1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_defer.h" 28 #include "xfs_inode.h" 29 #include "xfs_btree.h" 30 #include "xfs_ialloc.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_alloc.h" 33 #include "xfs_rtalloc.h" 34 #include "xfs_errortag.h" 35 #include "xfs_error.h" 36 #include "xfs_bmap.h" 37 #include "xfs_cksum.h" 38 #include "xfs_trans.h" 39 #include "xfs_buf_item.h" 40 #include "xfs_icreate_item.h" 41 #include "xfs_icache.h" 42 #include "xfs_trace.h" 43 #include "xfs_log.h" 44 #include "xfs_rmap.h" 45 46 47 /* 48 * Allocation group level functions. 49 */ 50 int 51 xfs_ialloc_cluster_alignment( 52 struct xfs_mount *mp) 53 { 54 if (xfs_sb_version_hasalign(&mp->m_sb) && 55 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) 56 return mp->m_sb.sb_inoalignmt; 57 return 1; 58 } 59 60 /* 61 * Lookup a record by ino in the btree given by cur. 62 */ 63 int /* error */ 64 xfs_inobt_lookup( 65 struct xfs_btree_cur *cur, /* btree cursor */ 66 xfs_agino_t ino, /* starting inode of chunk */ 67 xfs_lookup_t dir, /* <=, >=, == */ 68 int *stat) /* success/failure */ 69 { 70 cur->bc_rec.i.ir_startino = ino; 71 cur->bc_rec.i.ir_holemask = 0; 72 cur->bc_rec.i.ir_count = 0; 73 cur->bc_rec.i.ir_freecount = 0; 74 cur->bc_rec.i.ir_free = 0; 75 return xfs_btree_lookup(cur, dir, stat); 76 } 77 78 /* 79 * Update the record referred to by cur to the value given. 80 * This either works (return 0) or gets an EFSCORRUPTED error. 81 */ 82 STATIC int /* error */ 83 xfs_inobt_update( 84 struct xfs_btree_cur *cur, /* btree cursor */ 85 xfs_inobt_rec_incore_t *irec) /* btree record */ 86 { 87 union xfs_btree_rec rec; 88 89 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 90 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { 91 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); 92 rec.inobt.ir_u.sp.ir_count = irec->ir_count; 93 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; 94 } else { 95 /* ir_holemask/ir_count not supported on-disk */ 96 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); 97 } 98 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 99 return xfs_btree_update(cur, &rec); 100 } 101 102 /* Convert on-disk btree record to incore inobt record. */ 103 void 104 xfs_inobt_btrec_to_irec( 105 struct xfs_mount *mp, 106 union xfs_btree_rec *rec, 107 struct xfs_inobt_rec_incore *irec) 108 { 109 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 110 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) { 111 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); 112 irec->ir_count = rec->inobt.ir_u.sp.ir_count; 113 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; 114 } else { 115 /* 116 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded 117 * values for full inode chunks. 118 */ 119 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; 120 irec->ir_count = XFS_INODES_PER_CHUNK; 121 irec->ir_freecount = 122 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); 123 } 124 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 125 } 126 127 /* 128 * Get the data from the pointed-to record. 129 */ 130 int 131 xfs_inobt_get_rec( 132 struct xfs_btree_cur *cur, 133 struct xfs_inobt_rec_incore *irec, 134 int *stat) 135 { 136 union xfs_btree_rec *rec; 137 int error; 138 139 error = xfs_btree_get_rec(cur, &rec, stat); 140 if (error || *stat == 0) 141 return error; 142 143 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec); 144 145 return 0; 146 } 147 148 /* 149 * Insert a single inobt record. Cursor must already point to desired location. 150 */ 151 STATIC int 152 xfs_inobt_insert_rec( 153 struct xfs_btree_cur *cur, 154 uint16_t holemask, 155 uint8_t count, 156 int32_t freecount, 157 xfs_inofree_t free, 158 int *stat) 159 { 160 cur->bc_rec.i.ir_holemask = holemask; 161 cur->bc_rec.i.ir_count = count; 162 cur->bc_rec.i.ir_freecount = freecount; 163 cur->bc_rec.i.ir_free = free; 164 return xfs_btree_insert(cur, stat); 165 } 166 167 /* 168 * Insert records describing a newly allocated inode chunk into the inobt. 169 */ 170 STATIC int 171 xfs_inobt_insert( 172 struct xfs_mount *mp, 173 struct xfs_trans *tp, 174 struct xfs_buf *agbp, 175 xfs_agino_t newino, 176 xfs_agino_t newlen, 177 xfs_btnum_t btnum) 178 { 179 struct xfs_btree_cur *cur; 180 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 181 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 182 xfs_agino_t thisino; 183 int i; 184 int error; 185 186 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 187 188 for (thisino = newino; 189 thisino < newino + newlen; 190 thisino += XFS_INODES_PER_CHUNK) { 191 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 192 if (error) { 193 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 194 return error; 195 } 196 ASSERT(i == 0); 197 198 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, 199 XFS_INODES_PER_CHUNK, 200 XFS_INODES_PER_CHUNK, 201 XFS_INOBT_ALL_FREE, &i); 202 if (error) { 203 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 204 return error; 205 } 206 ASSERT(i == 1); 207 } 208 209 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 210 211 return 0; 212 } 213 214 /* 215 * Verify that the number of free inodes in the AGI is correct. 216 */ 217 #ifdef DEBUG 218 STATIC int 219 xfs_check_agi_freecount( 220 struct xfs_btree_cur *cur, 221 struct xfs_agi *agi) 222 { 223 if (cur->bc_nlevels == 1) { 224 xfs_inobt_rec_incore_t rec; 225 int freecount = 0; 226 int error; 227 int i; 228 229 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 230 if (error) 231 return error; 232 233 do { 234 error = xfs_inobt_get_rec(cur, &rec, &i); 235 if (error) 236 return error; 237 238 if (i) { 239 freecount += rec.ir_freecount; 240 error = xfs_btree_increment(cur, 0, &i); 241 if (error) 242 return error; 243 } 244 } while (i == 1); 245 246 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) 247 ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); 248 } 249 return 0; 250 } 251 #else 252 #define xfs_check_agi_freecount(cur, agi) 0 253 #endif 254 255 /* 256 * Initialise a new set of inodes. When called without a transaction context 257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 258 * than logging them (which in a transaction context puts them into the AIL 259 * for writeback rather than the xfsbufd queue). 260 */ 261 int 262 xfs_ialloc_inode_init( 263 struct xfs_mount *mp, 264 struct xfs_trans *tp, 265 struct list_head *buffer_list, 266 int icount, 267 xfs_agnumber_t agno, 268 xfs_agblock_t agbno, 269 xfs_agblock_t length, 270 unsigned int gen) 271 { 272 struct xfs_buf *fbuf; 273 struct xfs_dinode *free; 274 int nbufs, blks_per_cluster, inodes_per_cluster; 275 int version; 276 int i, j; 277 xfs_daddr_t d; 278 xfs_ino_t ino = 0; 279 280 /* 281 * Loop over the new block(s), filling in the inodes. For small block 282 * sizes, manipulate the inodes in buffers which are multiples of the 283 * blocks size. 284 */ 285 blks_per_cluster = xfs_icluster_size_fsb(mp); 286 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 287 nbufs = length / blks_per_cluster; 288 289 /* 290 * Figure out what version number to use in the inodes we create. If 291 * the superblock version has caught up to the one that supports the new 292 * inode format, then use the new inode version. Otherwise use the old 293 * version so that old kernels will continue to be able to use the file 294 * system. 295 * 296 * For v3 inodes, we also need to write the inode number into the inode, 297 * so calculate the first inode number of the chunk here as 298 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not 299 * across multiple filesystem blocks (such as a cluster) and so cannot 300 * be used in the cluster buffer loop below. 301 * 302 * Further, because we are writing the inode directly into the buffer 303 * and calculating a CRC on the entire inode, we have ot log the entire 304 * inode so that the entire range the CRC covers is present in the log. 305 * That means for v3 inode we log the entire buffer rather than just the 306 * inode cores. 307 */ 308 if (xfs_sb_version_hascrc(&mp->m_sb)) { 309 version = 3; 310 ino = XFS_AGINO_TO_INO(mp, agno, 311 XFS_OFFBNO_TO_AGINO(mp, agbno, 0)); 312 313 /* 314 * log the initialisation that is about to take place as an 315 * logical operation. This means the transaction does not 316 * need to log the physical changes to the inode buffers as log 317 * recovery will know what initialisation is actually needed. 318 * Hence we only need to log the buffers as "ordered" buffers so 319 * they track in the AIL as if they were physically logged. 320 */ 321 if (tp) 322 xfs_icreate_log(tp, agno, agbno, icount, 323 mp->m_sb.sb_inodesize, length, gen); 324 } else 325 version = 2; 326 327 for (j = 0; j < nbufs; j++) { 328 /* 329 * Get the block. 330 */ 331 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster)); 332 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 333 mp->m_bsize * blks_per_cluster, 334 XBF_UNMAPPED); 335 if (!fbuf) 336 return -ENOMEM; 337 338 /* Initialize the inode buffers and log them appropriately. */ 339 fbuf->b_ops = &xfs_inode_buf_ops; 340 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 341 for (i = 0; i < inodes_per_cluster; i++) { 342 int ioffset = i << mp->m_sb.sb_inodelog; 343 uint isize = xfs_dinode_size(version); 344 345 free = xfs_make_iptr(mp, fbuf, i); 346 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 347 free->di_version = version; 348 free->di_gen = cpu_to_be32(gen); 349 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 350 351 if (version == 3) { 352 free->di_ino = cpu_to_be64(ino); 353 ino++; 354 uuid_copy(&free->di_uuid, 355 &mp->m_sb.sb_meta_uuid); 356 xfs_dinode_calc_crc(mp, free); 357 } else if (tp) { 358 /* just log the inode core */ 359 xfs_trans_log_buf(tp, fbuf, ioffset, 360 ioffset + isize - 1); 361 } 362 } 363 364 if (tp) { 365 /* 366 * Mark the buffer as an inode allocation buffer so it 367 * sticks in AIL at the point of this allocation 368 * transaction. This ensures the they are on disk before 369 * the tail of the log can be moved past this 370 * transaction (i.e. by preventing relogging from moving 371 * it forward in the log). 372 */ 373 xfs_trans_inode_alloc_buf(tp, fbuf); 374 if (version == 3) { 375 /* 376 * Mark the buffer as ordered so that they are 377 * not physically logged in the transaction but 378 * still tracked in the AIL as part of the 379 * transaction and pin the log appropriately. 