xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc.c (revision c44245b3)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_error.h"
35 #include "xfs_bmap.h"
36 #include "xfs_cksum.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_icreate_item.h"
40 #include "xfs_icache.h"
41 #include "xfs_trace.h"
42 #include "xfs_log.h"
43 #include "xfs_rmap.h"
44 
45 
46 /*
47  * Allocation group level functions.
48  */
49 int
50 xfs_ialloc_cluster_alignment(
51 	struct xfs_mount	*mp)
52 {
53 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
54 	    mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
55 		return mp->m_sb.sb_inoalignmt;
56 	return 1;
57 }
58 
59 /*
60  * Lookup a record by ino in the btree given by cur.
61  */
62 int					/* error */
63 xfs_inobt_lookup(
64 	struct xfs_btree_cur	*cur,	/* btree cursor */
65 	xfs_agino_t		ino,	/* starting inode of chunk */
66 	xfs_lookup_t		dir,	/* <=, >=, == */
67 	int			*stat)	/* success/failure */
68 {
69 	cur->bc_rec.i.ir_startino = ino;
70 	cur->bc_rec.i.ir_holemask = 0;
71 	cur->bc_rec.i.ir_count = 0;
72 	cur->bc_rec.i.ir_freecount = 0;
73 	cur->bc_rec.i.ir_free = 0;
74 	return xfs_btree_lookup(cur, dir, stat);
75 }
76 
77 /*
78  * Update the record referred to by cur to the value given.
79  * This either works (return 0) or gets an EFSCORRUPTED error.
80  */
81 STATIC int				/* error */
82 xfs_inobt_update(
83 	struct xfs_btree_cur	*cur,	/* btree cursor */
84 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
85 {
86 	union xfs_btree_rec	rec;
87 
88 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
89 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
90 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
91 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
92 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
93 	} else {
94 		/* ir_holemask/ir_count not supported on-disk */
95 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
96 	}
97 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
98 	return xfs_btree_update(cur, &rec);
99 }
100 
101 /* Convert on-disk btree record to incore inobt record. */
102 void
103 xfs_inobt_btrec_to_irec(
104 	struct xfs_mount		*mp,
105 	union xfs_btree_rec		*rec,
106 	struct xfs_inobt_rec_incore	*irec)
107 {
108 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
109 	if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
110 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
111 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
112 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
113 	} else {
114 		/*
115 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
116 		 * values for full inode chunks.
117 		 */
118 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
119 		irec->ir_count = XFS_INODES_PER_CHUNK;
120 		irec->ir_freecount =
121 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
122 	}
123 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
124 }
125 
126 /*
127  * Get the data from the pointed-to record.
128  */
129 int
130 xfs_inobt_get_rec(
131 	struct xfs_btree_cur		*cur,
132 	struct xfs_inobt_rec_incore	*irec,
133 	int				*stat)
134 {
135 	union xfs_btree_rec		*rec;
136 	int				error;
137 
138 	error = xfs_btree_get_rec(cur, &rec, stat);
139 	if (error || *stat == 0)
140 		return error;
141 
142 	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec);
143 
144 	return 0;
145 }
146 
147 /*
148  * Insert a single inobt record. Cursor must already point to desired location.
149  */
150 STATIC int
151 xfs_inobt_insert_rec(
152 	struct xfs_btree_cur	*cur,
153 	uint16_t		holemask,
154 	uint8_t			count,
155 	int32_t			freecount,
156 	xfs_inofree_t		free,
157 	int			*stat)
158 {
159 	cur->bc_rec.i.ir_holemask = holemask;
160 	cur->bc_rec.i.ir_count = count;
161 	cur->bc_rec.i.ir_freecount = freecount;
162 	cur->bc_rec.i.ir_free = free;
163 	return xfs_btree_insert(cur, stat);
164 }
165 
166 /*
167  * Insert records describing a newly allocated inode chunk into the inobt.
168  */
169 STATIC int
170 xfs_inobt_insert(
171 	struct xfs_mount	*mp,
172 	struct xfs_trans	*tp,
173 	struct xfs_buf		*agbp,
174 	xfs_agino_t		newino,
175 	xfs_agino_t		newlen,
176 	xfs_btnum_t		btnum)
177 {
178 	struct xfs_btree_cur	*cur;
179 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
180 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
181 	xfs_agino_t		thisino;
182 	int			i;
183 	int			error;
184 
185 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
186 
187 	for (thisino = newino;
188 	     thisino < newino + newlen;
189 	     thisino += XFS_INODES_PER_CHUNK) {
190 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
191 		if (error) {
192 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
193 			return error;
194 		}
195 		ASSERT(i == 0);
196 
197 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
198 					     XFS_INODES_PER_CHUNK,
199 					     XFS_INODES_PER_CHUNK,
200 					     XFS_INOBT_ALL_FREE, &i);
201 		if (error) {
202 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
203 			return error;
204 		}
205 		ASSERT(i == 1);
206 	}
207 
208 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
209 
210 	return 0;
211 }
212 
213 /*
214  * Verify that the number of free inodes in the AGI is correct.
215  */
216 #ifdef DEBUG
217 STATIC int
218 xfs_check_agi_freecount(
219 	struct xfs_btree_cur	*cur,
220 	struct xfs_agi		*agi)
221 {
222 	if (cur->bc_nlevels == 1) {
223 		xfs_inobt_rec_incore_t rec;
224 		int		freecount = 0;
225 		int		error;
226 		int		i;
227 
228 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
229 		if (error)
230 			return error;
231 
232 		do {
233 			error = xfs_inobt_get_rec(cur, &rec, &i);
234 			if (error)
235 				return error;
236 
237 			if (i) {
238 				freecount += rec.ir_freecount;
239 				error = xfs_btree_increment(cur, 0, &i);
240 				if (error)
241 					return error;
242 			}
243 		} while (i == 1);
244 
245 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
246 			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
247 	}
248 	return 0;
249 }
250 #else
251 #define xfs_check_agi_freecount(cur, agi)	0
252 #endif
253 
254 /*
255  * Initialise a new set of inodes. When called without a transaction context
256  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
257  * than logging them (which in a transaction context puts them into the AIL
258  * for writeback rather than the xfsbufd queue).
259  */
260 int
261 xfs_ialloc_inode_init(
262 	struct xfs_mount	*mp,
263 	struct xfs_trans	*tp,
264 	struct list_head	*buffer_list,
265 	int			icount,
266 	xfs_agnumber_t		agno,
267 	xfs_agblock_t		agbno,
268 	xfs_agblock_t		length,
269 	unsigned int		gen)
270 {
271 	struct xfs_buf		*fbuf;
272 	struct xfs_dinode	*free;
273 	int			nbufs, blks_per_cluster, inodes_per_cluster;
274 	int			version;
275 	int			i, j;
276 	xfs_daddr_t		d;
277 	xfs_ino_t		ino = 0;
278 
279 	/*
280 	 * Loop over the new block(s), filling in the inodes.  For small block
281 	 * sizes, manipulate the inodes in buffers  which are multiples of the
282 	 * blocks size.
283 	 */
284 	blks_per_cluster = xfs_icluster_size_fsb(mp);
285 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
286 	nbufs = length / blks_per_cluster;
287 
288 	/*
289 	 * Figure out what version number to use in the inodes we create.  If
290 	 * the superblock version has caught up to the one that supports the new
291 	 * inode format, then use the new inode version.  Otherwise use the old
292 	 * version so that old kernels will continue to be able to use the file
293 	 * system.
294 	 *
295 	 * For v3 inodes, we also need to write the inode number into the inode,
296 	 * so calculate the first inode number of the chunk here as
297 	 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
298 	 * across multiple filesystem blocks (such as a cluster) and so cannot
299 	 * be used in the cluster buffer loop below.
300 	 *
301 	 * Further, because we are writing the inode directly into the buffer
302 	 * and calculating a CRC on the entire inode, we have ot log the entire
303 	 * inode so that the entire range the CRC covers is present in the log.
304 	 * That means for v3 inode we log the entire buffer rather than just the
305 	 * inode cores.
306 	 */
307 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
308 		version = 3;
309 		ino = XFS_AGINO_TO_INO(mp, agno,
310 				       XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
311 
312 		/*
313 		 * log the initialisation that is about to take place as an
314 		 * logical operation. This means the transaction does not
315 		 * need to log the physical changes to the inode buffers as log
316 		 * recovery will know what initialisation is actually needed.
317 		 * Hence we only need to log the buffers as "ordered" buffers so
318 		 * they track in the AIL as if they were physically logged.
319 		 */
320 		if (tp)
321 			xfs_icreate_log(tp, agno, agbno, icount,
322 					mp->m_sb.sb_inodesize, length, gen);
323 	} else
324 		version = 2;
325 
326 	for (j = 0; j < nbufs; j++) {
327 		/*
328 		 * Get the block.
329 		 */
330 		d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
331 		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
332 					 mp->m_bsize * blks_per_cluster,
333 					 XBF_UNMAPPED);
334 		if (!fbuf)
335 			return -ENOMEM;
336 
337 		/* Initialize the inode buffers and log them appropriately. */
338 		fbuf->b_ops = &xfs_inode_buf_ops;
339 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
340 		for (i = 0; i < inodes_per_cluster; i++) {
341 			int	ioffset = i << mp->m_sb.sb_inodelog;
342 			uint	isize = xfs_dinode_size(version);
343 
344 			free = xfs_make_iptr(mp, fbuf, i);
345 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
346 			free->di_version = version;
347 			free->di_gen = cpu_to_be32(gen);
348 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
349 
350 			if (version == 3) {
351 				free->di_ino = cpu_to_be64(ino);
352 				ino++;
353 				uuid_copy(&free->di_uuid,
354 					  &mp->m_sb.sb_meta_uuid);
355 				xfs_dinode_calc_crc(mp, free);
356 			} else if (tp) {
357 				/* just log the inode core */
358 				xfs_trans_log_buf(tp, fbuf, ioffset,
359 						  ioffset + isize - 1);
360 			}
361 		}
362 
363 		if (tp) {
364 			/*
365 			 * Mark the buffer as an inode allocation buffer so it
366 			 * sticks in AIL at the point of this allocation
367 			 * transaction. This ensures the they are on disk before
368 			 * the tail of the log can be moved past this
369 			 * transaction (i.e. by preventing relogging from moving
370 			 * it forward in the log).
