xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc.c (revision a5d46d9a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_bmap.h"
22 #include "xfs_trans.h"
23 #include "xfs_buf_item.h"
24 #include "xfs_icreate_item.h"
25 #include "xfs_icache.h"
26 #include "xfs_trace.h"
27 #include "xfs_log.h"
28 #include "xfs_rmap.h"
29 #include "xfs_ag.h"
30 
31 /*
32  * Lookup a record by ino in the btree given by cur.
33  */
34 int					/* error */
35 xfs_inobt_lookup(
36 	struct xfs_btree_cur	*cur,	/* btree cursor */
37 	xfs_agino_t		ino,	/* starting inode of chunk */
38 	xfs_lookup_t		dir,	/* <=, >=, == */
39 	int			*stat)	/* success/failure */
40 {
41 	cur->bc_rec.i.ir_startino = ino;
42 	cur->bc_rec.i.ir_holemask = 0;
43 	cur->bc_rec.i.ir_count = 0;
44 	cur->bc_rec.i.ir_freecount = 0;
45 	cur->bc_rec.i.ir_free = 0;
46 	return xfs_btree_lookup(cur, dir, stat);
47 }
48 
49 /*
50  * Update the record referred to by cur to the value given.
51  * This either works (return 0) or gets an EFSCORRUPTED error.
52  */
53 STATIC int				/* error */
54 xfs_inobt_update(
55 	struct xfs_btree_cur	*cur,	/* btree cursor */
56 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
57 {
58 	union xfs_btree_rec	rec;
59 
60 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
62 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 	} else {
66 		/* ir_holemask/ir_count not supported on-disk */
67 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 	}
69 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 	return xfs_btree_update(cur, &rec);
71 }
72 
73 /* Convert on-disk btree record to incore inobt record. */
74 void
75 xfs_inobt_btrec_to_irec(
76 	struct xfs_mount		*mp,
77 	union xfs_btree_rec		*rec,
78 	struct xfs_inobt_rec_incore	*irec)
79 {
80 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 	if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
82 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 	} else {
86 		/*
87 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 		 * values for full inode chunks.
89 		 */
90 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 		irec->ir_count = XFS_INODES_PER_CHUNK;
92 		irec->ir_freecount =
93 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 	}
95 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96 }
97 
98 /*
99  * Get the data from the pointed-to record.
100  */
101 int
102 xfs_inobt_get_rec(
103 	struct xfs_btree_cur		*cur,
104 	struct xfs_inobt_rec_incore	*irec,
105 	int				*stat)
106 {
107 	struct xfs_mount		*mp = cur->bc_mp;
108 	xfs_agnumber_t			agno = cur->bc_ag.pag->pag_agno;
109 	union xfs_btree_rec		*rec;
110 	int				error;
111 	uint64_t			realfree;
112 
113 	error = xfs_btree_get_rec(cur, &rec, stat);
114 	if (error || *stat == 0)
115 		return error;
116 
117 	xfs_inobt_btrec_to_irec(mp, rec, irec);
118 
119 	if (!xfs_verify_agino(mp, agno, irec->ir_startino))
120 		goto out_bad_rec;
121 	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
122 	    irec->ir_count > XFS_INODES_PER_CHUNK)
123 		goto out_bad_rec;
124 	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
125 		goto out_bad_rec;
126 
127 	/* if there are no holes, return the first available offset */
128 	if (!xfs_inobt_issparse(irec->ir_holemask))
129 		realfree = irec->ir_free;
130 	else
131 		realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
132 	if (hweight64(realfree) != irec->ir_freecount)
133 		goto out_bad_rec;
134 
135 	return 0;
136 
137 out_bad_rec:
138 	xfs_warn(mp,
139 		"%s Inode BTree record corruption in AG %d detected!",
140 		cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
141 	xfs_warn(mp,
142 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 		irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 		irec->ir_free, irec->ir_holemask);
145 	return -EFSCORRUPTED;
146 }
147 
148 /*
149  * Insert a single inobt record. Cursor must already point to desired location.
