xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc.c (revision c8ce540d)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_error.h"
35 #include "xfs_bmap.h"
36 #include "xfs_cksum.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_icreate_item.h"
40 #include "xfs_icache.h"
41 #include "xfs_trace.h"
42 #include "xfs_log.h"
43 #include "xfs_rmap.h"
44 
45 
46 /*
47  * Allocation group level functions.
48  */
49 static inline int
50 xfs_ialloc_cluster_alignment(
51 	struct xfs_mount	*mp)
52 {
53 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
54 	    mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
55 		return mp->m_sb.sb_inoalignmt;
56 	return 1;
57 }
58 
59 /*
60  * Lookup a record by ino in the btree given by cur.
61  */
62 int					/* error */
63 xfs_inobt_lookup(
64 	struct xfs_btree_cur	*cur,	/* btree cursor */
65 	xfs_agino_t		ino,	/* starting inode of chunk */
66 	xfs_lookup_t		dir,	/* <=, >=, == */
67 	int			*stat)	/* success/failure */
68 {
69 	cur->bc_rec.i.ir_startino = ino;
70 	cur->bc_rec.i.ir_holemask = 0;
71 	cur->bc_rec.i.ir_count = 0;
72 	cur->bc_rec.i.ir_freecount = 0;
73 	cur->bc_rec.i.ir_free = 0;
74 	return xfs_btree_lookup(cur, dir, stat);
75 }
76 
77 /*
78  * Update the record referred to by cur to the value given.
79  * This either works (return 0) or gets an EFSCORRUPTED error.
80  */
81 STATIC int				/* error */
82 xfs_inobt_update(
83 	struct xfs_btree_cur	*cur,	/* btree cursor */
84 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
85 {
86 	union xfs_btree_rec	rec;
87 
88 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
89 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
90 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
91 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
92 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
93 	} else {
94 		/* ir_holemask/ir_count not supported on-disk */
95 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
96 	}
97 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
98 	return xfs_btree_update(cur, &rec);
99 }
100 
101 /*
102  * Get the data from the pointed-to record.
103  */
104 int					/* error */
105 xfs_inobt_get_rec(
106 	struct xfs_btree_cur	*cur,	/* btree cursor */
107 	xfs_inobt_rec_incore_t	*irec,	/* btree record */
108 	int			*stat)	/* output: success/failure */
109 {
110 	union xfs_btree_rec	*rec;
111 	int			error;
112 
113 	error = xfs_btree_get_rec(cur, &rec, stat);
114 	if (error || *stat == 0)
115 		return error;
116 
117 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
118 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
119 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
120 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
121 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
122 	} else {
123 		/*
124 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
125 		 * values for full inode chunks.
126 		 */
127 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
128 		irec->ir_count = XFS_INODES_PER_CHUNK;
129 		irec->ir_freecount =
130 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
131 	}
132 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
133 
134 	return 0;
135 }
136 
137 /*
138  * Insert a single inobt record. Cursor must already point to desired location.
139  */
140 STATIC int
141 xfs_inobt_insert_rec(
142 	struct xfs_btree_cur	*cur,
143 	uint16_t		holemask,
144 	uint8_t			count,
145 	int32_t			freecount,
146 	xfs_inofree_t		free,
147 	int			*stat)
148 {
149 	cur->bc_rec.i.ir_holemask = holemask;
150 	cur->bc_rec.i.ir_count = count;
151 	cur->bc_rec.i.ir_freecount = freecount;
152 	cur->bc_rec.i.ir_free = free;
153 	return xfs_btree_insert(cur, stat);
154 }
155 
156 /*
157  * Insert records describing a newly allocated inode chunk into the inobt.
158  */
159 STATIC int
160 xfs_inobt_insert(
161 	struct xfs_mount	*mp,
162 	struct xfs_trans	*tp,
163 	struct xfs_buf		*agbp,
164 	xfs_agino_t		newino,
165 	xfs_agino_t		newlen,
166 	xfs_btnum_t		btnum)
167 {
168 	struct xfs_btree_cur	*cur;
169 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
170 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
171 	xfs_agino_t		thisino;
172 	int			i;
173 	int			error;
174 
175 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
176 
177 	for (thisino = newino;
178 	     thisino < newino + newlen;
179 	     thisino += XFS_INODES_PER_CHUNK) {
180 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
181 		if (error) {
182 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
183 			return error;
184 		}
185 		ASSERT(i == 0);
186 
187 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
188 					     XFS_INODES_PER_CHUNK,
189 					     XFS_INODES_PER_CHUNK,
190 					     XFS_INOBT_ALL_FREE, &i);
191 		if (error) {
192 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
193 			return error;
194 		}
195 		ASSERT(i == 1);
196 	}
197 
198 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
199 
200 	return 0;
201 }
202 
203 /*
204  * Verify that the number of free inodes in the AGI is correct.
205  */
206 #ifdef DEBUG
207 STATIC int
208 xfs_check_agi_freecount(
209 	struct xfs_btree_cur	*cur,
210 	struct xfs_agi		*agi)
211 {
212 	if (cur->bc_nlevels == 1) {
213 		xfs_inobt_rec_incore_t rec;
214 		int		freecount = 0;
215 		int		error;
216 		int		i;
217 
218 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
219 		if (error)
220 			return error;
221 
222 		do {
223 			error = xfs_inobt_get_rec(cur, &rec, &i);
224 			if (error)
225 				return error;
226 
227 			if (i) {
228 				freecount += rec.ir_freecount;
229 				error = xfs_btree_increment(cur, 0, &i);
230 				if (error)
231 					return error;
232 			}
233 		} while (i == 1);
234 
235 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
236 			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
237 	}
238 	return 0;
239 }
240 #else
241 #define xfs_check_agi_freecount(cur, agi)	0
242 #endif
243 
244 /*
245  * Initialise a new set of inodes. When called without a transaction context
246  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
247  * than logging them (which in a transaction context puts them into the AIL
248  * for writeback rather than the xfsbufd queue).
249  */
250 int
251 xfs_ialloc_inode_init(
252 	struct xfs_mount	*mp,
253 	struct xfs_trans	*tp,
254 	struct list_head	*buffer_list,
255 	int			icount,
256 	xfs_agnumber_t		agno,
257 	xfs_agblock_t		agbno,
258 	xfs_agblock_t		length,
259 	unsigned int		gen)
260 {
261 	struct xfs_buf		*fbuf;
262 	struct xfs_dinode	*free;
263 	int			nbufs, blks_per_cluster, inodes_per_cluster;
264 	int			version;
265 	int			i, j;
266 	xfs_daddr_t		d;
267 	xfs_ino_t		ino = 0;
268 
269 	/*
270 	 * Loop over the new block(s), filling in the inodes.  For small block
271 	 * sizes, manipulate the inodes in buffers  which are multiples of the
272 	 * blocks size.
273 	 */
274 	blks_per_cluster = xfs_icluster_size_fsb(mp);
275 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
276 	nbufs = length / blks_per_cluster;
277 
278 	/*
279 	 * Figure out what version number to use in the inodes we create.  If
280 	 * the superblock version has caught up to the one that supports the new
281 	 * inode format, then use the new inode version.  Otherwise use the old
282 	 * version so that old kernels will continue to be able to use the file
283 	 * system.
284 	 *
285 	 * For v3 inodes, we also need to write the inode number into the inode,
286 	 * so calculate the first inode number of the chunk here as
287 	 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
288 	 * across multiple filesystem blocks (such as a cluster) and so cannot
289 	 * be used in the cluster buffer loop below.
290 	 *
291 	 * Further, because we are writing the inode directly into the buffer
292 	 * and calculating a CRC on the entire inode, we have ot log the entire
293 	 * inode so that the entire range the CRC covers is present in the log.
294 	 * That means for v3 inode we log the entire buffer rather than just the
295 	 * inode cores.
296 	 */
297 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
298 		version = 3;
299 		ino = XFS_AGINO_TO_INO(mp, agno,
300 				       XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
301 
302 		/*
303 		 * log the initialisation that is about to take place as an
304 		 * logical operation. This means the transaction does not
305 		 * need to log the physical changes to the inode buffers as log
306 		 * recovery will know what initialisation is actually needed.
307 		 * Hence we only need to log the buffers as "ordered" buffers so
308 		 * they track in the AIL as if they were physically logged.
309 		 */
310 		if (tp)
311 			xfs_icreate_log(tp, agno, agbno, icount,
312 					mp->m_sb.sb_inodesize, length, gen);
313 	} else
314 		version = 2;
315 
316 	for (j = 0; j < nbufs; j++) {
317 		/*
318 		 * Get the block.
319 		 */
320 		d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
321 		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
322 					 mp->m_bsize * blks_per_cluster,
323 					 XBF_UNMAPPED);
324 		if (!fbuf)
325 			return -ENOMEM;
326 
327 		/* Initialize the inode buffers and log them appropriately. */
328 		fbuf->b_ops = &xfs_inode_buf_ops;
329 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
330 		for (i = 0; i < inodes_per_cluster; i++) {
331 			int	ioffset = i << mp->m_sb.sb_inodelog;
332 			uint	isize = xfs_dinode_size(version);
333 
334 			free = xfs_make_iptr(mp, fbuf, i);
335 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
336 			free->di_version = version;
337 			free->di_gen = cpu_to_be32(gen);
338 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
339 
340 			if (version == 3) {
341 				free->di_ino = cpu_to_be64(ino);
342 				ino++;
343 				uuid_copy(&free->di_uuid,
344 					  &mp->m_sb.sb_meta_uuid);
345 				xfs_dinode_calc_crc(mp, free);
346 			} else if (tp) {
347 				/* just log the inode core */
348 				xfs_trans_log_buf(tp, fbuf, ioffset,
349 						  ioffset + isize - 1);
350 			}
351 		}
352 
353 		if (tp) {
354 			/*
355 			 * Mark the buffer as an inode allocation buffer so it
356 			 * sticks in AIL at the point of this allocation
357 			 * transaction. This ensures the they are on disk before
358 			 * the tail of the log can be moved past this
359 			 * transaction (i.e. by preventing relogging from moving
360 			 * it forward in the log).
361 			 */
362 			xfs_trans_inode_alloc_buf(tp, fbuf);
363 			if (version == 3) {
364 				/*
365 				 * Mark the buffer as ordered so that they are
366 				 * not physically logged in the transaction but
367 				 * still tracked in the AIL as part of the
368 				 * transaction and pin the log appropriately.