371 			 */
372 			xfs_trans_inode_alloc_buf(tp, fbuf);
373 			if (version == 3) {
374 				/*
375 				 * Mark the buffer as ordered so that they are
376 				 * not physically logged in the transaction but
377 				 * still tracked in the AIL as part of the
378 				 * transaction and pin the log appropriately.
379 				 */
380 				xfs_trans_ordered_buf(tp, fbuf);
381 				xfs_trans_log_buf(tp, fbuf, 0,
382 						  BBTOB(fbuf->b_length) - 1);
383 			}
384 		} else {
385 			fbuf->b_flags |= XBF_DONE;
386 			xfs_buf_delwri_queue(fbuf, buffer_list);
387 			xfs_buf_relse(fbuf);
388 		}
389 	}
390 	return 0;
391 }
392 
393 /*
394  * Align startino and allocmask for a recently allocated sparse chunk such that
395  * they are fit for insertion (or merge) into the on-disk inode btrees.
396  *
397  * Background:
398  *
399  * When enabled, sparse inode support increases the inode alignment from cluster
400  * size to inode chunk size. This means that the minimum range between two
401  * non-adjacent inode records in the inobt is large enough for a full inode
402  * record. This allows for cluster sized, cluster aligned block allocation
403  * without need to worry about whether the resulting inode record overlaps with
404  * another record in the tree. Without this basic rule, we would have to deal
405  * with the consequences of overlap by potentially undoing recent allocations in
406  * the inode allocation codepath.
407  *
408  * Because of this alignment rule (which is enforced on mount), there are two
409  * inobt possibilities for newly allocated sparse chunks. One is that the
410  * aligned inode record for the chunk covers a range of inodes not already
411  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
412  * other is that a record already exists at the aligned startino that considers
413  * the newly allocated range as sparse. In the latter case, record content is
414  * merged in hope that sparse inode chunks fill to full chunks over time.
415  */
416 STATIC void
417 xfs_align_sparse_ino(
418 	struct xfs_mount		*mp,
419 	xfs_agino_t			*startino,
420 	uint16_t			*allocmask)
421 {
422 	xfs_agblock_t			agbno;
423 	xfs_agblock_t			mod;
424 	int				offset;
425 
426 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
427 	mod = agbno % mp->m_sb.sb_inoalignmt;
428 	if (!mod)
429 		return;
430 
431 	/* calculate the inode offset and align startino */
432 	offset = mod << mp->m_sb.sb_inopblog;
433 	*startino -= offset;
434 
435 	/*
436 	 * Since startino has been aligned down, left shift allocmask such that
437 	 * it continues to represent the same physical inodes relative to the
438 	 * new startino.
439 	 */
440 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
441 }
442 
443 /*
444  * Determine whether the source inode record can merge into the target. Both
445  * records must be sparse, the inode ranges must match and there must be no
446  * allocation overlap between the records.
447  */
448 STATIC bool
449 __xfs_inobt_can_merge(
450 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
451 	struct xfs_inobt_rec_incore	*srec)	/* src record */
452 {
453 	uint64_t			talloc;
454 	uint64_t			salloc;
455 
456 	/* records must cover the same inode range */
457 	if (trec->ir_startino != srec->ir_startino)
458 		return false;
459 
460 	/* both records must be sparse */
461 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
462 	    !xfs_inobt_issparse(srec->ir_holemask))
463 		return false;
464 
465 	/* both records must track some inodes */
466 	if (!trec->ir_count || !srec->ir_count)
467 		return false;
468 
469 	/* can't exceed capacity of a full record */
470 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
471 		return false;
472 
473 	/* verify there is no allocation overlap */
474 	talloc = xfs_inobt_irec_to_allocmask(trec);
475 	salloc = xfs_inobt_irec_to_allocmask(srec);
476 	if (talloc & salloc)
477 		return false;
478 
479 	return true;
480 }
481 
482 /*
483  * Merge the source inode record into the target. The caller must call
484  * __xfs_inobt_can_merge() to ensure the merge is valid.
485  */
486 STATIC void
487 __xfs_inobt_rec_merge(
488 	struct xfs_inobt_rec_incore	*trec,	/* target */
489 	struct xfs_inobt_rec_incore	*srec)	/* src */
490 {
491 	ASSERT(trec->ir_startino == srec->ir_startino);
492 
493 	/* combine the counts */
494 	trec->ir_count += srec->ir_count;
495 	trec->ir_freecount += srec->ir_freecount;
496 
497 	/*
498 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
499 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
500 	 */
501 	trec->ir_holemask &= srec->ir_holemask;
502 	trec->ir_free &= srec->ir_free;
503 }
504 
505 /*
506  * Insert a new sparse inode chunk into the associated inode btree. The inode
507  * record for the sparse chunk is pre-aligned to a startino that should match
508  * any pre-existing sparse inode record in the tree. This allows sparse chunks
509  * to fill over time.
510  *
511  * This function supports two modes of handling preexisting records depending on
512  * the merge flag. If merge is true, the provided record is merged with the
513  * existing record and updated in place. The merged record is returned in nrec.
514  * If merge is false, an existing record is replaced with the provided record.
515  * If no preexisting record exists, the provided record is always inserted.
516  *
517  * It is considered corruption if a merge is requested and not possible. Given
518  * the sparse inode alignment constraints, this should never happen.
519  */
520 STATIC int
521 xfs_inobt_insert_sprec(
522 	struct xfs_mount		*mp,
523 	struct xfs_trans		*tp,
524 	struct xfs_buf			*agbp,
525 	int				btnum,
526 	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
527 	bool				merge)	/* merge or replace */
528 {
529 	struct xfs_btree_cur		*cur;
530 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
531 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
532 	int				error;
533 	int				i;
534 	struct xfs_inobt_rec_incore	rec;
535 
536 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
537 
538 	/* the new record is pre-aligned so we know where to look */
539 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
540 	if (error)
541 		goto error;
542 	/* if nothing there, insert a new record and return */
543 	if (i == 0) {
544 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
545 					     nrec->ir_count, nrec->ir_freecount,
546 					     nrec->ir_free, &i);
547 		if (error)
548 			goto error;
549 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
550 
551 		goto out;
552 	}
553 
554 	/*
555 	 * A record exists at this startino. Merge or replace the record
556 	 * depending on what we've been asked to do.
557 	 */
558 	if (merge) {
559 		error = xfs_inobt_get_rec(cur, &rec, &i);
560 		if (error)
561 			goto error;
562 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
563 		XFS_WANT_CORRUPTED_GOTO(mp,
564 					rec.ir_startino == nrec->ir_startino,
565 					error);
566 
567 		/*
568 		 * This should never fail. If we have coexisting records that
569 		 * cannot merge, something is seriously wrong.
570 		 */
571 		XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
572 					error);
573 
574 		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
575 					 rec.ir_holemask, nrec->ir_startino,
576 					 nrec->ir_holemask);
577 
578 		/* merge to nrec to output the updated record */
579 		__xfs_inobt_rec_merge(nrec, &rec);
580 
581 		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
582 					  nrec->ir_holemask);
583 
584 		error = xfs_inobt_rec_check_count(mp, nrec);
585 		if (error)
586 			goto error;
587 	}
588 
589 	error = xfs_inobt_update(cur, nrec);
590 	if (error)
591 		goto error;
592 
593 out:
594 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
595 	return 0;
596 error:
597 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
598 	return error;
599 }
600 
601 /*
602  * Allocate new inodes in the allocation group specified by agbp.
603  * Return 0 for success, else error code.
604  */
605 STATIC int				/* error code or 0 */
606 xfs_ialloc_ag_alloc(
607 	xfs_trans_t	*tp,		/* transaction pointer */
608 	xfs_buf_t	*agbp,		/* alloc group buffer */
609 	int		*alloc)
610 {
611 	xfs_agi_t	*agi;		/* allocation group header */
612 	xfs_alloc_arg_t	args;		/* allocation argument structure */
613 	xfs_agnumber_t	agno;
614 	int		error;
615 	xfs_agino_t	newino;		/* new first inode's number */
616 	xfs_agino_t	newlen;		/* new number of inodes */
617 	int		isaligned = 0;	/* inode allocation at stripe unit */
618 					/* boundary */
619 	uint16_t	allocmask = (uint16_t) -1; /* init. to full chunk */
620 	struct xfs_inobt_rec_incore rec;
621 	struct xfs_perag *pag;
622 	int		do_sparse = 0;
623 
624 	memset(&args, 0, sizeof(args));
625 	args.tp = tp;
626 	args.mp = tp->t_mountp;
627 	args.fsbno = NULLFSBLOCK;
628 	xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
629 
630 #ifdef DEBUG
631 	/* randomly do sparse inode allocations */
632 	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
633 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
634 		do_sparse = prandom_u32() & 1;
635 #endif
636 
637 	/*
638 	 * Locking will ensure that we don't have two callers in here
639 	 * at one time.
640 	 */
641 	newlen = args.mp->m_ialloc_inos;
642 	if (args.mp->m_maxicount &&
643 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
644 							args.mp->m_maxicount)
645 		return -ENOSPC;
646 	args.minlen = args.maxlen = args.mp->m_ialloc_blks;
647 	/*
648 	 * First try to allocate inodes contiguous with the last-allocated
649 	 * chunk of inodes.  If the filesystem is striped, this will fill
650 	 * an entire stripe unit with inodes.
651 	 */
652 	agi = XFS_BUF_TO_AGI(agbp);
653 	newino = be32_to_cpu(agi->agi_newino);
654 	agno = be32_to_cpu(agi->agi_seqno);
655 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
656 		     args.mp->m_ialloc_blks;
657 	if (do_sparse)
658 		goto sparse_alloc;
659 	if (likely(newino != NULLAGINO &&
660 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
661 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
662 		args.type = XFS_ALLOCTYPE_THIS_BNO;
663 		args.prod = 1;
664 
665 		/*
666 		 * We need to take into account alignment here to ensure that
667 		 * we don't modify the free list if we fail to have an exact
668 		 * block. If we don't have an exact match, and every oher
669 		 * attempt allocation attempt fails, we'll end up cancelling
670 		 * a dirty transaction and shutting down.
671 		 *
672 		 * For an exact allocation, alignment must be 1,
673 		 * however we need to take cluster alignment into account when
674 		 * fixing up the freelist. Use the minalignslop field to
675 		 * indicate that extra blocks might be required for alignment,
676 		 * but not to use them in the actual exact allocation.