380 */ 381 xfs_trans_ordered_buf(tp, fbuf); 382 } 383 } else { 384 fbuf->b_flags |= XBF_DONE; 385 xfs_buf_delwri_queue(fbuf, buffer_list); 386 xfs_buf_relse(fbuf); 387 } 388 } 389 return 0; 390 } 391 392 /* 393 * Align startino and allocmask for a recently allocated sparse chunk such that 394 * they are fit for insertion (or merge) into the on-disk inode btrees. 395 * 396 * Background: 397 * 398 * When enabled, sparse inode support increases the inode alignment from cluster 399 * size to inode chunk size. This means that the minimum range between two 400 * non-adjacent inode records in the inobt is large enough for a full inode 401 * record. This allows for cluster sized, cluster aligned block allocation 402 * without need to worry about whether the resulting inode record overlaps with 403 * another record in the tree. Without this basic rule, we would have to deal 404 * with the consequences of overlap by potentially undoing recent allocations in 405 * the inode allocation codepath. 406 * 407 * Because of this alignment rule (which is enforced on mount), there are two 408 * inobt possibilities for newly allocated sparse chunks. One is that the 409 * aligned inode record for the chunk covers a range of inodes not already 410 * covered in the inobt (i.e., it is safe to insert a new sparse record). The 411 * other is that a record already exists at the aligned startino that considers 412 * the newly allocated range as sparse. In the latter case, record content is 413 * merged in hope that sparse inode chunks fill to full chunks over time. 414 */ 415 STATIC void 416 xfs_align_sparse_ino( 417 struct xfs_mount *mp, 418 xfs_agino_t *startino, 419 uint16_t *allocmask) 420 { 421 xfs_agblock_t agbno; 422 xfs_agblock_t mod; 423 int offset; 424 425 agbno = XFS_AGINO_TO_AGBNO(mp, *startino); 426 mod = agbno % mp->m_sb.sb_inoalignmt; 427 if (!mod) 428 return; 429 430 /* calculate the inode offset and align startino */ 431 offset = mod << mp->m_sb.sb_inopblog; 432 *startino -= offset; 433 434 /* 435 * Since startino has been aligned down, left shift allocmask such that 436 * it continues to represent the same physical inodes relative to the 437 * new startino. 438 */ 439 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; 440 } 441 442 /* 443 * Determine whether the source inode record can merge into the target. Both 444 * records must be sparse, the inode ranges must match and there must be no 445 * allocation overlap between the records. 446 */ 447 STATIC bool 448 __xfs_inobt_can_merge( 449 struct xfs_inobt_rec_incore *trec, /* tgt record */ 450 struct xfs_inobt_rec_incore *srec) /* src record */ 451 { 452 uint64_t talloc; 453 uint64_t salloc; 454 455 /* records must cover the same inode range */ 456 if (trec->ir_startino != srec->ir_startino) 457 return false; 458 459 /* both records must be sparse */ 460 if (!xfs_inobt_issparse(trec->ir_holemask) || 461 !xfs_inobt_issparse(srec->ir_holemask)) 462 return false; 463 464 /* both records must track some inodes */ 465 if (!trec->ir_count || !srec->ir_count) 466 return false; 467 468 /* can't exceed capacity of a full record */ 469 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) 470 return false; 471 472 /* verify there is no allocation overlap */ 473 talloc = xfs_inobt_irec_to_allocmask(trec); 474 salloc = xfs_inobt_irec_to_allocmask(srec); 475 if (talloc & salloc) 476 return false; 477 478 return true; 479 } 480 481 /* 482 * Merge the source inode record into the target. The caller must call 483 * __xfs_inobt_can_merge() to ensure the merge is valid. 484 */ 485 STATIC void 486 __xfs_inobt_rec_merge( 487 struct xfs_inobt_rec_incore *trec, /* target */ 488 struct xfs_inobt_rec_incore *srec) /* src */ 489 { 490 ASSERT(trec->ir_startino == srec->ir_startino); 491 492 /* combine the counts */ 493 trec->ir_count += srec->ir_count; 494 trec->ir_freecount += srec->ir_freecount; 495 496 /* 497 * Merge the holemask and free mask. For both fields, 0 bits refer to 498 * allocated inodes. We combine the allocated ranges with bitwise AND. 499 */ 500 trec->ir_holemask &= srec->ir_holemask; 501 trec->ir_free &= srec->ir_free; 502 } 503 504 /* 505 * Insert a new sparse inode chunk into the associated inode btree. The inode 506 * record for the sparse chunk is pre-aligned to a startino that should match 507 * any pre-existing sparse inode record in the tree. This allows sparse chunks 508 * to fill over time. 509 * 510 * This function supports two modes of handling preexisting records depending on 511 * the merge flag. If merge is true, the provided record is merged with the 512 * existing record and updated in place. The merged record is returned in nrec. 513 * If merge is false, an existing record is replaced with the provided record. 514 * If no preexisting record exists, the provided record is always inserted. 515 * 516 * It is considered corruption if a merge is requested and not possible. Given 517 * the sparse inode alignment constraints, this should never happen. 518 */ 519 STATIC int 520 xfs_inobt_insert_sprec( 521 struct xfs_mount *mp, 522 struct xfs_trans *tp, 523 struct xfs_buf *agbp, 524 int btnum, 525 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ 526 bool merge) /* merge or replace */ 527 { 528 struct xfs_btree_cur *cur; 529 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 530 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 531 int error; 532 int i; 533 struct xfs_inobt_rec_incore rec; 534 535 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 536 537 /* the new record is pre-aligned so we know where to look */ 538 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); 539 if (error) 540 goto error; 541 /* if nothing there, insert a new record and return */ 542 if (i == 0) { 543 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, 544 nrec->ir_count, nrec->ir_freecount, 545 nrec->ir_free, &i); 546 if (error) 547 goto error; 548 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 549 550 goto out; 551 } 552 553 /* 554 * A record exists at this startino. Merge or replace the record 555 * depending on what we've been asked to do. 556 */ 557 if (merge) { 558 error = xfs_inobt_get_rec(cur, &rec, &i); 559 if (error) 560 goto error; 561 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 562 XFS_WANT_CORRUPTED_GOTO(mp, 563 rec.ir_startino == nrec->ir_startino, 564 error); 565 566 /* 567 * This should never fail. If we have coexisting records that 568 * cannot merge, something is seriously wrong. 569 */ 570 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec), 571 error); 572 573 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino, 574 rec.ir_holemask, nrec->ir_startino, 575 nrec->ir_holemask); 576 577 /* merge to nrec to output the updated record */ 578 __xfs_inobt_rec_merge(nrec, &rec); 579 580 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino, 581 nrec->ir_holemask); 582 583 error = xfs_inobt_rec_check_count(mp, nrec); 584 if (error) 585 goto error; 586 } 587 588 error = xfs_inobt_update(cur, nrec); 589 if (error) 590 goto error; 591 592 out: 593 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 594 return 0; 595 error: 596 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 597 return error; 598 } 599 600 /* 601 * Allocate new inodes in the allocation group specified by agbp. 602 * Return 0 for success, else error code. 603 */ 604 STATIC int /* error code or 0 */ 605 xfs_ialloc_ag_alloc( 606 xfs_trans_t *tp, /* transaction pointer */ 607 xfs_buf_t *agbp, /* alloc group buffer */ 608 int *alloc) 609 { 610 xfs_agi_t *agi; /* allocation group header */ 611 xfs_alloc_arg_t args; /* allocation argument structure */ 612 xfs_agnumber_t agno; 613 int error; 614 xfs_agino_t newino; /* new first inode's number */ 615 xfs_agino_t newlen; /* new number of inodes */ 616 int isaligned = 0; /* inode allocation at stripe unit */ 617 /* boundary */ 618 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */ 619 struct xfs_inobt_rec_incore rec; 620 struct xfs_perag *pag; 621 int do_sparse = 0; 622 623 memset(&args, 0, sizeof(args)); 624 args.tp = tp; 625 args.mp = tp->t_mountp; 626 args.fsbno = NULLFSBLOCK; 627 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES); 628 629 #ifdef DEBUG 630 /* randomly do sparse inode allocations */ 631 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) && 632 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks) 633 do_sparse = prandom_u32() & 1; 634 #endif 635 636 /* 637 * Locking will ensure that we don't have two callers in here 638 * at one time. 639 */ 640 newlen = args.mp->m_ialloc_inos; 641 if (args.mp->m_maxicount && 642 percpu_counter_read_positive(&args.mp->m_icount) + newlen > 643 args.mp->m_maxicount) 644 return -ENOSPC; 645 args.minlen = args.maxlen = args.mp->m_ialloc_blks; 646 /* 647 * First try to allocate inodes contiguous with the last-allocated 648 * chunk of inodes. If the filesystem is striped, this will fill 649 * an entire stripe unit with inodes. 650 */ 651 agi = XFS_BUF_TO_AGI(agbp); 652 newino = be32_to_cpu(agi->agi_newino); 653 agno = be32_to_cpu(agi->agi_seqno); 654 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 655 args.mp->m_ialloc_blks; 656 if (do_sparse) 657 goto sparse_alloc; 658 if (likely(newino != NULLAGINO && 659 (args.agbno < be32_to_cpu(agi->agi_length)))) { 660 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 661 args.type = XFS_ALLOCTYPE_THIS_BNO; 662 args.prod = 1; 663 664 /* 665 * We need to take into account alignment here to ensure that 666 * we don't modify the free list if we fail to have an exact 667 * block. If we don't have an exact match, and every oher 668 * attempt allocation attempt fails, we'll end up cancelling 669 * a dirty transaction and shutting down. 670 * 671 * For an exact allocation, alignment must be 1, 672 * however we need to take cluster alignment into account when 673 * fixing up the freelist. Use the minalignslop field to 674 * indicate that extra blocks might be required for alignment, 675 * but not to use them in the actual exact allocation. 676 */ 677 args.alignment = 1; 678 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1; 679 680 /* Allow space for the inode btree to split. */ 681 args.minleft = args.mp->m_in_maxlevels - 1; 682 if ((error = xfs_alloc_vextent(&args))) 683 return error; 684 685 /* 686 * This request might have dirtied the transaction if the AG can 687 * satisfy the request, but the exact block was not available. 