1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_defer.h" 28 #include "xfs_inode.h" 29 #include "xfs_btree.h" 30 #include "xfs_ialloc.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_alloc.h" 33 #include "xfs_rtalloc.h" 34 #include "xfs_error.h" 35 #include "xfs_bmap.h" 36 #include "xfs_cksum.h" 37 #include "xfs_trans.h" 38 #include "xfs_buf_item.h" 39 #include "xfs_icreate_item.h" 40 #include "xfs_icache.h" 41 #include "xfs_trace.h" 42 #include "xfs_log.h" 43 #include "xfs_rmap.h" 44 45 46 /* 47 * Allocation group level functions. 48 */ 49 int 50 xfs_ialloc_cluster_alignment( 51 struct xfs_mount *mp) 52 { 53 if (xfs_sb_version_hasalign(&mp->m_sb) && 54 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) 55 return mp->m_sb.sb_inoalignmt; 56 return 1; 57 } 58 59 /* 60 * Lookup a record by ino in the btree given by cur. 61 */ 62 int /* error */ 63 xfs_inobt_lookup( 64 struct xfs_btree_cur *cur, /* btree cursor */ 65 xfs_agino_t ino, /* starting inode of chunk */ 66 xfs_lookup_t dir, /* <=, >=, == */ 67 int *stat) /* success/failure */ 68 { 69 cur->bc_rec.i.ir_startino = ino; 70 cur->bc_rec.i.ir_holemask = 0; 71 cur->bc_rec.i.ir_count = 0; 72 cur->bc_rec.i.ir_freecount = 0; 73 cur->bc_rec.i.ir_free = 0; 74 return xfs_btree_lookup(cur, dir, stat); 75 } 76 77 /* 78 * Update the record referred to by cur to the value given. 79 * This either works (return 0) or gets an EFSCORRUPTED error. 80 */ 81 STATIC int /* error */ 82 xfs_inobt_update( 83 struct xfs_btree_cur *cur, /* btree cursor */ 84 xfs_inobt_rec_incore_t *irec) /* btree record */ 85 { 86 union xfs_btree_rec rec; 87 88 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 89 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { 90 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); 91 rec.inobt.ir_u.sp.ir_count = irec->ir_count; 92 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; 93 } else { 94 /* ir_holemask/ir_count not supported on-disk */ 95 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); 96 } 97 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 98 return xfs_btree_update(cur, &rec); 99 } 100 101 /* Convert on-disk btree record to incore inobt record. */ 102 void 103 xfs_inobt_btrec_to_irec( 104 struct xfs_mount *mp, 105 union xfs_btree_rec *rec, 106 struct xfs_inobt_rec_incore *irec) 107 { 108 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 109 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) { 110 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); 111 irec->ir_count = rec->inobt.ir_u.sp.ir_count; 112 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; 113 } else { 114 /* 115 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded 116 * values for full inode chunks. 117 */ 118 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; 119 irec->ir_count = XFS_INODES_PER_CHUNK; 120 irec->ir_freecount = 121 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); 122 } 123 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 124 } 125 126 /* 127 * Get the data from the pointed-to record. 128 */ 129 int 130 xfs_inobt_get_rec( 131 struct xfs_btree_cur *cur, 132 struct xfs_inobt_rec_incore *irec, 133 int *stat) 134 { 135 union xfs_btree_rec *rec; 136 int error; 137 138 error = xfs_btree_get_rec(cur, &rec, stat); 139 if (error || *stat == 0) 140 return error; 141 142 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec); 143 144 return 0; 145 } 146 147 /* 148 * Insert a single inobt record. Cursor must already point to desired location. 149 */ 150 STATIC int 151 xfs_inobt_insert_rec( 152 struct xfs_btree_cur *cur, 153 uint16_t holemask, 154 uint8_t count, 155 int32_t freecount, 156 xfs_inofree_t free, 157 int *stat) 158 { 159 cur->bc_rec.i.ir_holemask = holemask; 160 cur->bc_rec.i.ir_count = count; 161 cur->bc_rec.i.ir_freecount = freecount; 162 cur->bc_rec.i.ir_free = free; 163 return xfs_btree_insert(cur, stat); 164 } 165 166 /* 167 * Insert records describing a newly allocated inode chunk into the inobt. 168 */ 169 STATIC int 170 xfs_inobt_insert( 171 struct xfs_mount *mp, 172 struct xfs_trans *tp, 173 struct xfs_buf *agbp, 174 xfs_agino_t newino, 175 xfs_agino_t newlen, 176 xfs_btnum_t btnum) 177 { 178 struct xfs_btree_cur *cur; 179 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 180 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 181 xfs_agino_t thisino; 182 int i; 183 int error; 184 185 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 186 187 for (thisino = newino; 188 thisino < newino + newlen; 189 thisino += XFS_INODES_PER_CHUNK) { 190 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 191 if (error) { 192 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 193 return error; 194 } 195 ASSERT(i == 0); 196 197 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, 198 XFS_INODES_PER_CHUNK, 199 XFS_INODES_PER_CHUNK, 200 XFS_INOBT_ALL_FREE, &i); 201 if (error) { 202 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 203 return error; 204 } 205 ASSERT(i == 1); 206 } 207 208 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 209 210 return 0; 211 } 212 213 /* 214 * Verify that the number of free inodes in the AGI is correct. 215 */ 216 #ifdef DEBUG 217 STATIC int 218 xfs_check_agi_freecount( 219 struct xfs_btree_cur *cur, 220 struct xfs_agi *agi) 221 { 222 if (cur->bc_nlevels == 1) { 223 xfs_inobt_rec_incore_t rec; 224 int freecount = 0; 225 int error; 226 int i; 227 228 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 229 if (error) 230 return error; 231 232 do { 233 error = xfs_inobt_get_rec(cur, &rec, &i); 234 if (error) 235 return error; 236 237 if (i) { 238 freecount += rec.ir_freecount; 239 error = xfs_btree_increment(cur, 0, &i); 240 if (error) 241 return error; 242 } 243 } while (i == 1); 244 245 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) 246 ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); 247 } 248 return 0; 249 } 250 #else 251 #define xfs_check_agi_freecount(cur, agi) 0 252 #endif 253 254 /* 255 * Initialise a new set of inodes. When called without a transaction context 256 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 257 * than logging them (which in a transaction context puts them into the AIL 258 * for writeback rather than the xfsbufd queue). 259 */ 260 int 261 xfs_ialloc_inode_init( 262 struct xfs_mount *mp, 263 struct xfs_trans *tp, 264 struct list_head *buffer_list, 265 int icount, 266 xfs_agnumber_t agno, 267 xfs_agblock_t agbno, 268 xfs_agblock_t length, 269 unsigned int gen) 270 { 271 struct xfs_buf *fbuf; 272 struct xfs_dinode *free; 273 int nbufs, blks_per_cluster, inodes_per_cluster; 274 int version; 275 int i, j; 276 xfs_daddr_t d; 277 xfs_ino_t ino = 0; 278 279 /* 280 * Loop over the new block(s), filling in the inodes. For small block 281 * sizes, manipulate the inodes in buffers which are multiples of the 282 * blocks size. 283 */ 284 blks_per_cluster = xfs_icluster_size_fsb(mp); 285 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 286 nbufs = length / blks_per_cluster; 287 288 /* 289 * Figure out what version number to use in the inodes we create. If 290 * the superblock version has caught up to the one that supports the new 291 * inode format, then use the new inode version. Otherwise use the old 292 * version so that old kernels will continue to be able to use the file 293 * system. 294 * 295 * For v3 inodes, we also need to write the inode number into the inode, 296 * so calculate the first inode number of the chunk here as 297 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not 298 * across multiple filesystem blocks (such as a cluster) and so cannot 299 * be used in the cluster buffer loop below. 300 * 301 * Further, because we are writing the inode directly into the buffer 302 * and calculating a CRC on the entire inode, we have ot log the entire 303 * inode so that the entire range the CRC covers is present in the log. 304 * That means for v3 inode we log the entire buffer rather than just the 305 * inode cores. 306 */ 307 if (xfs_sb_version_hascrc(&mp->m_sb)) { 308 version = 3; 309 ino = XFS_AGINO_TO_INO(mp, agno, 310 XFS_OFFBNO_TO_AGINO(mp, agbno, 0)); 311 312 /* 313 * log the initialisation that is about to take place as an 314 * logical operation. This means the transaction does not 315 * need to log the physical changes to the inode buffers as log 316 * recovery will know what initialisation is actually needed. 317 * Hence we only need to log the buffers as "ordered" buffers so 318 * they track in the AIL as if they were physically logged. 319 */ 320 if (tp) 321 xfs_icreate_log(tp, agno, agbno, icount, 322 mp->m_sb.sb_inodesize, length, gen); 323 } else 324 version = 2; 325 326 for (j = 0; j < nbufs; j++) { 327 /* 328 * Get the block. 329 */ 330 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster)); 331 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 332 mp->m_bsize * blks_per_cluster, 333 XBF_UNMAPPED); 334 if (!fbuf) 335 return -ENOMEM; 336 337 /* Initialize the inode buffers and log them appropriately. */ 338 fbuf->b_ops = &xfs_inode_buf_ops; 339 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 340 for (i = 0; i < inodes_per_cluster; i++) { 341 int ioffset = i << mp->m_sb.sb_inodelog; 342 uint isize = xfs_dinode_size(version); 343 344 free = xfs_make_iptr(mp, fbuf, i); 345 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 346 free->di_version = version; 347 free->di_gen = cpu_to_be32(gen); 348 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 349 350 if (version == 3) { 351 free->di_ino = cpu_to_be64(ino); 352 ino++; 353 uuid_copy(&free->di_uuid, 354 &mp->m_sb.sb_meta_uuid); 355 xfs_dinode_calc_crc(mp, free); 356 } else if (tp) { 357 /* just log the inode core */ 358 xfs_trans_log_buf(tp, fbuf, ioffset, 359 ioffset + isize - 1); 360 } 361 } 362 363 if (tp) { 364 /* 365 * Mark the buffer as an inode allocation buffer so it 366 * sticks in AIL at the point of this allocation 367 * transaction. This ensures the they are on disk before 368 * the tail of the log can be moved past this 369 * transaction (i.e. by preventing relogging from moving 370 * it forward in the log). 