677 		 */
678 		args.alignment = 1;
679 		args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
680 
681 		/* Allow space for the inode btree to split. */
682 		args.minleft = args.mp->m_in_maxlevels - 1;
683 		if ((error = xfs_alloc_vextent(&args)))
684 			return error;
685 
686 		/*
687 		 * This request might have dirtied the transaction if the AG can
688 		 * satisfy the request, but the exact block was not available.
689 		 * If the allocation did fail, subsequent requests will relax
690 		 * the exact agbno requirement and increase the alignment
691 		 * instead. It is critical that the total size of the request
692 		 * (len + alignment + slop) does not increase from this point
693 		 * on, so reset minalignslop to ensure it is not included in
694 		 * subsequent requests.
695 		 */
696 		args.minalignslop = 0;
697 	}
698 
699 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
700 		/*
701 		 * Set the alignment for the allocation.
702 		 * If stripe alignment is turned on then align at stripe unit
703 		 * boundary.
704 		 * If the cluster size is smaller than a filesystem block
705 		 * then we're doing I/O for inodes in filesystem block size
706 		 * pieces, so don't need alignment anyway.
707 		 */
708 		isaligned = 0;
709 		if (args.mp->m_sinoalign) {
710 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
711 			args.alignment = args.mp->m_dalign;
712 			isaligned = 1;
713 		} else
714 			args.alignment = xfs_ialloc_cluster_alignment(args.mp);
715 		/*
716 		 * Need to figure out where to allocate the inode blocks.
717 		 * Ideally they should be spaced out through the a.g.
718 		 * For now, just allocate blocks up front.
719 		 */
720 		args.agbno = be32_to_cpu(agi->agi_root);
721 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
722 		/*
723 		 * Allocate a fixed-size extent of inodes.
724 		 */
725 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
726 		args.prod = 1;
727 		/*
728 		 * Allow space for the inode btree to split.
729 		 */
730 		args.minleft = args.mp->m_in_maxlevels - 1;
731 		if ((error = xfs_alloc_vextent(&args)))
732 			return error;
733 	}
734 
735 	/*
736 	 * If stripe alignment is turned on, then try again with cluster
737 	 * alignment.
738 	 */
739 	if (isaligned && args.fsbno == NULLFSBLOCK) {
740 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
741 		args.agbno = be32_to_cpu(agi->agi_root);
742 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
743 		args.alignment = xfs_ialloc_cluster_alignment(args.mp);
744 		if ((error = xfs_alloc_vextent(&args)))
745 			return error;
746 	}
747 
748 	/*
749 	 * Finally, try a sparse allocation if the filesystem supports it and
750 	 * the sparse allocation length is smaller than a full chunk.
751 	 */
752 	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
753 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
754 	    args.fsbno == NULLFSBLOCK) {
755 sparse_alloc:
756 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
757 		args.agbno = be32_to_cpu(agi->agi_root);
758 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
759 		args.alignment = args.mp->m_sb.sb_spino_align;
760 		args.prod = 1;
761 
762 		args.minlen = args.mp->m_ialloc_min_blks;
763 		args.maxlen = args.minlen;
764 
765 		/*
766 		 * The inode record will be aligned to full chunk size. We must
767 		 * prevent sparse allocation from AG boundaries that result in
768 		 * invalid inode records, such as records that start at agbno 0
769 		 * or extend beyond the AG.
770 		 *
771 		 * Set min agbno to the first aligned, non-zero agbno and max to
772 		 * the last aligned agbno that is at least one full chunk from
773 		 * the end of the AG.
774 		 */
775 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
776 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
777 					    args.mp->m_sb.sb_inoalignmt) -
778 				 args.mp->m_ialloc_blks;
779 
780 		error = xfs_alloc_vextent(&args);
781 		if (error)
782 			return error;
783 
784 		newlen = args.len << args.mp->m_sb.sb_inopblog;
785 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
786 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
787 	}
788 
789 	if (args.fsbno == NULLFSBLOCK) {
790 		*alloc = 0;
791 		return 0;
792 	}
793 	ASSERT(args.len == args.minlen);
794 
795 	/*
796 	 * Stamp and write the inode buffers.
797 	 *
798 	 * Seed the new inode cluster with a random generation number. This
799 	 * prevents short-term reuse of generation numbers if a chunk is
800 	 * freed and then immediately reallocated. We use random numbers
801 	 * rather than a linear progression to prevent the next generation
802 	 * number from being easily guessable.
803 	 */
804 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
805 			args.agbno, args.len, prandom_u32());
806 
807 	if (error)
808 		return error;
809 	/*
810 	 * Convert the results.
811 	 */
812 	newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
813 
814 	if (xfs_inobt_issparse(~allocmask)) {
815 		/*
816 		 * We've allocated a sparse chunk. Align the startino and mask.
817 		 */
818 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
819 
820 		rec.ir_startino = newino;
821 		rec.ir_holemask = ~allocmask;
822 		rec.ir_count = newlen;
823 		rec.ir_freecount = newlen;
824 		rec.ir_free = XFS_INOBT_ALL_FREE;
825 
826 		/*
827 		 * Insert the sparse record into the inobt and allow for a merge
828 		 * if necessary. If a merge does occur, rec is updated to the
829 		 * merged record.
830 		 */
831 		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
832 					       &rec, true);
833 		if (error == -EFSCORRUPTED) {
834 			xfs_alert(args.mp,
835 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
836 				  XFS_AGINO_TO_INO(args.mp, agno,
837 						   rec.ir_startino),
838 				  rec.ir_holemask, rec.ir_count);
839 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
840 		}
841 		if (error)
842 			return error;
843 
844 		/*
845 		 * We can't merge the part we've just allocated as for the inobt
846 		 * due to finobt semantics. The original record may or may not
847 		 * exist independent of whether physical inodes exist in this
848 		 * sparse chunk.
849 		 *
850 		 * We must update the finobt record based on the inobt record.
851 		 * rec contains the fully merged and up to date inobt record
852 		 * from the previous call. Set merge false to replace any
853 		 * existing record with this one.
854 		 */
855 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
856 			error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
857 						       XFS_BTNUM_FINO, &rec,
858 						       false);
859 			if (error)
860 				return error;
861 		}
862 	} else {
863 		/* full chunk - insert new records to both btrees */
864 		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
865 					 XFS_BTNUM_INO);
866 		if (error)
867 			return error;
868 
869 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
870 			error = xfs_inobt_insert(args.mp, tp, agbp, newino,
871 						 newlen, XFS_BTNUM_FINO);
872 			if (error)
873 				return error;
874 		}
875 	}
876 
877 	/*
878 	 * Update AGI counts and newino.
879 	 */
880 	be32_add_cpu(&agi->agi_count, newlen);
881 	be32_add_cpu(&agi->agi_freecount, newlen);
882 	pag = xfs_perag_get(args.mp, agno);
883 	pag->pagi_freecount += newlen;
884 	xfs_perag_put(pag);
885 	agi->agi_newino = cpu_to_be32(newino);
886 
887 	/*
888 	 * Log allocation group header fields
889 	 */
890 	xfs_ialloc_log_agi(tp, agbp,
891 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
892 	/*
893 	 * Modify/log superblock values for inode count and inode free count.
894 	 */
895 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
896 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
897 	*alloc = 1;
898 	return 0;
899 }
900 
901 STATIC xfs_agnumber_t
902 xfs_ialloc_next_ag(
903 	xfs_mount_t	*mp)
904 {
905 	xfs_agnumber_t	agno;
906 
907 	spin_lock(&mp->m_agirotor_lock);
908 	agno = mp->m_agirotor;
909 	if (++mp->m_agirotor >= mp->m_maxagi)
910 		mp->m_agirotor = 0;
911 	spin_unlock(&mp->m_agirotor_lock);
912 
913 	return agno;
914 }
915 
916 /*
917  * Select an allocation group to look for a free inode in, based on the parent
918  * inode and the mode.  Return the allocation group buffer.
919  */
920 STATIC xfs_agnumber_t
921 xfs_ialloc_ag_select(
922 	xfs_trans_t	*tp,		/* transaction pointer */
923 	xfs_ino_t	parent,		/* parent directory inode number */
924 	umode_t		mode,		/* bits set to indicate file type */
925 	int		okalloc)	/* ok to allocate more space */
926 {
927 	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
928 	xfs_agnumber_t	agno;		/* current ag number */
929 	int		flags;		/* alloc buffer locking flags */
930 	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
931 	xfs_extlen_t	longest = 0;	/* longest extent available */
932 	xfs_mount_t	*mp;		/* mount point structure */
933 	int		needspace;	/* file mode implies space allocated */
934 	xfs_perag_t	*pag;		/* per allocation group data */
935 	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
936 	int		error;
937 
938 	/*
939 	 * Files of these types need at least one block if length > 0
940 	 * (and they won't fit in the inode, but that's hard to figure out).
941 	 */
942 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
943 	mp = tp->t_mountp;
944 	agcount = mp->m_maxagi;
945 	if (S_ISDIR(mode))
946 		pagno = xfs_ialloc_next_ag(mp);
947 	else {
948 		pagno = XFS_INO_TO_AGNO(mp, parent);
949 		if (pagno >= agcount)
950 			pagno = 0;
951 	}
952 
953 	ASSERT(pagno < agcount);
954 
955 	/*
956 	 * Loop through allocation groups, looking for one with a little
957 	 * free space in it.  Note we don't look for free inodes, exactly.
958 	 * Instead, we include whether there is a need to allocate inodes
959 	 * to mean that blocks must be allocated for them,
960 	 * if none are currently free.
961 	 */
962 	agno = pagno;
963 	flags = XFS_ALLOC_FLAG_TRYLOCK;
964 	for (;;) {
965 		pag = xfs_perag_get(mp, agno);
966 		if (!pag->pagi_inodeok) {
967 			xfs_ialloc_next_ag(mp);
968 			goto nextag;
969 		}
970 
971 		if (!pag->pagi_init) {
972 			error = xfs_ialloc_pagi_init(mp, tp, agno);
973 			if (error)
974 				goto nextag;
975 		}
976 
977 		if (pag->pagi_freecount) {
978 			xfs_perag_put(pag);
979 			return agno;
980 		}
981 
982 		if (!okalloc)
983 			goto nextag;
984 
985 		if (!pag->pagf_init) {
986 			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
987 			if (error)
988 				goto nextag;
989 		}
990 
991 		/*
992 		 * Check that there is enough free space for the file plus a
993 		 * chunk of inodes if we need to allocate some. If this is the
994 		 * first pass across the AGs, take into account the potential
995 		 * space needed for alignment of inode chunks when checking the
996 		 * longest contiguous free space in the AG - this prevents us
997 		 * from getting ENOSPC because we have free space larger than
998 		 * m_ialloc_blks but alignment constraints prevent us from using
999 		 * it.