688 * If the allocation did fail, subsequent requests will relax 689 * the exact agbno requirement and increase the alignment 690 * instead. It is critical that the total size of the request 691 * (len + alignment + slop) does not increase from this point 692 * on, so reset minalignslop to ensure it is not included in 693 * subsequent requests. 694 */ 695 args.minalignslop = 0; 696 } 697 698 if (unlikely(args.fsbno == NULLFSBLOCK)) { 699 /* 700 * Set the alignment for the allocation. 701 * If stripe alignment is turned on then align at stripe unit 702 * boundary. 703 * If the cluster size is smaller than a filesystem block 704 * then we're doing I/O for inodes in filesystem block size 705 * pieces, so don't need alignment anyway. 706 */ 707 isaligned = 0; 708 if (args.mp->m_sinoalign) { 709 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); 710 args.alignment = args.mp->m_dalign; 711 isaligned = 1; 712 } else 713 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 714 /* 715 * Need to figure out where to allocate the inode blocks. 716 * Ideally they should be spaced out through the a.g. 717 * For now, just allocate blocks up front. 718 */ 719 args.agbno = be32_to_cpu(agi->agi_root); 720 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 721 /* 722 * Allocate a fixed-size extent of inodes. 723 */ 724 args.type = XFS_ALLOCTYPE_NEAR_BNO; 725 args.prod = 1; 726 /* 727 * Allow space for the inode btree to split. 728 */ 729 args.minleft = args.mp->m_in_maxlevels - 1; 730 if ((error = xfs_alloc_vextent(&args))) 731 return error; 732 } 733 734 /* 735 * If stripe alignment is turned on, then try again with cluster 736 * alignment. 737 */ 738 if (isaligned && args.fsbno == NULLFSBLOCK) { 739 args.type = XFS_ALLOCTYPE_NEAR_BNO; 740 args.agbno = be32_to_cpu(agi->agi_root); 741 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 742 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 743 if ((error = xfs_alloc_vextent(&args))) 744 return error; 745 } 746 747 /* 748 * Finally, try a sparse allocation if the filesystem supports it and 749 * the sparse allocation length is smaller than a full chunk. 750 */ 751 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) && 752 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks && 753 args.fsbno == NULLFSBLOCK) { 754 sparse_alloc: 755 args.type = XFS_ALLOCTYPE_NEAR_BNO; 756 args.agbno = be32_to_cpu(agi->agi_root); 757 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 758 args.alignment = args.mp->m_sb.sb_spino_align; 759 args.prod = 1; 760 761 args.minlen = args.mp->m_ialloc_min_blks; 762 args.maxlen = args.minlen; 763 764 /* 765 * The inode record will be aligned to full chunk size. We must 766 * prevent sparse allocation from AG boundaries that result in 767 * invalid inode records, such as records that start at agbno 0 768 * or extend beyond the AG. 769 * 770 * Set min agbno to the first aligned, non-zero agbno and max to 771 * the last aligned agbno that is at least one full chunk from 772 * the end of the AG. 773 */ 774 args.min_agbno = args.mp->m_sb.sb_inoalignmt; 775 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, 776 args.mp->m_sb.sb_inoalignmt) - 777 args.mp->m_ialloc_blks; 778 779 error = xfs_alloc_vextent(&args); 780 if (error) 781 return error; 782 783 newlen = args.len << args.mp->m_sb.sb_inopblog; 784 ASSERT(newlen <= XFS_INODES_PER_CHUNK); 785 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; 786 } 787 788 if (args.fsbno == NULLFSBLOCK) { 789 *alloc = 0; 790 return 0; 791 } 792 ASSERT(args.len == args.minlen); 793 794 /* 795 * Stamp and write the inode buffers. 796 * 797 * Seed the new inode cluster with a random generation number. This 798 * prevents short-term reuse of generation numbers if a chunk is 799 * freed and then immediately reallocated. We use random numbers 800 * rather than a linear progression to prevent the next generation 801 * number from being easily guessable. 802 */ 803 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno, 804 args.agbno, args.len, prandom_u32()); 805 806 if (error) 807 return error; 808 /* 809 * Convert the results. 810 */ 811 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); 812 813 if (xfs_inobt_issparse(~allocmask)) { 814 /* 815 * We've allocated a sparse chunk. Align the startino and mask. 816 */ 817 xfs_align_sparse_ino(args.mp, &newino, &allocmask); 818 819 rec.ir_startino = newino; 820 rec.ir_holemask = ~allocmask; 821 rec.ir_count = newlen; 822 rec.ir_freecount = newlen; 823 rec.ir_free = XFS_INOBT_ALL_FREE; 824 825 /* 826 * Insert the sparse record into the inobt and allow for a merge 827 * if necessary. If a merge does occur, rec is updated to the 828 * merged record. 829 */ 830 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO, 831 &rec, true); 832 if (error == -EFSCORRUPTED) { 833 xfs_alert(args.mp, 834 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", 835 XFS_AGINO_TO_INO(args.mp, agno, 836 rec.ir_startino), 837 rec.ir_holemask, rec.ir_count); 838 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); 839 } 840 if (error) 841 return error; 842 843 /* 844 * We can't merge the part we've just allocated as for the inobt 845 * due to finobt semantics. The original record may or may not 846 * exist independent of whether physical inodes exist in this 847 * sparse chunk. 848 * 849 * We must update the finobt record based on the inobt record. 850 * rec contains the fully merged and up to date inobt record 851 * from the previous call. Set merge false to replace any 852 * existing record with this one. 853 */ 854 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 855 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, 856 XFS_BTNUM_FINO, &rec, 857 false); 858 if (error) 859 return error; 860 } 861 } else { 862 /* full chunk - insert new records to both btrees */ 863 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 864 XFS_BTNUM_INO); 865 if (error) 866 return error; 867 868 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 869 error = xfs_inobt_insert(args.mp, tp, agbp, newino, 870 newlen, XFS_BTNUM_FINO); 871 if (error) 872 return error; 873 } 874 } 875 876 /* 877 * Update AGI counts and newino. 878 */ 879 be32_add_cpu(&agi->agi_count, newlen); 880 be32_add_cpu(&agi->agi_freecount, newlen); 881 pag = xfs_perag_get(args.mp, agno); 882 pag->pagi_freecount += newlen; 883 xfs_perag_put(pag); 884 agi->agi_newino = cpu_to_be32(newino); 885 886 /* 887 * Log allocation group header fields 888 */ 889 xfs_ialloc_log_agi(tp, agbp, 890 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 891 /* 892 * Modify/log superblock values for inode count and inode free count. 893 */ 894 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 895 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 896 *alloc = 1; 897 return 0; 898 } 899 900 STATIC xfs_agnumber_t 901 xfs_ialloc_next_ag( 902 xfs_mount_t *mp) 903 { 904 xfs_agnumber_t agno; 905 906 spin_lock(&mp->m_agirotor_lock); 907 agno = mp->m_agirotor; 908 if (++mp->m_agirotor >= mp->m_maxagi) 909 mp->m_agirotor = 0; 910 spin_unlock(&mp->m_agirotor_lock); 911 912 return agno; 913 } 914 915 /* 916 * Select an allocation group to look for a free inode in, based on the parent 917 * inode and the mode. Return the allocation group buffer. 918 */ 919 STATIC xfs_agnumber_t 920 xfs_ialloc_ag_select( 921 xfs_trans_t *tp, /* transaction pointer */ 922 xfs_ino_t parent, /* parent directory inode number */ 923 umode_t mode) /* bits set to indicate file type */ 924 { 925 xfs_agnumber_t agcount; /* number of ag's in the filesystem */ 926 xfs_agnumber_t agno; /* current ag number */ 927 int flags; /* alloc buffer locking flags */ 928 xfs_extlen_t ineed; /* blocks needed for inode allocation */ 929 xfs_extlen_t longest = 0; /* longest extent available */ 930 xfs_mount_t *mp; /* mount point structure */ 931 int needspace; /* file mode implies space allocated */ 932 xfs_perag_t *pag; /* per allocation group data */ 933 xfs_agnumber_t pagno; /* parent (starting) ag number */ 934 int error; 935 936 /* 937 * Files of these types need at least one block if length > 0 938 * (and they won't fit in the inode, but that's hard to figure out). 939 */ 940 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 941 mp = tp->t_mountp; 942 agcount = mp->m_maxagi; 943 if (S_ISDIR(mode)) 944 pagno = xfs_ialloc_next_ag(mp); 945 else { 946 pagno = XFS_INO_TO_AGNO(mp, parent); 947 if (pagno >= agcount) 948 pagno = 0; 949 } 950 951 ASSERT(pagno < agcount); 952 953 /* 954 * Loop through allocation groups, looking for one with a little 955 * free space in it. Note we don't look for free inodes, exactly. 956 * Instead, we include whether there is a need to allocate inodes 957 * to mean that blocks must be allocated for them, 958 * if none are currently free. 959 */ 960 agno = pagno; 961 flags = XFS_ALLOC_FLAG_TRYLOCK; 962 for (;;) { 963 pag = xfs_perag_get(mp, agno); 964 if (!pag->pagi_inodeok) { 965 xfs_ialloc_next_ag(mp); 966 goto nextag; 967 } 968 969 if (!pag->pagi_init) { 970 error = xfs_ialloc_pagi_init(mp, tp, agno); 971 if (error) 972 goto nextag; 973 } 974 975 if (pag->pagi_freecount) { 976 xfs_perag_put(pag); 977 return agno; 978 } 979 980 if (!pag->pagf_init) { 981 error = xfs_alloc_pagf_init(mp, tp, agno, flags); 982 if (error) 983 goto nextag; 984 } 985 986 /* 987 * Check that there is enough free space for the file plus a 988 * chunk of inodes if we need to allocate some. If this is the 989 * first pass across the AGs, take into account the potential 990 * space needed for alignment of inode chunks when checking the 991 * longest contiguous free space in the AG - this prevents us 992 * from getting ENOSPC because we have free space larger than 993 * m_ialloc_blks but alignment constraints prevent us from using 994 * it. 995 * 996 * If we can't find an AG with space for full alignment slack to 997 * be taken into account, we must be near ENOSPC in all AGs. 998 * Hence we don't include alignment for the second pass and so 999 * if we fail allocation due to alignment issues then it is most 1000 * likely a real ENOSPC condition. 