150  */
151 int
152 xfs_inobt_insert_rec(
153 	struct xfs_btree_cur	*cur,
154 	uint16_t		holemask,
155 	uint8_t			count,
156 	int32_t			freecount,
157 	xfs_inofree_t		free,
158 	int			*stat)
159 {
160 	cur->bc_rec.i.ir_holemask = holemask;
161 	cur->bc_rec.i.ir_count = count;
162 	cur->bc_rec.i.ir_freecount = freecount;
163 	cur->bc_rec.i.ir_free = free;
164 	return xfs_btree_insert(cur, stat);
165 }
166 
167 /*
168  * Insert records describing a newly allocated inode chunk into the inobt.
169  */
170 STATIC int
171 xfs_inobt_insert(
172 	struct xfs_mount	*mp,
173 	struct xfs_trans	*tp,
174 	struct xfs_buf		*agbp,
175 	struct xfs_perag	*pag,
176 	xfs_agino_t		newino,
177 	xfs_agino_t		newlen,
178 	xfs_btnum_t		btnum)
179 {
180 	struct xfs_btree_cur	*cur;
181 	xfs_agino_t		thisino;
182 	int			i;
183 	int			error;
184 
185 	cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
186 
187 	for (thisino = newino;
188 	     thisino < newino + newlen;
189 	     thisino += XFS_INODES_PER_CHUNK) {
190 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
191 		if (error) {
192 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
193 			return error;
194 		}
195 		ASSERT(i == 0);
196 
197 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
198 					     XFS_INODES_PER_CHUNK,
199 					     XFS_INODES_PER_CHUNK,
200 					     XFS_INOBT_ALL_FREE, &i);
201 		if (error) {
202 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
203 			return error;
204 		}
205 		ASSERT(i == 1);
206 	}
207 
208 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
209 
210 	return 0;
211 }
212 
213 /*
214  * Verify that the number of free inodes in the AGI is correct.
215  */
216 #ifdef DEBUG
217 static int
218 xfs_check_agi_freecount(
219 	struct xfs_btree_cur	*cur)
220 {
221 	if (cur->bc_nlevels == 1) {
222 		xfs_inobt_rec_incore_t rec;
223 		int		freecount = 0;
224 		int		error;
225 		int		i;
226 
227 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
228 		if (error)
229 			return error;
230 
231 		do {
232 			error = xfs_inobt_get_rec(cur, &rec, &i);
233 			if (error)
234 				return error;
235 
236 			if (i) {
237 				freecount += rec.ir_freecount;
238 				error = xfs_btree_increment(cur, 0, &i);
239 				if (error)
240 					return error;
241 			}
242 		} while (i == 1);
243 
244 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
245 			ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
246 	}
247 	return 0;
248 }
249 #else
250 #define xfs_check_agi_freecount(cur)	0
251 #endif
252 
253 /*
254  * Initialise a new set of inodes. When called without a transaction context
255  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
256  * than logging them (which in a transaction context puts them into the AIL
257  * for writeback rather than the xfsbufd queue).
258  */
259 int
260 xfs_ialloc_inode_init(
261 	struct xfs_mount	*mp,
262 	struct xfs_trans	*tp,
263 	struct list_head	*buffer_list,
264 	int			icount,
265 	xfs_agnumber_t		agno,
266 	xfs_agblock_t		agbno,
267 	xfs_agblock_t		length,
268 	unsigned int		gen)
269 {
270 	struct xfs_buf		*fbuf;
271 	struct xfs_dinode	*free;
272 	int			nbufs;
273 	int			version;
274 	int			i, j;
275 	xfs_daddr_t		d;
276 	xfs_ino_t		ino = 0;
277 	int			error;
278 
279 	/*
280 	 * Loop over the new block(s), filling in the inodes.  For small block
281 	 * sizes, manipulate the inodes in buffers  which are multiples of the
282 	 * blocks size.