1000 		 *
1001 		 * If we can't find an AG with space for full alignment slack to
1002 		 * be taken into account, we must be near ENOSPC in all AGs.
1003 		 * Hence we don't include alignment for the second pass and so
1004 		 * if we fail allocation due to alignment issues then it is most
1005 		 * likely a real ENOSPC condition.
1006 		 */
1007 		ineed = mp->m_ialloc_min_blks;
1008 		if (flags && ineed > 1)
1009 			ineed += xfs_ialloc_cluster_alignment(mp);
1010 		longest = pag->pagf_longest;
1011 		if (!longest)
1012 			longest = pag->pagf_flcount > 0;
1013 
1014 		if (pag->pagf_freeblks >= needspace + ineed &&
1015 		    longest >= ineed) {
1016 			xfs_perag_put(pag);
1017 			return agno;
1018 		}
1019 nextag:
1020 		xfs_perag_put(pag);
1021 		/*
1022 		 * No point in iterating over the rest, if we're shutting
1023 		 * down.
1024 		 */
1025 		if (XFS_FORCED_SHUTDOWN(mp))
1026 			return NULLAGNUMBER;
1027 		agno++;
1028 		if (agno >= agcount)
1029 			agno = 0;
1030 		if (agno == pagno) {
1031 			if (flags == 0)
1032 				return NULLAGNUMBER;
1033 			flags = 0;
1034 		}
1035 	}
1036 }
1037 
1038 /*
1039  * Try to retrieve the next record to the left/right from the current one.
1040  */
1041 STATIC int
1042 xfs_ialloc_next_rec(
1043 	struct xfs_btree_cur	*cur,
1044 	xfs_inobt_rec_incore_t	*rec,
1045 	int			*done,
1046 	int			left)
1047 {
1048 	int                     error;
1049 	int			i;
1050 
1051 	if (left)
1052 		error = xfs_btree_decrement(cur, 0, &i);
1053 	else
1054 		error = xfs_btree_increment(cur, 0, &i);
1055 
1056 	if (error)
1057 		return error;
1058 	*done = !i;
1059 	if (i) {
1060 		error = xfs_inobt_get_rec(cur, rec, &i);
1061 		if (error)
1062 			return error;
1063 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1064 	}
1065 
1066 	return 0;
1067 }
1068 
1069 STATIC int
1070 xfs_ialloc_get_rec(
1071 	struct xfs_btree_cur	*cur,
1072 	xfs_agino_t		agino,
1073 	xfs_inobt_rec_incore_t	*rec,
1074 	int			*done)
1075 {
1076 	int                     error;
1077 	int			i;
1078 
1079 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1080 	if (error)
1081 		return error;
1082 	*done = !i;
1083 	if (i) {
1084 		error = xfs_inobt_get_rec(cur, rec, &i);
1085 		if (error)
1086 			return error;
1087 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1088 	}
1089 
1090 	return 0;
1091 }
1092 
1093 /*
1094  * Return the offset of the first free inode in the record. If the inode chunk
1095  * is sparsely allocated, we convert the record holemask to inode granularity
1096  * and mask off the unallocated regions from the inode free mask.
1097  */
1098 STATIC int
1099 xfs_inobt_first_free_inode(
1100 	struct xfs_inobt_rec_incore	*rec)
1101 {
1102 	xfs_inofree_t			realfree;
1103 
1104 	/* if there are no holes, return the first available offset */
1105 	if (!xfs_inobt_issparse(rec->ir_holemask))
1106 		return xfs_lowbit64(rec->ir_free);
1107 
1108 	realfree = xfs_inobt_irec_to_allocmask(rec);
1109 	realfree &= rec->ir_free;
1110 
1111 	return xfs_lowbit64(realfree);
1112 }
1113 
1114 /*
1115  * Allocate an inode using the inobt-only algorithm.
1116  */
1117 STATIC int
1118 xfs_dialloc_ag_inobt(
1119 	struct xfs_trans	*tp,
1120 	struct xfs_buf		*agbp,
1121 	xfs_ino_t		parent,
1122 	xfs_ino_t		*inop)
1123 {
1124 	struct xfs_mount	*mp = tp->t_mountp;
1125 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
1126 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
1127 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1128 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1129 	struct xfs_perag	*pag;
1130 	struct xfs_btree_cur	*cur, *tcur;
1131 	struct xfs_inobt_rec_incore rec, trec;
1132 	xfs_ino_t		ino;
1133 	int			error;
1134 	int			offset;
1135 	int			i, j;
1136 
1137 	pag = xfs_perag_get(mp, agno);
1138 
1139 	ASSERT(pag->pagi_init);
1140 	ASSERT(pag->pagi_inodeok);
1141 	ASSERT(pag->pagi_freecount > 0);
1142 
1143  restart_pagno:
1144 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1145 	/*
1146 	 * If pagino is 0 (this is the root inode allocation) use newino.
1147 	 * This must work because we've just allocated some.
1148 	 */
1149 	if (!pagino)
1150 		pagino = be32_to_cpu(agi->agi_newino);
1151 
1152 	error = xfs_check_agi_freecount(cur, agi);
1153 	if (error)
1154 		goto error0;
1155 
1156 	/*
1157 	 * If in the same AG as the parent, try to get near the parent.
1158 	 */
1159 	if (pagno == agno) {
1160 		int		doneleft;	/* done, to the left */
1161 		int		doneright;	/* done, to the right */
1162 		int		searchdistance = 10;
1163 
1164 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1165 		if (error)
1166 			goto error0;
1167 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1168 
1169 		error = xfs_inobt_get_rec(cur, &rec, &j);
1170 		if (error)
1171 			goto error0;
1172 		XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1173 
1174 		if (rec.ir_freecount > 0) {
1175 			/*
1176 			 * Found a free inode in the same chunk
1177 			 * as the parent, done.
1178 			 */
1179 			goto alloc_inode;
1180 		}
1181 
1182 
1183 		/*
1184 		 * In the same AG as parent, but parent's chunk is full.
1185 		 */
1186 
1187 		/* duplicate the cursor, search left & right simultaneously */
1188 		error = xfs_btree_dup_cursor(cur, &tcur);
1189 		if (error)
1190 			goto error0;
1191 
1192 		/*
1193 		 * Skip to last blocks looked up if same parent inode.
1194 		 */
1195 		if (pagino != NULLAGINO &&
1196 		    pag->pagl_pagino == pagino &&
1197 		    pag->pagl_leftrec != NULLAGINO &&
1198 		    pag->pagl_rightrec != NULLAGINO) {
1199 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1200 						   &trec, &doneleft);
1201 			if (error)
1202 				goto error1;
1203 
1204 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1205 						   &rec, &doneright);
1206 			if (error)
1207 				goto error1;
1208 		} else {
1209 			/* search left with tcur, back up 1 record */
1210 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1211 			if (error)
1212 				goto error1;
1213 
1214 			/* search right with cur, go forward 1 record. */
1215 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1216 			if (error)
1217 				goto error1;
1218 		}
1219 
1220 		/*
1221 		 * Loop until we find an inode chunk with a free inode.
1222 		 */
1223 		while (!doneleft || !doneright) {
1224 			int	useleft;  /* using left inode chunk this time */
1225 
1226 			if (!--searchdistance) {
1227 				/*
1228 				 * Not in range - save last search
1229 				 * location and allocate a new inode
1230 				 */
1231 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1232 				pag->pagl_leftrec = trec.ir_startino;
1233 				pag->pagl_rightrec = rec.ir_startino;
1234 				pag->pagl_pagino = pagino;
1235 				goto newino;
1236 			}
1237 
1238 			/* figure out the closer block if both are valid. */
1239 			if (!doneleft && !doneright) {
1240 				useleft = pagino -
1241 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1242 				  rec.ir_startino - pagino;
1243 			} else {
1244 				useleft = !doneleft;
1245 			}
1246 
1247 			/* free inodes to the left? */
1248 			if (useleft && trec.ir_freecount) {
1249 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1250 				cur = tcur;
1251 
1252 				pag->pagl_leftrec = trec.ir_startino;
1253 				pag->pagl_rightrec = rec.ir_startino;
1254 				pag->pagl_pagino = pagino;
1255 				rec = trec;
1256 				goto alloc_inode;
1257 			}
1258 
1259 			/* free inodes to the right? */
1260 			if (!useleft && rec.ir_freecount) {
1261 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1262 
1263 				pag->pagl_leftrec = trec.ir_startino;
1264 				pag->pagl_rightrec = rec.ir_startino;
1265 				pag->pagl_pagino = pagino;
1266 				goto alloc_inode;
1267 			}
1268 
1269 			/* get next record to check */
1270 			if (useleft) {
1271 				error = xfs_ialloc_next_rec(tcur, &trec,
1272 								 &doneleft, 1);
1273 			} else {
1274 				error = xfs_ialloc_next_rec(cur, &rec,
1275 								 &doneright, 0);
1276 			}
1277 			if (error)
1278 				goto error1;
1279 		}
1280 
1281 		/*
1282 		 * We've reached the end of the btree. because
1283 		 * we are only searching a small chunk of the
1284 		 * btree each search, there is obviously free
1285 		 * inodes closer to the parent inode than we
1286 		 * are now. restart the search again.
1287 		 */
1288 		pag->pagl_pagino = NULLAGINO;
1289 		pag->pagl_leftrec = NULLAGINO;
1290 		pag->pagl_rightrec = NULLAGINO;
1291 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1292 		xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1293 		goto restart_pagno;
1294 	}
1295 
1296 	/*
1297 	 * In a different AG from the parent.
1298 	 * See if the most recently allocated block has any free.
1299 	 */
1300 newino:
1301 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1302 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1303 					 XFS_LOOKUP_EQ, &i);
1304 		if (error)
1305 			goto error0;
1306 
1307 		if (i == 1) {
1308 			error = xfs_inobt_get_rec(cur, &rec, &j);
1309 			if (error)
1310 				goto error0;
1311 
1312 			if (j == 1 && rec.ir_freecount > 0) {
1313 				/*
1314 				 * The last chunk allocated in the group
1315 				 * still has a free inode.