371 */ 372 xfs_trans_inode_alloc_buf(tp, fbuf); 373 if (version == 3) { 374 /* 375 * Mark the buffer as ordered so that they are 376 * not physically logged in the transaction but 377 * still tracked in the AIL as part of the 378 * transaction and pin the log appropriately. 379 */ 380 xfs_trans_ordered_buf(tp, fbuf); 381 xfs_trans_log_buf(tp, fbuf, 0, 382 BBTOB(fbuf->b_length) - 1); 383 } 384 } else { 385 fbuf->b_flags |= XBF_DONE; 386 xfs_buf_delwri_queue(fbuf, buffer_list); 387 xfs_buf_relse(fbuf); 388 } 389 } 390 return 0; 391 } 392 393 /* 394 * Align startino and allocmask for a recently allocated sparse chunk such that 395 * they are fit for insertion (or merge) into the on-disk inode btrees. 396 * 397 * Background: 398 * 399 * When enabled, sparse inode support increases the inode alignment from cluster 400 * size to inode chunk size. This means that the minimum range between two 401 * non-adjacent inode records in the inobt is large enough for a full inode 402 * record. This allows for cluster sized, cluster aligned block allocation 403 * without need to worry about whether the resulting inode record overlaps with 404 * another record in the tree. Without this basic rule, we would have to deal 405 * with the consequences of overlap by potentially undoing recent allocations in 406 * the inode allocation codepath. 407 * 408 * Because of this alignment rule (which is enforced on mount), there are two 409 * inobt possibilities for newly allocated sparse chunks. One is that the 410 * aligned inode record for the chunk covers a range of inodes not already 411 * covered in the inobt (i.e., it is safe to insert a new sparse record). The 412 * other is that a record already exists at the aligned startino that considers 413 * the newly allocated range as sparse. In the latter case, record content is 414 * merged in hope that sparse inode chunks fill to full chunks over time. 415 */ 416 STATIC void 417 xfs_align_sparse_ino( 418 struct xfs_mount *mp, 419 xfs_agino_t *startino, 420 uint16_t *allocmask) 421 { 422 xfs_agblock_t agbno; 423 xfs_agblock_t mod; 424 int offset; 425 426 agbno = XFS_AGINO_TO_AGBNO(mp, *startino); 427 mod = agbno % mp->m_sb.sb_inoalignmt; 428 if (!mod) 429 return; 430 431 /* calculate the inode offset and align startino */ 432 offset = mod << mp->m_sb.sb_inopblog; 433 *startino -= offset; 434 435 /* 436 * Since startino has been aligned down, left shift allocmask such that 437 * it continues to represent the same physical inodes relative to the 438 * new startino. 439 */ 440 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; 441 } 442 443 /* 444 * Determine whether the source inode record can merge into the target. Both 445 * records must be sparse, the inode ranges must match and there must be no 446 * allocation overlap between the records. 447 */ 448 STATIC bool 449 __xfs_inobt_can_merge( 450 struct xfs_inobt_rec_incore *trec, /* tgt record */ 451 struct xfs_inobt_rec_incore *srec) /* src record */ 452 { 453 uint64_t talloc; 454 uint64_t salloc; 455 456 /* records must cover the same inode range */ 457 if (trec->ir_startino != srec->ir_startino) 458 return false; 459 460 /* both records must be sparse */ 461 if (!xfs_inobt_issparse(trec->ir_holemask) || 462 !xfs_inobt_issparse(srec->ir_holemask)) 463 return false; 464 465 /* both records must track some inodes */ 466 if (!trec->ir_count || !srec->ir_count) 467 return false; 468 469 /* can't exceed capacity of a full record */ 470 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) 471 return false; 472 473 /* verify there is no allocation overlap */ 474 talloc = xfs_inobt_irec_to_allocmask(trec); 475 salloc = xfs_inobt_irec_to_allocmask(srec); 476 if (talloc & salloc) 477 return false; 478 479 return true; 480 } 481 482 /* 483 * Merge the source inode record into the target. The caller must call 484 * __xfs_inobt_can_merge() to ensure the merge is valid. 485 */ 486 STATIC void 487 __xfs_inobt_rec_merge( 488 struct xfs_inobt_rec_incore *trec, /* target */ 489 struct xfs_inobt_rec_incore *srec) /* src */ 490 { 491 ASSERT(trec->ir_startino == srec->ir_startino); 492 493 /* combine the counts */ 494 trec->ir_count += srec->ir_count; 495 trec->ir_freecount += srec->ir_freecount; 496 497 /* 498 * Merge the holemask and free mask. For both fields, 0 bits refer to 499 * allocated inodes. We combine the allocated ranges with bitwise AND. 500 */ 501 trec->ir_holemask &= srec->ir_holemask; 502 trec->ir_free &= srec->ir_free; 503 } 504 505 /* 506 * Insert a new sparse inode chunk into the associated inode btree. The inode 507 * record for the sparse chunk is pre-aligned to a startino that should match 508 * any pre-existing sparse inode record in the tree. This allows sparse chunks 509 * to fill over time. 510 * 511 * This function supports two modes of handling preexisting records depending on 512 * the merge flag. If merge is true, the provided record is merged with the 513 * existing record and updated in place. The merged record is returned in nrec. 514 * If merge is false, an existing record is replaced with the provided record. 515 * If no preexisting record exists, the provided record is always inserted. 516 * 517 * It is considered corruption if a merge is requested and not possible. Given 518 * the sparse inode alignment constraints, this should never happen. 519 */ 520 STATIC int 521 xfs_inobt_insert_sprec( 522 struct xfs_mount *mp, 523 struct xfs_trans *tp, 524 struct xfs_buf *agbp, 525 int btnum, 526 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ 527 bool merge) /* merge or replace */ 528 { 529 struct xfs_btree_cur *cur; 530 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 531 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 532 int error; 533 int i; 534 struct xfs_inobt_rec_incore rec; 535 536 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 537 538 /* the new record is pre-aligned so we know where to look */ 539 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); 540 if (error) 541 goto error; 542 /* if nothing there, insert a new record and return */ 543 if (i == 0) { 544 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, 545 nrec->ir_count, nrec->ir_freecount, 546 nrec->ir_free, &i); 547 if (error) 548 goto error; 549 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 550 551 goto out; 552 } 553 554 /* 555 * A record exists at this startino. Merge or replace the record 556 * depending on what we've been asked to do. 557 */ 558 if (merge) { 559 error = xfs_inobt_get_rec(cur, &rec, &i); 560 if (error) 561 goto error; 562 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 563 XFS_WANT_CORRUPTED_GOTO(mp, 564 rec.ir_startino == nrec->ir_startino, 565 error); 566 567 /* 568 * This should never fail. If we have coexisting records that 569 * cannot merge, something is seriously wrong. 570 */ 571 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec), 572 error); 573 574 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino, 575 rec.ir_holemask, nrec->ir_startino, 576 nrec->ir_holemask); 577 578 /* merge to nrec to output the updated record */ 579 __xfs_inobt_rec_merge(nrec, &rec); 580 581 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino, 582 nrec->ir_holemask); 583 584 error = xfs_inobt_rec_check_count(mp, nrec); 585 if (error) 586 goto error; 587 } 588 589 error = xfs_inobt_update(cur, nrec); 590 if (error) 591 goto error; 592 593 out: 594 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 595 return 0; 596 error: 597 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 598 return error; 599 } 600 601 /* 602 * Allocate new inodes in the allocation group specified by agbp. 603 * Return 0 for success, else error code. 604 */ 605 STATIC int /* error code or 0 */ 606 xfs_ialloc_ag_alloc( 607 xfs_trans_t *tp, /* transaction pointer */ 608 xfs_buf_t *agbp, /* alloc group buffer */ 609 int *alloc) 610 { 611 xfs_agi_t *agi; /* allocation group header */ 612 xfs_alloc_arg_t args; /* allocation argument structure */ 613 xfs_agnumber_t agno; 614 int error; 615 xfs_agino_t newino; /* new first inode's number */ 616 xfs_agino_t newlen; /* new number of inodes */ 617 int isaligned = 0; /* inode allocation at stripe unit */ 618 /* boundary */ 619 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */ 620 struct xfs_inobt_rec_incore rec; 621 struct xfs_perag *pag; 622 int do_sparse = 0; 623 624 memset(&args, 0, sizeof(args)); 625 args.tp = tp; 626 args.mp = tp->t_mountp; 627 args.fsbno = NULLFSBLOCK; 628 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES); 629 630 #ifdef DEBUG 631 /* randomly do sparse inode allocations */ 632 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) && 633 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks) 634 do_sparse = prandom_u32() & 1; 635 #endif 636 637 /* 638 * Locking will ensure that we don't have two callers in here 639 * at one time. 640 */ 641 newlen = args.mp->m_ialloc_inos; 642 if (args.mp->m_maxicount && 643 percpu_counter_read_positive(&args.mp->m_icount) + newlen > 644 args.mp->m_maxicount) 645 return -ENOSPC; 646 args.minlen = args.maxlen = args.mp->m_ialloc_blks; 647 /* 648 * First try to allocate inodes contiguous with the last-allocated 649 * chunk of inodes. If the filesystem is striped, this will fill 650 * an entire stripe unit with inodes. 651 */ 652 agi = XFS_BUF_TO_AGI(agbp); 653 newino = be32_to_cpu(agi->agi_newino); 654 agno = be32_to_cpu(agi->agi_seqno); 655 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 656 args.mp->m_ialloc_blks; 657 if (do_sparse) 658 goto sparse_alloc; 659 if (likely(newino != NULLAGINO && 660 (args.agbno < be32_to_cpu(agi->agi_length)))) { 661 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 662 args.type = XFS_ALLOCTYPE_THIS_BNO; 663 args.prod = 1; 664 665 /* 666 * We need to take into account alignment here to ensure that 667 * we don't modify the free list if we fail to have an exact 668 * block. If we don't have an exact match, and every oher 669 * attempt allocation attempt fails, we'll end up cancelling 670 * a dirty transaction and shutting down. 671 * 672 * For an exact allocation, alignment must be 1, 673 * however we need to take cluster alignment into account when 674 * fixing up the freelist. Use the minalignslop field to 675 * indicate that extra blocks might be required for alignment, 676 * but not to use them in the actual exact allocation. 