369 				 */
370 				xfs_trans_ordered_buf(tp, fbuf);
371 				xfs_trans_log_buf(tp, fbuf, 0,
372 						  BBTOB(fbuf->b_length) - 1);
373 			}
374 		} else {
375 			fbuf->b_flags |= XBF_DONE;
376 			xfs_buf_delwri_queue(fbuf, buffer_list);
377 			xfs_buf_relse(fbuf);
378 		}
379 	}
380 	return 0;
381 }
382 
383 /*
384  * Align startino and allocmask for a recently allocated sparse chunk such that
385  * they are fit for insertion (or merge) into the on-disk inode btrees.
386  *
387  * Background:
388  *
389  * When enabled, sparse inode support increases the inode alignment from cluster
390  * size to inode chunk size. This means that the minimum range between two
391  * non-adjacent inode records in the inobt is large enough for a full inode
392  * record. This allows for cluster sized, cluster aligned block allocation
393  * without need to worry about whether the resulting inode record overlaps with
394  * another record in the tree. Without this basic rule, we would have to deal
395  * with the consequences of overlap by potentially undoing recent allocations in
396  * the inode allocation codepath.
397  *
398  * Because of this alignment rule (which is enforced on mount), there are two
399  * inobt possibilities for newly allocated sparse chunks. One is that the
400  * aligned inode record for the chunk covers a range of inodes not already
401  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
402  * other is that a record already exists at the aligned startino that considers
403  * the newly allocated range as sparse. In the latter case, record content is
404  * merged in hope that sparse inode chunks fill to full chunks over time.
405  */
406 STATIC void
407 xfs_align_sparse_ino(
408 	struct xfs_mount		*mp,
409 	xfs_agino_t			*startino,
410 	uint16_t			*allocmask)
411 {
412 	xfs_agblock_t			agbno;
413 	xfs_agblock_t			mod;
414 	int				offset;
415 
416 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
417 	mod = agbno % mp->m_sb.sb_inoalignmt;
418 	if (!mod)
419 		return;
420 
421 	/* calculate the inode offset and align startino */
422 	offset = mod << mp->m_sb.sb_inopblog;
423 	*startino -= offset;
424 
425 	/*
426 	 * Since startino has been aligned down, left shift allocmask such that
427 	 * it continues to represent the same physical inodes relative to the
428 	 * new startino.
429 	 */
430 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
431 }
432 
433 /*
434  * Determine whether the source inode record can merge into the target. Both
435  * records must be sparse, the inode ranges must match and there must be no
436  * allocation overlap between the records.
437  */
438 STATIC bool
439 __xfs_inobt_can_merge(
440 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
441 	struct xfs_inobt_rec_incore	*srec)	/* src record */
442 {
443 	uint64_t			talloc;
444 	uint64_t			salloc;
445 
446 	/* records must cover the same inode range */
447 	if (trec->ir_startino != srec->ir_startino)
448 		return false;
449 
450 	/* both records must be sparse */
451 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
452 	    !xfs_inobt_issparse(srec->ir_holemask))
453 		return false;
454 
455 	/* both records must track some inodes */
456 	if (!trec->ir_count || !srec->ir_count)
457 		return false;
458 
459 	/* can't exceed capacity of a full record */
460 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
461 		return false;
462 
463 	/* verify there is no allocation overlap */
464 	talloc = xfs_inobt_irec_to_allocmask(trec);
465 	salloc = xfs_inobt_irec_to_allocmask(srec);
466 	if (talloc & salloc)
467 		return false;
468 
469 	return true;
470 }
471 
472 /*
473  * Merge the source inode record into the target. The caller must call
474  * __xfs_inobt_can_merge() to ensure the merge is valid.
475  */
476 STATIC void
477 __xfs_inobt_rec_merge(
478 	struct xfs_inobt_rec_incore	*trec,	/* target */
479 	struct xfs_inobt_rec_incore	*srec)	/* src */
480 {
481 	ASSERT(trec->ir_startino == srec->ir_startino);
482 
483 	/* combine the counts */
484 	trec->ir_count += srec->ir_count;
485 	trec->ir_freecount += srec->ir_freecount;
486 
487 	/*
488 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
489 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
490 	 */
491 	trec->ir_holemask &= srec->ir_holemask;
492 	trec->ir_free &= srec->ir_free;
493 }
494 
495 /*
496  * Insert a new sparse inode chunk into the associated inode btree. The inode
497  * record for the sparse chunk is pre-aligned to a startino that should match
498  * any pre-existing sparse inode record in the tree. This allows sparse chunks
499  * to fill over time.
500  *
501  * This function supports two modes of handling preexisting records depending on
502  * the merge flag. If merge is true, the provided record is merged with the
503  * existing record and updated in place. The merged record is returned in nrec.
504  * If merge is false, an existing record is replaced with the provided record.
505  * If no preexisting record exists, the provided record is always inserted.
506  *
507  * It is considered corruption if a merge is requested and not possible. Given
508  * the sparse inode alignment constraints, this should never happen.
509  */
510 STATIC int
511 xfs_inobt_insert_sprec(
512 	struct xfs_mount		*mp,
513 	struct xfs_trans		*tp,
514 	struct xfs_buf			*agbp,
515 	int				btnum,
516 	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
517 	bool				merge)	/* merge or replace */
518 {
519 	struct xfs_btree_cur		*cur;
520 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
521 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
522 	int				error;
523 	int				i;
524 	struct xfs_inobt_rec_incore	rec;
525 
526 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
527 
528 	/* the new record is pre-aligned so we know where to look */
529 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
530 	if (error)
531 		goto error;
532 	/* if nothing there, insert a new record and return */
533 	if (i == 0) {
534 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
535 					     nrec->ir_count, nrec->ir_freecount,
536 					     nrec->ir_free, &i);
537 		if (error)
538 			goto error;
539 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
540 
541 		goto out;
542 	}
543 
544 	/*
545 	 * A record exists at this startino. Merge or replace the record
546 	 * depending on what we've been asked to do.
547 	 */
548 	if (merge) {
549 		error = xfs_inobt_get_rec(cur, &rec, &i);
550 		if (error)
551 			goto error;
552 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
553 		XFS_WANT_CORRUPTED_GOTO(mp,
554 					rec.ir_startino == nrec->ir_startino,
555 					error);
556 
557 		/*
558 		 * This should never fail. If we have coexisting records that
559 		 * cannot merge, something is seriously wrong.
560 		 */
561 		XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
562 					error);
563 
564 		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
565 					 rec.ir_holemask, nrec->ir_startino,
566 					 nrec->ir_holemask);
567 
568 		/* merge to nrec to output the updated record */
569 		__xfs_inobt_rec_merge(nrec, &rec);
570 
571 		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
572 					  nrec->ir_holemask);
573 
574 		error = xfs_inobt_rec_check_count(mp, nrec);
575 		if (error)
576 			goto error;
577 	}
578 
579 	error = xfs_inobt_update(cur, nrec);
580 	if (error)
581 		goto error;
582 
583 out:
584 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
585 	return 0;
586 error:
587 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
588 	return error;
589 }
590 
591 /*
592  * Allocate new inodes in the allocation group specified by agbp.
593  * Return 0 for success, else error code.
594  */
595 STATIC int				/* error code or 0 */
596 xfs_ialloc_ag_alloc(
597 	xfs_trans_t	*tp,		/* transaction pointer */
598 	xfs_buf_t	*agbp,		/* alloc group buffer */
599 	int		*alloc)
600 {
601 	xfs_agi_t	*agi;		/* allocation group header */
602 	xfs_alloc_arg_t	args;		/* allocation argument structure */
603 	xfs_agnumber_t	agno;
604 	int		error;
605 	xfs_agino_t	newino;		/* new first inode's number */
606 	xfs_agino_t	newlen;		/* new number of inodes */
607 	int		isaligned = 0;	/* inode allocation at stripe unit */
608 					/* boundary */
609 	uint16_t	allocmask = (uint16_t) -1; /* init. to full chunk */
610 	struct xfs_inobt_rec_incore rec;
611 	struct xfs_perag *pag;
612 	int		do_sparse = 0;
613 
614 	memset(&args, 0, sizeof(args));
615 	args.tp = tp;
616 	args.mp = tp->t_mountp;
617 	args.fsbno = NULLFSBLOCK;
618 	xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
619 
620 #ifdef DEBUG
621 	/* randomly do sparse inode allocations */
622 	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
623 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
624 		do_sparse = prandom_u32() & 1;
625 #endif
626 
627 	/*
628 	 * Locking will ensure that we don't have two callers in here
629 	 * at one time.
630 	 */
631 	newlen = args.mp->m_ialloc_inos;
632 	if (args.mp->m_maxicount &&
633 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
634 							args.mp->m_maxicount)
635 		return -ENOSPC;
636 	args.minlen = args.maxlen = args.mp->m_ialloc_blks;
637 	/*
638 	 * First try to allocate inodes contiguous with the last-allocated
639 	 * chunk of inodes.  If the filesystem is striped, this will fill
640 	 * an entire stripe unit with inodes.
641 	 */
642 	agi = XFS_BUF_TO_AGI(agbp);
643 	newino = be32_to_cpu(agi->agi_newino);
644 	agno = be32_to_cpu(agi->agi_seqno);
645 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
646 		     args.mp->m_ialloc_blks;
647 	if (do_sparse)
648 		goto sparse_alloc;
649 	if (likely(newino != NULLAGINO &&
650 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
651 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
652 		args.type = XFS_ALLOCTYPE_THIS_BNO;
653 		args.prod = 1;
654 
655 		/*
656 		 * We need to take into account alignment here to ensure that
657 		 * we don't modify the free list if we fail to have an exact
658 		 * block. If we don't have an exact match, and every oher
659 		 * attempt allocation attempt fails, we'll end up cancelling
660 		 * a dirty transaction and shutting down.
661 		 *
662 		 * For an exact allocation, alignment must be 1,
663 		 * however we need to take cluster alignment into account when
664 		 * fixing up the freelist. Use the minalignslop field to
665 		 * indicate that extra blocks might be required for alignment,
666 		 * but not to use them in the actual exact allocation.