1316 				 */
1317 				goto alloc_inode;
1318 			}
1319 		}
1320 	}
1321 
1322 	/*
1323 	 * None left in the last group, search the whole AG
1324 	 */
1325 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1326 	if (error)
1327 		goto error0;
1328 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1329 
1330 	for (;;) {
1331 		error = xfs_inobt_get_rec(cur, &rec, &i);
1332 		if (error)
1333 			goto error0;
1334 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1335 		if (rec.ir_freecount > 0)
1336 			break;
1337 		error = xfs_btree_increment(cur, 0, &i);
1338 		if (error)
1339 			goto error0;
1340 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1341 	}
1342 
1343 alloc_inode:
1344 	offset = xfs_inobt_first_free_inode(&rec);
1345 	ASSERT(offset >= 0);
1346 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1347 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1348 				   XFS_INODES_PER_CHUNK) == 0);
1349 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1350 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1351 	rec.ir_freecount--;
1352 	error = xfs_inobt_update(cur, &rec);
1353 	if (error)
1354 		goto error0;
1355 	be32_add_cpu(&agi->agi_freecount, -1);
1356 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1357 	pag->pagi_freecount--;
1358 
1359 	error = xfs_check_agi_freecount(cur, agi);
1360 	if (error)
1361 		goto error0;
1362 
1363 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1364 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1365 	xfs_perag_put(pag);
1366 	*inop = ino;
1367 	return 0;
1368 error1:
1369 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1370 error0:
1371 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1372 	xfs_perag_put(pag);
1373 	return error;
1374 }
1375 
1376 /*
1377  * Use the free inode btree to allocate an inode based on distance from the
1378  * parent. Note that the provided cursor may be deleted and replaced.
1379  */
1380 STATIC int
1381 xfs_dialloc_ag_finobt_near(
1382 	xfs_agino_t			pagino,
1383 	struct xfs_btree_cur		**ocur,
1384 	struct xfs_inobt_rec_incore	*rec)
1385 {
1386 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1387 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1388 	struct xfs_inobt_rec_incore	rrec;
1389 	int				error;
1390 	int				i, j;
1391 
1392 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1393 	if (error)
1394 		return error;
1395 
1396 	if (i == 1) {
1397 		error = xfs_inobt_get_rec(lcur, rec, &i);
1398 		if (error)
1399 			return error;
1400 		XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1401 
1402 		/*
1403 		 * See if we've landed in the parent inode record. The finobt
1404 		 * only tracks chunks with at least one free inode, so record
1405 		 * existence is enough.
1406 		 */
1407 		if (pagino >= rec->ir_startino &&
1408 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1409 			return 0;
1410 	}
1411 
1412 	error = xfs_btree_dup_cursor(lcur, &rcur);
1413 	if (error)
1414 		return error;
1415 
1416 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1417 	if (error)
1418 		goto error_rcur;
1419 	if (j == 1) {
1420 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1421 		if (error)
1422 			goto error_rcur;
1423 		XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1424 	}
1425 
1426 	XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1427 	if (i == 1 && j == 1) {
1428 		/*
1429 		 * Both the left and right records are valid. Choose the closer
1430 		 * inode chunk to the target.
1431 		 */
1432 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1433 		    (rrec.ir_startino - pagino)) {
1434 			*rec = rrec;
1435 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1436 			*ocur = rcur;
1437 		} else {
1438 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1439 		}
1440 	} else if (j == 1) {
1441 		/* only the right record is valid */
1442 		*rec = rrec;
1443 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1444 		*ocur = rcur;
1445 	} else if (i == 1) {
1446 		/* only the left record is valid */
1447 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1448 	}
1449 
1450 	return 0;
1451 
1452 error_rcur:
1453 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1454 	return error;
1455 }
1456 
1457 /*
1458  * Use the free inode btree to find a free inode based on a newino hint. If
1459  * the hint is NULL, find the first free inode in the AG.
1460  */
1461 STATIC int
1462 xfs_dialloc_ag_finobt_newino(
1463 	struct xfs_agi			*agi,
1464 	struct xfs_btree_cur		*cur,
1465 	struct xfs_inobt_rec_incore	*rec)
1466 {
1467 	int error;
1468 	int i;
1469 
1470 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1471 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1472 					 XFS_LOOKUP_EQ, &i);
1473 		if (error)
1474 			return error;
1475 		if (i == 1) {
1476 			error = xfs_inobt_get_rec(cur, rec, &i);
1477 			if (error)
1478 				return error;
1479 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1480 			return 0;
1481 		}
1482 	}
1483 
1484 	/*
1485 	 * Find the first inode available in the AG.
1486 	 */
1487 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1488 	if (error)
1489 		return error;
1490 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1491 
1492 	error = xfs_inobt_get_rec(cur, rec, &i);
1493 	if (error)
1494 		return error;
1495 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1496 
1497 	return 0;
1498 }
1499 
1500 /*
1501  * Update the inobt based on a modification made to the finobt. Also ensure that
1502  * the records from both trees are equivalent post-modification.
1503  */
1504 STATIC int
1505 xfs_dialloc_ag_update_inobt(
1506 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1507 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1508 	int				offset) /* inode offset */
1509 {
1510 	struct xfs_inobt_rec_incore	rec;
1511 	int				error;
1512 	int				i;
1513 
1514 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1515 	if (error)
1516 		return error;
1517 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1518 
1519 	error = xfs_inobt_get_rec(cur, &rec, &i);
1520 	if (error)
1521 		return error;
1522 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1523 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1524 				   XFS_INODES_PER_CHUNK) == 0);
1525 
1526 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1527 	rec.ir_freecount--;
1528 
1529 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1530 				  (rec.ir_freecount == frec->ir_freecount));
1531 
1532 	return xfs_inobt_update(cur, &rec);
1533 }
1534 
1535 /*
1536  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1537  * back to the inobt search algorithm.
1538  *
1539  * The caller selected an AG for us, and made sure that free inodes are
1540  * available.
1541  */
1542 STATIC int
1543 xfs_dialloc_ag(
1544 	struct xfs_trans	*tp,
1545 	struct xfs_buf		*agbp,
1546 	xfs_ino_t		parent,
1547 	xfs_ino_t		*inop)
1548 {
1549 	struct xfs_mount		*mp = tp->t_mountp;
1550 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1551 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1552 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1553 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1554 	struct xfs_perag		*pag;
1555 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1556 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1557 	struct xfs_inobt_rec_incore	rec;
1558 	xfs_ino_t			ino;
1559 	int				error;
1560 	int				offset;
1561 	int				i;
1562 
1563 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1564 		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1565 
1566 	pag = xfs_perag_get(mp, agno);
1567 
1568 	/*
1569 	 * If pagino is 0 (this is the root inode allocation) use newino.
1570 	 * This must work because we've just allocated some.
1571 	 */
1572 	if (!pagino)
1573 		pagino = be32_to_cpu(agi->agi_newino);
1574 
1575 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1576 
1577 	error = xfs_check_agi_freecount(cur, agi);
1578 	if (error)
1579 		goto error_cur;
1580 
1581 	/*
1582 	 * The search algorithm depends on whether we're in the same AG as the
1583 	 * parent. If so, find the closest available inode to the parent. If
1584 	 * not, consider the agi hint or find the first free inode in the AG.
1585 	 */
1586 	if (agno == pagno)
1587 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1588 	else
1589 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1590 	if (error)
1591 		goto error_cur;
1592 
1593 	offset = xfs_inobt_first_free_inode(&rec);
1594 	ASSERT(offset >= 0);
1595 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1596 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1597 				   XFS_INODES_PER_CHUNK) == 0);
1598 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1599 
1600 	/*
1601 	 * Modify or remove the finobt record.
1602 	 */
1603 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1604 	rec.ir_freecount--;
1605 	if (rec.ir_freecount)
1606 		error = xfs_inobt_update(cur, &rec);
1607 	else
1608 		error = xfs_btree_delete(cur, &i);
1609 	if (error)
1610 		goto error_cur;
1611 
1612 	/*
1613 	 * The finobt has now been updated appropriately. We haven't updated the
1614 	 * agi and superblock yet, so we can create an inobt cursor and validate
1615 	 * the original freecount. If all is well, make the equivalent update to
1616 	 * the inobt using the finobt record and offset information.
1617 	 */
1618 	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1619 
1620 	error = xfs_check_agi_freecount(icur, agi);
1621 	if (error)
1622 		goto error_icur;
1623 
1624 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1625 	if (error)
1626 		goto error_icur;
1627 
1628 	/*
1629 	 * Both trees have now been updated. We must update the perag and
1630 	 * superblock before we can check the freecount for each btree.
1631 	 */
1632 	be32_add_cpu(&agi->agi_freecount, -1);
1633 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1634 	pag->pagi_freecount--;
1635 
1636 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1637 
1638 	error = xfs_check_agi_freecount(icur, agi);
1639 	if (error)
1640 		goto error_icur;
1641 	error = xfs_check_agi_freecount(cur, agi);
1642 	if (error)
1643 		goto error_icur;
1644 
1645 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1646 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1647 	xfs_perag_put(pag);
1648 	*inop = ino;
1649 	return 0;
1650 
1651 error_icur:
1652 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1653 error_cur:
1654 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1655 	xfs_perag_put(pag);
1656 	return error;
1657 }
1658 
1659 /*
1660  * Allocate an inode on disk.
1661  *
1662  * Mode is used to tell whether the new inode will need space, and whether it
1663  * is a directory.
1664  *
1665  * This function is designed to be called twice if it has to do an allocation
1666  * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1667  * If an inode is available without having to performn an allocation, an inode
1668  * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1669  * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1670  * The caller should then commit the current transaction, allocate a
1671  * new transaction, and call xfs_dialloc() again, passing in the previous value
1672  * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1673  * buffer is locked across the two calls, the second call is guaranteed to have
1674  * a free inode available.
1675  *
1676  * Once we successfully pick an inode its number is returned and the on-disk
1677  * data structures are updated.  The inode itself is not read in, since doing so
1678  * would break ordering constraints with xfs_reclaim.