1001 */ 1002 ineed = mp->m_ialloc_min_blks; 1003 if (flags && ineed > 1) 1004 ineed += xfs_ialloc_cluster_alignment(mp); 1005 longest = pag->pagf_longest; 1006 if (!longest) 1007 longest = pag->pagf_flcount > 0; 1008 1009 if (pag->pagf_freeblks >= needspace + ineed && 1010 longest >= ineed) { 1011 xfs_perag_put(pag); 1012 return agno; 1013 } 1014 nextag: 1015 xfs_perag_put(pag); 1016 /* 1017 * No point in iterating over the rest, if we're shutting 1018 * down. 1019 */ 1020 if (XFS_FORCED_SHUTDOWN(mp)) 1021 return NULLAGNUMBER; 1022 agno++; 1023 if (agno >= agcount) 1024 agno = 0; 1025 if (agno == pagno) { 1026 if (flags == 0) 1027 return NULLAGNUMBER; 1028 flags = 0; 1029 } 1030 } 1031 } 1032 1033 /* 1034 * Try to retrieve the next record to the left/right from the current one. 1035 */ 1036 STATIC int 1037 xfs_ialloc_next_rec( 1038 struct xfs_btree_cur *cur, 1039 xfs_inobt_rec_incore_t *rec, 1040 int *done, 1041 int left) 1042 { 1043 int error; 1044 int i; 1045 1046 if (left) 1047 error = xfs_btree_decrement(cur, 0, &i); 1048 else 1049 error = xfs_btree_increment(cur, 0, &i); 1050 1051 if (error) 1052 return error; 1053 *done = !i; 1054 if (i) { 1055 error = xfs_inobt_get_rec(cur, rec, &i); 1056 if (error) 1057 return error; 1058 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1059 } 1060 1061 return 0; 1062 } 1063 1064 STATIC int 1065 xfs_ialloc_get_rec( 1066 struct xfs_btree_cur *cur, 1067 xfs_agino_t agino, 1068 xfs_inobt_rec_incore_t *rec, 1069 int *done) 1070 { 1071 int error; 1072 int i; 1073 1074 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 1075 if (error) 1076 return error; 1077 *done = !i; 1078 if (i) { 1079 error = xfs_inobt_get_rec(cur, rec, &i); 1080 if (error) 1081 return error; 1082 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1083 } 1084 1085 return 0; 1086 } 1087 1088 /* 1089 * Return the offset of the first free inode in the record. If the inode chunk 1090 * is sparsely allocated, we convert the record holemask to inode granularity 1091 * and mask off the unallocated regions from the inode free mask. 1092 */ 1093 STATIC int 1094 xfs_inobt_first_free_inode( 1095 struct xfs_inobt_rec_incore *rec) 1096 { 1097 xfs_inofree_t realfree; 1098 1099 /* if there are no holes, return the first available offset */ 1100 if (!xfs_inobt_issparse(rec->ir_holemask)) 1101 return xfs_lowbit64(rec->ir_free); 1102 1103 realfree = xfs_inobt_irec_to_allocmask(rec); 1104 realfree &= rec->ir_free; 1105 1106 return xfs_lowbit64(realfree); 1107 } 1108 1109 /* 1110 * Allocate an inode using the inobt-only algorithm. 1111 */ 1112 STATIC int 1113 xfs_dialloc_ag_inobt( 1114 struct xfs_trans *tp, 1115 struct xfs_buf *agbp, 1116 xfs_ino_t parent, 1117 xfs_ino_t *inop) 1118 { 1119 struct xfs_mount *mp = tp->t_mountp; 1120 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1121 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1122 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1123 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1124 struct xfs_perag *pag; 1125 struct xfs_btree_cur *cur, *tcur; 1126 struct xfs_inobt_rec_incore rec, trec; 1127 xfs_ino_t ino; 1128 int error; 1129 int offset; 1130 int i, j; 1131 int searchdistance = 10; 1132 1133 pag = xfs_perag_get(mp, agno); 1134 1135 ASSERT(pag->pagi_init); 1136 ASSERT(pag->pagi_inodeok); 1137 ASSERT(pag->pagi_freecount > 0); 1138 1139 restart_pagno: 1140 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1141 /* 1142 * If pagino is 0 (this is the root inode allocation) use newino. 1143 * This must work because we've just allocated some. 1144 */ 1145 if (!pagino) 1146 pagino = be32_to_cpu(agi->agi_newino); 1147 1148 error = xfs_check_agi_freecount(cur, agi); 1149 if (error) 1150 goto error0; 1151 1152 /* 1153 * If in the same AG as the parent, try to get near the parent. 1154 */ 1155 if (pagno == agno) { 1156 int doneleft; /* done, to the left */ 1157 int doneright; /* done, to the right */ 1158 1159 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 1160 if (error) 1161 goto error0; 1162 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1163 1164 error = xfs_inobt_get_rec(cur, &rec, &j); 1165 if (error) 1166 goto error0; 1167 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0); 1168 1169 if (rec.ir_freecount > 0) { 1170 /* 1171 * Found a free inode in the same chunk 1172 * as the parent, done. 1173 */ 1174 goto alloc_inode; 1175 } 1176 1177 1178 /* 1179 * In the same AG as parent, but parent's chunk is full. 1180 */ 1181 1182 /* duplicate the cursor, search left & right simultaneously */ 1183 error = xfs_btree_dup_cursor(cur, &tcur); 1184 if (error) 1185 goto error0; 1186 1187 /* 1188 * Skip to last blocks looked up if same parent inode. 1189 */ 1190 if (pagino != NULLAGINO && 1191 pag->pagl_pagino == pagino && 1192 pag->pagl_leftrec != NULLAGINO && 1193 pag->pagl_rightrec != NULLAGINO) { 1194 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 1195 &trec, &doneleft); 1196 if (error) 1197 goto error1; 1198 1199 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 1200 &rec, &doneright); 1201 if (error) 1202 goto error1; 1203 } else { 1204 /* search left with tcur, back up 1 record */ 1205 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 1206 if (error) 1207 goto error1; 1208 1209 /* search right with cur, go forward 1 record. */ 1210 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 1211 if (error) 1212 goto error1; 1213 } 1214 1215 /* 1216 * Loop until we find an inode chunk with a free inode. 1217 */ 1218 while (--searchdistance > 0 && (!doneleft || !doneright)) { 1219 int useleft; /* using left inode chunk this time */ 1220 1221 /* figure out the closer block if both are valid. */ 1222 if (!doneleft && !doneright) { 1223 useleft = pagino - 1224 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 1225 rec.ir_startino - pagino; 1226 } else { 1227 useleft = !doneleft; 1228 } 1229 1230 /* free inodes to the left? */ 1231 if (useleft && trec.ir_freecount) { 1232 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1233 cur = tcur; 1234 1235 pag->pagl_leftrec = trec.ir_startino; 1236 pag->pagl_rightrec = rec.ir_startino; 1237 pag->pagl_pagino = pagino; 1238 rec = trec; 1239 goto alloc_inode; 1240 } 1241 1242 /* free inodes to the right? */ 1243 if (!useleft && rec.ir_freecount) { 1244 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1245 1246 pag->pagl_leftrec = trec.ir_startino; 1247 pag->pagl_rightrec = rec.ir_startino; 1248 pag->pagl_pagino = pagino; 1249 goto alloc_inode; 1250 } 1251 1252 /* get next record to check */ 1253 if (useleft) { 1254 error = xfs_ialloc_next_rec(tcur, &trec, 1255 &doneleft, 1); 1256 } else { 1257 error = xfs_ialloc_next_rec(cur, &rec, 1258 &doneright, 0); 1259 } 1260 if (error) 1261 goto error1; 1262 } 1263 1264 if (searchdistance <= 0) { 1265 /* 1266 * Not in range - save last search 1267 * location and allocate a new inode 1268 */ 1269 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1270 pag->pagl_leftrec = trec.ir_startino; 1271 pag->pagl_rightrec = rec.ir_startino; 1272 pag->pagl_pagino = pagino; 1273 1274 } else { 1275 /* 1276 * We've reached the end of the btree. because 1277 * we are only searching a small chunk of the 1278 * btree each search, there is obviously free 1279 * inodes closer to the parent inode than we 1280 * are now. restart the search again. 1281 */ 1282 pag->pagl_pagino = NULLAGINO; 1283 pag->pagl_leftrec = NULLAGINO; 1284 pag->pagl_rightrec = NULLAGINO; 1285 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1286 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1287 goto restart_pagno; 1288 } 1289 } 1290 1291 /* 1292 * In a different AG from the parent. 1293 * See if the most recently allocated block has any free. 1294 */ 1295 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1296 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1297 XFS_LOOKUP_EQ, &i); 1298 if (error) 1299 goto error0; 1300 1301 if (i == 1) { 1302 error = xfs_inobt_get_rec(cur, &rec, &j); 1303 if (error) 1304 goto error0; 1305 1306 if (j == 1 && rec.ir_freecount > 0) { 1307 /* 1308 * The last chunk allocated in the group 1309 * still has a free inode. 1310 */ 1311 goto alloc_inode; 1312 } 1313 } 1314 } 1315 1316 /* 1317 * None left in the last group, search the whole AG 1318 */ 1319 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1320 if (error) 1321 goto error0; 1322 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1323 1324 for (;;) { 1325 error = xfs_inobt_get_rec(cur, &rec, &i); 1326 if (error) 1327 goto error0; 1328 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1329 if (rec.ir_freecount > 0) 1330 break; 1331 error = xfs_btree_increment(cur, 0, &i); 1332 if (error) 1333 goto error0; 1334 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1335 } 1336 1337 alloc_inode: 1338 offset = xfs_inobt_first_free_inode(&rec); 1339 ASSERT(offset >= 0); 1340 ASSERT(offset < XFS_INODES_PER_CHUNK); 1341 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1342 XFS_INODES_PER_CHUNK) == 0); 1343 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1344 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1345 rec.ir_freecount--; 1346 error = xfs_inobt_update(cur, &rec); 1347 if (error) 1348 goto error0; 1349 be32_add_cpu(&agi->agi_freecount, -1); 1350 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1351 pag->pagi_freecount--; 1352 1353 error = xfs_check_agi_freecount(cur, agi); 1354 if (error) 1355 goto error0; 1356 1357 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1358 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1359 xfs_perag_put(pag); 1360 *inop = ino; 1361 return 0; 1362 error1: 1363 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 1364 error0: 1365 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1366 xfs_perag_put(pag); 1367 return error; 1368 } 1369 1370 /* 1371 * Use the free inode btree to allocate an inode based on distance from the 1372 * parent. Note that the provided cursor may be deleted and replaced. 1373 */ 1374 STATIC int 1375 xfs_dialloc_ag_finobt_near( 1376 xfs_agino_t pagino, 1377 struct xfs_btree_cur **ocur, 1378 struct xfs_inobt_rec_incore *rec) 1379 { 1380 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 1381 struct xfs_btree_cur *rcur; /* right search cursor */ 1382 struct xfs_inobt_rec_incore rrec; 1383 int error; 1384 int i, j; 1385 1386 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1387 if (error) 1388 return error; 1389 1390 if (i == 1) { 1391 error = xfs_inobt_get_rec(lcur, rec, &i); 1392 if (error) 1393 return error; 1394 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1); 1395 1396 /* 1397 * See if we've landed in the parent inode record. The finobt 1398 * only tracks chunks with at least one free inode, so record 1399 * existence is enough. 