677 */ 678 args.alignment = 1; 679 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1; 680 681 /* Allow space for the inode btree to split. */ 682 args.minleft = args.mp->m_in_maxlevels - 1; 683 if ((error = xfs_alloc_vextent(&args))) 684 return error; 685 686 /* 687 * This request might have dirtied the transaction if the AG can 688 * satisfy the request, but the exact block was not available. 689 * If the allocation did fail, subsequent requests will relax 690 * the exact agbno requirement and increase the alignment 691 * instead. It is critical that the total size of the request 692 * (len + alignment + slop) does not increase from this point 693 * on, so reset minalignslop to ensure it is not included in 694 * subsequent requests. 695 */ 696 args.minalignslop = 0; 697 } 698 699 if (unlikely(args.fsbno == NULLFSBLOCK)) { 700 /* 701 * Set the alignment for the allocation. 702 * If stripe alignment is turned on then align at stripe unit 703 * boundary. 704 * If the cluster size is smaller than a filesystem block 705 * then we're doing I/O for inodes in filesystem block size 706 * pieces, so don't need alignment anyway. 707 */ 708 isaligned = 0; 709 if (args.mp->m_sinoalign) { 710 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); 711 args.alignment = args.mp->m_dalign; 712 isaligned = 1; 713 } else 714 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 715 /* 716 * Need to figure out where to allocate the inode blocks. 717 * Ideally they should be spaced out through the a.g. 718 * For now, just allocate blocks up front. 719 */ 720 args.agbno = be32_to_cpu(agi->agi_root); 721 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 722 /* 723 * Allocate a fixed-size extent of inodes. 724 */ 725 args.type = XFS_ALLOCTYPE_NEAR_BNO; 726 args.prod = 1; 727 /* 728 * Allow space for the inode btree to split. 729 */ 730 args.minleft = args.mp->m_in_maxlevels - 1; 731 if ((error = xfs_alloc_vextent(&args))) 732 return error; 733 } 734 735 /* 736 * If stripe alignment is turned on, then try again with cluster 737 * alignment. 738 */ 739 if (isaligned && args.fsbno == NULLFSBLOCK) { 740 args.type = XFS_ALLOCTYPE_NEAR_BNO; 741 args.agbno = be32_to_cpu(agi->agi_root); 742 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 743 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 744 if ((error = xfs_alloc_vextent(&args))) 745 return error; 746 } 747 748 /* 749 * Finally, try a sparse allocation if the filesystem supports it and 750 * the sparse allocation length is smaller than a full chunk. 751 */ 752 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) && 753 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks && 754 args.fsbno == NULLFSBLOCK) { 755 sparse_alloc: 756 args.type = XFS_ALLOCTYPE_NEAR_BNO; 757 args.agbno = be32_to_cpu(agi->agi_root); 758 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 759 args.alignment = args.mp->m_sb.sb_spino_align; 760 args.prod = 1; 761 762 args.minlen = args.mp->m_ialloc_min_blks; 763 args.maxlen = args.minlen; 764 765 /* 766 * The inode record will be aligned to full chunk size. We must 767 * prevent sparse allocation from AG boundaries that result in 768 * invalid inode records, such as records that start at agbno 0 769 * or extend beyond the AG. 770 * 771 * Set min agbno to the first aligned, non-zero agbno and max to 772 * the last aligned agbno that is at least one full chunk from 773 * the end of the AG. 774 */ 775 args.min_agbno = args.mp->m_sb.sb_inoalignmt; 776 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, 777 args.mp->m_sb.sb_inoalignmt) - 778 args.mp->m_ialloc_blks; 779 780 error = xfs_alloc_vextent(&args); 781 if (error) 782 return error; 783 784 newlen = args.len << args.mp->m_sb.sb_inopblog; 785 ASSERT(newlen <= XFS_INODES_PER_CHUNK); 786 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; 787 } 788 789 if (args.fsbno == NULLFSBLOCK) { 790 *alloc = 0; 791 return 0; 792 } 793 ASSERT(args.len == args.minlen); 794 795 /* 796 * Stamp and write the inode buffers. 797 * 798 * Seed the new inode cluster with a random generation number. This 799 * prevents short-term reuse of generation numbers if a chunk is 800 * freed and then immediately reallocated. We use random numbers 801 * rather than a linear progression to prevent the next generation 802 * number from being easily guessable. 803 */ 804 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno, 805 args.agbno, args.len, prandom_u32()); 806 807 if (error) 808 return error; 809 /* 810 * Convert the results. 811 */ 812 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); 813 814 if (xfs_inobt_issparse(~allocmask)) { 815 /* 816 * We've allocated a sparse chunk. Align the startino and mask. 817 */ 818 xfs_align_sparse_ino(args.mp, &newino, &allocmask); 819 820 rec.ir_startino = newino; 821 rec.ir_holemask = ~allocmask; 822 rec.ir_count = newlen; 823 rec.ir_freecount = newlen; 824 rec.ir_free = XFS_INOBT_ALL_FREE; 825 826 /* 827 * Insert the sparse record into the inobt and allow for a merge 828 * if necessary. If a merge does occur, rec is updated to the 829 * merged record. 830 */ 831 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO, 832 &rec, true); 833 if (error == -EFSCORRUPTED) { 834 xfs_alert(args.mp, 835 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", 836 XFS_AGINO_TO_INO(args.mp, agno, 837 rec.ir_startino), 838 rec.ir_holemask, rec.ir_count); 839 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); 840 } 841 if (error) 842 return error; 843 844 /* 845 * We can't merge the part we've just allocated as for the inobt 846 * due to finobt semantics. The original record may or may not 847 * exist independent of whether physical inodes exist in this 848 * sparse chunk. 849 * 850 * We must update the finobt record based on the inobt record. 851 * rec contains the fully merged and up to date inobt record 852 * from the previous call. Set merge false to replace any 853 * existing record with this one. 854 */ 855 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 856 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, 857 XFS_BTNUM_FINO, &rec, 858 false); 859 if (error) 860 return error; 861 } 862 } else { 863 /* full chunk - insert new records to both btrees */ 864 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 865 XFS_BTNUM_INO); 866 if (error) 867 return error; 868 869 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 870 error = xfs_inobt_insert(args.mp, tp, agbp, newino, 871 newlen, XFS_BTNUM_FINO); 872 if (error) 873 return error; 874 } 875 } 876 877 /* 878 * Update AGI counts and newino. 879 */ 880 be32_add_cpu(&agi->agi_count, newlen); 881 be32_add_cpu(&agi->agi_freecount, newlen); 882 pag = xfs_perag_get(args.mp, agno); 883 pag->pagi_freecount += newlen; 884 xfs_perag_put(pag); 885 agi->agi_newino = cpu_to_be32(newino); 886 887 /* 888 * Log allocation group header fields 889 */ 890 xfs_ialloc_log_agi(tp, agbp, 891 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 892 /* 893 * Modify/log superblock values for inode count and inode free count. 894 */ 895 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 896 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 897 *alloc = 1; 898 return 0; 899 } 900 901 STATIC xfs_agnumber_t 902 xfs_ialloc_next_ag( 903 xfs_mount_t *mp) 904 { 905 xfs_agnumber_t agno; 906 907 spin_lock(&mp->m_agirotor_lock); 908 agno = mp->m_agirotor; 909 if (++mp->m_agirotor >= mp->m_maxagi) 910 mp->m_agirotor = 0; 911 spin_unlock(&mp->m_agirotor_lock); 912 913 return agno; 914 } 915 916 /* 917 * Select an allocation group to look for a free inode in, based on the parent 918 * inode and the mode. Return the allocation group buffer. 919 */ 920 STATIC xfs_agnumber_t 921 xfs_ialloc_ag_select( 922 xfs_trans_t *tp, /* transaction pointer */ 923 xfs_ino_t parent, /* parent directory inode number */ 924 umode_t mode, /* bits set to indicate file type */ 925 int okalloc) /* ok to allocate more space */ 926 { 927 xfs_agnumber_t agcount; /* number of ag's in the filesystem */ 928 xfs_agnumber_t agno; /* current ag number */ 929 int flags; /* alloc buffer locking flags */ 930 xfs_extlen_t ineed; /* blocks needed for inode allocation */ 931 xfs_extlen_t longest = 0; /* longest extent available */ 932 xfs_mount_t *mp; /* mount point structure */ 933 int needspace; /* file mode implies space allocated */ 934 xfs_perag_t *pag; /* per allocation group data */ 935 xfs_agnumber_t pagno; /* parent (starting) ag number */ 936 int error; 937 938 /* 939 * Files of these types need at least one block if length > 0 940 * (and they won't fit in the inode, but that's hard to figure out). 941 */ 942 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 943 mp = tp->t_mountp; 944 agcount = mp->m_maxagi; 945 if (S_ISDIR(mode)) 946 pagno = xfs_ialloc_next_ag(mp); 947 else { 948 pagno = XFS_INO_TO_AGNO(mp, parent); 949 if (pagno >= agcount) 950 pagno = 0; 951 } 952 953 ASSERT(pagno < agcount); 954 955 /* 956 * Loop through allocation groups, looking for one with a little 957 * free space in it. Note we don't look for free inodes, exactly. 