1679  */
1680 int
1681 xfs_dialloc(
1682 	struct xfs_trans	*tp,
1683 	xfs_ino_t		parent,
1684 	umode_t			mode,
1685 	int			okalloc,
1686 	struct xfs_buf		**IO_agbp,
1687 	xfs_ino_t		*inop)
1688 {
1689 	struct xfs_mount	*mp = tp->t_mountp;
1690 	struct xfs_buf		*agbp;
1691 	xfs_agnumber_t		agno;
1692 	int			error;
1693 	int			ialloced;
1694 	int			noroom = 0;
1695 	xfs_agnumber_t		start_agno;
1696 	struct xfs_perag	*pag;
1697 
1698 	if (*IO_agbp) {
1699 		/*
1700 		 * If the caller passes in a pointer to the AGI buffer,
1701 		 * continue where we left off before.  In this case, we
1702 		 * know that the allocation group has free inodes.
1703 		 */
1704 		agbp = *IO_agbp;
1705 		goto out_alloc;
1706 	}
1707 
1708 	/*
1709 	 * We do not have an agbp, so select an initial allocation
1710 	 * group for inode allocation.
1711 	 */
1712 	start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1713 	if (start_agno == NULLAGNUMBER) {
1714 		*inop = NULLFSINO;
1715 		return 0;
1716 	}
1717 
1718 	/*
1719 	 * If we have already hit the ceiling of inode blocks then clear
1720 	 * okalloc so we scan all available agi structures for a free
1721 	 * inode.
1722 	 *
1723 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1724 	 * which will sacrifice the preciseness but improve the performance.
1725 	 */
1726 	if (mp->m_maxicount &&
1727 	    percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1728 							> mp->m_maxicount) {
1729 		noroom = 1;
1730 		okalloc = 0;
1731 	}
1732 
1733 	/*
1734 	 * Loop until we find an allocation group that either has free inodes
1735 	 * or in which we can allocate some inodes.  Iterate through the
1736 	 * allocation groups upward, wrapping at the end.
1737 	 */
1738 	agno = start_agno;
1739 	for (;;) {
1740 		pag = xfs_perag_get(mp, agno);
1741 		if (!pag->pagi_inodeok) {
1742 			xfs_ialloc_next_ag(mp);
1743 			goto nextag;
1744 		}
1745 
1746 		if (!pag->pagi_init) {
1747 			error = xfs_ialloc_pagi_init(mp, tp, agno);
1748 			if (error)
1749 				goto out_error;
1750 		}
1751 
1752 		/*
1753 		 * Do a first racy fast path check if this AG is usable.
1754 		 */
1755 		if (!pag->pagi_freecount && !okalloc)
1756 			goto nextag;
1757 
1758 		/*
1759 		 * Then read in the AGI buffer and recheck with the AGI buffer
1760 		 * lock held.
1761 		 */
1762 		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1763 		if (error)
1764 			goto out_error;
1765 
1766 		if (pag->pagi_freecount) {
1767 			xfs_perag_put(pag);
1768 			goto out_alloc;
1769 		}
1770 
1771 		if (!okalloc)
1772 			goto nextag_relse_buffer;
1773 
1774 
1775 		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1776 		if (error) {
1777 			xfs_trans_brelse(tp, agbp);
1778 
1779 			if (error != -ENOSPC)
1780 				goto out_error;
1781 
1782 			xfs_perag_put(pag);
1783 			*inop = NULLFSINO;
1784 			return 0;
1785 		}
1786 
1787 		if (ialloced) {
1788 			/*
1789 			 * We successfully allocated some inodes, return
1790 			 * the current context to the caller so that it
1791 			 * can commit the current transaction and call
1792 			 * us again where we left off.
1793 			 */
1794 			ASSERT(pag->pagi_freecount > 0);
1795 			xfs_perag_put(pag);
1796 
1797 			*IO_agbp = agbp;
1798 			*inop = NULLFSINO;
1799 			return 0;
1800 		}
1801 
1802 nextag_relse_buffer:
1803 		xfs_trans_brelse(tp, agbp);
1804 nextag:
1805 		xfs_perag_put(pag);
1806 		if (++agno == mp->m_sb.sb_agcount)
1807 			agno = 0;
1808 		if (agno == start_agno) {
1809 			*inop = NULLFSINO;
1810 			return noroom ? -ENOSPC : 0;
1811 		}
1812 	}
1813 
1814 out_alloc:
1815 	*IO_agbp = NULL;
1816 	return xfs_dialloc_ag(tp, agbp, parent, inop);
1817 out_error:
1818 	xfs_perag_put(pag);
1819 	return error;
1820 }
1821 
1822 /*
1823  * Free the blocks of an inode chunk. We must consider that the inode chunk
1824  * might be sparse and only free the regions that are allocated as part of the
1825  * chunk.
1826  */
1827 STATIC void
1828 xfs_difree_inode_chunk(
1829 	struct xfs_mount		*mp,
1830 	xfs_agnumber_t			agno,
1831 	struct xfs_inobt_rec_incore	*rec,
1832 	struct xfs_defer_ops		*dfops)
1833 {
1834 	xfs_agblock_t	sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1835 	int		startidx, endidx;
1836 	int		nextbit;
1837 	xfs_agblock_t	agbno;
1838 	int		contigblk;
1839 	struct xfs_owner_info	oinfo;
1840 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1841 	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1842 
1843 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1844 		/* not sparse, calculate extent info directly */
1845 		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1846 				  mp->m_ialloc_blks, &oinfo);
1847 		return;
1848 	}
1849 
1850 	/* holemask is only 16-bits (fits in an unsigned long) */
1851 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1852 	holemask[0] = rec->ir_holemask;
1853 
1854 	/*
1855 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1856 	 * holemask and convert the start/end index of each range to an extent.
1857 	 * We start with the start and end index both pointing at the first 0 in
1858 	 * the mask.
1859 	 */
1860 	startidx = endidx = find_first_zero_bit(holemask,
1861 						XFS_INOBT_HOLEMASK_BITS);
1862 	nextbit = startidx + 1;
1863 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1864 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1865 					     nextbit);
1866 		/*
1867 		 * If the next zero bit is contiguous, update the end index of
1868 		 * the current range and continue.
1869 		 */
1870 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1871 		    nextbit == endidx + 1) {
1872 			endidx = nextbit;
1873 			goto next;
1874 		}
1875 
1876 		/*
1877 		 * nextbit is not contiguous with the current end index. Convert
1878 		 * the current start/end to an extent and add it to the free
1879 		 * list.
1880 		 */
1881 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1882 				  mp->m_sb.sb_inopblock;
1883 		contigblk = ((endidx - startidx + 1) *
1884 			     XFS_INODES_PER_HOLEMASK_BIT) /
1885 			    mp->m_sb.sb_inopblock;
1886 
1887 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1888 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1889 		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1890 				  contigblk, &oinfo);
1891 
1892 		/* reset range to current bit and carry on... */
1893 		startidx = endidx = nextbit;
1894 
1895 next:
1896 		nextbit++;
1897 	}
1898 }
1899 
1900 STATIC int
1901 xfs_difree_inobt(
1902 	struct xfs_mount		*mp,
1903 	struct xfs_trans		*tp,
1904 	struct xfs_buf			*agbp,
1905 	xfs_agino_t			agino,
1906 	struct xfs_defer_ops		*dfops,
1907 	struct xfs_icluster		*xic,
1908 	struct xfs_inobt_rec_incore	*orec)
1909 {
1910 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1911 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1912 	struct xfs_perag		*pag;
1913 	struct xfs_btree_cur		*cur;
1914 	struct xfs_inobt_rec_incore	rec;
1915 	int				ilen;
1916 	int				error;
1917 	int				i;
1918 	int				off;
1919 
1920 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1921 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1922 
1923 	/*
1924 	 * Initialize the cursor.
1925 	 */
1926 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1927 
1928 	error = xfs_check_agi_freecount(cur, agi);
1929 	if (error)
1930 		goto error0;
1931 
1932 	/*
1933 	 * Look for the entry describing this inode.
1934 	 */
1935 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1936 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1937 			__func__, error);
1938 		goto error0;
1939 	}
1940 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1941 	error = xfs_inobt_get_rec(cur, &rec, &i);
1942 	if (error) {
1943 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1944 			__func__, error);
1945 		goto error0;
1946 	}
1947 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1948 	/*
1949 	 * Get the offset in the inode chunk.
1950 	 */
1951 	off = agino - rec.ir_startino;
1952 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1953 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1954 	/*
1955 	 * Mark the inode free & increment the count.
1956 	 */
1957 	rec.ir_free |= XFS_INOBT_MASK(off);
1958 	rec.ir_freecount++;
1959 
1960 	/*
1961 	 * When an inode chunk is free, it becomes eligible for removal. Don't
1962 	 * remove the chunk if the block size is large enough for multiple inode
1963 	 * chunks (that might not be free).
1964 	 */
1965 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1966 	    rec.ir_free == XFS_INOBT_ALL_FREE &&
1967 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1968 		xic->deleted = 1;
1969 		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1970 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1971 
1972 		/*
1973 		 * Remove the inode cluster from the AGI B+Tree, adjust the
1974 		 * AGI and Superblock inode counts, and mark the disk space
1975 		 * to be freed when the transaction is committed.
1976 		 */
1977 		ilen = rec.ir_freecount;
1978 		be32_add_cpu(&agi->agi_count, -ilen);
1979 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1980 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1981 		pag = xfs_perag_get(mp, agno);
1982 		pag->pagi_freecount -= ilen - 1;
1983 		xfs_perag_put(pag);
1984 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1985 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1986 
1987 		if ((error = xfs_btree_delete(cur, &i))) {
1988 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1989 				__func__, error);
1990 			goto error0;
1991 		}
1992 
1993 		xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1994 	} else {
1995 		xic->deleted = 0;
1996 
1997 		error = xfs_inobt_update(cur, &rec);
1998 		if (error) {
1999 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2000 				__func__, error);
2001 			goto error0;
2002 		}
2003 
2004 		/*
2005 		 * Change the inode free counts and log the ag/sb changes.
2006 		 */
2007 		be32_add_cpu(&agi->agi_freecount, 1);
2008 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2009 		pag = xfs_perag_get(mp, agno);
2010 		pag->pagi_freecount++;
2011 		xfs_perag_put(pag);
2012 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2013 	}
2014 
2015 	error = xfs_check_agi_freecount(cur, agi);
2016 	if (error)
2017 		goto error0;
2018 
2019 	*orec = rec;
2020 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2021 	return 0;
2022 
2023 error0:
2024 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2025 	return error;
2026 }
2027 
2028 /*
2029  * Free an inode in the free inode btree.