283 	 */
284 	nbufs = length / M_IGEO(mp)->blocks_per_cluster;
285 
286 	/*
287 	 * Figure out what version number to use in the inodes we create.  If
288 	 * the superblock version has caught up to the one that supports the new
289 	 * inode format, then use the new inode version.  Otherwise use the old
290 	 * version so that old kernels will continue to be able to use the file
291 	 * system.
292 	 *
293 	 * For v3 inodes, we also need to write the inode number into the inode,
294 	 * so calculate the first inode number of the chunk here as
295 	 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
296 	 * across multiple filesystem blocks (such as a cluster) and so cannot
297 	 * be used in the cluster buffer loop below.
298 	 *
299 	 * Further, because we are writing the inode directly into the buffer
300 	 * and calculating a CRC on the entire inode, we have ot log the entire
301 	 * inode so that the entire range the CRC covers is present in the log.
302 	 * That means for v3 inode we log the entire buffer rather than just the
303 	 * inode cores.
304 	 */
305 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
306 		version = 3;
307 		ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
308 
309 		/*
310 		 * log the initialisation that is about to take place as an
311 		 * logical operation. This means the transaction does not
312 		 * need to log the physical changes to the inode buffers as log
313 		 * recovery will know what initialisation is actually needed.
314 		 * Hence we only need to log the buffers as "ordered" buffers so
315 		 * they track in the AIL as if they were physically logged.
316 		 */
317 		if (tp)
318 			xfs_icreate_log(tp, agno, agbno, icount,
319 					mp->m_sb.sb_inodesize, length, gen);
320 	} else
321 		version = 2;
322 
323 	for (j = 0; j < nbufs; j++) {
324 		/*
325 		 * Get the block.
326 		 */
327 		d = XFS_AGB_TO_DADDR(mp, agno, agbno +
328 				(j * M_IGEO(mp)->blocks_per_cluster));
329 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
330 				mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
331 				XBF_UNMAPPED, &fbuf);
332 		if (error)
333 			return error;
334 
335 		/* Initialize the inode buffers and log them appropriately. */
336 		fbuf->b_ops = &xfs_inode_buf_ops;
337 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
338 		for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
339 			int	ioffset = i << mp->m_sb.sb_inodelog;
340 			uint	isize = XFS_DINODE_SIZE(&mp->m_sb);
341 
342 			free = xfs_make_iptr(mp, fbuf, i);
343 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
344 			free->di_version = version;
345 			free->di_gen = cpu_to_be32(gen);
346 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
347 
348 			if (version == 3) {
349 				free->di_ino = cpu_to_be64(ino);
350 				ino++;
351 				uuid_copy(&free->di_uuid,
352 					  &mp->m_sb.sb_meta_uuid);
353 				xfs_dinode_calc_crc(mp, free);
354 			} else if (tp) {
355 				/* just log the inode core */
356 				xfs_trans_log_buf(tp, fbuf, ioffset,
357 						  ioffset + isize - 1);
358 			}
359 		}
360 
361 		if (tp) {
362 			/*
363 			 * Mark the buffer as an inode allocation buffer so it
364 			 * sticks in AIL at the point of this allocation
365 			 * transaction. This ensures the they are on disk before
366 			 * the tail of the log can be moved past this
367 			 * transaction (i.e. by preventing relogging from moving
368 			 * it forward in the log).
369 			 */
370 			xfs_trans_inode_alloc_buf(tp, fbuf);
371 			if (version == 3) {
372 				/*
373 				 * Mark the buffer as ordered so that they are
374 				 * not physically logged in the transaction but
375 				 * still tracked in the AIL as part of the
376 				 * transaction and pin the log appropriately.
377 				 */
378 				xfs_trans_ordered_buf(tp, fbuf);
379 			}
380 		} else {
381 			fbuf->b_flags |= XBF_DONE;
382 			xfs_buf_delwri_queue(fbuf, buffer_list);
383 			xfs_buf_relse(fbuf);
384 		}
385 	}
386 	return 0;
387 }
388 
389 /*
390  * Align startino and allocmask for a recently allocated sparse chunk such that
391  * they are fit for insertion (or merge) into the on-disk inode btrees.