667 		 */
668 		args.alignment = 1;
669 		args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
670 
671 		/* Allow space for the inode btree to split. */
672 		args.minleft = args.mp->m_in_maxlevels - 1;
673 		if ((error = xfs_alloc_vextent(&args)))
674 			return error;
675 
676 		/*
677 		 * This request might have dirtied the transaction if the AG can
678 		 * satisfy the request, but the exact block was not available.
679 		 * If the allocation did fail, subsequent requests will relax
680 		 * the exact agbno requirement and increase the alignment
681 		 * instead. It is critical that the total size of the request
682 		 * (len + alignment + slop) does not increase from this point
683 		 * on, so reset minalignslop to ensure it is not included in
684 		 * subsequent requests.
685 		 */
686 		args.minalignslop = 0;
687 	}
688 
689 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
690 		/*
691 		 * Set the alignment for the allocation.
692 		 * If stripe alignment is turned on then align at stripe unit
693 		 * boundary.
694 		 * If the cluster size is smaller than a filesystem block
695 		 * then we're doing I/O for inodes in filesystem block size
696 		 * pieces, so don't need alignment anyway.
697 		 */
698 		isaligned = 0;
699 		if (args.mp->m_sinoalign) {
700 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
701 			args.alignment = args.mp->m_dalign;
702 			isaligned = 1;
703 		} else
704 			args.alignment = xfs_ialloc_cluster_alignment(args.mp);
705 		/*
706 		 * Need to figure out where to allocate the inode blocks.
707 		 * Ideally they should be spaced out through the a.g.
708 		 * For now, just allocate blocks up front.
709 		 */
710 		args.agbno = be32_to_cpu(agi->agi_root);
711 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
712 		/*
713 		 * Allocate a fixed-size extent of inodes.
714 		 */
715 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
716 		args.prod = 1;
717 		/*
718 		 * Allow space for the inode btree to split.
719 		 */
720 		args.minleft = args.mp->m_in_maxlevels - 1;
721 		if ((error = xfs_alloc_vextent(&args)))
722 			return error;
723 	}
724 
725 	/*
726 	 * If stripe alignment is turned on, then try again with cluster
727 	 * alignment.
728 	 */
729 	if (isaligned && args.fsbno == NULLFSBLOCK) {
730 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
731 		args.agbno = be32_to_cpu(agi->agi_root);
732 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
733 		args.alignment = xfs_ialloc_cluster_alignment(args.mp);
734 		if ((error = xfs_alloc_vextent(&args)))
735 			return error;
736 	}
737 
738 	/*
739 	 * Finally, try a sparse allocation if the filesystem supports it and
740 	 * the sparse allocation length is smaller than a full chunk.
741 	 */
742 	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
743 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
744 	    args.fsbno == NULLFSBLOCK) {
745 sparse_alloc:
746 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
747 		args.agbno = be32_to_cpu(agi->agi_root);
748 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
749 		args.alignment = args.mp->m_sb.sb_spino_align;
750 		args.prod = 1;
751 
752 		args.minlen = args.mp->m_ialloc_min_blks;
753 		args.maxlen = args.minlen;
754 
755 		/*
756 		 * The inode record will be aligned to full chunk size. We must
757 		 * prevent sparse allocation from AG boundaries that result in
758 		 * invalid inode records, such as records that start at agbno 0
759 		 * or extend beyond the AG.
760 		 *
761 		 * Set min agbno to the first aligned, non-zero agbno and max to
762 		 * the last aligned agbno that is at least one full chunk from
763 		 * the end of the AG.
764 		 */
765 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
766 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
767 					    args.mp->m_sb.sb_inoalignmt) -
768 				 args.mp->m_ialloc_blks;
769 
770 		error = xfs_alloc_vextent(&args);
771 		if (error)
772 			return error;
773 
774 		newlen = args.len << args.mp->m_sb.sb_inopblog;
775 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
776 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
777 	}
778 
779 	if (args.fsbno == NULLFSBLOCK) {
780 		*alloc = 0;
781 		return 0;
782 	}
783 	ASSERT(args.len == args.minlen);
784 
785 	/*
786 	 * Stamp and write the inode buffers.
787 	 *
788 	 * Seed the new inode cluster with a random generation number. This
789 	 * prevents short-term reuse of generation numbers if a chunk is
790 	 * freed and then immediately reallocated. We use random numbers
791 	 * rather than a linear progression to prevent the next generation
792 	 * number from being easily guessable.
793 	 */
794 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
795 			args.agbno, args.len, prandom_u32());
796 
797 	if (error)
798 		return error;
799 	/*
800 	 * Convert the results.
801 	 */
802 	newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
803 
804 	if (xfs_inobt_issparse(~allocmask)) {
805 		/*
806 		 * We've allocated a sparse chunk. Align the startino and mask.
807 		 */
808 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
809 
810 		rec.ir_startino = newino;
811 		rec.ir_holemask = ~allocmask;
812 		rec.ir_count = newlen;
813 		rec.ir_freecount = newlen;
814 		rec.ir_free = XFS_INOBT_ALL_FREE;
815 
816 		/*
817 		 * Insert the sparse record into the inobt and allow for a merge
818 		 * if necessary. If a merge does occur, rec is updated to the
819 		 * merged record.
820 		 */
821 		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
822 					       &rec, true);
823 		if (error == -EFSCORRUPTED) {
824 			xfs_alert(args.mp,
825 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
826 				  XFS_AGINO_TO_INO(args.mp, agno,
827 						   rec.ir_startino),
828 				  rec.ir_holemask, rec.ir_count);
829 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
830 		}
831 		if (error)
832 			return error;
833 
834 		/*
835 		 * We can't merge the part we've just allocated as for the inobt
836 		 * due to finobt semantics. The original record may or may not
837 		 * exist independent of whether physical inodes exist in this
838 		 * sparse chunk.
839 		 *
840 		 * We must update the finobt record based on the inobt record.
841 		 * rec contains the fully merged and up to date inobt record
842 		 * from the previous call. Set merge false to replace any
843 		 * existing record with this one.
844 		 */
845 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
846 			error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
847 						       XFS_BTNUM_FINO, &rec,
848 						       false);
849 			if (error)
850 				return error;
851 		}
852 	} else {
853 		/* full chunk - insert new records to both btrees */
854 		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
855 					 XFS_BTNUM_INO);
856 		if (error)
857 			return error;
858 
859 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
860 			error = xfs_inobt_insert(args.mp, tp, agbp, newino,
861 						 newlen, XFS_BTNUM_FINO);
862 			if (error)
863 				return error;
864 		}
865 	}
866 
867 	/*
868 	 * Update AGI counts and newino.
869 	 */
870 	be32_add_cpu(&agi->agi_count, newlen);
871 	be32_add_cpu(&agi->agi_freecount, newlen);
872 	pag = xfs_perag_get(args.mp, agno);
873 	pag->pagi_freecount += newlen;
874 	xfs_perag_put(pag);
875 	agi->agi_newino = cpu_to_be32(newino);
876 
877 	/*
878 	 * Log allocation group header fields
879 	 */
880 	xfs_ialloc_log_agi(tp, agbp,
881 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
882 	/*
883 	 * Modify/log superblock values for inode count and inode free count.
884 	 */
885 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
886 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
887 	*alloc = 1;
888 	return 0;
889 }
890 
891 STATIC xfs_agnumber_t
892 xfs_ialloc_next_ag(
893 	xfs_mount_t	*mp)
894 {
895 	xfs_agnumber_t	agno;
896 
897 	spin_lock(&mp->m_agirotor_lock);
898 	agno = mp->m_agirotor;
899 	if (++mp->m_agirotor >= mp->m_maxagi)
900 		mp->m_agirotor = 0;
901 	spin_unlock(&mp->m_agirotor_lock);
902 
903 	return agno;
904 }
905 
906 /*
907  * Select an allocation group to look for a free inode in, based on the parent
908  * inode and the mode.  Return the allocation group buffer.
909  */
910 STATIC xfs_agnumber_t
911 xfs_ialloc_ag_select(
912 	xfs_trans_t	*tp,		/* transaction pointer */
913 	xfs_ino_t	parent,		/* parent directory inode number */
914 	umode_t		mode,		/* bits set to indicate file type */
915 	int		okalloc)	/* ok to allocate more space */
916 {
917 	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
918 	xfs_agnumber_t	agno;		/* current ag number */
919 	int		flags;		/* alloc buffer locking flags */
920 	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
921 	xfs_extlen_t	longest = 0;	/* longest extent available */
922 	xfs_mount_t	*mp;		/* mount point structure */
923 	int		needspace;	/* file mode implies space allocated */
924 	xfs_perag_t	*pag;		/* per allocation group data */
925 	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
926 	int		error;
927 
928 	/*
929 	 * Files of these types need at least one block if length > 0
930 	 * (and they won't fit in the inode, but that's hard to figure out).
931 	 */
932 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
933 	mp = tp->t_mountp;
934 	agcount = mp->m_maxagi;
935 	if (S_ISDIR(mode))
936 		pagno = xfs_ialloc_next_ag(mp);
937 	else {
938 		pagno = XFS_INO_TO_AGNO(mp, parent);
939 		if (pagno >= agcount)
940 			pagno = 0;
941 	}
942 
943 	ASSERT(pagno < agcount);
944 
945 	/*
946 	 * Loop through allocation groups, looking for one with a little
947 	 * free space in it.  Note we don't look for free inodes, exactly.
948 	 * Instead, we include whether there is a need to allocate inodes
949 	 * to mean that blocks must be allocated for them,
950 	 * if none are currently free.
951 	 */
952 	agno = pagno;
953 	flags = XFS_ALLOC_FLAG_TRYLOCK;
954 	for (;;) {
955 		pag = xfs_perag_get(mp, agno);
956 		if (!pag->pagi_inodeok) {
957 			xfs_ialloc_next_ag(mp);
958 			goto nextag;
959 		}
960 
961 		if (!pag->pagi_init) {
962 			error = xfs_ialloc_pagi_init(mp, tp, agno);
963 			if (error)
964 				goto nextag;
965 		}
966 
967 		if (pag->pagi_freecount) {
968 			xfs_perag_put(pag);
969 			return agno;
970 		}
971 
972 		if (!okalloc)
973 			goto nextag;
974 
975 		if (!pag->pagf_init) {
976 			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
977 			if (error)
978 				goto nextag;
979 		}
980 
981 		/*
982 		 * Check that there is enough free space for the file plus a
983 		 * chunk of inodes if we need to allocate some. If this is the
984 		 * first pass across the AGs, take into account the potential
985 		 * space needed for alignment of inode chunks when checking the
986 		 * longest contiguous free space in the AG - this prevents us
987 		 * from getting ENOSPC because we have free space larger than
988 		 * m_ialloc_blks but alignment constraints prevent us from using
989 		 * it.