1400 */ 1401 if (pagino >= rec->ir_startino && 1402 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1403 return 0; 1404 } 1405 1406 error = xfs_btree_dup_cursor(lcur, &rcur); 1407 if (error) 1408 return error; 1409 1410 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1411 if (error) 1412 goto error_rcur; 1413 if (j == 1) { 1414 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1415 if (error) 1416 goto error_rcur; 1417 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur); 1418 } 1419 1420 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur); 1421 if (i == 1 && j == 1) { 1422 /* 1423 * Both the left and right records are valid. Choose the closer 1424 * inode chunk to the target. 1425 */ 1426 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1427 (rrec.ir_startino - pagino)) { 1428 *rec = rrec; 1429 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1430 *ocur = rcur; 1431 } else { 1432 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1433 } 1434 } else if (j == 1) { 1435 /* only the right record is valid */ 1436 *rec = rrec; 1437 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1438 *ocur = rcur; 1439 } else if (i == 1) { 1440 /* only the left record is valid */ 1441 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1442 } 1443 1444 return 0; 1445 1446 error_rcur: 1447 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1448 return error; 1449 } 1450 1451 /* 1452 * Use the free inode btree to find a free inode based on a newino hint. If 1453 * the hint is NULL, find the first free inode in the AG. 1454 */ 1455 STATIC int 1456 xfs_dialloc_ag_finobt_newino( 1457 struct xfs_agi *agi, 1458 struct xfs_btree_cur *cur, 1459 struct xfs_inobt_rec_incore *rec) 1460 { 1461 int error; 1462 int i; 1463 1464 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1465 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1466 XFS_LOOKUP_EQ, &i); 1467 if (error) 1468 return error; 1469 if (i == 1) { 1470 error = xfs_inobt_get_rec(cur, rec, &i); 1471 if (error) 1472 return error; 1473 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1474 return 0; 1475 } 1476 } 1477 1478 /* 1479 * Find the first inode available in the AG. 1480 */ 1481 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1482 if (error) 1483 return error; 1484 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1485 1486 error = xfs_inobt_get_rec(cur, rec, &i); 1487 if (error) 1488 return error; 1489 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1490 1491 return 0; 1492 } 1493 1494 /* 1495 * Update the inobt based on a modification made to the finobt. Also ensure that 1496 * the records from both trees are equivalent post-modification. 1497 */ 1498 STATIC int 1499 xfs_dialloc_ag_update_inobt( 1500 struct xfs_btree_cur *cur, /* inobt cursor */ 1501 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1502 int offset) /* inode offset */ 1503 { 1504 struct xfs_inobt_rec_incore rec; 1505 int error; 1506 int i; 1507 1508 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1509 if (error) 1510 return error; 1511 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1512 1513 error = xfs_inobt_get_rec(cur, &rec, &i); 1514 if (error) 1515 return error; 1516 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1517 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1518 XFS_INODES_PER_CHUNK) == 0); 1519 1520 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1521 rec.ir_freecount--; 1522 1523 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) && 1524 (rec.ir_freecount == frec->ir_freecount)); 1525 1526 return xfs_inobt_update(cur, &rec); 1527 } 1528 1529 /* 1530 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1531 * back to the inobt search algorithm. 1532 * 1533 * The caller selected an AG for us, and made sure that free inodes are 1534 * available. 1535 */ 1536 STATIC int 1537 xfs_dialloc_ag( 1538 struct xfs_trans *tp, 1539 struct xfs_buf *agbp, 1540 xfs_ino_t parent, 1541 xfs_ino_t *inop) 1542 { 1543 struct xfs_mount *mp = tp->t_mountp; 1544 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1545 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1546 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1547 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1548 struct xfs_perag *pag; 1549 struct xfs_btree_cur *cur; /* finobt cursor */ 1550 struct xfs_btree_cur *icur; /* inobt cursor */ 1551 struct xfs_inobt_rec_incore rec; 1552 xfs_ino_t ino; 1553 int error; 1554 int offset; 1555 int i; 1556 1557 if (!xfs_sb_version_hasfinobt(&mp->m_sb)) 1558 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); 1559 1560 pag = xfs_perag_get(mp, agno); 1561 1562 /* 1563 * If pagino is 0 (this is the root inode allocation) use newino. 1564 * This must work because we've just allocated some. 1565 */ 1566 if (!pagino) 1567 pagino = be32_to_cpu(agi->agi_newino); 1568 1569 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1570 1571 error = xfs_check_agi_freecount(cur, agi); 1572 if (error) 1573 goto error_cur; 1574 1575 /* 1576 * The search algorithm depends on whether we're in the same AG as the 1577 * parent. If so, find the closest available inode to the parent. If 1578 * not, consider the agi hint or find the first free inode in the AG. 1579 */ 1580 if (agno == pagno) 1581 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1582 else 1583 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1584 if (error) 1585 goto error_cur; 1586 1587 offset = xfs_inobt_first_free_inode(&rec); 1588 ASSERT(offset >= 0); 1589 ASSERT(offset < XFS_INODES_PER_CHUNK); 1590 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1591 XFS_INODES_PER_CHUNK) == 0); 1592 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1593 1594 /* 1595 * Modify or remove the finobt record. 1596 */ 1597 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1598 rec.ir_freecount--; 1599 if (rec.ir_freecount) 1600 error = xfs_inobt_update(cur, &rec); 1601 else 1602 error = xfs_btree_delete(cur, &i); 1603 if (error) 1604 goto error_cur; 1605 1606 /* 1607 * The finobt has now been updated appropriately. We haven't updated the 1608 * agi and superblock yet, so we can create an inobt cursor and validate 1609 * the original freecount. If all is well, make the equivalent update to 1610 * the inobt using the finobt record and offset information. 1611 */ 1612 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1613 1614 error = xfs_check_agi_freecount(icur, agi); 1615 if (error) 1616 goto error_icur; 1617 1618 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1619 if (error) 1620 goto error_icur; 1621 1622 /* 1623 * Both trees have now been updated. We must update the perag and 1624 * superblock before we can check the freecount for each btree. 1625 */ 1626 be32_add_cpu(&agi->agi_freecount, -1); 1627 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1628 pag->pagi_freecount--; 1629 1630 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1631 1632 error = xfs_check_agi_freecount(icur, agi); 1633 if (error) 1634 goto error_icur; 1635 error = xfs_check_agi_freecount(cur, agi); 1636 if (error) 1637 goto error_icur; 1638 1639 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1640 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1641 xfs_perag_put(pag); 1642 *inop = ino; 1643 return 0; 1644 1645 error_icur: 1646 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1647 error_cur: 1648 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1649 xfs_perag_put(pag); 1650 return error; 1651 } 1652 1653 /* 1654 * Allocate an inode on disk. 1655 * 1656 * Mode is used to tell whether the new inode will need space, and whether it 1657 * is a directory. 1658 * 1659 * This function is designed to be called twice if it has to do an allocation 1660 * to make more free inodes. On the first call, *IO_agbp should be set to NULL. 1661 * If an inode is available without having to performn an allocation, an inode 1662 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation 1663 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. 1664 * The caller should then commit the current transaction, allocate a 1665 * new transaction, and call xfs_dialloc() again, passing in the previous value 1666 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI 1667 * buffer is locked across the two calls, the second call is guaranteed to have 1668 * a free inode available. 1669 * 1670 * Once we successfully pick an inode its number is returned and the on-disk 1671 * data structures are updated. The inode itself is not read in, since doing so 1672 * would break ordering constraints with xfs_reclaim. 1673 */ 1674 int 1675 xfs_dialloc( 1676 struct xfs_trans *tp, 1677 xfs_ino_t parent, 1678 umode_t mode, 1679 struct xfs_buf **IO_agbp, 1680 xfs_ino_t *inop) 1681 { 1682 struct xfs_mount *mp = tp->t_mountp; 1683 struct xfs_buf *agbp; 1684 xfs_agnumber_t agno; 1685 int error; 1686 int ialloced; 1687 int noroom = 0; 1688 xfs_agnumber_t start_agno; 1689 struct xfs_perag *pag; 1690 int okalloc = 1; 1691 1692 if (*IO_agbp) { 1693 /* 1694 * If the caller passes in a pointer to the AGI buffer, 1695 * continue where we left off before. In this case, we 1696 * know that the allocation group has free inodes. 1697 */ 1698 agbp = *IO_agbp; 1699 goto out_alloc; 1700 } 1701 1702 /* 1703 * We do not have an agbp, so select an initial allocation 1704 * group for inode allocation. 1705 */ 1706 start_agno = xfs_ialloc_ag_select(tp, parent, mode); 1707 if (start_agno == NULLAGNUMBER) { 1708 *inop = NULLFSINO; 1709 return 0; 1710 } 1711 1712 /* 1713 * If we have already hit the ceiling of inode blocks then clear 1714 * okalloc so we scan all available agi structures for a free 1715 * inode. 1716 * 1717 * Read rough value of mp->m_icount by percpu_counter_read_positive, 1718 * which will sacrifice the preciseness but improve the performance. 