2030  */
2031 STATIC int
2032 xfs_difree_finobt(
2033 	struct xfs_mount		*mp,
2034 	struct xfs_trans		*tp,
2035 	struct xfs_buf			*agbp,
2036 	xfs_agino_t			agino,
2037 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2038 {
2039 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
2040 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
2041 	struct xfs_btree_cur		*cur;
2042 	struct xfs_inobt_rec_incore	rec;
2043 	int				offset = agino - ibtrec->ir_startino;
2044 	int				error;
2045 	int				i;
2046 
2047 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2048 
2049 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2050 	if (error)
2051 		goto error;
2052 	if (i == 0) {
2053 		/*
2054 		 * If the record does not exist in the finobt, we must have just
2055 		 * freed an inode in a previously fully allocated chunk. If not,
2056 		 * something is out of sync.
2057 		 */
2058 		XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2059 
2060 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2061 					     ibtrec->ir_count,
2062 					     ibtrec->ir_freecount,
2063 					     ibtrec->ir_free, &i);
2064 		if (error)
2065 			goto error;
2066 		ASSERT(i == 1);
2067 
2068 		goto out;
2069 	}
2070 
2071 	/*
2072 	 * Read and update the existing record. We could just copy the ibtrec
2073 	 * across here, but that would defeat the purpose of having redundant
2074 	 * metadata. By making the modifications independently, we can catch
2075 	 * corruptions that we wouldn't see if we just copied from one record
2076 	 * to another.
2077 	 */
2078 	error = xfs_inobt_get_rec(cur, &rec, &i);
2079 	if (error)
2080 		goto error;
2081 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2082 
2083 	rec.ir_free |= XFS_INOBT_MASK(offset);
2084 	rec.ir_freecount++;
2085 
2086 	XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2087 				(rec.ir_freecount == ibtrec->ir_freecount),
2088 				error);
2089 
2090 	/*
2091 	 * The content of inobt records should always match between the inobt
2092 	 * and finobt. The lifecycle of records in the finobt is different from
2093 	 * the inobt in that the finobt only tracks records with at least one
2094 	 * free inode. Hence, if all of the inodes are free and we aren't
2095 	 * keeping inode chunks permanently on disk, remove the record.
2096 	 * Otherwise, update the record with the new information.
2097 	 *
2098 	 * Note that we currently can't free chunks when the block size is large
2099 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2100 	 * with the inobt.
2101 	 */
2102 	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2103 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2104 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2105 		error = xfs_btree_delete(cur, &i);
2106 		if (error)
2107 			goto error;
2108 		ASSERT(i == 1);
2109 	} else {
2110 		error = xfs_inobt_update(cur, &rec);
2111 		if (error)
2112 			goto error;
2113 	}
2114 
2115 out:
2116 	error = xfs_check_agi_freecount(cur, agi);
2117 	if (error)
2118 		goto error;
2119 
2120 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2121 	return 0;
2122 
2123 error:
2124 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2125 	return error;
2126 }
2127 
2128 /*
2129  * Free disk inode.  Carefully avoids touching the incore inode, all
2130  * manipulations incore are the caller's responsibility.
2131  * The on-disk inode is not changed by this operation, only the
2132  * btree (free inode mask) is changed.
2133  */
2134 int
2135 xfs_difree(
2136 	struct xfs_trans	*tp,		/* transaction pointer */
2137 	xfs_ino_t		inode,		/* inode to be freed */
2138 	struct xfs_defer_ops	*dfops,		/* extents to free */
2139 	struct xfs_icluster	*xic)	/* cluster info if deleted */
2140 {
2141 	/* REFERENCED */
2142 	xfs_agblock_t		agbno;	/* block number containing inode */
2143 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2144 	xfs_agino_t		agino;	/* allocation group inode number */
2145 	xfs_agnumber_t		agno;	/* allocation group number */
2146 	int			error;	/* error return value */
2147 	struct xfs_mount	*mp;	/* mount structure for filesystem */
2148 	struct xfs_inobt_rec_incore rec;/* btree record */
2149 
2150 	mp = tp->t_mountp;
2151 
2152 	/*
2153 	 * Break up inode number into its components.
2154 	 */
2155 	agno = XFS_INO_TO_AGNO(mp, inode);
2156 	if (agno >= mp->m_sb.sb_agcount)  {
2157 		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2158 			__func__, agno, mp->m_sb.sb_agcount);
2159 		ASSERT(0);
2160 		return -EINVAL;
2161 	}
2162 	agino = XFS_INO_TO_AGINO(mp, inode);
2163 	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2164 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2165 			__func__, (unsigned long long)inode,
2166 			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2167 		ASSERT(0);
2168 		return -EINVAL;
2169 	}
2170 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2171 	if (agbno >= mp->m_sb.sb_agblocks)  {
2172 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2173 			__func__, agbno, mp->m_sb.sb_agblocks);
2174 		ASSERT(0);
2175 		return -EINVAL;
2176 	}
2177 	/*
2178 	 * Get the allocation group header.
2179 	 */
2180 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2181 	if (error) {
2182 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2183 			__func__, error);
2184 		return error;
2185 	}
2186 
2187 	/*
2188 	 * Fix up the inode allocation btree.
2189 	 */
2190 	error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2191 	if (error)
2192 		goto error0;
2193 
2194 	/*
2195 	 * Fix up the free inode btree.
2196 	 */
2197 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2198 		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2199 		if (error)
2200 			goto error0;
2201 	}
2202 
2203 	return 0;
2204 
2205 error0:
2206 	return error;
2207 }
2208 
2209 STATIC int
2210 xfs_imap_lookup(
2211 	struct xfs_mount	*mp,
2212 	struct xfs_trans	*tp,
2213 	xfs_agnumber_t		agno,
2214 	xfs_agino_t		agino,
2215 	xfs_agblock_t		agbno,
2216 	xfs_agblock_t		*chunk_agbno,
2217 	xfs_agblock_t		*offset_agbno,
2218 	int			flags)
2219 {
2220 	struct xfs_inobt_rec_incore rec;
2221 	struct xfs_btree_cur	*cur;
2222 	struct xfs_buf		*agbp;
2223 	int			error;
2224 	int			i;
2225 
2226 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2227 	if (error) {
2228 		xfs_alert(mp,
2229 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2230 			__func__, error, agno);
2231 		return error;
2232 	}
2233 
2234 	/*
2235 	 * Lookup the inode record for the given agino. If the record cannot be
2236 	 * found, then it's an invalid inode number and we should abort. Once
2237 	 * we have a record, we need to ensure it contains the inode number
2238 	 * we are looking up.
2239 	 */
2240 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2241 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2242 	if (!error) {
2243 		if (i)
2244 			error = xfs_inobt_get_rec(cur, &rec, &i);
2245 		if (!error && i == 0)
2246 			error = -EINVAL;
2247 	}
2248 
2249 	xfs_trans_brelse(tp, agbp);
2250 	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2251 	if (error)
2252 		return error;
2253 
2254 	/* check that the returned record contains the required inode */
2255 	if (rec.ir_startino > agino ||
2256 	    rec.ir_startino + mp->m_ialloc_inos <= agino)
2257 		return -EINVAL;
2258 
2259 	/* for untrusted inodes check it is allocated first */
2260 	if ((flags & XFS_IGET_UNTRUSTED) &&
2261 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2262 		return -EINVAL;
2263 
2264 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2265 	*offset_agbno = agbno - *chunk_agbno;
2266 	return 0;
2267 }
2268 
2269 /*
2270  * Return the location of the inode in imap, for mapping it into a buffer.
2271  */
2272 int
2273 xfs_imap(
2274 	xfs_mount_t	 *mp,	/* file system mount structure */
2275 	xfs_trans_t	 *tp,	/* transaction pointer */
2276 	xfs_ino_t	ino,	/* inode to locate */
2277 	struct xfs_imap	*imap,	/* location map structure */
2278 	uint		flags)	/* flags for inode btree lookup */
2279 {
2280 	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
2281 	xfs_agino_t	agino;	/* inode number within alloc group */
2282 	xfs_agnumber_t	agno;	/* allocation group number */
2283 	int		blks_per_cluster; /* num blocks per inode cluster */
2284 	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
2285 	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
2286 	int		error;	/* error code */
2287 	int		offset;	/* index of inode in its buffer */
2288 	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
2289 
2290 	ASSERT(ino != NULLFSINO);
2291 
2292 	/*
2293 	 * Split up the inode number into its parts.
2294 	 */
2295 	agno = XFS_INO_TO_AGNO(mp, ino);
2296 	agino = XFS_INO_TO_AGINO(mp, ino);
2297 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2298 	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2299 	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2300 #ifdef DEBUG
2301 		/*
2302 		 * Don't output diagnostic information for untrusted inodes
2303 		 * as they can be invalid without implying corruption.
2304 		 */
2305 		if (flags & XFS_IGET_UNTRUSTED)
2306 			return -EINVAL;
2307 		if (agno >= mp->m_sb.sb_agcount) {
2308 			xfs_alert(mp,
2309 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2310 				__func__, agno, mp->m_sb.sb_agcount);
2311 		}
2312 		if (agbno >= mp->m_sb.sb_agblocks) {
2313 			xfs_alert(mp,
2314 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2315 				__func__, (unsigned long long)agbno,
2316 				(unsigned long)mp->m_sb.sb_agblocks);
2317 		}
2318 		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2319 			xfs_alert(mp,
2320 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2321 				__func__, ino,
2322 				XFS_AGINO_TO_INO(mp, agno, agino));
2323 		}
2324 		xfs_stack_trace();
2325 #endif /* DEBUG */
2326 		return -EINVAL;
2327 	}
2328 
2329 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2330 
2331 	/*
2332 	 * For bulkstat and handle lookups, we have an untrusted inode number
2333 	 * that we have to verify is valid. We cannot do this just by reading
2334 	 * the inode buffer as it may have been unlinked and removed leaving
2335 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2336 	 * in all cases where an untrusted inode number is passed.
2337 	 */
2338 	if (flags & XFS_IGET_UNTRUSTED) {
2339 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2340 					&chunk_agbno, &offset_agbno, flags);
2341 		if (error)
2342 			return error;
2343 		goto out_map;
2344 	}
2345 
2346 	/*
2347 	 * If the inode cluster size is the same as the blocksize or
2348 	 * smaller we get to the buffer by simple arithmetics.