990 		 *
991 		 * If we can't find an AG with space for full alignment slack to
992 		 * be taken into account, we must be near ENOSPC in all AGs.
993 		 * Hence we don't include alignment for the second pass and so
994 		 * if we fail allocation due to alignment issues then it is most
995 		 * likely a real ENOSPC condition.
996 		 */
997 		ineed = mp->m_ialloc_min_blks;
998 		if (flags && ineed > 1)
999 			ineed += xfs_ialloc_cluster_alignment(mp);
1000 		longest = pag->pagf_longest;
1001 		if (!longest)
1002 			longest = pag->pagf_flcount > 0;
1003 
1004 		if (pag->pagf_freeblks >= needspace + ineed &&
1005 		    longest >= ineed) {
1006 			xfs_perag_put(pag);
1007 			return agno;
1008 		}
1009 nextag:
1010 		xfs_perag_put(pag);
1011 		/*
1012 		 * No point in iterating over the rest, if we're shutting
1013 		 * down.
1014 		 */
1015 		if (XFS_FORCED_SHUTDOWN(mp))
1016 			return NULLAGNUMBER;
1017 		agno++;
1018 		if (agno >= agcount)
1019 			agno = 0;
1020 		if (agno == pagno) {
1021 			if (flags == 0)
1022 				return NULLAGNUMBER;
1023 			flags = 0;
1024 		}
1025 	}
1026 }
1027 
1028 /*
1029  * Try to retrieve the next record to the left/right from the current one.
1030  */
1031 STATIC int
1032 xfs_ialloc_next_rec(
1033 	struct xfs_btree_cur	*cur,
1034 	xfs_inobt_rec_incore_t	*rec,
1035 	int			*done,
1036 	int			left)
1037 {
1038 	int                     error;
1039 	int			i;
1040 
1041 	if (left)
1042 		error = xfs_btree_decrement(cur, 0, &i);
1043 	else
1044 		error = xfs_btree_increment(cur, 0, &i);
1045 
1046 	if (error)
1047 		return error;
1048 	*done = !i;
1049 	if (i) {
1050 		error = xfs_inobt_get_rec(cur, rec, &i);
1051 		if (error)
1052 			return error;
1053 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1054 	}
1055 
1056 	return 0;
1057 }
1058 
1059 STATIC int
1060 xfs_ialloc_get_rec(
1061 	struct xfs_btree_cur	*cur,
1062 	xfs_agino_t		agino,
1063 	xfs_inobt_rec_incore_t	*rec,
1064 	int			*done)
1065 {
1066 	int                     error;
1067 	int			i;
1068 
1069 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1070 	if (error)
1071 		return error;
1072 	*done = !i;
1073 	if (i) {
1074 		error = xfs_inobt_get_rec(cur, rec, &i);
1075 		if (error)
1076 			return error;
1077 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1078 	}
1079 
1080 	return 0;
1081 }
1082 
1083 /*
1084  * Return the offset of the first free inode in the record. If the inode chunk
1085  * is sparsely allocated, we convert the record holemask to inode granularity
1086  * and mask off the unallocated regions from the inode free mask.
1087  */
1088 STATIC int
1089 xfs_inobt_first_free_inode(
1090 	struct xfs_inobt_rec_incore	*rec)
1091 {
1092 	xfs_inofree_t			realfree;
1093 
1094 	/* if there are no holes, return the first available offset */
1095 	if (!xfs_inobt_issparse(rec->ir_holemask))
1096 		return xfs_lowbit64(rec->ir_free);
1097 
1098 	realfree = xfs_inobt_irec_to_allocmask(rec);
1099 	realfree &= rec->ir_free;
1100 
1101 	return xfs_lowbit64(realfree);
1102 }
1103 
1104 /*
1105  * Allocate an inode using the inobt-only algorithm.
1106  */
1107 STATIC int
1108 xfs_dialloc_ag_inobt(
1109 	struct xfs_trans	*tp,
1110 	struct xfs_buf		*agbp,
1111 	xfs_ino_t		parent,
1112 	xfs_ino_t		*inop)
1113 {
1114 	struct xfs_mount	*mp = tp->t_mountp;
1115 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
1116 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
1117 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1118 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1119 	struct xfs_perag	*pag;
1120 	struct xfs_btree_cur	*cur, *tcur;
1121 	struct xfs_inobt_rec_incore rec, trec;
1122 	xfs_ino_t		ino;
1123 	int			error;
1124 	int			offset;
1125 	int			i, j;
1126 
1127 	pag = xfs_perag_get(mp, agno);
1128 
1129 	ASSERT(pag->pagi_init);
1130 	ASSERT(pag->pagi_inodeok);
1131 	ASSERT(pag->pagi_freecount > 0);
1132 
1133  restart_pagno:
1134 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1135 	/*
1136 	 * If pagino is 0 (this is the root inode allocation) use newino.
1137 	 * This must work because we've just allocated some.
1138 	 */
1139 	if (!pagino)
1140 		pagino = be32_to_cpu(agi->agi_newino);
1141 
1142 	error = xfs_check_agi_freecount(cur, agi);
1143 	if (error)
1144 		goto error0;
1145 
1146 	/*
1147 	 * If in the same AG as the parent, try to get near the parent.
1148 	 */
1149 	if (pagno == agno) {
1150 		int		doneleft;	/* done, to the left */
1151 		int		doneright;	/* done, to the right */
1152 		int		searchdistance = 10;
1153 
1154 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1155 		if (error)
1156 			goto error0;
1157 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1158 
1159 		error = xfs_inobt_get_rec(cur, &rec, &j);
1160 		if (error)
1161 			goto error0;
1162 		XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1163 
1164 		if (rec.ir_freecount > 0) {
1165 			/*
1166 			 * Found a free inode in the same chunk
1167 			 * as the parent, done.
1168 			 */
1169 			goto alloc_inode;
1170 		}
1171 
1172 
1173 		/*
1174 		 * In the same AG as parent, but parent's chunk is full.
1175 		 */
1176 
1177 		/* duplicate the cursor, search left & right simultaneously */
1178 		error = xfs_btree_dup_cursor(cur, &tcur);
1179 		if (error)
1180 			goto error0;
1181 
1182 		/*
1183 		 * Skip to last blocks looked up if same parent inode.
1184 		 */
1185 		if (pagino != NULLAGINO &&
1186 		    pag->pagl_pagino == pagino &&
1187 		    pag->pagl_leftrec != NULLAGINO &&
1188 		    pag->pagl_rightrec != NULLAGINO) {
1189 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1190 						   &trec, &doneleft);
1191 			if (error)
1192 				goto error1;
1193 
1194 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1195 						   &rec, &doneright);
1196 			if (error)
1197 				goto error1;
1198 		} else {
1199 			/* search left with tcur, back up 1 record */
1200 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1201 			if (error)
1202 				goto error1;
1203 
1204 			/* search right with cur, go forward 1 record. */
1205 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1206 			if (error)
1207 				goto error1;
1208 		}
1209 
1210 		/*
1211 		 * Loop until we find an inode chunk with a free inode.
1212 		 */
1213 		while (!doneleft || !doneright) {
1214 			int	useleft;  /* using left inode chunk this time */
1215 
1216 			if (!--searchdistance) {
1217 				/*
1218 				 * Not in range - save last search
1219 				 * location and allocate a new inode
1220 				 */
1221 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1222 				pag->pagl_leftrec = trec.ir_startino;
1223 				pag->pagl_rightrec = rec.ir_startino;
1224 				pag->pagl_pagino = pagino;
1225 				goto newino;
1226 			}
1227 
1228 			/* figure out the closer block if both are valid. */
1229 			if (!doneleft && !doneright) {
1230 				useleft = pagino -
1231 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1232 				  rec.ir_startino - pagino;
1233 			} else {
1234 				useleft = !doneleft;
1235 			}
1236 
1237 			/* free inodes to the left? */
1238 			if (useleft && trec.ir_freecount) {
1239 				rec = trec;
1240 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1241 				cur = tcur;
1242 
1243 				pag->pagl_leftrec = trec.ir_startino;
1244 				pag->pagl_rightrec = rec.ir_startino;
1245 				pag->pagl_pagino = pagino;
1246 				goto alloc_inode;
1247 			}
1248 
1249 			/* free inodes to the right? */
1250 			if (!useleft && rec.ir_freecount) {
1251 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1252 
1253 				pag->pagl_leftrec = trec.ir_startino;
1254 				pag->pagl_rightrec = rec.ir_startino;
1255 				pag->pagl_pagino = pagino;
1256 				goto alloc_inode;
1257 			}
1258 
1259 			/* get next record to check */
1260 			if (useleft) {
1261 				error = xfs_ialloc_next_rec(tcur, &trec,
1262 								 &doneleft, 1);
1263 			} else {
1264 				error = xfs_ialloc_next_rec(cur, &rec,
1265 								 &doneright, 0);
1266 			}
1267 			if (error)
1268 				goto error1;
1269 		}
1270 
1271 		/*
1272 		 * We've reached the end of the btree. because
1273 		 * we are only searching a small chunk of the
1274 		 * btree each search, there is obviously free
1275 		 * inodes closer to the parent inode than we
1276 		 * are now. restart the search again.
1277 		 */
1278 		pag->pagl_pagino = NULLAGINO;
1279 		pag->pagl_leftrec = NULLAGINO;
1280 		pag->pagl_rightrec = NULLAGINO;
1281 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1282 		xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1283 		goto restart_pagno;
1284 	}
1285 
1286 	/*
1287 	 * In a different AG from the parent.
1288 	 * See if the most recently allocated block has any free.
1289 	 */
1290 newino:
1291 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1292 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1293 					 XFS_LOOKUP_EQ, &i);
1294 		if (error)
1295 			goto error0;
1296 
1297 		if (i == 1) {
1298 			error = xfs_inobt_get_rec(cur, &rec, &j);
1299 			if (error)
1300 				goto error0;
1301 
1302 			if (j == 1 && rec.ir_freecount > 0) {
1303 				/*
1304 				 * The last chunk allocated in the group
1305 				 * still has a free inode.