392  *
393  * Background:
394  *
395  * When enabled, sparse inode support increases the inode alignment from cluster
396  * size to inode chunk size. This means that the minimum range between two
397  * non-adjacent inode records in the inobt is large enough for a full inode
398  * record. This allows for cluster sized, cluster aligned block allocation
399  * without need to worry about whether the resulting inode record overlaps with
400  * another record in the tree. Without this basic rule, we would have to deal
401  * with the consequences of overlap by potentially undoing recent allocations in
402  * the inode allocation codepath.
403  *
404  * Because of this alignment rule (which is enforced on mount), there are two
405  * inobt possibilities for newly allocated sparse chunks. One is that the
406  * aligned inode record for the chunk covers a range of inodes not already
407  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
408  * other is that a record already exists at the aligned startino that considers
409  * the newly allocated range as sparse. In the latter case, record content is
410  * merged in hope that sparse inode chunks fill to full chunks over time.
411  */
412 STATIC void
413 xfs_align_sparse_ino(
414 	struct xfs_mount		*mp,
415 	xfs_agino_t			*startino,
416 	uint16_t			*allocmask)
417 {
418 	xfs_agblock_t			agbno;
419 	xfs_agblock_t			mod;
420 	int				offset;
421 
422 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
423 	mod = agbno % mp->m_sb.sb_inoalignmt;
424 	if (!mod)
425 		return;
426 
427 	/* calculate the inode offset and align startino */
428 	offset = XFS_AGB_TO_AGINO(mp, mod);
429 	*startino -= offset;
430 
431 	/*
432 	 * Since startino has been aligned down, left shift allocmask such that
433 	 * it continues to represent the same physical inodes relative to the
434 	 * new startino.
435 	 */
436 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
437 }
438 
439 /*
440  * Determine whether the source inode record can merge into the target. Both
441  * records must be sparse, the inode ranges must match and there must be no
442  * allocation overlap between the records.
443  */
444 STATIC bool
445 __xfs_inobt_can_merge(
446 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
447 	struct xfs_inobt_rec_incore	*srec)	/* src record */
448 {
449 	uint64_t			talloc;
450 	uint64_t			salloc;
451 
452 	/* records must cover the same inode range */
453 	if (trec->ir_startino != srec->ir_startino)
454 		return false;
455 
456 	/* both records must be sparse */
457 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
458 	    !xfs_inobt_issparse(srec->ir_holemask))
459 		return false;
460 
461 	/* both records must track some inodes */
462 	if (!trec->ir_count || !srec->ir_count)
463 		return false;
464 
465 	/* can't exceed capacity of a full record */
466 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
467 		return false;
468 
469 	/* verify there is no allocation overlap */
470 	talloc = xfs_inobt_irec_to_allocmask(trec);
471 	salloc = xfs_inobt_irec_to_allocmask(srec);
472 	if (talloc & salloc)
473 		return false;
474 
475 	return true;
476 }
477 
478 /*
479  * Merge the source inode record into the target. The caller must call
480  * __xfs_inobt_can_merge() to ensure the merge is valid.
481  */
482 STATIC void
483 __xfs_inobt_rec_merge(
484 	struct xfs_inobt_rec_incore	*trec,	/* target */
485 	struct xfs_inobt_rec_incore	*srec)	/* src */
486 {
487 	ASSERT(trec->ir_startino == srec->ir_startino);
488 
489 	/* combine the counts */
490 	trec->ir_count += srec->ir_count;
491 	trec->ir_freecount += srec->ir_freecount;
492 
493 	/*
494 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
495 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
496 	 */
497 	trec->ir_holemask &= srec->ir_holemask;
498 	trec->ir_free &= srec->ir_free;
499 }
500 
501 /*
502  * Insert a new sparse inode chunk into the associated inode btree. The inode
503  * record for the sparse chunk is pre-aligned to a startino that should match
504  * any pre-existing sparse inode record in the tree. This allows sparse chunks
505  * to fill over time.