958 * Instead, we include whether there is a need to allocate inodes 959 * to mean that blocks must be allocated for them, 960 * if none are currently free. 961 */ 962 agno = pagno; 963 flags = XFS_ALLOC_FLAG_TRYLOCK; 964 for (;;) { 965 pag = xfs_perag_get(mp, agno); 966 if (!pag->pagi_inodeok) { 967 xfs_ialloc_next_ag(mp); 968 goto nextag; 969 } 970 971 if (!pag->pagi_init) { 972 error = xfs_ialloc_pagi_init(mp, tp, agno); 973 if (error) 974 goto nextag; 975 } 976 977 if (pag->pagi_freecount) { 978 xfs_perag_put(pag); 979 return agno; 980 } 981 982 if (!okalloc) 983 goto nextag; 984 985 if (!pag->pagf_init) { 986 error = xfs_alloc_pagf_init(mp, tp, agno, flags); 987 if (error) 988 goto nextag; 989 } 990 991 /* 992 * Check that there is enough free space for the file plus a 993 * chunk of inodes if we need to allocate some. If this is the 994 * first pass across the AGs, take into account the potential 995 * space needed for alignment of inode chunks when checking the 996 * longest contiguous free space in the AG - this prevents us 997 * from getting ENOSPC because we have free space larger than 998 * m_ialloc_blks but alignment constraints prevent us from using 999 * it. 1000 * 1001 * If we can't find an AG with space for full alignment slack to 1002 * be taken into account, we must be near ENOSPC in all AGs. 1003 * Hence we don't include alignment for the second pass and so 1004 * if we fail allocation due to alignment issues then it is most 1005 * likely a real ENOSPC condition. 1006 */ 1007 ineed = mp->m_ialloc_min_blks; 1008 if (flags && ineed > 1) 1009 ineed += xfs_ialloc_cluster_alignment(mp); 1010 longest = pag->pagf_longest; 1011 if (!longest) 1012 longest = pag->pagf_flcount > 0; 1013 1014 if (pag->pagf_freeblks >= needspace + ineed && 1015 longest >= ineed) { 1016 xfs_perag_put(pag); 1017 return agno; 1018 } 1019 nextag: 1020 xfs_perag_put(pag); 1021 /* 1022 * No point in iterating over the rest, if we're shutting 1023 * down. 1024 */ 1025 if (XFS_FORCED_SHUTDOWN(mp)) 1026 return NULLAGNUMBER; 1027 agno++; 1028 if (agno >= agcount) 1029 agno = 0; 1030 if (agno == pagno) { 1031 if (flags == 0) 1032 return NULLAGNUMBER; 1033 flags = 0; 1034 } 1035 } 1036 } 1037 1038 /* 1039 * Try to retrieve the next record to the left/right from the current one. 1040 */ 1041 STATIC int 1042 xfs_ialloc_next_rec( 1043 struct xfs_btree_cur *cur, 1044 xfs_inobt_rec_incore_t *rec, 1045 int *done, 1046 int left) 1047 { 1048 int error; 1049 int i; 1050 1051 if (left) 1052 error = xfs_btree_decrement(cur, 0, &i); 1053 else 1054 error = xfs_btree_increment(cur, 0, &i); 1055 1056 if (error) 1057 return error; 1058 *done = !i; 1059 if (i) { 1060 error = xfs_inobt_get_rec(cur, rec, &i); 1061 if (error) 1062 return error; 1063 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1064 } 1065 1066 return 0; 1067 } 1068 1069 STATIC int 1070 xfs_ialloc_get_rec( 1071 struct xfs_btree_cur *cur, 1072 xfs_agino_t agino, 1073 xfs_inobt_rec_incore_t *rec, 1074 int *done) 1075 { 1076 int error; 1077 int i; 1078 1079 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 1080 if (error) 1081 return error; 1082 *done = !i; 1083 if (i) { 1084 error = xfs_inobt_get_rec(cur, rec, &i); 1085 if (error) 1086 return error; 1087 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1088 } 1089 1090 return 0; 1091 } 1092 1093 /* 1094 * Return the offset of the first free inode in the record. If the inode chunk 1095 * is sparsely allocated, we convert the record holemask to inode granularity 1096 * and mask off the unallocated regions from the inode free mask. 1097 */ 1098 STATIC int 1099 xfs_inobt_first_free_inode( 1100 struct xfs_inobt_rec_incore *rec) 1101 { 1102 xfs_inofree_t realfree; 1103 1104 /* if there are no holes, return the first available offset */ 1105 if (!xfs_inobt_issparse(rec->ir_holemask)) 1106 return xfs_lowbit64(rec->ir_free); 1107 1108 realfree = xfs_inobt_irec_to_allocmask(rec); 1109 realfree &= rec->ir_free; 1110 1111 return xfs_lowbit64(realfree); 1112 } 1113 1114 /* 1115 * Allocate an inode using the inobt-only algorithm. 1116 */ 1117 STATIC int 1118 xfs_dialloc_ag_inobt( 1119 struct xfs_trans *tp, 1120 struct xfs_buf *agbp, 1121 xfs_ino_t parent, 1122 xfs_ino_t *inop) 1123 { 1124 struct xfs_mount *mp = tp->t_mountp; 1125 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1126 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1127 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1128 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1129 struct xfs_perag *pag; 1130 struct xfs_btree_cur *cur, *tcur; 1131 struct xfs_inobt_rec_incore rec, trec; 1132 xfs_ino_t ino; 1133 int error; 1134 int offset; 1135 int i, j; 1136 1137 pag = xfs_perag_get(mp, agno); 1138 1139 ASSERT(pag->pagi_init); 1140 ASSERT(pag->pagi_inodeok); 1141 ASSERT(pag->pagi_freecount > 0); 1142 1143 restart_pagno: 1144 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1145 /* 1146 * If pagino is 0 (this is the root inode allocation) use newino. 1147 * This must work because we've just allocated some. 1148 */ 1149 if (!pagino) 1150 pagino = be32_to_cpu(agi->agi_newino); 1151 1152 error = xfs_check_agi_freecount(cur, agi); 1153 if (error) 1154 goto error0; 1155 1156 /* 1157 * If in the same AG as the parent, try to get near the parent. 1158 */ 1159 if (pagno == agno) { 1160 int doneleft; /* done, to the left */ 1161 int doneright; /* done, to the right */ 1162 int searchdistance = 10; 1163 1164 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 1165 if (error) 1166 goto error0; 1167 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1168 1169 error = xfs_inobt_get_rec(cur, &rec, &j); 1170 if (error) 1171 goto error0; 1172 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0); 1173 1174 if (rec.ir_freecount > 0) { 1175 /* 1176 * Found a free inode in the same chunk 1177 * as the parent, done. 1178 */ 1179 goto alloc_inode; 1180 } 1181 1182 1183 /* 1184 * In the same AG as parent, but parent's chunk is full. 1185 */ 1186 1187 /* duplicate the cursor, search left & right simultaneously */ 1188 error = xfs_btree_dup_cursor(cur, &tcur); 1189 if (error) 1190 goto error0; 1191 1192 /* 1193 * Skip to last blocks looked up if same parent inode. 1194 */ 1195 if (pagino != NULLAGINO && 1196 pag->pagl_pagino == pagino && 1197 pag->pagl_leftrec != NULLAGINO && 1198 pag->pagl_rightrec != NULLAGINO) { 1199 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 1200 &trec, &doneleft); 1201 if (error) 1202 goto error1; 1203 1204 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 1205 &rec, &doneright); 1206 if (error) 1207 goto error1; 1208 } else { 1209 /* search left with tcur, back up 1 record */ 1210 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 1211 if (error) 1212 goto error1; 1213 1214 /* search right with cur, go forward 1 record. */ 1215 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 1216 if (error) 1217 goto error1; 1218 } 1219 1220 /* 1221 * Loop until we find an inode chunk with a free inode. 1222 */ 1223 while (!doneleft || !doneright) { 1224 int useleft; /* using left inode chunk this time */ 1225 1226 if (!--searchdistance) { 1227 /* 1228 * Not in range - save last search 1229 * location and allocate a new inode 1230 */ 1231 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1232 pag->pagl_leftrec = trec.ir_startino; 1233 pag->pagl_rightrec = rec.ir_startino; 1234 pag->pagl_pagino = pagino; 1235 goto newino; 1236 } 1237 1238 /* figure out the closer block if both are valid. */ 1239 if (!doneleft && !doneright) { 1240 useleft = pagino - 1241 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 1242 rec.ir_startino - pagino; 1243 } else { 1244 useleft = !doneleft; 1245 } 1246 1247 /* free inodes to the left? */ 1248 if (useleft && trec.ir_freecount) { 1249 rec = trec; 1250 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1251 cur = tcur; 1252 1253 pag->pagl_leftrec = trec.ir_startino; 1254 pag->pagl_rightrec = rec.ir_startino; 1255 pag->pagl_pagino = pagino; 1256 goto alloc_inode; 1257 } 1258 1259 /* free inodes to the right? */ 1260 if (!useleft && rec.ir_freecount) { 1261 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1262 1263 pag->pagl_leftrec = trec.ir_startino; 1264 pag->pagl_rightrec = rec.ir_startino; 1265 pag->pagl_pagino = pagino; 1266 goto alloc_inode; 1267 } 1268 1269 /* get next record to check */ 1270 if (useleft) { 1271 error = xfs_ialloc_next_rec(tcur, &trec, 1272 &doneleft, 1); 1273 } else { 1274 error = xfs_ialloc_next_rec(cur, &rec, 1275 &doneright, 0); 1276 } 1277 if (error) 1278 goto error1; 1279 } 1280 1281 /* 1282 * We've reached the end of the btree. because 1283 * we are only searching a small chunk of the 1284 * btree each search, there is obviously free 1285 * inodes closer to the parent inode than we 1286 * are now. restart the search again. 1287 */ 1288 pag->pagl_pagino = NULLAGINO; 1289 pag->pagl_leftrec = NULLAGINO; 1290 pag->pagl_rightrec = NULLAGINO; 1291 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1292 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1293 goto restart_pagno; 1294 } 1295 1296 /* 1297 * In a different AG from the parent. 1298 * See if the most recently allocated block has any free. 1299 */ 1300 newino: 1301 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1302 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1303 XFS_LOOKUP_EQ, &i); 1304 if (error) 1305 goto error0; 1306 1307 if (i == 1) { 1308 error = xfs_inobt_get_rec(cur, &rec, &j); 1309 if (error) 1310 goto error0; 1311 1312 if (j == 1 && rec.ir_freecount > 0) { 1313 /* 1314 * The last chunk allocated in the group 1315 * still has a free inode. 1316 */ 1317 goto alloc_inode; 1318 } 1319 } 1320 } 1321 1322 /* 1323 * None left in the last group, search the whole AG 1324 */ 1325 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1326 if (error) 1327 goto error0; 1328 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1329 1330 for (;;) { 1331 error = xfs_inobt_get_rec(cur, &rec, &i); 1332 if (error) 1333 goto error0; 1334 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1335 if (rec.ir_freecount > 0) 1336 break; 1337 error = xfs_btree_increment(cur, 0, &i); 1338 if (error) 1339 goto error0; 1340 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1341 } 1342 1343 alloc_inode: 1344 offset = xfs_inobt_first_free_inode(&rec); 1345 ASSERT(offset >= 0); 1346 ASSERT(offset < XFS_INODES_PER_CHUNK); 1347 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1348 XFS_INODES_PER_CHUNK) == 0); 1349 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1350 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1351 rec.ir_freecount--; 1352 error = xfs_inobt_update(cur, &rec); 1353 if (error) 1354 goto error0; 1355 be32_add_cpu(&agi->agi_freecount, -1); 1356 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1357 pag->pagi_freecount--; 1358 1359 error = xfs_check_agi_freecount(cur, agi); 1360 if (error) 1361 goto error0; 1362 1363 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1364 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1365 xfs_perag_put(pag); 1366 *inop = ino; 1367 return 0; 1368 error1: 1369 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 1370 error0: 1371 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1372 xfs_perag_put(pag); 1373 return error; 1374 } 1375 1376 /* 1377 * Use the free inode btree to allocate an inode based on distance from the 1378 * parent. Note that the provided cursor may be deleted and replaced. 