1306 				 */
1307 				goto alloc_inode;
1308 			}
1309 		}
1310 	}
1311 
1312 	/*
1313 	 * None left in the last group, search the whole AG
1314 	 */
1315 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1316 	if (error)
1317 		goto error0;
1318 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1319 
1320 	for (;;) {
1321 		error = xfs_inobt_get_rec(cur, &rec, &i);
1322 		if (error)
1323 			goto error0;
1324 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1325 		if (rec.ir_freecount > 0)
1326 			break;
1327 		error = xfs_btree_increment(cur, 0, &i);
1328 		if (error)
1329 			goto error0;
1330 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1331 	}
1332 
1333 alloc_inode:
1334 	offset = xfs_inobt_first_free_inode(&rec);
1335 	ASSERT(offset >= 0);
1336 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1337 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1338 				   XFS_INODES_PER_CHUNK) == 0);
1339 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1340 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1341 	rec.ir_freecount--;
1342 	error = xfs_inobt_update(cur, &rec);
1343 	if (error)
1344 		goto error0;
1345 	be32_add_cpu(&agi->agi_freecount, -1);
1346 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1347 	pag->pagi_freecount--;
1348 
1349 	error = xfs_check_agi_freecount(cur, agi);
1350 	if (error)
1351 		goto error0;
1352 
1353 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1354 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1355 	xfs_perag_put(pag);
1356 	*inop = ino;
1357 	return 0;
1358 error1:
1359 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1360 error0:
1361 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1362 	xfs_perag_put(pag);
1363 	return error;
1364 }
1365 
1366 /*
1367  * Use the free inode btree to allocate an inode based on distance from the
1368  * parent. Note that the provided cursor may be deleted and replaced.
1369  */
1370 STATIC int
1371 xfs_dialloc_ag_finobt_near(
1372 	xfs_agino_t			pagino,
1373 	struct xfs_btree_cur		**ocur,
1374 	struct xfs_inobt_rec_incore	*rec)
1375 {
1376 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1377 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1378 	struct xfs_inobt_rec_incore	rrec;
1379 	int				error;
1380 	int				i, j;
1381 
1382 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1383 	if (error)
1384 		return error;
1385 
1386 	if (i == 1) {
1387 		error = xfs_inobt_get_rec(lcur, rec, &i);
1388 		if (error)
1389 			return error;
1390 		XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1391 
1392 		/*
1393 		 * See if we've landed in the parent inode record. The finobt
1394 		 * only tracks chunks with at least one free inode, so record
1395 		 * existence is enough.
1396 		 */
1397 		if (pagino >= rec->ir_startino &&
1398 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1399 			return 0;
1400 	}
1401 
1402 	error = xfs_btree_dup_cursor(lcur, &rcur);
1403 	if (error)
1404 		return error;
1405 
1406 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1407 	if (error)
1408 		goto error_rcur;
1409 	if (j == 1) {
1410 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1411 		if (error)
1412 			goto error_rcur;
1413 		XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1414 	}
1415 
1416 	XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1417 	if (i == 1 && j == 1) {
1418 		/*
1419 		 * Both the left and right records are valid. Choose the closer
1420 		 * inode chunk to the target.
1421 		 */
1422 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1423 		    (rrec.ir_startino - pagino)) {
1424 			*rec = rrec;
1425 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1426 			*ocur = rcur;
1427 		} else {
1428 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1429 		}
1430 	} else if (j == 1) {
1431 		/* only the right record is valid */
1432 		*rec = rrec;
1433 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1434 		*ocur = rcur;
1435 	} else if (i == 1) {
1436 		/* only the left record is valid */
1437 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1438 	}
1439 
1440 	return 0;
1441 
1442 error_rcur:
1443 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1444 	return error;
1445 }
1446 
1447 /*
1448  * Use the free inode btree to find a free inode based on a newino hint. If
1449  * the hint is NULL, find the first free inode in the AG.
1450  */
1451 STATIC int
1452 xfs_dialloc_ag_finobt_newino(
1453 	struct xfs_agi			*agi,
1454 	struct xfs_btree_cur		*cur,
1455 	struct xfs_inobt_rec_incore	*rec)
1456 {
1457 	int error;
1458 	int i;
1459 
1460 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1461 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1462 					 XFS_LOOKUP_EQ, &i);
1463 		if (error)
1464 			return error;
1465 		if (i == 1) {
1466 			error = xfs_inobt_get_rec(cur, rec, &i);
1467 			if (error)
1468 				return error;
1469 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1470 			return 0;
1471 		}
1472 	}
1473 
1474 	/*
1475 	 * Find the first inode available in the AG.
1476 	 */
1477 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1478 	if (error)
1479 		return error;
1480 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1481 
1482 	error = xfs_inobt_get_rec(cur, rec, &i);
1483 	if (error)
1484 		return error;
1485 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1486 
1487 	return 0;
1488 }
1489 
1490 /*
1491  * Update the inobt based on a modification made to the finobt. Also ensure that
1492  * the records from both trees are equivalent post-modification.
1493  */
1494 STATIC int
1495 xfs_dialloc_ag_update_inobt(
1496 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1497 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1498 	int				offset) /* inode offset */
1499 {
1500 	struct xfs_inobt_rec_incore	rec;
1501 	int				error;
1502 	int				i;
1503 
1504 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1505 	if (error)
1506 		return error;
1507 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1508 
1509 	error = xfs_inobt_get_rec(cur, &rec, &i);
1510 	if (error)
1511 		return error;
1512 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1513 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1514 				   XFS_INODES_PER_CHUNK) == 0);
1515 
1516 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1517 	rec.ir_freecount--;
1518 
1519 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1520 				  (rec.ir_freecount == frec->ir_freecount));
1521 
1522 	return xfs_inobt_update(cur, &rec);
1523 }
1524 
1525 /*
1526  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1527  * back to the inobt search algorithm.
1528  *
1529  * The caller selected an AG for us, and made sure that free inodes are
1530  * available.
1531  */
1532 STATIC int
1533 xfs_dialloc_ag(
1534 	struct xfs_trans	*tp,
1535 	struct xfs_buf		*agbp,
1536 	xfs_ino_t		parent,
1537 	xfs_ino_t		*inop)
1538 {
1539 	struct xfs_mount		*mp = tp->t_mountp;
1540 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1541 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1542 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1543 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1544 	struct xfs_perag		*pag;
1545 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1546 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1547 	struct xfs_inobt_rec_incore	rec;
1548 	xfs_ino_t			ino;
1549 	int				error;
1550 	int				offset;
1551 	int				i;
1552 
1553 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1554 		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1555 
1556 	pag = xfs_perag_get(mp, agno);
1557 
1558 	/*
1559 	 * If pagino is 0 (this is the root inode allocation) use newino.
1560 	 * This must work because we've just allocated some.
1561 	 */
1562 	if (!pagino)
1563 		pagino = be32_to_cpu(agi->agi_newino);
1564 
1565 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1566 
1567 	error = xfs_check_agi_freecount(cur, agi);
1568 	if (error)
1569 		goto error_cur;
1570 
1571 	/*
1572 	 * The search algorithm depends on whether we're in the same AG as the
1573 	 * parent. If so, find the closest available inode to the parent. If
1574 	 * not, consider the agi hint or find the first free inode in the AG.
1575 	 */
1576 	if (agno == pagno)
1577 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1578 	else
1579 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1580 	if (error)
1581 		goto error_cur;
1582 
1583 	offset = xfs_inobt_first_free_inode(&rec);
1584 	ASSERT(offset >= 0);
1585 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1586 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1587 				   XFS_INODES_PER_CHUNK) == 0);
1588 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1589 
1590 	/*
1591 	 * Modify or remove the finobt record.
1592 	 */
1593 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1594 	rec.ir_freecount--;
1595 	if (rec.ir_freecount)
1596 		error = xfs_inobt_update(cur, &rec);
1597 	else
1598 		error = xfs_btree_delete(cur, &i);
1599 	if (error)
1600 		goto error_cur;
1601 
1602 	/*
1603 	 * The finobt has now been updated appropriately. We haven't updated the
1604 	 * agi and superblock yet, so we can create an inobt cursor and validate
1605 	 * the original freecount. If all is well, make the equivalent update to
1606 	 * the inobt using the finobt record and offset information.
1607 	 */
1608 	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1609 
1610 	error = xfs_check_agi_freecount(icur, agi);
1611 	if (error)
1612 		goto error_icur;
1613 
1614 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1615 	if (error)
1616 		goto error_icur;
1617 
1618 	/*
1619 	 * Both trees have now been updated. We must update the perag and
1620 	 * superblock before we can check the freecount for each btree.
1621 	 */
1622 	be32_add_cpu(&agi->agi_freecount, -1);
1623 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1624 	pag->pagi_freecount--;
1625 
1626 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1627 
1628 	error = xfs_check_agi_freecount(icur, agi);
1629 	if (error)
1630 		goto error_icur;
1631 	error = xfs_check_agi_freecount(cur, agi);
1632 	if (error)
1633 		goto error_icur;
1634 
1635 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1636 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1637 	xfs_perag_put(pag);
1638 	*inop = ino;
1639 	return 0;
1640 
1641 error_icur:
1642 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1643 error_cur:
1644 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1645 	xfs_perag_put(pag);
1646 	return error;
1647 }
1648 
1649 /*
1650  * Allocate an inode on disk.
1651  *
1652  * Mode is used to tell whether the new inode will need space, and whether it
1653  * is a directory.
1654  *
1655  * This function is designed to be called twice if it has to do an allocation
1656  * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1657  * If an inode is available without having to performn an allocation, an inode
1658  * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1659  * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1660  * The caller should then commit the current transaction, allocate a
1661  * new transaction, and call xfs_dialloc() again, passing in the previous value
1662  * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1663  * buffer is locked across the two calls, the second call is guaranteed to have
1664  * a free inode available.
1665  *
1666  * Once we successfully pick an inode its number is returned and the on-disk
1667  * data structures are updated.  The inode itself is not read in, since doing so
1668  * would break ordering constraints with xfs_reclaim.