506  *
507  * This function supports two modes of handling preexisting records depending on
508  * the merge flag. If merge is true, the provided record is merged with the
509  * existing record and updated in place. The merged record is returned in nrec.
510  * If merge is false, an existing record is replaced with the provided record.
511  * If no preexisting record exists, the provided record is always inserted.
512  *
513  * It is considered corruption if a merge is requested and not possible. Given
514  * the sparse inode alignment constraints, this should never happen.
515  */
516 STATIC int
517 xfs_inobt_insert_sprec(
518 	struct xfs_mount		*mp,
519 	struct xfs_trans		*tp,
520 	struct xfs_buf			*agbp,
521 	struct xfs_perag		*pag,
522 	int				btnum,
523 	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
524 	bool				merge)	/* merge or replace */
525 {
526 	struct xfs_btree_cur		*cur;
527 	int				error;
528 	int				i;
529 	struct xfs_inobt_rec_incore	rec;
530 
531 	cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
532 
533 	/* the new record is pre-aligned so we know where to look */
534 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
535 	if (error)
536 		goto error;
537 	/* if nothing there, insert a new record and return */
538 	if (i == 0) {
539 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
540 					     nrec->ir_count, nrec->ir_freecount,
541 					     nrec->ir_free, &i);
542 		if (error)
543 			goto error;
544 		if (XFS_IS_CORRUPT(mp, i != 1)) {
545 			error = -EFSCORRUPTED;
546 			goto error;
547 		}
548 
549 		goto out;
550 	}
551 
552 	/*
553 	 * A record exists at this startino. Merge or replace the record
554 	 * depending on what we've been asked to do.
555 	 */
556 	if (merge) {
557 		error = xfs_inobt_get_rec(cur, &rec, &i);
558 		if (error)
559 			goto error;
560 		if (XFS_IS_CORRUPT(mp, i != 1)) {
561 			error = -EFSCORRUPTED;
562 			goto error;
563 		}
564 		if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
565 			error = -EFSCORRUPTED;
566 			goto error;
567 		}
568 
569 		/*
570 		 * This should never fail. If we have coexisting records that
571 		 * cannot merge, something is seriously wrong.
572 		 */
573 		if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
574 			error = -EFSCORRUPTED;
575 			goto error;
576 		}
577 
578 		trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
579 					 rec.ir_holemask, nrec->ir_startino,
580 					 nrec->ir_holemask);
581 
582 		/* merge to nrec to output the updated record */
583 		__xfs_inobt_rec_merge(nrec, &rec);
584 
585 		trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
586 					  nrec->ir_holemask);
587 
588 		error = xfs_inobt_rec_check_count(mp, nrec);
589 		if (error)
590 			goto error;
591 	}
592 
593 	error = xfs_inobt_update(cur, nrec);
594 	if (error)
595 		goto error;
596 
597 out:
598 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
599 	return 0;
600 error:
601 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
602 	return error;
603 }
604 
605 /*
606  * Allocate new inodes in the allocation group specified by agbp.  Returns 0 if
607  * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
608  * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
609  * inode count threshold, or the usual negative error code for other errors.
610  */
611 STATIC int
612 xfs_ialloc_ag_alloc(
613 	struct xfs_trans	*tp,
614 	struct xfs_buf		*agbp,
615 	struct xfs_perag	*pag)
616 {
617 	struct xfs_agi		*agi;
618 	struct xfs_alloc_arg	args;
619 	int			error;
620 	xfs_agino_t		newino;		/* new first inode's number */
621 	xfs_agino_t		newlen;		/* new number of inodes */
622 	int			isaligned = 0;	/* inode allocation at stripe */
623 						/* unit boundary */
624 	/* init. to full chunk */
625 	struct xfs_inobt_rec_incore rec;
626 	struct xfs_ino_geometry	*igeo = M_IGEO(tp->t_mountp);
627 	uint16_t		allocmask = (uint16_t) -1;
628 	int			do_sparse = 0;
629 
630 	memset(&args, 0, sizeof(args));
631 	args.tp = tp;
632 	args.mp = tp->t_mountp;
633 	args.fsbno = NULLFSBLOCK;
634 	args.oinfo = XFS_RMAP_OINFO_INODES;
635 
636 #ifdef DEBUG
637 	/* randomly do sparse inode allocations */
638 	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
639 	    igeo->ialloc_min_blks < igeo->ialloc_blks)
640 		do_sparse = prandom_u32() & 1;
641 #endif
642 
643 	/*
644 	 * Locking will ensure that we don't have two callers in here
645 	 * at one time.