1379 */ 1380 STATIC int 1381 xfs_dialloc_ag_finobt_near( 1382 xfs_agino_t pagino, 1383 struct xfs_btree_cur **ocur, 1384 struct xfs_inobt_rec_incore *rec) 1385 { 1386 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 1387 struct xfs_btree_cur *rcur; /* right search cursor */ 1388 struct xfs_inobt_rec_incore rrec; 1389 int error; 1390 int i, j; 1391 1392 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1393 if (error) 1394 return error; 1395 1396 if (i == 1) { 1397 error = xfs_inobt_get_rec(lcur, rec, &i); 1398 if (error) 1399 return error; 1400 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1); 1401 1402 /* 1403 * See if we've landed in the parent inode record. The finobt 1404 * only tracks chunks with at least one free inode, so record 1405 * existence is enough. 1406 */ 1407 if (pagino >= rec->ir_startino && 1408 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1409 return 0; 1410 } 1411 1412 error = xfs_btree_dup_cursor(lcur, &rcur); 1413 if (error) 1414 return error; 1415 1416 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1417 if (error) 1418 goto error_rcur; 1419 if (j == 1) { 1420 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1421 if (error) 1422 goto error_rcur; 1423 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur); 1424 } 1425 1426 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur); 1427 if (i == 1 && j == 1) { 1428 /* 1429 * Both the left and right records are valid. Choose the closer 1430 * inode chunk to the target. 1431 */ 1432 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1433 (rrec.ir_startino - pagino)) { 1434 *rec = rrec; 1435 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1436 *ocur = rcur; 1437 } else { 1438 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1439 } 1440 } else if (j == 1) { 1441 /* only the right record is valid */ 1442 *rec = rrec; 1443 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1444 *ocur = rcur; 1445 } else if (i == 1) { 1446 /* only the left record is valid */ 1447 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1448 } 1449 1450 return 0; 1451 1452 error_rcur: 1453 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1454 return error; 1455 } 1456 1457 /* 1458 * Use the free inode btree to find a free inode based on a newino hint. If 1459 * the hint is NULL, find the first free inode in the AG. 1460 */ 1461 STATIC int 1462 xfs_dialloc_ag_finobt_newino( 1463 struct xfs_agi *agi, 1464 struct xfs_btree_cur *cur, 1465 struct xfs_inobt_rec_incore *rec) 1466 { 1467 int error; 1468 int i; 1469 1470 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1471 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1472 XFS_LOOKUP_EQ, &i); 1473 if (error) 1474 return error; 1475 if (i == 1) { 1476 error = xfs_inobt_get_rec(cur, rec, &i); 1477 if (error) 1478 return error; 1479 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1480 return 0; 1481 } 1482 } 1483 1484 /* 1485 * Find the first inode available in the AG. 1486 */ 1487 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1488 if (error) 1489 return error; 1490 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1491 1492 error = xfs_inobt_get_rec(cur, rec, &i); 1493 if (error) 1494 return error; 1495 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1496 1497 return 0; 1498 } 1499 1500 /* 1501 * Update the inobt based on a modification made to the finobt. Also ensure that 1502 * the records from both trees are equivalent post-modification. 1503 */ 1504 STATIC int 1505 xfs_dialloc_ag_update_inobt( 1506 struct xfs_btree_cur *cur, /* inobt cursor */ 1507 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1508 int offset) /* inode offset */ 1509 { 1510 struct xfs_inobt_rec_incore rec; 1511 int error; 1512 int i; 1513 1514 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1515 if (error) 1516 return error; 1517 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1518 1519 error = xfs_inobt_get_rec(cur, &rec, &i); 1520 if (error) 1521 return error; 1522 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1523 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1524 XFS_INODES_PER_CHUNK) == 0); 1525 1526 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1527 rec.ir_freecount--; 1528 1529 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) && 1530 (rec.ir_freecount == frec->ir_freecount)); 1531 1532 return xfs_inobt_update(cur, &rec); 1533 } 1534 1535 /* 1536 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1537 * back to the inobt search algorithm. 1538 * 1539 * The caller selected an AG for us, and made sure that free inodes are 1540 * available. 1541 */ 1542 STATIC int 1543 xfs_dialloc_ag( 1544 struct xfs_trans *tp, 1545 struct xfs_buf *agbp, 1546 xfs_ino_t parent, 1547 xfs_ino_t *inop) 1548 { 1549 struct xfs_mount *mp = tp->t_mountp; 1550 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1551 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1552 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1553 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1554 struct xfs_perag *pag; 1555 struct xfs_btree_cur *cur; /* finobt cursor */ 1556 struct xfs_btree_cur *icur; /* inobt cursor */ 1557 struct xfs_inobt_rec_incore rec; 1558 xfs_ino_t ino; 1559 int error; 1560 int offset; 1561 int i; 1562 1563 if (!xfs_sb_version_hasfinobt(&mp->m_sb)) 1564 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); 1565 1566 pag = xfs_perag_get(mp, agno); 1567 1568 /* 1569 * If pagino is 0 (this is the root inode allocation) use newino. 1570 * This must work because we've just allocated some. 1571 */ 1572 if (!pagino) 1573 pagino = be32_to_cpu(agi->agi_newino); 1574 1575 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1576 1577 error = xfs_check_agi_freecount(cur, agi); 1578 if (error) 1579 goto error_cur; 1580 1581 /* 1582 * The search algorithm depends on whether we're in the same AG as the 1583 * parent. If so, find the closest available inode to the parent. If 1584 * not, consider the agi hint or find the first free inode in the AG. 1585 */ 1586 if (agno == pagno) 1587 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1588 else 1589 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1590 if (error) 1591 goto error_cur; 1592 1593 offset = xfs_inobt_first_free_inode(&rec); 1594 ASSERT(offset >= 0); 1595 ASSERT(offset < XFS_INODES_PER_CHUNK); 1596 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1597 XFS_INODES_PER_CHUNK) == 0); 1598 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1599 1600 /* 1601 * Modify or remove the finobt record. 1602 */ 1603 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1604 rec.ir_freecount--; 1605 if (rec.ir_freecount) 1606 error = xfs_inobt_update(cur, &rec); 1607 else 1608 error = xfs_btree_delete(cur, &i); 1609 if (error) 1610 goto error_cur; 1611 1612 /* 1613 * The finobt has now been updated appropriately. We haven't updated the 1614 * agi and superblock yet, so we can create an inobt cursor and validate 1615 * the original freecount. If all is well, make the equivalent update to 1616 * the inobt using the finobt record and offset information. 1617 */ 1618 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1619 1620 error = xfs_check_agi_freecount(icur, agi); 1621 if (error) 1622 goto error_icur; 1623 1624 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1625 if (error) 1626 goto error_icur; 1627 1628 /* 1629 * Both trees have now been updated. We must update the perag and 1630 * superblock before we can check the freecount for each btree. 1631 */ 1632 be32_add_cpu(&agi->agi_freecount, -1); 1633 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1634 pag->pagi_freecount--; 1635 1636 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1637 1638 error = xfs_check_agi_freecount(icur, agi); 1639 if (error) 1640 goto error_icur; 1641 error = xfs_check_agi_freecount(cur, agi); 1642 if (error) 1643 goto error_icur; 1644 1645 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1646 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1647 xfs_perag_put(pag); 1648 *inop = ino; 1649 return 0; 1650 1651 error_icur: 1652 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1653 error_cur: 1654 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1655 xfs_perag_put(pag); 1656 return error; 1657 } 1658 1659 /* 1660 * Allocate an inode on disk. 1661 * 1662 * Mode is used to tell whether the new inode will need space, and whether it 1663 * is a directory. 1664 * 1665 * This function is designed to be called twice if it has to do an allocation 1666 * to make more free inodes. On the first call, *IO_agbp should be set to NULL. 1667 * If an inode is available without having to performn an allocation, an inode 1668 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation 1669 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. 1670 * The caller should then commit the current transaction, allocate a 1671 * new transaction, and call xfs_dialloc() again, passing in the previous value 1672 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI 1673 * buffer is locked across the two calls, the second call is guaranteed to have 1674 * a free inode available. 1675 * 1676 * Once we successfully pick an inode its number is returned and the on-disk 1677 * data structures are updated. The inode itself is not read in, since doing so 1678 * would break ordering constraints with xfs_reclaim. 