1669  */
1670 int
1671 xfs_dialloc(
1672 	struct xfs_trans	*tp,
1673 	xfs_ino_t		parent,
1674 	umode_t			mode,
1675 	int			okalloc,
1676 	struct xfs_buf		**IO_agbp,
1677 	xfs_ino_t		*inop)
1678 {
1679 	struct xfs_mount	*mp = tp->t_mountp;
1680 	struct xfs_buf		*agbp;
1681 	xfs_agnumber_t		agno;
1682 	int			error;
1683 	int			ialloced;
1684 	int			noroom = 0;
1685 	xfs_agnumber_t		start_agno;
1686 	struct xfs_perag	*pag;
1687 
1688 	if (*IO_agbp) {
1689 		/*
1690 		 * If the caller passes in a pointer to the AGI buffer,
1691 		 * continue where we left off before.  In this case, we
1692 		 * know that the allocation group has free inodes.
1693 		 */
1694 		agbp = *IO_agbp;
1695 		goto out_alloc;
1696 	}
1697 
1698 	/*
1699 	 * We do not have an agbp, so select an initial allocation
1700 	 * group for inode allocation.
1701 	 */
1702 	start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1703 	if (start_agno == NULLAGNUMBER) {
1704 		*inop = NULLFSINO;
1705 		return 0;
1706 	}
1707 
1708 	/*
1709 	 * If we have already hit the ceiling of inode blocks then clear
1710 	 * okalloc so we scan all available agi structures for a free
1711 	 * inode.
1712 	 *
1713 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1714 	 * which will sacrifice the preciseness but improve the performance.
1715 	 */
1716 	if (mp->m_maxicount &&
1717 	    percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1718 							> mp->m_maxicount) {
1719 		noroom = 1;
1720 		okalloc = 0;
1721 	}
1722 
1723 	/*
1724 	 * Loop until we find an allocation group that either has free inodes
1725 	 * or in which we can allocate some inodes.  Iterate through the
1726 	 * allocation groups upward, wrapping at the end.
1727 	 */
1728 	agno = start_agno;
1729 	for (;;) {
1730 		pag = xfs_perag_get(mp, agno);
1731 		if (!pag->pagi_inodeok) {
1732 			xfs_ialloc_next_ag(mp);
1733 			goto nextag;
1734 		}
1735 
1736 		if (!pag->pagi_init) {
1737 			error = xfs_ialloc_pagi_init(mp, tp, agno);
1738 			if (error)
1739 				goto out_error;
1740 		}
1741 
1742 		/*
1743 		 * Do a first racy fast path check if this AG is usable.
1744 		 */
1745 		if (!pag->pagi_freecount && !okalloc)
1746 			goto nextag;
1747 
1748 		/*
1749 		 * Then read in the AGI buffer and recheck with the AGI buffer
1750 		 * lock held.
1751 		 */
1752 		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1753 		if (error)
1754 			goto out_error;
1755 
1756 		if (pag->pagi_freecount) {
1757 			xfs_perag_put(pag);
1758 			goto out_alloc;
1759 		}
1760 
1761 		if (!okalloc)
1762 			goto nextag_relse_buffer;
1763 
1764 
1765 		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1766 		if (error) {
1767 			xfs_trans_brelse(tp, agbp);
1768 
1769 			if (error != -ENOSPC)
1770 				goto out_error;
1771 
1772 			xfs_perag_put(pag);
1773 			*inop = NULLFSINO;
1774 			return 0;
1775 		}
1776 
1777 		if (ialloced) {
1778 			/*
1779 			 * We successfully allocated some inodes, return
1780 			 * the current context to the caller so that it
1781 			 * can commit the current transaction and call
1782 			 * us again where we left off.
1783 			 */
1784 			ASSERT(pag->pagi_freecount > 0);
1785 			xfs_perag_put(pag);
1786 
1787 			*IO_agbp = agbp;
1788 			*inop = NULLFSINO;
1789 			return 0;
1790 		}
1791 
1792 nextag_relse_buffer:
1793 		xfs_trans_brelse(tp, agbp);
1794 nextag:
1795 		xfs_perag_put(pag);
1796 		if (++agno == mp->m_sb.sb_agcount)
1797 			agno = 0;
1798 		if (agno == start_agno) {
1799 			*inop = NULLFSINO;
1800 			return noroom ? -ENOSPC : 0;
1801 		}
1802 	}
1803 
1804 out_alloc:
1805 	*IO_agbp = NULL;
1806 	return xfs_dialloc_ag(tp, agbp, parent, inop);
1807 out_error:
1808 	xfs_perag_put(pag);
1809 	return error;
1810 }
1811 
1812 /*
1813  * Free the blocks of an inode chunk. We must consider that the inode chunk
1814  * might be sparse and only free the regions that are allocated as part of the
1815  * chunk.
1816  */
1817 STATIC void
1818 xfs_difree_inode_chunk(
1819 	struct xfs_mount		*mp,
1820 	xfs_agnumber_t			agno,
1821 	struct xfs_inobt_rec_incore	*rec,
1822 	struct xfs_defer_ops		*dfops)
1823 {
1824 	xfs_agblock_t	sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1825 	int		startidx, endidx;
1826 	int		nextbit;
1827 	xfs_agblock_t	agbno;
1828 	int		contigblk;
1829 	struct xfs_owner_info	oinfo;
1830 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1831 	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1832 
1833 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1834 		/* not sparse, calculate extent info directly */
1835 		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1836 				  mp->m_ialloc_blks, &oinfo);
1837 		return;
1838 	}
1839 
1840 	/* holemask is only 16-bits (fits in an unsigned long) */
1841 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1842 	holemask[0] = rec->ir_holemask;
1843 
1844 	/*
1845 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1846 	 * holemask and convert the start/end index of each range to an extent.
1847 	 * We start with the start and end index both pointing at the first 0 in
1848 	 * the mask.
1849 	 */
1850 	startidx = endidx = find_first_zero_bit(holemask,
1851 						XFS_INOBT_HOLEMASK_BITS);
1852 	nextbit = startidx + 1;
1853 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1854 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1855 					     nextbit);
1856 		/*
1857 		 * If the next zero bit is contiguous, update the end index of
1858 		 * the current range and continue.
1859 		 */
1860 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1861 		    nextbit == endidx + 1) {
1862 			endidx = nextbit;
1863 			goto next;
1864 		}
1865 
1866 		/*
1867 		 * nextbit is not contiguous with the current end index. Convert
1868 		 * the current start/end to an extent and add it to the free
1869 		 * list.
1870 		 */
1871 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1872 				  mp->m_sb.sb_inopblock;
1873 		contigblk = ((endidx - startidx + 1) *
1874 			     XFS_INODES_PER_HOLEMASK_BIT) /
1875 			    mp->m_sb.sb_inopblock;
1876 
1877 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1878 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1879 		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1880 				  contigblk, &oinfo);
1881 
1882 		/* reset range to current bit and carry on... */
1883 		startidx = endidx = nextbit;
1884 
1885 next:
1886 		nextbit++;
1887 	}
1888 }
1889 
1890 STATIC int
1891 xfs_difree_inobt(
1892 	struct xfs_mount		*mp,
1893 	struct xfs_trans		*tp,
1894 	struct xfs_buf			*agbp,
1895 	xfs_agino_t			agino,
1896 	struct xfs_defer_ops		*dfops,
1897 	struct xfs_icluster		*xic,
1898 	struct xfs_inobt_rec_incore	*orec)
1899 {
1900 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1901 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1902 	struct xfs_perag		*pag;
1903 	struct xfs_btree_cur		*cur;
1904 	struct xfs_inobt_rec_incore	rec;
1905 	int				ilen;
1906 	int				error;
1907 	int				i;
1908 	int				off;
1909 
1910 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1911 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1912 
1913 	/*
1914 	 * Initialize the cursor.
1915 	 */
1916 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1917 
1918 	error = xfs_check_agi_freecount(cur, agi);
1919 	if (error)
1920 		goto error0;
1921 
1922 	/*
1923 	 * Look for the entry describing this inode.
1924 	 */
1925 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1926 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1927 			__func__, error);
1928 		goto error0;
1929 	}
1930 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1931 	error = xfs_inobt_get_rec(cur, &rec, &i);
1932 	if (error) {
1933 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1934 			__func__, error);
1935 		goto error0;
1936 	}
1937 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1938 	/*
1939 	 * Get the offset in the inode chunk.
1940 	 */
1941 	off = agino - rec.ir_startino;
1942 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1943 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1944 	/*
1945 	 * Mark the inode free & increment the count.
1946 	 */
1947 	rec.ir_free |= XFS_INOBT_MASK(off);
1948 	rec.ir_freecount++;
1949 
1950 	/*
1951 	 * When an inode chunk is free, it becomes eligible for removal. Don't
1952 	 * remove the chunk if the block size is large enough for multiple inode
1953 	 * chunks (that might not be free).
1954 	 */
1955 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1956 	    rec.ir_free == XFS_INOBT_ALL_FREE &&
1957 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1958 		xic->deleted = 1;
1959 		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1960 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1961 
1962 		/*
1963 		 * Remove the inode cluster from the AGI B+Tree, adjust the
1964 		 * AGI and Superblock inode counts, and mark the disk space
1965 		 * to be freed when the transaction is committed.
1966 		 */
1967 		ilen = rec.ir_freecount;
1968 		be32_add_cpu(&agi->agi_count, -ilen);
1969 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1970 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1971 		pag = xfs_perag_get(mp, agno);
1972 		pag->pagi_freecount -= ilen - 1;
1973 		xfs_perag_put(pag);
1974 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1975 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1976 
1977 		if ((error = xfs_btree_delete(cur, &i))) {
1978 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1979 				__func__, error);
1980 			goto error0;
1981 		}
1982 
1983 		xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1984 	} else {
1985 		xic->deleted = 0;
1986 
1987 		error = xfs_inobt_update(cur, &rec);
1988 		if (error) {
1989 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1990 				__func__, error);
1991 			goto error0;
1992 		}
1993 
1994 		/*
1995 		 * Change the inode free counts and log the ag/sb changes.
1996 		 */
1997 		be32_add_cpu(&agi->agi_freecount, 1);
1998 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1999 		pag = xfs_perag_get(mp, agno);
2000 		pag->pagi_freecount++;
2001 		xfs_perag_put(pag);
2002 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2003 	}
2004 
2005 	error = xfs_check_agi_freecount(cur, agi);
2006 	if (error)
2007 		goto error0;
2008 
2009 	*orec = rec;
2010 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2011 	return 0;
2012 
2013 error0:
2014 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2015 	return error;
2016 }
2017 
2018 /*
2019  * Free an inode in the free inode btree.