1719 */ 1720 if (mp->m_maxicount && 1721 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos 1722 > mp->m_maxicount) { 1723 noroom = 1; 1724 okalloc = 0; 1725 } 1726 1727 /* 1728 * Loop until we find an allocation group that either has free inodes 1729 * or in which we can allocate some inodes. Iterate through the 1730 * allocation groups upward, wrapping at the end. 1731 */ 1732 agno = start_agno; 1733 for (;;) { 1734 pag = xfs_perag_get(mp, agno); 1735 if (!pag->pagi_inodeok) { 1736 xfs_ialloc_next_ag(mp); 1737 goto nextag; 1738 } 1739 1740 if (!pag->pagi_init) { 1741 error = xfs_ialloc_pagi_init(mp, tp, agno); 1742 if (error) 1743 goto out_error; 1744 } 1745 1746 /* 1747 * Do a first racy fast path check if this AG is usable. 1748 */ 1749 if (!pag->pagi_freecount && !okalloc) 1750 goto nextag; 1751 1752 /* 1753 * Then read in the AGI buffer and recheck with the AGI buffer 1754 * lock held. 1755 */ 1756 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1757 if (error) 1758 goto out_error; 1759 1760 if (pag->pagi_freecount) { 1761 xfs_perag_put(pag); 1762 goto out_alloc; 1763 } 1764 1765 if (!okalloc) 1766 goto nextag_relse_buffer; 1767 1768 1769 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); 1770 if (error) { 1771 xfs_trans_brelse(tp, agbp); 1772 1773 if (error != -ENOSPC) 1774 goto out_error; 1775 1776 xfs_perag_put(pag); 1777 *inop = NULLFSINO; 1778 return 0; 1779 } 1780 1781 if (ialloced) { 1782 /* 1783 * We successfully allocated some inodes, return 1784 * the current context to the caller so that it 1785 * can commit the current transaction and call 1786 * us again where we left off. 1787 */ 1788 ASSERT(pag->pagi_freecount > 0); 1789 xfs_perag_put(pag); 1790 1791 *IO_agbp = agbp; 1792 *inop = NULLFSINO; 1793 return 0; 1794 } 1795 1796 nextag_relse_buffer: 1797 xfs_trans_brelse(tp, agbp); 1798 nextag: 1799 xfs_perag_put(pag); 1800 if (++agno == mp->m_sb.sb_agcount) 1801 agno = 0; 1802 if (agno == start_agno) { 1803 *inop = NULLFSINO; 1804 return noroom ? -ENOSPC : 0; 1805 } 1806 } 1807 1808 out_alloc: 1809 *IO_agbp = NULL; 1810 return xfs_dialloc_ag(tp, agbp, parent, inop); 1811 out_error: 1812 xfs_perag_put(pag); 1813 return error; 1814 } 1815 1816 /* 1817 * Free the blocks of an inode chunk. We must consider that the inode chunk 1818 * might be sparse and only free the regions that are allocated as part of the 1819 * chunk. 1820 */ 1821 STATIC void 1822 xfs_difree_inode_chunk( 1823 struct xfs_mount *mp, 1824 xfs_agnumber_t agno, 1825 struct xfs_inobt_rec_incore *rec, 1826 struct xfs_defer_ops *dfops) 1827 { 1828 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino); 1829 int startidx, endidx; 1830 int nextbit; 1831 xfs_agblock_t agbno; 1832 int contigblk; 1833 struct xfs_owner_info oinfo; 1834 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); 1835 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES); 1836 1837 if (!xfs_inobt_issparse(rec->ir_holemask)) { 1838 /* not sparse, calculate extent info directly */ 1839 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno), 1840 mp->m_ialloc_blks, &oinfo); 1841 return; 1842 } 1843 1844 /* holemask is only 16-bits (fits in an unsigned long) */ 1845 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); 1846 holemask[0] = rec->ir_holemask; 1847 1848 /* 1849 * Find contiguous ranges of zeroes (i.e., allocated regions) in the 1850 * holemask and convert the start/end index of each range to an extent. 1851 * We start with the start and end index both pointing at the first 0 in 1852 * the mask. 1853 */ 1854 startidx = endidx = find_first_zero_bit(holemask, 1855 XFS_INOBT_HOLEMASK_BITS); 1856 nextbit = startidx + 1; 1857 while (startidx < XFS_INOBT_HOLEMASK_BITS) { 1858 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, 1859 nextbit); 1860 /* 1861 * If the next zero bit is contiguous, update the end index of 1862 * the current range and continue. 1863 */ 1864 if (nextbit != XFS_INOBT_HOLEMASK_BITS && 1865 nextbit == endidx + 1) { 1866 endidx = nextbit; 1867 goto next; 1868 } 1869 1870 /* 1871 * nextbit is not contiguous with the current end index. Convert 1872 * the current start/end to an extent and add it to the free 1873 * list. 1874 */ 1875 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / 1876 mp->m_sb.sb_inopblock; 1877 contigblk = ((endidx - startidx + 1) * 1878 XFS_INODES_PER_HOLEMASK_BIT) / 1879 mp->m_sb.sb_inopblock; 1880 1881 ASSERT(agbno % mp->m_sb.sb_spino_align == 0); 1882 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); 1883 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno), 1884 contigblk, &oinfo); 1885 1886 /* reset range to current bit and carry on... */ 1887 startidx = endidx = nextbit; 1888 1889 next: 1890 nextbit++; 1891 } 1892 } 1893 1894 STATIC int 1895 xfs_difree_inobt( 1896 struct xfs_mount *mp, 1897 struct xfs_trans *tp, 1898 struct xfs_buf *agbp, 1899 xfs_agino_t agino, 1900 struct xfs_defer_ops *dfops, 1901 struct xfs_icluster *xic, 1902 struct xfs_inobt_rec_incore *orec) 1903 { 1904 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1905 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1906 struct xfs_perag *pag; 1907 struct xfs_btree_cur *cur; 1908 struct xfs_inobt_rec_incore rec; 1909 int ilen; 1910 int error; 1911 int i; 1912 int off; 1913 1914 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1915 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 1916 1917 /* 1918 * Initialize the cursor. 1919 */ 1920 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1921 1922 error = xfs_check_agi_freecount(cur, agi); 1923 if (error) 1924 goto error0; 1925 1926 /* 1927 * Look for the entry describing this inode. 1928 */ 1929 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 1930 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 1931 __func__, error); 1932 goto error0; 1933 } 1934 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1935 error = xfs_inobt_get_rec(cur, &rec, &i); 1936 if (error) { 1937 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 1938 __func__, error); 1939 goto error0; 1940 } 1941 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1942 /* 1943 * Get the offset in the inode chunk. 1944 */ 1945 off = agino - rec.ir_startino; 1946 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 1947 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 1948 /* 1949 * Mark the inode free & increment the count. 1950 */ 1951 rec.ir_free |= XFS_INOBT_MASK(off); 1952 rec.ir_freecount++; 1953 1954 /* 1955 * When an inode chunk is free, it becomes eligible for removal. Don't 1956 * remove the chunk if the block size is large enough for multiple inode 1957 * chunks (that might not be free). 1958 */ 1959 if (!(mp->m_flags & XFS_MOUNT_IKEEP) && 1960 rec.ir_free == XFS_INOBT_ALL_FREE && 1961 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 1962 xic->deleted = true; 1963 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); 1964 xic->alloc = xfs_inobt_irec_to_allocmask(&rec); 1965 1966 /* 1967 * Remove the inode cluster from the AGI B+Tree, adjust the 1968 * AGI and Superblock inode counts, and mark the disk space 1969 * to be freed when the transaction is committed. 1970 */ 1971 ilen = rec.ir_freecount; 1972 be32_add_cpu(&agi->agi_count, -ilen); 1973 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 1974 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 1975 pag = xfs_perag_get(mp, agno); 1976 pag->pagi_freecount -= ilen - 1; 1977 xfs_perag_put(pag); 1978 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 1979 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 1980 1981 if ((error = xfs_btree_delete(cur, &i))) { 1982 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 1983 __func__, error); 1984 goto error0; 1985 } 1986 1987 xfs_difree_inode_chunk(mp, agno, &rec, dfops); 1988 } else { 1989 xic->deleted = false; 1990 1991 error = xfs_inobt_update(cur, &rec); 1992 if (error) { 1993 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 1994 __func__, error); 1995 goto error0; 1996 } 1997 1998 /* 1999 * Change the inode free counts and log the ag/sb changes. 2000 */ 2001 be32_add_cpu(&agi->agi_freecount, 1); 2002 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 2003 pag = xfs_perag_get(mp, agno); 2004 pag->pagi_freecount++; 2005 xfs_perag_put(pag); 2006 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 2007 } 2008 2009 error = xfs_check_agi_freecount(cur, agi); 2010 if (error) 2011 goto error0; 2012 2013 *orec = rec; 2014 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2015 return 0; 2016 2017 error0: 2018 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2019 return error; 2020 } 2021 2022 /* 2023 * Free an inode in the free inode btree. 2024 */ 2025 STATIC int 2026 xfs_difree_finobt( 2027 struct xfs_mount *mp, 2028 struct xfs_trans *tp, 2029 struct xfs_buf *agbp, 2030 xfs_agino_t agino, 2031 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 2032 { 2033 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 2034 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 2035 struct xfs_btree_cur *cur; 2036 struct xfs_inobt_rec_incore rec; 2037 int offset = agino - ibtrec->ir_startino; 2038 int error; 2039 int i; 2040 2041 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 2042 2043 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 2044 if (error) 2045 goto error; 2046 if (i == 0) { 2047 /* 2048 * If the record does not exist in the finobt, we must have just 2049 * freed an inode in a previously fully allocated chunk. If not, 2050 * something is out of sync. 2051 */ 2052 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error); 2053 2054 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, 2055 ibtrec->ir_count, 2056 ibtrec->ir_freecount, 2057 ibtrec->ir_free, &i); 2058 if (error) 2059 goto error; 2060 ASSERT(i == 1); 2061 2062 goto out; 2063 } 2064 2065 /* 2066 * Read and update the existing record. We could just copy the ibtrec 2067 * across here, but that would defeat the purpose of having redundant 2068 * metadata. By making the modifications independently, we can catch 2069 * corruptions that we wouldn't see if we just copied from one record 2070 * to another. 2071 */ 2072 error = xfs_inobt_get_rec(cur, &rec, &i); 2073 if (error) 2074 goto error; 2075 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 2076 2077 rec.ir_free |= XFS_INOBT_MASK(offset); 2078 rec.ir_freecount++; 2079 2080 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) && 2081 (rec.ir_freecount == ibtrec->ir_freecount), 2082 error); 2083 2084 /* 2085 * The content of inobt records should always match between the inobt 2086 * and finobt. The lifecycle of records in the finobt is different from 2087 * the inobt in that the finobt only tracks records with at least one 2088 * free inode. Hence, if all of the inodes are free and we aren't 2089 * keeping inode chunks permanently on disk, remove the record. 