1679 */ 1680 int 1681 xfs_dialloc( 1682 struct xfs_trans *tp, 1683 xfs_ino_t parent, 1684 umode_t mode, 1685 int okalloc, 1686 struct xfs_buf **IO_agbp, 1687 xfs_ino_t *inop) 1688 { 1689 struct xfs_mount *mp = tp->t_mountp; 1690 struct xfs_buf *agbp; 1691 xfs_agnumber_t agno; 1692 int error; 1693 int ialloced; 1694 int noroom = 0; 1695 xfs_agnumber_t start_agno; 1696 struct xfs_perag *pag; 1697 1698 if (*IO_agbp) { 1699 /* 1700 * If the caller passes in a pointer to the AGI buffer, 1701 * continue where we left off before. In this case, we 1702 * know that the allocation group has free inodes. 1703 */ 1704 agbp = *IO_agbp; 1705 goto out_alloc; 1706 } 1707 1708 /* 1709 * We do not have an agbp, so select an initial allocation 1710 * group for inode allocation. 1711 */ 1712 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc); 1713 if (start_agno == NULLAGNUMBER) { 1714 *inop = NULLFSINO; 1715 return 0; 1716 } 1717 1718 /* 1719 * If we have already hit the ceiling of inode blocks then clear 1720 * okalloc so we scan all available agi structures for a free 1721 * inode. 1722 * 1723 * Read rough value of mp->m_icount by percpu_counter_read_positive, 1724 * which will sacrifice the preciseness but improve the performance. 1725 */ 1726 if (mp->m_maxicount && 1727 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos 1728 > mp->m_maxicount) { 1729 noroom = 1; 1730 okalloc = 0; 1731 } 1732 1733 /* 1734 * Loop until we find an allocation group that either has free inodes 1735 * or in which we can allocate some inodes. Iterate through the 1736 * allocation groups upward, wrapping at the end. 1737 */ 1738 agno = start_agno; 1739 for (;;) { 1740 pag = xfs_perag_get(mp, agno); 1741 if (!pag->pagi_inodeok) { 1742 xfs_ialloc_next_ag(mp); 1743 goto nextag; 1744 } 1745 1746 if (!pag->pagi_init) { 1747 error = xfs_ialloc_pagi_init(mp, tp, agno); 1748 if (error) 1749 goto out_error; 1750 } 1751 1752 /* 1753 * Do a first racy fast path check if this AG is usable. 1754 */ 1755 if (!pag->pagi_freecount && !okalloc) 1756 goto nextag; 1757 1758 /* 1759 * Then read in the AGI buffer and recheck with the AGI buffer 1760 * lock held. 1761 */ 1762 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1763 if (error) 1764 goto out_error; 1765 1766 if (pag->pagi_freecount) { 1767 xfs_perag_put(pag); 1768 goto out_alloc; 1769 } 1770 1771 if (!okalloc) 1772 goto nextag_relse_buffer; 1773 1774 1775 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); 1776 if (error) { 1777 xfs_trans_brelse(tp, agbp); 1778 1779 if (error != -ENOSPC) 1780 goto out_error; 1781 1782 xfs_perag_put(pag); 1783 *inop = NULLFSINO; 1784 return 0; 1785 } 1786 1787 if (ialloced) { 1788 /* 1789 * We successfully allocated some inodes, return 1790 * the current context to the caller so that it 1791 * can commit the current transaction and call 1792 * us again where we left off. 1793 */ 1794 ASSERT(pag->pagi_freecount > 0); 1795 xfs_perag_put(pag); 1796 1797 *IO_agbp = agbp; 1798 *inop = NULLFSINO; 1799 return 0; 1800 } 1801 1802 nextag_relse_buffer: 1803 xfs_trans_brelse(tp, agbp); 1804 nextag: 1805 xfs_perag_put(pag); 1806 if (++agno == mp->m_sb.sb_agcount) 1807 agno = 0; 1808 if (agno == start_agno) { 1809 *inop = NULLFSINO; 1810 return noroom ? -ENOSPC : 0; 1811 } 1812 } 1813 1814 out_alloc: 1815 *IO_agbp = NULL; 1816 return xfs_dialloc_ag(tp, agbp, parent, inop); 1817 out_error: 1818 xfs_perag_put(pag); 1819 return error; 1820 } 1821 1822 /* 1823 * Free the blocks of an inode chunk. We must consider that the inode chunk 1824 * might be sparse and only free the regions that are allocated as part of the 1825 * chunk. 1826 */ 1827 STATIC void 1828 xfs_difree_inode_chunk( 1829 struct xfs_mount *mp, 1830 xfs_agnumber_t agno, 1831 struct xfs_inobt_rec_incore *rec, 1832 struct xfs_defer_ops *dfops) 1833 { 1834 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino); 1835 int startidx, endidx; 1836 int nextbit; 1837 xfs_agblock_t agbno; 1838 int contigblk; 1839 struct xfs_owner_info oinfo; 1840 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); 1841 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES); 1842 1843 if (!xfs_inobt_issparse(rec->ir_holemask)) { 1844 /* not sparse, calculate extent info directly */ 1845 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno), 1846 mp->m_ialloc_blks, &oinfo); 1847 return; 1848 } 1849 1850 /* holemask is only 16-bits (fits in an unsigned long) */ 1851 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); 1852 holemask[0] = rec->ir_holemask; 1853 1854 /* 1855 * Find contiguous ranges of zeroes (i.e., allocated regions) in the 1856 * holemask and convert the start/end index of each range to an extent. 1857 * We start with the start and end index both pointing at the first 0 in 1858 * the mask. 1859 */ 1860 startidx = endidx = find_first_zero_bit(holemask, 1861 XFS_INOBT_HOLEMASK_BITS); 1862 nextbit = startidx + 1; 1863 while (startidx < XFS_INOBT_HOLEMASK_BITS) { 1864 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, 1865 nextbit); 1866 /* 1867 * If the next zero bit is contiguous, update the end index of 1868 * the current range and continue. 1869 */ 1870 if (nextbit != XFS_INOBT_HOLEMASK_BITS && 1871 nextbit == endidx + 1) { 1872 endidx = nextbit; 1873 goto next; 1874 } 1875 1876 /* 1877 * nextbit is not contiguous with the current end index. Convert 1878 * the current start/end to an extent and add it to the free 1879 * list. 1880 */ 1881 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / 1882 mp->m_sb.sb_inopblock; 1883 contigblk = ((endidx - startidx + 1) * 1884 XFS_INODES_PER_HOLEMASK_BIT) / 1885 mp->m_sb.sb_inopblock; 1886 1887 ASSERT(agbno % mp->m_sb.sb_spino_align == 0); 1888 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); 1889 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno), 1890 contigblk, &oinfo); 1891 1892 /* reset range to current bit and carry on... */ 1893 startidx = endidx = nextbit; 1894 1895 next: 1896 nextbit++; 1897 } 1898 } 1899 1900 STATIC int 1901 xfs_difree_inobt( 1902 struct xfs_mount *mp, 1903 struct xfs_trans *tp, 1904 struct xfs_buf *agbp, 1905 xfs_agino_t agino, 1906 struct xfs_defer_ops *dfops, 1907 struct xfs_icluster *xic, 1908 struct xfs_inobt_rec_incore *orec) 1909 { 1910 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1911 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1912 struct xfs_perag *pag; 1913 struct xfs_btree_cur *cur; 1914 struct xfs_inobt_rec_incore rec; 1915 int ilen; 1916 int error; 1917 int i; 1918 int off; 1919 1920 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1921 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 1922 1923 /* 1924 * Initialize the cursor. 1925 */ 1926 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1927 1928 error = xfs_check_agi_freecount(cur, agi); 1929 if (error) 1930 goto error0; 1931 1932 /* 1933 * Look for the entry describing this inode. 1934 */ 1935 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 1936 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 1937 __func__, error); 1938 goto error0; 1939 } 1940 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1941 error = xfs_inobt_get_rec(cur, &rec, &i); 1942 if (error) { 1943 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 1944 __func__, error); 1945 goto error0; 1946 } 1947 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1948 /* 1949 * Get the offset in the inode chunk. 1950 */ 1951 off = agino - rec.ir_startino; 1952 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 1953 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 1954 /* 1955 * Mark the inode free & increment the count. 1956 */ 1957 rec.ir_free |= XFS_INOBT_MASK(off); 1958 rec.ir_freecount++; 1959 1960 /* 1961 * When an inode chunk is free, it becomes eligible for removal. Don't 1962 * remove the chunk if the block size is large enough for multiple inode 1963 * chunks (that might not be free). 1964 */ 1965 if (!(mp->m_flags & XFS_MOUNT_IKEEP) && 1966 rec.ir_free == XFS_INOBT_ALL_FREE && 1967 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 1968 xic->deleted = 1; 1969 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); 1970 xic->alloc = xfs_inobt_irec_to_allocmask(&rec); 1971 1972 /* 1973 * Remove the inode cluster from the AGI B+Tree, adjust the 1974 * AGI and Superblock inode counts, and mark the disk space 1975 * to be freed when the transaction is committed. 1976 */ 1977 ilen = rec.ir_freecount; 1978 be32_add_cpu(&agi->agi_count, -ilen); 1979 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 1980 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 1981 pag = xfs_perag_get(mp, agno); 1982 pag->pagi_freecount -= ilen - 1; 1983 xfs_perag_put(pag); 1984 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 1985 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 1986 1987 if ((error = xfs_btree_delete(cur, &i))) { 1988 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 1989 __func__, error); 1990 goto error0; 1991 } 1992 1993 xfs_difree_inode_chunk(mp, agno, &rec, dfops); 1994 } else { 1995 xic->deleted = 0; 1996 1997 error = xfs_inobt_update(cur, &rec); 1998 if (error) { 1999 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 2000 __func__, error); 2001 goto error0; 2002 } 2003 2004 /* 2005 * Change the inode free counts and log the ag/sb changes. 2006 */ 2007 be32_add_cpu(&agi->agi_freecount, 1); 2008 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 2009 pag = xfs_perag_get(mp, agno); 2010 pag->pagi_freecount++; 2011 xfs_perag_put(pag); 2012 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 2013 } 2014 2015 error = xfs_check_agi_freecount(cur, agi); 2016 if (error) 2017 goto error0; 2018 2019 *orec = rec; 2020 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2021 return 0; 2022 2023 error0: 2024 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2025 return error; 2026 } 2027 2028 /* 2029 * Free an inode in the free inode btree. 