maxlevels( 2395 xfs_mount_t *mp) /* file system mount structure */ 2396 { 2397 int level; 2398 uint maxblocks; 2399 uint maxleafents; 2400 int minleafrecs; 2401 int minnoderecs; 2402 2403 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >> 2404 XFS_INODES_PER_CHUNK_LOG; 2405 minleafrecs = mp->m_alloc_mnr[0]; 2406 minnoderecs = mp->m_alloc_mnr[1]; 2407 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs; 2408 for (level = 1; maxblocks > 1; level++) 2409 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs; 2410 mp->m_in_maxlevels = level; 2411 } 2412 2413 /* 2414 * Log specified fields for the ag hdr (inode section). The growth of the agi 2415 * structure over time requires that we interpret the buffer as two logical 2416 * regions delineated by the end of the unlinked list. This is due to the size 2417 * of the hash table and its location in the middle of the agi. 2418 * 2419 * For example, a request to log a field before agi_unlinked and a field after 2420 * agi_unlinked could cause us to log the entire hash table and use an excessive 2421 * amount of log space. To avoid this behavior, log the region up through 2422 * agi_unlinked in one call and the region after agi_unlinked through the end of 2423 * the structure in another. 2424 */ 2425 void 2426 xfs_ialloc_log_agi( 2427 xfs_trans_t *tp, /* transaction pointer */ 2428 xfs_buf_t *bp, /* allocation group header buffer */ 2429 int fields) /* bitmask of fields to log */ 2430 { 2431 int first; /* first byte number */ 2432 int last; /* last byte number */ 2433 static const short offsets[] = { /* field starting offsets */ 2434 /* keep in sync with bit definitions */ 2435 offsetof(xfs_agi_t, agi_magicnum), 2436 offsetof(xfs_agi_t, agi_versionnum), 2437 offsetof(xfs_agi_t, agi_seqno), 2438 offsetof(xfs_agi_t, agi_length), 2439 offsetof(xfs_agi_t, agi_count), 2440 offsetof(xfs_agi_t, agi_root), 2441 offsetof(xfs_agi_t, agi_level), 2442 offsetof(xfs_agi_t, agi_freecount), 2443 offsetof(xfs_agi_t, agi_newino), 2444 offsetof(xfs_agi_t, agi_dirino), 2445 offsetof(xfs_agi_t, agi_unlinked), 2446 offsetof(xfs_agi_t, agi_free_root), 2447 offsetof(xfs_agi_t, agi_free_level), 2448 sizeof(xfs_agi_t) 2449 }; 2450 #ifdef DEBUG 2451 xfs_agi_t *agi; /* allocation group header */ 2452 2453 agi = XFS_BUF_TO_AGI(bp); 2454 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2455 #endif 2456 2457 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF); 2458 2459 /* 2460 * Compute byte offsets for the first and last fields in the first 2461 * region and log the agi buffer. This only logs up through 2462 * agi_unlinked. 2463 */ 2464 if (fields & XFS_AGI_ALL_BITS_R1) { 2465 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2466 &first, &last); 2467 xfs_trans_log_buf(tp, bp, first, last); 2468 } 2469 2470 /* 2471 * Mask off the bits in the first region and calculate the first and 2472 * last field offsets for any bits in the second region. 2473 */ 2474 fields &= ~XFS_AGI_ALL_BITS_R1; 2475 if (fields) { 2476 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2477 &first, &last); 2478 xfs_trans_log_buf(tp, bp, first, last); 2479 } 2480 } 2481 2482 #ifdef DEBUG 2483 STATIC void 2484 xfs_check_agi_unlinked( 2485 struct xfs_agi *agi) 2486 { 2487 int i; 2488 2489 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) 2490 ASSERT(agi->agi_unlinked[i]); 2491 } 2492 #else 2493 #define xfs_check_agi_unlinked(agi) 2494 #endif 2495 2496 static bool 2497 xfs_agi_verify( 2498 struct xfs_buf *bp) 2499 { 2500 struct xfs_mount *mp = bp->b_target->bt_mount; 2501 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); 2502 2503 if (xfs_sb_version_hascrc(&mp->m_sb) && 2504 !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) 2505 return false; 2506 /* 2507 * Validate the magic number of the agi block. 