646 	 */
647 	newlen = igeo->ialloc_inos;
648 	if (igeo->maxicount &&
649 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
650 							igeo->maxicount)
651 		return -ENOSPC;
652 	args.minlen = args.maxlen = igeo->ialloc_blks;
653 	/*
654 	 * First try to allocate inodes contiguous with the last-allocated
655 	 * chunk of inodes.  If the filesystem is striped, this will fill
656 	 * an entire stripe unit with inodes.
657 	 */
658 	agi = agbp->b_addr;
659 	newino = be32_to_cpu(agi->agi_newino);
660 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
661 		     igeo->ialloc_blks;
662 	if (do_sparse)
663 		goto sparse_alloc;
664 	if (likely(newino != NULLAGINO &&
665 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
666 		args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
667 		args.type = XFS_ALLOCTYPE_THIS_BNO;
668 		args.prod = 1;
669 
670 		/*
671 		 * We need to take into account alignment here to ensure that
672 		 * we don't modify the free list if we fail to have an exact
673 		 * block. If we don't have an exact match, and every oher
674 		 * attempt allocation attempt fails, we'll end up cancelling
675 		 * a dirty transaction and shutting down.
676 		 *
677 		 * For an exact allocation, alignment must be 1,
678 		 * however we need to take cluster alignment into account when
679 		 * fixing up the freelist. Use the minalignslop field to
680 		 * indicate that extra blocks might be required for alignment,
681 		 * but not to use them in the actual exact allocation.
682 		 */
683 		args.alignment = 1;
684 		args.minalignslop = igeo->cluster_align - 1;
685 
686 		/* Allow space for the inode btree to split. */
687 		args.minleft = igeo->inobt_maxlevels;
688 		if ((error = xfs_alloc_vextent(&args)))
689 			return error;
690 
691 		/*
692 		 * This request might have dirtied the transaction if the AG can
693 		 * satisfy the request, but the exact block was not available.
694 		 * If the allocation did fail, subsequent requests will relax
695 		 * the exact agbno requirement and increase the alignment
696 		 * instead. It is critical that the total size of the request
697 		 * (len + alignment + slop) does not increase from this point
698 		 * on, so reset minalignslop to ensure it is not included in
699 		 * subsequent requests.
700 		 */
701 		args.minalignslop = 0;
702 	}
703 
704 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
705 		/*
706 		 * Set the alignment for the allocation.
707 		 * If stripe alignment is turned on then align at stripe unit
708 		 * boundary.
709 		 * If the cluster size is smaller than a filesystem block
710 		 * then we're doing I/O for inodes in filesystem block size
711 		 * pieces, so don't need alignment anyway.
712 		 */
713 		isaligned = 0;
714 		if (igeo->ialloc_align) {
715 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
716 			args.alignment = args.mp->m_dalign;
717 			isaligned = 1;
718 		} else
719 			args.alignment = igeo->cluster_align;
720 		/*
721 		 * Need to figure out where to allocate the inode blocks.
722 		 * Ideally they should be spaced out through the a.g.
723 		 * For now, just allocate blocks up front.
724 		 */
725 		args.agbno = be32_to_cpu(agi->agi_root);
726 		args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
727 		/*
728 		 * Allocate a fixed-size extent of inodes.
729 		 */
730 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
731 		args.prod = 1;
732 		/*
733 		 * Allow space for the inode btree to split.
734 		 */
735 		args.minleft = igeo->inobt_maxlevels;
736 		if ((error = xfs_alloc_vextent(&args)))
737 			return error;
738 	}
739 
740 	/*
741 	 * If stripe alignment is turned on, then try again with cluster
742 	 * alignment.