2090 * Otherwise, update the record with the new information. 2091 * 2092 * Note that we currently can't free chunks when the block size is large 2093 * enough for multiple chunks. Leave the finobt record to remain in sync 2094 * with the inobt. 2095 */ 2096 if (rec.ir_free == XFS_INOBT_ALL_FREE && 2097 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK && 2098 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 2099 error = xfs_btree_delete(cur, &i); 2100 if (error) 2101 goto error; 2102 ASSERT(i == 1); 2103 } else { 2104 error = xfs_inobt_update(cur, &rec); 2105 if (error) 2106 goto error; 2107 } 2108 2109 out: 2110 error = xfs_check_agi_freecount(cur, agi); 2111 if (error) 2112 goto error; 2113 2114 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2115 return 0; 2116 2117 error: 2118 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2119 return error; 2120 } 2121 2122 /* 2123 * Free disk inode. Carefully avoids touching the incore inode, all 2124 * manipulations incore are the caller's responsibility. 2125 * The on-disk inode is not changed by this operation, only the 2126 * btree (free inode mask) is changed. 2127 */ 2128 int 2129 xfs_difree( 2130 struct xfs_trans *tp, /* transaction pointer */ 2131 xfs_ino_t inode, /* inode to be freed */ 2132 struct xfs_defer_ops *dfops, /* extents to free */ 2133 struct xfs_icluster *xic) /* cluster info if deleted */ 2134 { 2135 /* REFERENCED */ 2136 xfs_agblock_t agbno; /* block number containing inode */ 2137 struct xfs_buf *agbp; /* buffer for allocation group header */ 2138 xfs_agino_t agino; /* allocation group inode number */ 2139 xfs_agnumber_t agno; /* allocation group number */ 2140 int error; /* error return value */ 2141 struct xfs_mount *mp; /* mount structure for filesystem */ 2142 struct xfs_inobt_rec_incore rec;/* btree record */ 2143 2144 mp = tp->t_mountp; 2145 2146 /* 2147 * Break up inode number into its components. 2148 */ 2149 agno = XFS_INO_TO_AGNO(mp, inode); 2150 if (agno >= mp->m_sb.sb_agcount) { 2151 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", 2152 __func__, agno, mp->m_sb.sb_agcount); 2153 ASSERT(0); 2154 return -EINVAL; 2155 } 2156 agino = XFS_INO_TO_AGINO(mp, inode); 2157 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { 2158 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 2159 __func__, (unsigned long long)inode, 2160 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); 2161 ASSERT(0); 2162 return -EINVAL; 2163 } 2164 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2165 if (agbno >= mp->m_sb.sb_agblocks) { 2166 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 2167 __func__, agbno, mp->m_sb.sb_agblocks); 2168 ASSERT(0); 2169 return -EINVAL; 2170 } 2171 /* 2172 * Get the allocation group header. 2173 */ 2174 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2175 if (error) { 2176 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 2177 __func__, error); 2178 return error; 2179 } 2180 2181 /* 2182 * Fix up the inode allocation btree. 2183 */ 2184 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec); 2185 if (error) 2186 goto error0; 2187 2188 /* 2189 * Fix up the free inode btree. 2190 */ 2191 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 2192 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); 2193 if (error) 2194 goto error0; 2195 } 2196 2197 return 0; 2198 2199 error0: 2200 return error; 2201 } 2202 2203 STATIC int 2204 xfs_imap_lookup( 2205 struct xfs_mount *mp, 2206 struct xfs_trans *tp, 2207 xfs_agnumber_t agno, 2208 xfs_agino_t agino, 2209 xfs_agblock_t agbno, 2210 xfs_agblock_t *chunk_agbno, 2211 xfs_agblock_t *offset_agbno, 2212 int flags) 2213 { 2214 struct xfs_inobt_rec_incore rec; 2215 struct xfs_btree_cur *cur; 2216 struct xfs_buf *agbp; 2217 int error; 2218 int i; 2219 2220 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2221 if (error) { 2222 xfs_alert(mp, 2223 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 2224 __func__, error, agno); 2225 return error; 2226 } 2227 2228 /* 2229 * Lookup the inode record for the given agino. If the record cannot be 2230 * found, then it's an invalid inode number and we should abort. Once 2231 * we have a record, we need to ensure it contains the inode number 2232 * we are looking up. 2233 */ 2234 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 2235 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 2236 if (!error) { 2237 if (i) 2238 error = xfs_inobt_get_rec(cur, &rec, &i); 2239 if (!error && i == 0) 2240 error = -EINVAL; 2241 } 2242 2243 xfs_trans_brelse(tp, agbp); 2244 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); 2245 if (error) 2246 return error; 2247 2248 /* check that the returned record contains the required inode */ 2249 if (rec.ir_startino > agino || 2250 rec.ir_startino + mp->m_ialloc_inos <= agino) 2251 return -EINVAL; 2252 2253 /* for untrusted inodes check it is allocated first */ 2254 if ((flags & XFS_IGET_UNTRUSTED) && 2255 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 2256 return -EINVAL; 2257 2258 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 2259 *offset_agbno = agbno - *chunk_agbno; 2260 return 0; 2261 } 2262 2263 /* 2264 * Return the location of the inode in imap, for mapping it into a buffer. 2265 */ 2266 int 2267 xfs_imap( 2268 xfs_mount_t *mp, /* file system mount structure */ 2269 xfs_trans_t *tp, /* transaction pointer */ 2270 xfs_ino_t ino, /* inode to locate */ 2271 struct xfs_imap *imap, /* location map structure */ 2272 uint flags) /* flags for inode btree lookup */ 2273 { 2274 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 2275 xfs_agino_t agino; /* inode number within alloc group */ 2276 xfs_agnumber_t agno; /* allocation group number */ 2277 int blks_per_cluster; /* num blocks per inode cluster */ 2278 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 2279 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 2280 int error; /* error code */ 2281 int offset; /* index of inode in its buffer */ 2282 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 2283 2284 ASSERT(ino != NULLFSINO); 2285 2286 /* 2287 * Split up the inode number into its parts. 2288 */ 2289 agno = XFS_INO_TO_AGNO(mp, ino); 2290 agino = XFS_INO_TO_AGINO(mp, ino); 2291 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2292 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || 2293 ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2294 #ifdef DEBUG 2295 /* 2296 * Don't output diagnostic information for untrusted inodes 2297 * as they can be invalid without implying corruption. 2298 */ 2299 if (flags & XFS_IGET_UNTRUSTED) 2300 return -EINVAL; 2301 if (agno >= mp->m_sb.sb_agcount) { 2302 xfs_alert(mp, 2303 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", 2304 __func__, agno, mp->m_sb.sb_agcount); 2305 } 2306 if (agbno >= mp->m_sb.sb_agblocks) { 2307 xfs_alert(mp, 2308 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 2309 __func__, (unsigned long long)agbno, 2310 (unsigned long)mp->m_sb.sb_agblocks); 2311 } 2312 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2313 xfs_alert(mp, 2314 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 2315 __func__, ino, 2316 XFS_AGINO_TO_INO(mp, agno, agino)); 2317 } 2318 xfs_stack_trace(); 2319 #endif /* DEBUG */ 2320 return -EINVAL; 2321 } 2322 2323 blks_per_cluster = xfs_icluster_size_fsb(mp); 2324 2325 /* 2326 * For bulkstat and handle lookups, we have an untrusted inode number 2327 * that we have to verify is valid. We cannot do this just by reading 2328 * the inode buffer as it may have been unlinked and removed leaving 2329 * inodes in stale state on disk. Hence we have to do a btree lookup 2330 * in all cases where an untrusted inode number is passed. 2331 */ 2332 if (flags & XFS_IGET_UNTRUSTED) { 2333 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2334 &chunk_agbno, &offset_agbno, flags); 2335 if (error) 2336 return error; 2337 goto out_map; 2338 } 2339 2340 /* 2341 * If the inode cluster size is the same as the blocksize or 2342 * smaller we get to the buffer by simple arithmetics. 2343 */ 2344 if (blks_per_cluster == 1) { 2345 offset = XFS_INO_TO_OFFSET(mp, ino); 2346 ASSERT(offset < mp->m_sb.sb_inopblock); 2347 2348 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); 2349 imap->im_len = XFS_FSB_TO_BB(mp, 1); 2350 imap->im_boffset = (unsigned short)(offset << 2351 mp->m_sb.sb_inodelog); 2352 return 0; 2353 } 2354 2355 /* 2356 * If the inode chunks are aligned then use simple maths to 2357 * find the location. Otherwise we have to do a btree 2358 * lookup to find the location. 2359 */ 2360 if (mp->m_inoalign_mask) { 2361 offset_agbno = agbno & mp->m_inoalign_mask; 2362 chunk_agbno = agbno - offset_agbno; 2363 } else { 2364 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2365 &chunk_agbno, &offset_agbno, flags); 2366 if (error) 2367 return error; 2368 } 2369 2370 out_map: 2371 ASSERT(agbno >= chunk_agbno); 2372 cluster_agbno = chunk_agbno + 2373 ((offset_agbno / blks_per_cluster) * blks_per_cluster); 2374 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 2375 XFS_INO_TO_OFFSET(mp, ino); 2376 2377 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); 2378 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster); 2379 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); 2380 2381 /* 2382 * If the inode number maps to a block outside the bounds 2383 * of the file system then return NULL rather than calling 2384 * read_buf and panicing when we get an error from the 2385 * driver. 2386 */ 2387 if ((imap->im_blkno + imap->im_len) > 2388 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 2389 xfs_alert(mp, 2390 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 2391 __func__, (unsigned long long) imap->im_blkno, 2392 (unsigned long long) imap->im_len, 2393 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 2394 return -EINVAL; 2395 } 2396 return 0; 2397 } 2398 2399 /* 2400 * Compute and fill in value of m_in_maxlevels. 