2020  */
2021 STATIC int
2022 xfs_difree_finobt(
2023 	struct xfs_mount		*mp,
2024 	struct xfs_trans		*tp,
2025 	struct xfs_buf			*agbp,
2026 	xfs_agino_t			agino,
2027 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2028 {
2029 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
2030 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
2031 	struct xfs_btree_cur		*cur;
2032 	struct xfs_inobt_rec_incore	rec;
2033 	int				offset = agino - ibtrec->ir_startino;
2034 	int				error;
2035 	int				i;
2036 
2037 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2038 
2039 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2040 	if (error)
2041 		goto error;
2042 	if (i == 0) {
2043 		/*
2044 		 * If the record does not exist in the finobt, we must have just
2045 		 * freed an inode in a previously fully allocated chunk. If not,
2046 		 * something is out of sync.
2047 		 */
2048 		XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2049 
2050 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2051 					     ibtrec->ir_count,
2052 					     ibtrec->ir_freecount,
2053 					     ibtrec->ir_free, &i);
2054 		if (error)
2055 			goto error;
2056 		ASSERT(i == 1);
2057 
2058 		goto out;
2059 	}
2060 
2061 	/*
2062 	 * Read and update the existing record. We could just copy the ibtrec
2063 	 * across here, but that would defeat the purpose of having redundant
2064 	 * metadata. By making the modifications independently, we can catch
2065 	 * corruptions that we wouldn't see if we just copied from one record
2066 	 * to another.
2067 	 */
2068 	error = xfs_inobt_get_rec(cur, &rec, &i);
2069 	if (error)
2070 		goto error;
2071 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2072 
2073 	rec.ir_free |= XFS_INOBT_MASK(offset);
2074 	rec.ir_freecount++;
2075 
2076 	XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2077 				(rec.ir_freecount == ibtrec->ir_freecount),
2078 				error);
2079 
2080 	/*
2081 	 * The content of inobt records should always match between the inobt
2082 	 * and finobt. The lifecycle of records in the finobt is different from
2083 	 * the inobt in that the finobt only tracks records with at least one
2084 	 * free inode. Hence, if all of the inodes are free and we aren't
2085 	 * keeping inode chunks permanently on disk, remove the record.
2086 	 * Otherwise, update the record with the new information.
2087 	 *
2088 	 * Note that we currently can't free chunks when the block size is large
2089 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2090 	 * with the inobt.
2091 	 */
2092 	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2093 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2094 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2095 		error = xfs_btree_delete(cur, &i);
2096 		if (error)
2097 			goto error;
2098 		ASSERT(i == 1);
2099 	} else {
2100 		error = xfs_inobt_update(cur, &rec);
2101 		if (error)
2102 			goto error;
2103 	}
2104 
2105 out:
2106 	error = xfs_check_agi_freecount(cur, agi);
2107 	if (error)
2108 		goto error;
2109 
2110 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2111 	return 0;
2112 
2113 error:
2114 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2115 	return error;
2116 }
2117 
2118 /*
2119  * Free disk inode.  Carefully avoids touching the incore inode, all
2120  * manipulations incore are the caller's responsibility.
2121  * The on-disk inode is not changed by this operation, only the
2122  * btree (free inode mask) is changed.
2123  */
2124 int
2125 xfs_difree(
2126 	struct xfs_trans	*tp,		/* transaction pointer */
2127 	xfs_ino_t		inode,		/* inode to be freed */
2128 	struct xfs_defer_ops	*dfops,		/* extents to free */
2129 	struct xfs_icluster	*xic)	/* cluster info if deleted */
2130 {
2131 	/* REFERENCED */
2132 	xfs_agblock_t		agbno;	/* block number containing inode */
2133 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2134 	xfs_agino_t		agino;	/* allocation group inode number */
2135 	xfs_agnumber_t		agno;	/* allocation group number */
2136 	int			error;	/* error return value */
2137 	struct xfs_mount	*mp;	/* mount structure for filesystem */
2138 	struct xfs_inobt_rec_incore rec;/* btree record */
2139 
2140 	mp = tp->t_mountp;
2141 
2142 	/*
2143 	 * Break up inode number into its components.
2144 	 */
2145 	agno = XFS_INO_TO_AGNO(mp, inode);
2146 	if (agno >= mp->m_sb.sb_agcount)  {
2147 		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2148 			__func__, agno, mp->m_sb.sb_agcount);
2149 		ASSERT(0);
2150 		return -EINVAL;
2151 	}
2152 	agino = XFS_INO_TO_AGINO(mp, inode);
2153 	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2154 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2155 			__func__, (unsigned long long)inode,
2156 			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2157 		ASSERT(0);
2158 		return -EINVAL;
2159 	}
2160 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2161 	if (agbno >= mp->m_sb.sb_agblocks)  {
2162 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2163 			__func__, agbno, mp->m_sb.sb_agblocks);
2164 		ASSERT(0);
2165 		return -EINVAL;
2166 	}
2167 	/*
2168 	 * Get the allocation group header.
2169 	 */
2170 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2171 	if (error) {
2172 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2173 			__func__, error);
2174 		return error;
2175 	}
2176 
2177 	/*
2178 	 * Fix up the inode allocation btree.
2179 	 */
2180 	error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2181 	if (error)
2182 		goto error0;
2183 
2184 	/*
2185 	 * Fix up the free inode btree.
2186 	 */
2187 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2188 		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2189 		if (error)
2190 			goto error0;
2191 	}
2192 
2193 	return 0;
2194 
2195 error0:
2196 	return error;
2197 }
2198 
2199 STATIC int
2200 xfs_imap_lookup(
2201 	struct xfs_mount	*mp,
2202 	struct xfs_trans	*tp,
2203 	xfs_agnumber_t		agno,
2204 	xfs_agino_t		agino,
2205 	xfs_agblock_t		agbno,
2206 	xfs_agblock_t		*chunk_agbno,
2207 	xfs_agblock_t		*offset_agbno,
2208 	int			flags)
2209 {
2210 	struct xfs_inobt_rec_incore rec;
2211 	struct xfs_btree_cur	*cur;
2212 	struct xfs_buf		*agbp;
2213 	int			error;
2214 	int			i;
2215 
2216 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2217 	if (error) {
2218 		xfs_alert(mp,
2219 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2220 			__func__, error, agno);
2221 		return error;
2222 	}
2223 
2224 	/*
2225 	 * Lookup the inode record for the given agino. If the record cannot be
2226 	 * found, then it's an invalid inode number and we should abort. Once
2227 	 * we have a record, we need to ensure it contains the inode number
2228 	 * we are looking up.
2229 	 */
2230 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2231 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2232 	if (!error) {
2233 		if (i)
2234 			error = xfs_inobt_get_rec(cur, &rec, &i);
2235 		if (!error && i == 0)
2236 			error = -EINVAL;
2237 	}
2238 
2239 	xfs_trans_brelse(tp, agbp);
2240 	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2241 	if (error)
2242 		return error;
2243 
2244 	/* check that the returned record contains the required inode */
2245 	if (rec.ir_startino > agino ||
2246 	    rec.ir_startino + mp->m_ialloc_inos <= agino)
2247 		return -EINVAL;
2248 
2249 	/* for untrusted inodes check it is allocated first */
2250 	if ((flags & XFS_IGET_UNTRUSTED) &&
2251 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2252 		return -EINVAL;
2253 
2254 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2255 	*offset_agbno = agbno - *chunk_agbno;
2256 	return 0;
2257 }
2258 
2259 /*
2260  * Return the location of the inode in imap, for mapping it into a buffer.
2261  */
2262 int
2263 xfs_imap(
2264 	xfs_mount_t	 *mp,	/* file system mount structure */
2265 	xfs_trans_t	 *tp,	/* transaction pointer */
2266 	xfs_ino_t	ino,	/* inode to locate */
2267 	struct xfs_imap	*imap,	/* location map structure */
2268 	uint		flags)	/* flags for inode btree lookup */
2269 {
2270 	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
2271 	xfs_agino_t	agino;	/* inode number within alloc group */
2272 	xfs_agnumber_t	agno;	/* allocation group number */
2273 	int		blks_per_cluster; /* num blocks per inode cluster */
2274 	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
2275 	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
2276 	int		error;	/* error code */
2277 	int		offset;	/* index of inode in its buffer */
2278 	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
2279 
2280 	ASSERT(ino != NULLFSINO);
2281 
2282 	/*
2283 	 * Split up the inode number into its parts.
2284 	 */
2285 	agno = XFS_INO_TO_AGNO(mp, ino);
2286 	agino = XFS_INO_TO_AGINO(mp, ino);
2287 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2288 	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2289 	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2290 #ifdef DEBUG
2291 		/*
2292 		 * Don't output diagnostic information for untrusted inodes
2293 		 * as they can be invalid without implying corruption.
2294 		 */
2295 		if (flags & XFS_IGET_UNTRUSTED)
2296 			return -EINVAL;
2297 		if (agno >= mp->m_sb.sb_agcount) {
2298 			xfs_alert(mp,
2299 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2300 				__func__, agno, mp->m_sb.sb_agcount);
2301 		}
2302 		if (agbno >= mp->m_sb.sb_agblocks) {
2303 			xfs_alert(mp,
2304 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2305 				__func__, (unsigned long long)agbno,
2306 				(unsigned long)mp->m_sb.sb_agblocks);
2307 		}
2308 		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2309 			xfs_alert(mp,
2310 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2311 				__func__, ino,
2312 				XFS_AGINO_TO_INO(mp, agno, agino));
2313 		}
2314 		xfs_stack_trace();
2315 #endif /* DEBUG */
2316 		return -EINVAL;
2317 	}
2318 
2319 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2320 
2321 	/*
2322 	 * For bulkstat and handle lookups, we have an untrusted inode number
2323 	 * that we have to verify is valid. We cannot do this just by reading
2324 	 * the inode buffer as it may have been unlinked and removed leaving
2325 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2326 	 * in all cases where an untrusted inode number is passed.
2327 	 */
2328 	if (flags & XFS_IGET_UNTRUSTED) {
2329 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2330 					&chunk_agbno, &offset_agbno, flags);
2331 		if (error)
2332 			return error;
2333 		goto out_map;
2334 	}
2335 
2336 	/*
2337 	 * If the inode cluster size is the same as the blocksize or
2338 	 * smaller we get to the buffer by simple arithmetics.