2030 */ 2031 STATIC int 2032 xfs_difree_finobt( 2033 struct xfs_mount *mp, 2034 struct xfs_trans *tp, 2035 struct xfs_buf *agbp, 2036 xfs_agino_t agino, 2037 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 2038 { 2039 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 2040 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 2041 struct xfs_btree_cur *cur; 2042 struct xfs_inobt_rec_incore rec; 2043 int offset = agino - ibtrec->ir_startino; 2044 int error; 2045 int i; 2046 2047 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 2048 2049 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 2050 if (error) 2051 goto error; 2052 if (i == 0) { 2053 /* 2054 * If the record does not exist in the finobt, we must have just 2055 * freed an inode in a previously fully allocated chunk. If not, 2056 * something is out of sync. 2057 */ 2058 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error); 2059 2060 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, 2061 ibtrec->ir_count, 2062 ibtrec->ir_freecount, 2063 ibtrec->ir_free, &i); 2064 if (error) 2065 goto error; 2066 ASSERT(i == 1); 2067 2068 goto out; 2069 } 2070 2071 /* 2072 * Read and update the existing record. We could just copy the ibtrec 2073 * across here, but that would defeat the purpose of having redundant 2074 * metadata. By making the modifications independently, we can catch 2075 * corruptions that we wouldn't see if we just copied from one record 2076 * to another. 2077 */ 2078 error = xfs_inobt_get_rec(cur, &rec, &i); 2079 if (error) 2080 goto error; 2081 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 2082 2083 rec.ir_free |= XFS_INOBT_MASK(offset); 2084 rec.ir_freecount++; 2085 2086 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) && 2087 (rec.ir_freecount == ibtrec->ir_freecount), 2088 error); 2089 2090 /* 2091 * The content of inobt records should always match between the inobt 2092 * and finobt. The lifecycle of records in the finobt is different from 2093 * the inobt in that the finobt only tracks records with at least one 2094 * free inode. Hence, if all of the inodes are free and we aren't 2095 * keeping inode chunks permanently on disk, remove the record. 2096 * Otherwise, update the record with the new information. 2097 * 2098 * Note that we currently can't free chunks when the block size is large 2099 * enough for multiple chunks. Leave the finobt record to remain in sync 2100 * with the inobt. 2101 */ 2102 if (rec.ir_free == XFS_INOBT_ALL_FREE && 2103 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK && 2104 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 2105 error = xfs_btree_delete(cur, &i); 2106 if (error) 2107 goto error; 2108 ASSERT(i == 1); 2109 } else { 2110 error = xfs_inobt_update(cur, &rec); 2111 if (error) 2112 goto error; 2113 } 2114 2115 out: 2116 error = xfs_check_agi_freecount(cur, agi); 2117 if (error) 2118 goto error; 2119 2120 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2121 return 0; 2122 2123 error: 2124 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2125 return error; 2126 } 2127 2128 /* 2129 * Free disk inode. Carefully avoids touching the incore inode, all 2130 * manipulations incore are the caller's responsibility. 2131 * The on-disk inode is not changed by this operation, only the 2132 * btree (free inode mask) is changed. 2133 */ 2134 int 2135 xfs_difree( 2136 struct xfs_trans *tp, /* transaction pointer */ 2137 xfs_ino_t inode, /* inode to be freed */ 2138 struct xfs_defer_ops *dfops, /* extents to free */ 2139 struct xfs_icluster *xic) /* cluster info if deleted */ 2140 { 2141 /* REFERENCED */ 2142 xfs_agblock_t agbno; /* block number containing inode */ 2143 struct xfs_buf *agbp; /* buffer for allocation group header */ 2144 xfs_agino_t agino; /* allocation group inode number */ 2145 xfs_agnumber_t agno; /* allocation group number */ 2146 int error; /* error return value */ 2147 struct xfs_mount *mp; /* mount structure for filesystem */ 2148 struct xfs_inobt_rec_incore rec;/* btree record */ 2149 2150 mp = tp->t_mountp; 2151 2152 /* 2153 * Break up inode number into its components. 2154 */ 2155 agno = XFS_INO_TO_AGNO(mp, inode); 2156 if (agno >= mp->m_sb.sb_agcount) { 2157 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", 2158 __func__, agno, mp->m_sb.sb_agcount); 2159 ASSERT(0); 2160 return -EINVAL; 2161 } 2162 agino = XFS_INO_TO_AGINO(mp, inode); 2163 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { 2164 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 2165 __func__, (unsigned long long)inode, 2166 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); 2167 ASSERT(0); 2168 return -EINVAL; 2169 } 2170 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2171 if (agbno >= mp->m_sb.sb_agblocks) { 2172 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 2173 __func__, agbno, mp->m_sb.sb_agblocks); 2174 ASSERT(0); 2175 return -EINVAL; 2176 } 2177 /* 2178 * Get the allocation group header. 2179 */ 2180 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2181 if (error) { 2182 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 2183 __func__, error); 2184 return error; 2185 } 2186 2187 /* 2188 * Fix up the inode allocation btree. 2189 */ 2190 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec); 2191 if (error) 2192 goto error0; 2193 2194 /* 2195 * Fix up the free inode btree. 2196 */ 2197 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 2198 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); 2199 if (error) 2200 goto error0; 2201 } 2202 2203 return 0; 2204 2205 error0: 2206 return error; 2207 } 2208 2209 STATIC int 2210 xfs_imap_lookup( 2211 struct xfs_mount *mp, 2212 struct xfs_trans *tp, 2213 xfs_agnumber_t agno, 2214 xfs_agino_t agino, 2215 xfs_agblock_t agbno, 2216 xfs_agblock_t *chunk_agbno, 2217 xfs_agblock_t *offset_agbno, 2218 int flags) 2219 { 2220 struct xfs_inobt_rec_incore rec; 2221 struct xfs_btree_cur *cur; 2222 struct xfs_buf *agbp; 2223 int error; 2224 int i; 2225 2226 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2227 if (error) { 2228 xfs_alert(mp, 2229 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 2230 __func__, error, agno); 2231 return error; 2232 } 2233 2234 /* 2235 * Lookup the inode record for the given agino. If the record cannot be 2236 * found, then it's an invalid inode number and we should abort. Once 2237 * we have a record, we need to ensure it contains the inode number 2238 * we are looking up. 2239 */ 2240 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 2241 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 2242 if (!error) { 2243 if (i) 2244 error = xfs_inobt_get_rec(cur, &rec, &i); 2245 if (!error && i == 0) 2246 error = -EINVAL; 2247 } 2248 2249 xfs_trans_brelse(tp, agbp); 2250 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); 2251 if (error) 2252 return error; 2253 2254 /* check that the returned record contains the required inode */ 2255 if (rec.ir_startino > agino || 2256 rec.ir_startino + mp->m_ialloc_inos <= agino) 2257 return -EINVAL; 2258 2259 /* for untrusted inodes check it is allocated first */ 2260 if ((flags & XFS_IGET_UNTRUSTED) && 2261 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 2262 return -EINVAL; 2263 2264 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 2265 *offset_agbno = agbno - *chunk_agbno; 2266 return 0; 2267 } 2268 2269 /* 2270 * Return the location of the inode in imap, for mapping it into a buffer. 2271 */ 2272 int 2273 xfs_imap( 2274 xfs_mount_t *mp, /* file system mount structure */ 2275 xfs_trans_t *tp, /* transaction pointer */ 2276 xfs_ino_t ino, /* inode to locate */ 2277 struct xfs_imap *imap, /* location map structure */ 2278 uint flags) /* flags for inode btree lookup */ 2279 { 2280 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 2281 xfs_agino_t agino; /* inode number within alloc group */ 2282 xfs_agnumber_t agno; /* allocation group number */ 2283 int blks_per_cluster; /* num blocks per inode cluster */ 2284 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 2285 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 2286 int error; /* error code */ 2287 int offset; /* index of inode in its buffer */ 2288 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 2289 2290 ASSERT(ino != NULLFSINO); 2291 2292 /* 2293 * Split up the inode number into its parts. 2294 */ 2295 agno = XFS_INO_TO_AGNO(mp, ino); 2296 agino = XFS_INO_TO_AGINO(mp, ino); 2297 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2298 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || 2299 ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2300 #ifdef DEBUG 2301 /* 2302 * Don't output diagnostic information for untrusted inodes 2303 * as they can be invalid without implying corruption. 2304 */ 2305 if (flags & XFS_IGET_UNTRUSTED) 2306 return -EINVAL; 2307 if (agno >= mp->m_sb.sb_agcount) { 2308 xfs_alert(mp, 2309 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", 2310 __func__, agno, mp->m_sb.sb_agcount); 2311 } 2312 if (agbno >= mp->m_sb.sb_agblocks) { 2313 xfs_alert(mp, 2314 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 2315 __func__, (unsigned long long)agbno, 2316 (unsigned long)mp->m_sb.sb_agblocks); 2317 } 2318 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2319 xfs_alert(mp, 2320 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 2321 __func__, ino, 2322 XFS_AGINO_TO_INO(mp, agno, agino)); 2323 } 2324 xfs_stack_trace(); 2325 #endif /* DEBUG */ 2326 return -EINVAL; 2327 } 2328 2329 blks_per_cluster = xfs_icluster_size_fsb(mp); 2330 2331 /* 2332 * For bulkstat and handle lookups, we have an untrusted inode number 2333 * that we have to verify is valid. We cannot do this just by reading 2334 * the inode buffer as it may have been unlinked and removed leaving 2335 * inodes in stale state on disk. Hence we have to do a btree lookup 2336 * in all cases where an untrusted inode number is passed. 2337 */ 2338 if (flags & XFS_IGET_UNTRUSTED) { 2339 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2340 &chunk_agbno, &offset_agbno, flags); 2341 if (error) 2342 return error; 2343 goto out_map; 2344 } 2345 2346 /* 2347 * If the inode cluster size is the same as the blocksize or 2348 * smaller we get to the buffer by simple arithmetics. 