2508 */ 2509 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC)) 2510 return false; 2511 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2512 return false; 2513 2514 if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS) 2515 return false; 2516 /* 2517 * during growfs operations, the perag is not fully initialised, 2518 * so we can't use it for any useful checking. growfs ensures we can't 2519 * use it by using uncached buffers that don't have the perag attached 2520 * so we can detect and avoid this problem. 2521 */ 2522 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) 2523 return false; 2524 2525 xfs_check_agi_unlinked(agi); 2526 return true; 2527 } 2528 2529 static void 2530 xfs_agi_read_verify( 2531 struct xfs_buf *bp) 2532 { 2533 struct xfs_mount *mp = bp->b_target->bt_mount; 2534 2535 if (xfs_sb_version_hascrc(&mp->m_sb) && 2536 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2537 xfs_buf_ioerror(bp, -EFSBADCRC); 2538 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp, 2539 XFS_ERRTAG_IALLOC_READ_AGI, 2540 XFS_RANDOM_IALLOC_READ_AGI)) 2541 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2542 2543 if (bp->b_error) 2544 xfs_verifier_error(bp); 2545 } 2546 2547 static void 2548 xfs_agi_write_verify( 2549 struct xfs_buf *bp) 2550 { 2551 struct xfs_mount *mp = bp->b_target->bt_mount; 2552 struct xfs_buf_log_item *bip = bp->b_fspriv; 2553 2554 if (!xfs_agi_verify(bp)) { 2555 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2556 xfs_verifier_error(bp); 2557 return; 2558 } 2559 2560 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2561 return; 2562 2563 if (bip) 2564 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2565 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2566 } 2567 2568 const struct xfs_buf_ops xfs_agi_buf_ops = { 2569 .verify_read = xfs_agi_read_verify, 2570 .verify_write = xfs_agi_write_verify, 2571 }; 2572 2573 /* 2574 * Read in the allocation group header (inode allocation section) 2575 */ 2576 int 2577 xfs_read_agi( 2578 struct xfs_mount *mp, /* file system mount structure */ 2579 struct xfs_trans *tp, /* transaction pointer */ 2580 xfs_agnumber_t agno, /* allocation group number */ 2581 struct xfs_buf **bpp) /* allocation group hdr buf */ 2582 { 2583 int error; 2584 2585 trace_xfs_read_agi(mp, agno); 2586 2587 ASSERT(agno != NULLAGNUMBER); 2588 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2589 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 2590 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); 2591 if (error) 2592 return error; 2593 2594 xfs_buf_set_ref(*bpp, XFS_AGI_REF); 2595 return 0; 2596 } 2597 2598 int 2599 xfs_ialloc_read_agi( 2600 struct xfs_mount *mp, /* file system mount structure */ 2601 struct xfs_trans *tp, /* transaction pointer */ 2602 xfs_agnumber_t agno, /* allocation group number */ 2603 struct xfs_buf **bpp) /* allocation group hdr buf */ 2604 { 2605 struct xfs_agi *agi; /* allocation group header */ 2606 struct xfs_perag *pag; /* per allocation group data */ 2607 int error; 2608 2609 trace_xfs_ialloc_read_agi(mp, agno); 2610 2611 error = xfs_read_agi(mp, tp, agno, bpp); 2612 if (error) 2613 return error; 2614 2615 agi = XFS_BUF_TO_AGI(*bpp); 2616 pag = xfs_perag_get(mp, agno); 2617 if (!pag->pagi_init) { 2618 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2619 pag->pagi_count = be32_to_cpu(agi->agi_count); 2620 pag->pagi_init = 1; 2621 } 2622 2623 /* 2624 * It's possible for these to be out of sync if 2625 * we are in the middle of a forced shutdown. 2626 */ 2627 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2628 XFS_FORCED_SHUTDOWN(mp)); 2629 xfs_perag_put(pag); 2630 return 0; 2631 } 2632 2633 /* 2634 * Read in the agi to initialise the per-ag data in the mount structure 2635 */ 2636 int 2637 xfs_ialloc_pagi_init( 2638 xfs_mount_t *mp, /* file system mount structure */ 2639 xfs_trans_t *tp, /* transaction pointer */ 2640 xfs_agnumber_t agno) /* allocation group number */ 2641 { 2642 xfs_buf_t *bp = NULL; 2643 int error; 2644 2645 error = xfs_ialloc_read_agi(mp, tp, agno, &bp); 2646 if (error) 2647 return error; 2648 if (bp) 2649 xfs_trans_brelse(tp, bp); 2650 return 0; 2651 } 2652