2339 	 */
2340 	if (blks_per_cluster == 1) {
2341 		offset = XFS_INO_TO_OFFSET(mp, ino);
2342 		ASSERT(offset < mp->m_sb.sb_inopblock);
2343 
2344 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2345 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2346 		imap->im_boffset = (unsigned short)(offset <<
2347 							mp->m_sb.sb_inodelog);
2348 		return 0;
2349 	}
2350 
2351 	/*
2352 	 * If the inode chunks are aligned then use simple maths to
2353 	 * find the location. Otherwise we have to do a btree
2354 	 * lookup to find the location.
2355 	 */
2356 	if (mp->m_inoalign_mask) {
2357 		offset_agbno = agbno & mp->m_inoalign_mask;
2358 		chunk_agbno = agbno - offset_agbno;
2359 	} else {
2360 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2361 					&chunk_agbno, &offset_agbno, flags);
2362 		if (error)
2363 			return error;
2364 	}
2365 
2366 out_map:
2367 	ASSERT(agbno >= chunk_agbno);
2368 	cluster_agbno = chunk_agbno +
2369 		((offset_agbno / blks_per_cluster) * blks_per_cluster);
2370 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2371 		XFS_INO_TO_OFFSET(mp, ino);
2372 
2373 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2374 	imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2375 	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2376 
2377 	/*
2378 	 * If the inode number maps to a block outside the bounds
2379 	 * of the file system then return NULL rather than calling
2380 	 * read_buf and panicing when we get an error from the
2381 	 * driver.
2382 	 */
2383 	if ((imap->im_blkno + imap->im_len) >
2384 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2385 		xfs_alert(mp,
2386 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2387 			__func__, (unsigned long long) imap->im_blkno,
2388 			(unsigned long long) imap->im_len,
2389 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2390 		return -EINVAL;
2391 	}
2392 	return 0;
2393 }
2394 
2395 /*
2396  * Compute and fill in value of m_in_maxlevels.
2397  */
2398 void
2399 xfs_ialloc_compute_maxlevels(
2400 	xfs_mount_t	*mp)		/* file system mount structure */
2401 {
2402 	uint		inodes;
2403 
2404 	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2405 	mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr,
2406 							 inodes);
2407 }
2408 
2409 /*
2410  * Log specified fields for the ag hdr (inode section). The growth of the agi
2411  * structure over time requires that we interpret the buffer as two logical
2412  * regions delineated by the end of the unlinked list. This is due to the size
2413  * of the hash table and its location in the middle of the agi.
2414  *
2415  * For example, a request to log a field before agi_unlinked and a field after
2416  * agi_unlinked could cause us to log the entire hash table and use an excessive
2417  * amount of log space. To avoid this behavior, log the region up through
2418  * agi_unlinked in one call and the region after agi_unlinked through the end of
2419  * the structure in another.
2420  */
2421 void
2422 xfs_ialloc_log_agi(
2423 	xfs_trans_t	*tp,		/* transaction pointer */
2424 	xfs_buf_t	*bp,		/* allocation group header buffer */
2425 	int		fields)		/* bitmask of fields to log */
2426 {
2427 	int			first;		/* first byte number */
2428 	int			last;		/* last byte number */
2429 	static const short	offsets[] = {	/* field starting offsets */
2430 					/* keep in sync with bit definitions */
2431 		offsetof(xfs_agi_t, agi_magicnum),
2432 		offsetof(xfs_agi_t, agi_versionnum),
2433 		offsetof(xfs_agi_t, agi_seqno),
2434 		offsetof(xfs_agi_t, agi_length),
2435 		offsetof(xfs_agi_t, agi_count),
2436 		offsetof(xfs_agi_t, agi_root),
2437 		offsetof(xfs_agi_t, agi_level),
2438 		offsetof(xfs_agi_t, agi_freecount),
2439 		offsetof(xfs_agi_t, agi_newino),
2440 		offsetof(xfs_agi_t, agi_dirino),
2441 		offsetof(xfs_agi_t, agi_unlinked),
2442 		offsetof(xfs_agi_t, agi_free_root),
2443 		offsetof(xfs_agi_t, agi_free_level),
2444 		sizeof(xfs_agi_t)
2445 	};
2446 #ifdef DEBUG
2447 	xfs_agi_t		*agi;	/* allocation group header */
2448 
2449 	agi = XFS_BUF_TO_AGI(bp);
2450 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2451 #endif
2452 
2453 	/*
2454 	 * Compute byte offsets for the first and last fields in the first
2455 	 * region and log the agi buffer. This only logs up through
2456 	 * agi_unlinked.
2457 	 */
2458 	if (fields & XFS_AGI_ALL_BITS_R1) {
2459 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2460 				  &first, &last);
2461 		xfs_trans_log_buf(tp, bp, first, last);
2462 	}
2463 
2464 	/*
2465 	 * Mask off the bits in the first region and calculate the first and
2466 	 * last field offsets for any bits in the second region.
2467 	 */
2468 	fields &= ~XFS_AGI_ALL_BITS_R1;
2469 	if (fields) {
2470 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2471 				  &first, &last);
2472 		xfs_trans_log_buf(tp, bp, first, last);
2473 	}
2474 }
2475 
2476 #ifdef DEBUG
2477 STATIC void
2478 xfs_check_agi_unlinked(
2479 	struct xfs_agi		*agi)
2480 {
2481 	int			i;
2482 
2483 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2484 		ASSERT(agi->agi_unlinked[i]);
2485 }
2486 #else
2487 #define xfs_check_agi_unlinked(agi)
2488 #endif
2489 
2490 static bool
2491 xfs_agi_verify(
2492 	struct xfs_buf	*bp)
2493 {
2494 	struct xfs_mount *mp = bp->b_target->bt_mount;
2495 	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp);
2496 
2497 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2498 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2499 			return false;
2500 		if (!xfs_log_check_lsn(mp,
2501 				be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2502 			return false;
2503 	}
2504 
2505 	/*
2506 	 * Validate the magic number of the agi block.
2507 	 */
2508 	if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2509 		return false;
2510 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2511 		return false;
2512 
2513 	if (be32_to_cpu(agi->agi_level) < 1 ||
2514 	    be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2515 		return false;
2516 
2517 	if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2518 	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2519 	     be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2520 		return false;
2521 
2522 	/*
2523 	 * during growfs operations, the perag is not fully initialised,
2524 	 * so we can't use it for any useful checking. growfs ensures we can't
2525 	 * use it by using uncached buffers that don't have the perag attached
2526 	 * so we can detect and avoid this problem.
2527 	 */
2528 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2529 		return false;
2530 
2531 	xfs_check_agi_unlinked(agi);
2532 	return true;
2533 }
2534 
2535 static void
2536 xfs_agi_read_verify(
2537 	struct xfs_buf	*bp)
2538 {
2539 	struct xfs_mount *mp = bp->b_target->bt_mount;
2540 
2541 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2542 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2543 		xfs_buf_ioerror(bp, -EFSBADCRC);
2544 	else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2545 				XFS_ERRTAG_IALLOC_READ_AGI,
2546 				XFS_RANDOM_IALLOC_READ_AGI))
2547 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2548 
2549 	if (bp->b_error)
2550 		xfs_verifier_error(bp);
2551 }
2552 
2553 static void
2554 xfs_agi_write_verify(
2555 	struct xfs_buf	*bp)
2556 {
2557 	struct xfs_mount *mp = bp->b_target->bt_mount;
2558 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
2559 
2560 	if (!xfs_agi_verify(bp)) {
2561 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2562 		xfs_verifier_error(bp);
2563 		return;
2564 	}
2565 
2566 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2567 		return;
2568 
2569 	if (bip)
2570 		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2571 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2572 }
2573 
2574 const struct xfs_buf_ops xfs_agi_buf_ops = {
2575 	.name = "xfs_agi",
2576 	.verify_read = xfs_agi_read_verify,
2577 	.verify_write = xfs_agi_write_verify,
2578 };
2579 
2580 /*
2581  * Read in the allocation group header (inode allocation section)
2582  */
2583 int
2584 xfs_read_agi(
2585 	struct xfs_mount	*mp,	/* file system mount structure */
2586 	struct xfs_trans	*tp,	/* transaction pointer */
2587 	xfs_agnumber_t		agno,	/* allocation group number */
2588 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2589 {
2590 	int			error;
2591 
2592 	trace_xfs_read_agi(mp, agno);
2593 
2594 	ASSERT(agno != NULLAGNUMBER);
2595 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2596 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2597 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2598 	if (error)
2599 		return error;
2600 	if (tp)
2601 		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2602 
2603 	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2604 	return 0;
2605 }
2606 
2607 int
2608 xfs_ialloc_read_agi(
2609 	struct xfs_mount	*mp,	/* file system mount structure */
2610 	struct xfs_trans	*tp,	/* transaction pointer */
2611 	xfs_agnumber_t		agno,	/* allocation group number */
2612 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2613 {
2614 	struct xfs_agi		*agi;	/* allocation group header */
2615 	struct xfs_perag	*pag;	/* per allocation group data */
2616 	int			error;
2617 
2618 	trace_xfs_ialloc_read_agi(mp, agno);
2619 
2620 	error = xfs_read_agi(mp, tp, agno, bpp);
2621 	if (error)
2622 		return error;
2623 
2624 	agi = XFS_BUF_TO_AGI(*bpp);
2625 	pag = xfs_perag_get(mp, agno);
2626 	if (!pag->pagi_init) {
2627 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2628 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2629 		pag->pagi_init = 1;
2630 	}
2631 
2632 	/*
2633 	 * It's possible for these to be out of sync if
2634 	 * we are in the middle of a forced shutdown.
2635 	 */
2636 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2637 		XFS_FORCED_SHUTDOWN(mp));
2638 	xfs_perag_put(pag);
2639 	return 0;
2640 }
2641 
2642 /*
2643  * Read in the agi to initialise the per-ag data in the mount structure
2644  */
2645 int
2646 xfs_ialloc_pagi_init(
2647 	xfs_mount_t	*mp,		/* file system mount structure */
2648 	xfs_trans_t	*tp,		/* transaction pointer */
2649 	xfs_agnumber_t	agno)		/* allocation group number */
2650 {
2651 	xfs_buf_t	*bp = NULL;
2652 	int		error;
2653 
2654 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2655 	if (error)
2656 		return error;
2657 	if (bp)
2658 		xfs_trans_brelse(tp, bp);
2659 	return 0;
2660 }
2661