2349 */ 2350 if (blks_per_cluster == 1) { 2351 offset = XFS_INO_TO_OFFSET(mp, ino); 2352 ASSERT(offset < mp->m_sb.sb_inopblock); 2353 2354 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); 2355 imap->im_len = XFS_FSB_TO_BB(mp, 1); 2356 imap->im_boffset = (unsigned short)(offset << 2357 mp->m_sb.sb_inodelog); 2358 return 0; 2359 } 2360 2361 /* 2362 * If the inode chunks are aligned then use simple maths to 2363 * find the location. Otherwise we have to do a btree 2364 * lookup to find the location. 2365 */ 2366 if (mp->m_inoalign_mask) { 2367 offset_agbno = agbno & mp->m_inoalign_mask; 2368 chunk_agbno = agbno - offset_agbno; 2369 } else { 2370 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2371 &chunk_agbno, &offset_agbno, flags); 2372 if (error) 2373 return error; 2374 } 2375 2376 out_map: 2377 ASSERT(agbno >= chunk_agbno); 2378 cluster_agbno = chunk_agbno + 2379 ((offset_agbno / blks_per_cluster) * blks_per_cluster); 2380 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 2381 XFS_INO_TO_OFFSET(mp, ino); 2382 2383 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); 2384 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster); 2385 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); 2386 2387 /* 2388 * If the inode number maps to a block outside the bounds 2389 * of the file system then return NULL rather than calling 2390 * read_buf and panicing when we get an error from the 2391 * driver. 2392 */ 2393 if ((imap->im_blkno + imap->im_len) > 2394 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 2395 xfs_alert(mp, 2396 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 2397 __func__, (unsigned long long) imap->im_blkno, 2398 (unsigned long long) imap->im_len, 2399 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 2400 return -EINVAL; 2401 } 2402 return 0; 2403 } 2404 2405 /* 2406 * Compute and fill in value of m_in_maxlevels. 2407 */ 2408 void 2409 xfs_ialloc_compute_maxlevels( 2410 xfs_mount_t *mp) /* file system mount structure */ 2411 { 2412 uint inodes; 2413 2414 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; 2415 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr, 2416 inodes); 2417 } 2418 2419 /* 2420 * Log specified fields for the ag hdr (inode section). The growth of the agi 2421 * structure over time requires that we interpret the buffer as two logical 2422 * regions delineated by the end of the unlinked list. This is due to the size 2423 * of the hash table and its location in the middle of the agi. 2424 * 2425 * For example, a request to log a field before agi_unlinked and a field after 2426 * agi_unlinked could cause us to log the entire hash table and use an excessive 2427 * amount of log space. To avoid this behavior, log the region up through 2428 * agi_unlinked in one call and the region after agi_unlinked through the end of 2429 * the structure in another. 2430 */ 2431 void 2432 xfs_ialloc_log_agi( 2433 xfs_trans_t *tp, /* transaction pointer */ 2434 xfs_buf_t *bp, /* allocation group header buffer */ 2435 int fields) /* bitmask of fields to log */ 2436 { 2437 int first; /* first byte number */ 2438 int last; /* last byte number */ 2439 static const short offsets[] = { /* field starting offsets */ 2440 /* keep in sync with bit definitions */ 2441 offsetof(xfs_agi_t, agi_magicnum), 2442 offsetof(xfs_agi_t, agi_versionnum), 2443 offsetof(xfs_agi_t, agi_seqno), 2444 offsetof(xfs_agi_t, agi_length), 2445 offsetof(xfs_agi_t, agi_count), 2446 offsetof(xfs_agi_t, agi_root), 2447 offsetof(xfs_agi_t, agi_level), 2448 offsetof(xfs_agi_t, agi_freecount), 2449 offsetof(xfs_agi_t, agi_newino), 2450 offsetof(xfs_agi_t, agi_dirino), 2451 offsetof(xfs_agi_t, agi_unlinked), 2452 offsetof(xfs_agi_t, agi_free_root), 2453 offsetof(xfs_agi_t, agi_free_level), 2454 sizeof(xfs_agi_t) 2455 }; 2456 #ifdef DEBUG 2457 xfs_agi_t *agi; /* allocation group header */ 2458 2459 agi = XFS_BUF_TO_AGI(bp); 2460 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2461 #endif 2462 2463 /* 2464 * Compute byte offsets for the first and last fields in the first 2465 * region and log the agi buffer. This only logs up through 2466 * agi_unlinked. 2467 */ 2468 if (fields & XFS_AGI_ALL_BITS_R1) { 2469 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2470 &first, &last); 2471 xfs_trans_log_buf(tp, bp, first, last); 2472 } 2473 2474 /* 2475 * Mask off the bits in the first region and calculate the first and 2476 * last field offsets for any bits in the second region. 2477 */ 2478 fields &= ~XFS_AGI_ALL_BITS_R1; 2479 if (fields) { 2480 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2481 &first, &last); 2482 xfs_trans_log_buf(tp, bp, first, last); 2483 } 2484 } 2485 2486 #ifdef DEBUG 2487 STATIC void 2488 xfs_check_agi_unlinked( 2489 struct xfs_agi *agi) 2490 { 2491 int i; 2492 2493 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) 2494 ASSERT(agi->agi_unlinked[i]); 2495 } 2496 #else 2497 #define xfs_check_agi_unlinked(agi) 2498 #endif 2499 2500 static bool 2501 xfs_agi_verify( 2502 struct xfs_buf *bp) 2503 { 2504 struct xfs_mount *mp = bp->b_target->bt_mount; 2505 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); 2506 2507 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2508 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) 2509 return false; 2510 if (!xfs_log_check_lsn(mp, 2511 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn))) 2512 return false; 2513 } 2514 2515 /* 2516 * Validate the magic number of the agi block. 2517 */ 2518 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC)) 2519 return false; 2520 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2521 return false; 2522 2523 if (be32_to_cpu(agi->agi_level) < 1 || 2524 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS) 2525 return false; 2526 2527 if (xfs_sb_version_hasfinobt(&mp->m_sb) && 2528 (be32_to_cpu(agi->agi_free_level) < 1 || 2529 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS)) 2530 return false; 2531 2532 /* 2533 * during growfs operations, the perag is not fully initialised, 2534 * so we can't use it for any useful checking. growfs ensures we can't 2535 * use it by using uncached buffers that don't have the perag attached 2536 * so we can detect and avoid this problem. 2537 */ 2538 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) 2539 return false; 2540 2541 xfs_check_agi_unlinked(agi); 2542 return true; 2543 } 2544 2545 static void 2546 xfs_agi_read_verify( 2547 struct xfs_buf *bp) 2548 { 2549 struct xfs_mount *mp = bp->b_target->bt_mount; 2550 2551 if (xfs_sb_version_hascrc(&mp->m_sb) && 2552 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2553 xfs_buf_ioerror(bp, -EFSBADCRC); 2554 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp, 2555 XFS_ERRTAG_IALLOC_READ_AGI)) 2556 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2557 2558 if (bp->b_error) 2559 xfs_verifier_error(bp); 2560 } 2561 2562 static void 2563 xfs_agi_write_verify( 2564 struct xfs_buf *bp) 2565 { 2566 struct xfs_mount *mp = bp->b_target->bt_mount; 2567 struct xfs_buf_log_item *bip = bp->b_fspriv; 2568 2569 if (!xfs_agi_verify(bp)) { 2570 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2571 xfs_verifier_error(bp); 2572 return; 2573 } 2574 2575 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2576 return; 2577 2578 if (bip) 2579 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2580 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2581 } 2582 2583 const struct xfs_buf_ops xfs_agi_buf_ops = { 2584 .name = "xfs_agi", 2585 .verify_read = xfs_agi_read_verify, 2586 .verify_write = xfs_agi_write_verify, 2587 }; 2588 2589 /* 2590 * Read in the allocation group header (inode allocation section) 2591 */ 2592 int 2593 xfs_read_agi( 2594 struct xfs_mount *mp, /* file system mount structure */ 2595 struct xfs_trans *tp, /* transaction pointer */ 2596 xfs_agnumber_t agno, /* allocation group number */ 2597 struct xfs_buf **bpp) /* allocation group hdr buf */ 2598 { 2599 int error; 2600 2601 trace_xfs_read_agi(mp, agno); 2602 2603 ASSERT(agno != NULLAGNUMBER); 2604 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2605 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 2606 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); 2607 if (error) 2608 return error; 2609 if (tp) 2610 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF); 2611 2612 xfs_buf_set_ref(*bpp, XFS_AGI_REF); 2613 return 0; 2614 } 2615 2616 int 2617 xfs_ialloc_read_agi( 2618 struct xfs_mount *mp, /* file system mount structure */ 2619 struct xfs_trans *tp, /* transaction pointer */ 2620 xfs_agnumber_t agno, /* allocation group number */ 2621 struct xfs_buf **bpp) /* allocation group hdr buf */ 2622 { 2623 struct xfs_agi *agi; /* allocation group header */ 2624 struct xfs_perag *pag; /* per allocation group data */ 2625 int error; 2626 2627 trace_xfs_ialloc_read_agi(mp, agno); 2628 2629 error = xfs_read_agi(mp, tp, agno, bpp); 2630 if (error) 2631 return error; 2632 2633 agi = XFS_BUF_TO_AGI(*bpp); 2634 pag = xfs_perag_get(mp, agno); 2635 if (!pag->pagi_init) { 2636 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2637 pag->pagi_count = be32_to_cpu(agi->agi_count); 2638 pag->pagi_init = 1; 2639 } 2640 2641 /* 2642 * It's possible for these to be out of sync if 2643 * we are in the middle of a forced shutdown. 2644 */ 2645 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2646 XFS_FORCED_SHUTDOWN(mp)); 2647 xfs_perag_put(pag); 2648 return 0; 2649 } 2650 2651 /* 2652 * Read in the agi to initialise the per-ag data in the mount structure 2653 */ 2654 int 2655 xfs_ialloc_pagi_init( 2656 xfs_mount_t *mp, /* file system mount structure */ 2657 xfs_trans_t *tp, /* transaction pointer */ 2658 xfs_agnumber_t agno) /* allocation group number */ 2659 { 2660 xfs_buf_t *bp = NULL; 2661 int error; 2662 2663 error = xfs_ialloc_read_agi(mp, tp, agno, &bp); 2664 if (error) 2665 return error; 2666 if (bp) 2667 xfs_trans_brelse(tp, bp); 2668 return 0; 2669 } 2670