2349 	 */
2350 	if (blks_per_cluster == 1) {
2351 		offset = XFS_INO_TO_OFFSET(mp, ino);
2352 		ASSERT(offset < mp->m_sb.sb_inopblock);
2353 
2354 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2355 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2356 		imap->im_boffset = (unsigned short)(offset <<
2357 							mp->m_sb.sb_inodelog);
2358 		return 0;
2359 	}
2360 
2361 	/*
2362 	 * If the inode chunks are aligned then use simple maths to
2363 	 * find the location. Otherwise we have to do a btree
2364 	 * lookup to find the location.
2365 	 */
2366 	if (mp->m_inoalign_mask) {
2367 		offset_agbno = agbno & mp->m_inoalign_mask;
2368 		chunk_agbno = agbno - offset_agbno;
2369 	} else {
2370 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2371 					&chunk_agbno, &offset_agbno, flags);
2372 		if (error)
2373 			return error;
2374 	}
2375 
2376 out_map:
2377 	ASSERT(agbno >= chunk_agbno);
2378 	cluster_agbno = chunk_agbno +
2379 		((offset_agbno / blks_per_cluster) * blks_per_cluster);
2380 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2381 		XFS_INO_TO_OFFSET(mp, ino);
2382 
2383 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2384 	imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2385 	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2386 
2387 	/*
2388 	 * If the inode number maps to a block outside the bounds
2389 	 * of the file system then return NULL rather than calling
2390 	 * read_buf and panicing when we get an error from the
2391 	 * driver.
2392 	 */
2393 	if ((imap->im_blkno + imap->im_len) >
2394 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2395 		xfs_alert(mp,
2396 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2397 			__func__, (unsigned long long) imap->im_blkno,
2398 			(unsigned long long) imap->im_len,
2399 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2400 		return -EINVAL;
2401 	}
2402 	return 0;
2403 }
2404 
2405 /*
2406  * Compute and fill in value of m_in_maxlevels.
2407  */
2408 void
2409 xfs_ialloc_compute_maxlevels(
2410 	xfs_mount_t	*mp)		/* file system mount structure */
2411 {
2412 	uint		inodes;
2413 
2414 	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2415 	mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr,
2416 							 inodes);
2417 }
2418 
2419 /*
2420  * Log specified fields for the ag hdr (inode section). The growth of the agi
2421  * structure over time requires that we interpret the buffer as two logical
2422  * regions delineated by the end of the unlinked list. This is due to the size
2423  * of the hash table and its location in the middle of the agi.
2424  *
2425  * For example, a request to log a field before agi_unlinked and a field after
2426  * agi_unlinked could cause us to log the entire hash table and use an excessive
2427  * amount of log space. To avoid this behavior, log the region up through
2428  * agi_unlinked in one call and the region after agi_unlinked through the end of
2429  * the structure in another.
2430  */
2431 void
2432 xfs_ialloc_log_agi(
2433 	xfs_trans_t	*tp,		/* transaction pointer */
2434 	xfs_buf_t	*bp,		/* allocation group header buffer */
2435 	int		fields)		/* bitmask of fields to log */
2436 {
2437 	int			first;		/* first byte number */
2438 	int			last;		/* last byte number */
2439 	static const short	offsets[] = {	/* field starting offsets */
2440 					/* keep in sync with bit definitions */
2441 		offsetof(xfs_agi_t, agi_magicnum),
2442 		offsetof(xfs_agi_t, agi_versionnum),
2443 		offsetof(xfs_agi_t, agi_seqno),
2444 		offsetof(xfs_agi_t, agi_length),
2445 		offsetof(xfs_agi_t, agi_count),
2446 		offsetof(xfs_agi_t, agi_root),
2447 		offsetof(xfs_agi_t, agi_level),
2448 		offsetof(xfs_agi_t, agi_freecount),
2449 		offsetof(xfs_agi_t, agi_newino),
2450 		offsetof(xfs_agi_t, agi_dirino),
2451 		offsetof(xfs_agi_t, agi_unlinked),
2452 		offsetof(xfs_agi_t, agi_free_root),
2453 		offsetof(xfs_agi_t, agi_free_level),
2454 		sizeof(xfs_agi_t)
2455 	};
2456 #ifdef DEBUG
2457 	xfs_agi_t		*agi;	/* allocation group header */
2458 
2459 	agi = XFS_BUF_TO_AGI(bp);
2460 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2461 #endif
2462 
2463 	/*
2464 	 * Compute byte offsets for the first and last fields in the first
2465 	 * region and log the agi buffer. This only logs up through
2466 	 * agi_unlinked.
2467 	 */
2468 	if (fields & XFS_AGI_ALL_BITS_R1) {
2469 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2470 				  &first, &last);
2471 		xfs_trans_log_buf(tp, bp, first, last);
2472 	}
2473 
2474 	/*
2475 	 * Mask off the bits in the first region and calculate the first and
2476 	 * last field offsets for any bits in the second region.
2477 	 */
2478 	fields &= ~XFS_AGI_ALL_BITS_R1;
2479 	if (fields) {
2480 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2481 				  &first, &last);
2482 		xfs_trans_log_buf(tp, bp, first, last);
2483 	}
2484 }
2485 
2486 #ifdef DEBUG
2487 STATIC void
2488 xfs_check_agi_unlinked(
2489 	struct xfs_agi		*agi)
2490 {
2491 	int			i;
2492 
2493 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2494 		ASSERT(agi->agi_unlinked[i]);
2495 }
2496 #else
2497 #define xfs_check_agi_unlinked(agi)
2498 #endif
2499 
2500 static bool
2501 xfs_agi_verify(
2502 	struct xfs_buf	*bp)
2503 {
2504 	struct xfs_mount *mp = bp->b_target->bt_mount;
2505 	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp);
2506 
2507 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2508 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2509 			return false;
2510 		if (!xfs_log_check_lsn(mp,
2511 				be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2512 			return false;
2513 	}
2514 
2515 	/*
2516 	 * Validate the magic number of the agi block.
2517 	 */
2518 	if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2519 		return false;
2520 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2521 		return false;
2522 
2523 	if (be32_to_cpu(agi->agi_level) < 1 ||
2524 	    be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2525 		return false;
2526 
2527 	if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2528 	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2529 	     be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2530 		return false;
2531 
2532 	/*
2533 	 * during growfs operations, the perag is not fully initialised,
2534 	 * so we can't use it for any useful checking. growfs ensures we can't
2535 	 * use it by using uncached buffers that don't have the perag attached
2536 	 * so we can detect and avoid this problem.
2537 	 */
2538 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2539 		return false;
2540 
2541 	xfs_check_agi_unlinked(agi);
2542 	return true;
2543 }
2544 
2545 static void
2546 xfs_agi_read_verify(
2547 	struct xfs_buf	*bp)
2548 {
2549 	struct xfs_mount *mp = bp->b_target->bt_mount;
2550 
2551 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2552 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2553 		xfs_buf_ioerror(bp, -EFSBADCRC);
2554 	else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2555 				XFS_ERRTAG_IALLOC_READ_AGI))
2556 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2557 
2558 	if (bp->b_error)
2559 		xfs_verifier_error(bp);
2560 }
2561 
2562 static void
2563 xfs_agi_write_verify(
2564 	struct xfs_buf	*bp)
2565 {
2566 	struct xfs_mount *mp = bp->b_target->bt_mount;
2567 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
2568 
2569 	if (!xfs_agi_verify(bp)) {
2570 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2571 		xfs_verifier_error(bp);
2572 		return;
2573 	}
2574 
2575 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2576 		return;
2577 
2578 	if (bip)
2579 		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2580 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2581 }
2582 
2583 const struct xfs_buf_ops xfs_agi_buf_ops = {
2584 	.name = "xfs_agi",
2585 	.verify_read = xfs_agi_read_verify,
2586 	.verify_write = xfs_agi_write_verify,
2587 };
2588 
2589 /*
2590  * Read in the allocation group header (inode allocation section)
2591  */
2592 int
2593 xfs_read_agi(
2594 	struct xfs_mount	*mp,	/* file system mount structure */
2595 	struct xfs_trans	*tp,	/* transaction pointer */
2596 	xfs_agnumber_t		agno,	/* allocation group number */
2597 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2598 {
2599 	int			error;
2600 
2601 	trace_xfs_read_agi(mp, agno);
2602 
2603 	ASSERT(agno != NULLAGNUMBER);
2604 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2605 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2606 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2607 	if (error)
2608 		return error;
2609 	if (tp)
2610 		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2611 
2612 	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2613 	return 0;
2614 }
2615 
2616 int
2617 xfs_ialloc_read_agi(
2618 	struct xfs_mount	*mp,	/* file system mount structure */
2619 	struct xfs_trans	*tp,	/* transaction pointer */
2620 	xfs_agnumber_t		agno,	/* allocation group number */
2621 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2622 {
2623 	struct xfs_agi		*agi;	/* allocation group header */
2624 	struct xfs_perag	*pag;	/* per allocation group data */
2625 	int			error;
2626 
2627 	trace_xfs_ialloc_read_agi(mp, agno);
2628 
2629 	error = xfs_read_agi(mp, tp, agno, bpp);
2630 	if (error)
2631 		return error;
2632 
2633 	agi = XFS_BUF_TO_AGI(*bpp);
2634 	pag = xfs_perag_get(mp, agno);
2635 	if (!pag->pagi_init) {
2636 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2637 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2638 		pag->pagi_init = 1;
2639 	}
2640 
2641 	/*
2642 	 * It's possible for these to be out of sync if
2643 	 * we are in the middle of a forced shutdown.
2644 	 */
2645 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2646 		XFS_FORCED_SHUTDOWN(mp));
2647 	xfs_perag_put(pag);
2648 	return 0;
2649 }
2650 
2651 /*
2652  * Read in the agi to initialise the per-ag data in the mount structure
2653  */
2654 int
2655 xfs_ialloc_pagi_init(
2656 	xfs_mount_t	*mp,		/* file system mount structure */
2657 	xfs_trans_t	*tp,		/* transaction pointer */
2658 	xfs_agnumber_t	agno)		/* allocation group number */
2659 {
2660 	xfs_buf_t	*bp = NULL;
2661 	int		error;
2662 
2663 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2664 	if (error)
2665 		return error;
2666 	if (bp)
2667 		xfs_trans_brelse(tp, bp);
2668 	return 0;
2669 }
2670