2401 */ 2402 void 2403 xfs_ialloc_compute_maxlevels( 2404 xfs_mount_t *mp) /* file system mount structure */ 2405 { 2406 uint inodes; 2407 2408 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; 2409 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr, 2410 inodes); 2411 } 2412 2413 /* 2414 * Log specified fields for the ag hdr (inode section). The growth of the agi 2415 * structure over time requires that we interpret the buffer as two logical 2416 * regions delineated by the end of the unlinked list. This is due to the size 2417 * of the hash table and its location in the middle of the agi. 2418 * 2419 * For example, a request to log a field before agi_unlinked and a field after 2420 * agi_unlinked could cause us to log the entire hash table and use an excessive 2421 * amount of log space. To avoid this behavior, log the region up through 2422 * agi_unlinked in one call and the region after agi_unlinked through the end of 2423 * the structure in another. 2424 */ 2425 void 2426 xfs_ialloc_log_agi( 2427 xfs_trans_t *tp, /* transaction pointer */ 2428 xfs_buf_t *bp, /* allocation group header buffer */ 2429 int fields) /* bitmask of fields to log */ 2430 { 2431 int first; /* first byte number */ 2432 int last; /* last byte number */ 2433 static const short offsets[] = { /* field starting offsets */ 2434 /* keep in sync with bit definitions */ 2435 offsetof(xfs_agi_t, agi_magicnum), 2436 offsetof(xfs_agi_t, agi_versionnum), 2437 offsetof(xfs_agi_t, agi_seqno), 2438 offsetof(xfs_agi_t, agi_length), 2439 offsetof(xfs_agi_t, agi_count), 2440 offsetof(xfs_agi_t, agi_root), 2441 offsetof(xfs_agi_t, agi_level), 2442 offsetof(xfs_agi_t, agi_freecount), 2443 offsetof(xfs_agi_t, agi_newino), 2444 offsetof(xfs_agi_t, agi_dirino), 2445 offsetof(xfs_agi_t, agi_unlinked), 2446 offsetof(xfs_agi_t, agi_free_root), 2447 offsetof(xfs_agi_t, agi_free_level), 2448 sizeof(xfs_agi_t) 2449 }; 2450 #ifdef DEBUG 2451 xfs_agi_t *agi; /* allocation group header */ 2452 2453 agi = XFS_BUF_TO_AGI(bp); 2454 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2455 #endif 2456 2457 /* 2458 * Compute byte offsets for the first and last fields in the first 2459 * region and log the agi buffer. This only logs up through 2460 * agi_unlinked. 2461 */ 2462 if (fields & XFS_AGI_ALL_BITS_R1) { 2463 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2464 &first, &last); 2465 xfs_trans_log_buf(tp, bp, first, last); 2466 } 2467 2468 /* 2469 * Mask off the bits in the first region and calculate the first and 2470 * last field offsets for any bits in the second region. 2471 */ 2472 fields &= ~XFS_AGI_ALL_BITS_R1; 2473 if (fields) { 2474 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2475 &first, &last); 2476 xfs_trans_log_buf(tp, bp, first, last); 2477 } 2478 } 2479 2480 #ifdef DEBUG 2481 STATIC void 2482 xfs_check_agi_unlinked( 2483 struct xfs_agi *agi) 2484 { 2485 int i; 2486 2487 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) 2488 ASSERT(agi->agi_unlinked[i]); 2489 } 2490 #else 2491 #define xfs_check_agi_unlinked(agi) 2492 #endif 2493 2494 static bool 2495 xfs_agi_verify( 2496 struct xfs_buf *bp) 2497 { 2498 struct xfs_mount *mp = bp->b_target->bt_mount; 2499 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); 2500 2501 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2502 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) 2503 return false; 2504 if (!xfs_log_check_lsn(mp, 2505 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn))) 2506 return false; 2507 } 2508 2509 /* 2510 * Validate the magic number of the agi block. 2511 */ 2512 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC)) 2513 return false; 2514 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2515 return false; 2516 2517 if (be32_to_cpu(agi->agi_level) < 1 || 2518 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS) 2519 return false; 2520 2521 if (xfs_sb_version_hasfinobt(&mp->m_sb) && 2522 (be32_to_cpu(agi->agi_free_level) < 1 || 2523 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS)) 2524 return false; 2525 2526 /* 2527 * during growfs operations, the perag is not fully initialised, 2528 * so we can't use it for any useful checking. growfs ensures we can't 2529 * use it by using uncached buffers that don't have the perag attached 2530 * so we can detect and avoid this problem. 2531 */ 2532 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) 2533 return false; 2534 2535 xfs_check_agi_unlinked(agi); 2536 return true; 2537 } 2538 2539 static void 2540 xfs_agi_read_verify( 2541 struct xfs_buf *bp) 2542 { 2543 struct xfs_mount *mp = bp->b_target->bt_mount; 2544 2545 if (xfs_sb_version_hascrc(&mp->m_sb) && 2546 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2547 xfs_buf_ioerror(bp, -EFSBADCRC); 2548 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp, 2549 XFS_ERRTAG_IALLOC_READ_AGI)) 2550 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2551 2552 if (bp->b_error) 2553 xfs_verifier_error(bp); 2554 } 2555 2556 static void 2557 xfs_agi_write_verify( 2558 struct xfs_buf *bp) 2559 { 2560 struct xfs_mount *mp = bp->b_target->bt_mount; 2561 struct xfs_buf_log_item *bip = bp->b_fspriv; 2562 2563 if (!xfs_agi_verify(bp)) { 2564 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2565 xfs_verifier_error(bp); 2566 return; 2567 } 2568 2569 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2570 return; 2571 2572 if (bip) 2573 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2574 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2575 } 2576 2577 const struct xfs_buf_ops xfs_agi_buf_ops = { 2578 .name = "xfs_agi", 2579 .verify_read = xfs_agi_read_verify, 2580 .verify_write = xfs_agi_write_verify, 2581 }; 2582 2583 /* 2584 * Read in the allocation group header (inode allocation section) 2585 */ 2586 int 2587 xfs_read_agi( 2588 struct xfs_mount *mp, /* file system mount structure */ 2589 struct xfs_trans *tp, /* transaction pointer */ 2590 xfs_agnumber_t agno, /* allocation group number */ 2591 struct xfs_buf **bpp) /* allocation group hdr buf */ 2592 { 2593 int error; 2594 2595 trace_xfs_read_agi(mp, agno); 2596 2597 ASSERT(agno != NULLAGNUMBER); 2598 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2599 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 2600 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); 2601 if (error) 2602 return error; 2603 if (tp) 2604 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF); 2605 2606 xfs_buf_set_ref(*bpp, XFS_AGI_REF); 2607 return 0; 2608 } 2609 2610 int 2611 xfs_ialloc_read_agi( 2612 struct xfs_mount *mp, /* file system mount structure */ 2613 struct xfs_trans *tp, /* transaction pointer */ 2614 xfs_agnumber_t agno, /* allocation group number */ 2615 struct xfs_buf **bpp) /* allocation group hdr buf */ 2616 { 2617 struct xfs_agi *agi; /* allocation group header */ 2618 struct xfs_perag *pag; /* per allocation group data */ 2619 int error; 2620 2621 trace_xfs_ialloc_read_agi(mp, agno); 2622 2623 error = xfs_read_agi(mp, tp, agno, bpp); 2624 if (error) 2625 return error; 2626 2627 agi = XFS_BUF_TO_AGI(*bpp); 2628 pag = xfs_perag_get(mp, agno); 2629 if (!pag->pagi_init) { 2630 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2631 pag->pagi_count = be32_to_cpu(agi->agi_count); 2632 pag->pagi_init = 1; 2633 } 2634 2635 /* 2636 * It's possible for these to be out of sync if 2637 * we are in the middle of a forced shutdown. 2638 */ 2639 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2640 XFS_FORCED_SHUTDOWN(mp)); 2641 xfs_perag_put(pag); 2642 return 0; 2643 } 2644 2645 /* 2646 * Read in the agi to initialise the per-ag data in the mount structure 2647 */ 2648 int 2649 xfs_ialloc_pagi_init( 2650 xfs_mount_t *mp, /* file system mount structure */ 2651 xfs_trans_t *tp, /* transaction pointer */ 2652 xfs_agnumber_t agno) /* allocation group number */ 2653 { 2654 xfs_buf_t *bp = NULL; 2655 int error; 2656 2657 error = xfs_ialloc_read_agi(mp, tp, agno, &bp); 2658 if (error) 2659 return error; 2660 if (bp) 2661 xfs_trans_brelse(tp, bp); 2662 return 0; 2663 } 2664 2665 /* Calculate the first and last possible inode number in an AG. */ 2666 void 2667 xfs_ialloc_agino_range( 2668 struct xfs_mount *mp, 2669 xfs_agnumber_t agno, 2670 xfs_agino_t *first, 2671 xfs_agino_t *last) 2672 { 2673 xfs_agblock_t bno; 2674 xfs_agblock_t eoag; 2675 2676 eoag = xfs_ag_block_count(mp, agno); 2677 2678 /* 2679 * Calculate the first inode, which will be in the first 2680 * cluster-aligned block after the AGFL. 2681 */ 2682 bno = round_up(XFS_AGFL_BLOCK(mp) + 1, 2683 xfs_ialloc_cluster_alignment(mp)); 2684 *first = XFS_OFFBNO_TO_AGINO(mp, bno, 0); 2685 2686 /* 2687 * Calculate the last inode, which will be at the end of the 2688 * last (aligned) cluster that can be allocated in the AG. 2689 */ 2690 bno = round_down(eoag, xfs_ialloc_cluster_alignment(mp)); 2691 *last = XFS_OFFBNO_TO_AGINO(mp, bno, 0) - 1; 2692 } 2693 2694 /* 2695 * Verify that an AG inode number pointer neither points outside the AG 2696 * nor points at static metadata. 2697 */ 2698 bool 2699 xfs_verify_agino( 2700 struct xfs_mount *mp, 2701 xfs_agnumber_t agno, 2702 xfs_agino_t agino) 2703 { 2704 xfs_agino_t first; 2705 xfs_agino_t last; 2706 2707 xfs_ialloc_agino_range(mp, agno, &first, &last); 2708 return agino >= first && agino <= last; 2709 } 2710 2711 /* 2712 * Verify that an FS inode number pointer neither points outside the 2713 * filesystem nor points at static AG metadata. 2714 */ 2715 bool 2716 xfs_verify_ino( 2717 struct xfs_mount *mp, 2718 xfs_ino_t ino) 2719 { 2720 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ino); 2721 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 2722 2723 if (agno >= mp->m_sb.sb_agcount) 2724 return false; 2725 if (XFS_AGINO_TO_INO(mp, agno, agino) != ino) 2726 return false; 2727 return xfs_verify_agino(mp, agno, agino); 2728 } 2729 2730 /* Is this an internal inode number? */ 2731 bool 2732 xfs_internal_inum( 2733 struct xfs_mount *mp, 2734 xfs_ino_t ino) 2735 { 2736 return ino == mp->m_sb.sb_rbmino || ino == mp->m_sb.sb_rsumino || 2737 (xfs_sb_version_hasquota(&mp->m_sb) && 2738 xfs_is_quota_inode(&mp->m_sb, ino)); 2739 } 2740 2741 /* 2742 * Verify that a directory entry's inode number doesn't point at an internal 2743 * inode, empty space, or static AG metadata. 2744 */ 2745 bool 2746 xfs_verify_dir_ino( 2747 struct xfs_mount *mp, 2748 xfs_ino_t ino) 2749 { 2750 if (xfs_internal_inum(mp, ino)) 2751 return false; 2752 return xfs_verify_ino(mp, ino); 2753 } 2754