743 	 */
744 	if (isaligned && args.fsbno == NULLFSBLOCK) {
745 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
746 		args.agbno = be32_to_cpu(agi->agi_root);
747 		args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
748 		args.alignment = igeo->cluster_align;
749 		if ((error = xfs_alloc_vextent(&args)))
750 			return error;
751 	}
752 
753 	/*
754 	 * Finally, try a sparse allocation if the filesystem supports it and
755 	 * the sparse allocation length is smaller than a full chunk.
756 	 */
757 	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
758 	    igeo->ialloc_min_blks < igeo->ialloc_blks &&
759 	    args.fsbno == NULLFSBLOCK) {
760 sparse_alloc:
761 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
762 		args.agbno = be32_to_cpu(agi->agi_root);
763 		args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
764 		args.alignment = args.mp->m_sb.sb_spino_align;
765 		args.prod = 1;
766 
767 		args.minlen = igeo->ialloc_min_blks;
768 		args.maxlen = args.minlen;
769 
770 		/*
771 		 * The inode record will be aligned to full chunk size. We must
772 		 * prevent sparse allocation from AG boundaries that result in
773 		 * invalid inode records, such as records that start at agbno 0
774 		 * or extend beyond the AG.
775 		 *
776 		 * Set min agbno to the first aligned, non-zero agbno and max to
777 		 * the last aligned agbno that is at least one full chunk from
778 		 * the end of the AG.
779 		 */
780 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
781 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
782 					    args.mp->m_sb.sb_inoalignmt) -
783 				 igeo->ialloc_blks;
784 
785 		error = xfs_alloc_vextent(&args);
786 		if (error)
787 			return error;
788 
789 		newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
790 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
791 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
792 	}
793 
794 	if (args.fsbno == NULLFSBLOCK)
795 		return -EAGAIN;
796 
797 	ASSERT(args.len == args.minlen);
798 
799 	/*
800 	 * Stamp and write the inode buffers.
801 	 *
802 	 * Seed the new inode cluster with a random generation number. This
803 	 * prevents short-term reuse of generation numbers if a chunk is
804 	 * freed and then immediately reallocated. We use random numbers
805 	 * rather than a linear progression to prevent the next generation
806 	 * number from being easily guessable.
807 	 */
808 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
809 			args.agbno, args.len, prandom_u32());
810 
811 	if (error)
812 		return error;
813 	/*
814 	 * Convert the results.
815 	 */
816 	newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
817 
818 	if (xfs_inobt_issparse(~allocmask)) {
819 		/*
820 		 * We've allocated a sparse chunk. Align the startino and mask.
821 		 */
822 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
823 
824 		rec.ir_startino = newino;
825 		rec.ir_holemask = ~allocmask;
826 		rec.ir_count = newlen;
827 		rec.ir_freecount = newlen;
828 		rec.ir_free = XFS_INOBT_ALL_FREE;
829 
830 		/*
831 		 * Insert the sparse record into the inobt and allow for a merge
832 		 * if necessary. If a merge does occur, rec is updated to the
833 		 * merged record.
834 		 */
835 		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
836 				XFS_BTNUM_INO, &rec, true);
837 		if (error == -EFSCORRUPTED) {
838 			xfs_alert(args.mp,
839 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
840 				  XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
841 						   rec.ir_startino),
842 				  rec.ir_holemask, rec.ir_count);
843 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
844 		}
845 		if (error)
846 			return error;
847 
848 		/*
849 		 * We can't merge the part we've just allocated as for the inobt
850 		 * due to finobt semantics. The original record may or may not
851 		 * exist independent of whether physical inodes exist in this
852 		 * sparse chunk.
853 		 *
854 		 * We must update the finobt record based on the inobt record.
855 		 * rec contains the fully merged and up to date inobt record
856 		 * from the previous call. Set merge false to replace any
857 		 * existing record with this one.
858 		 */
859 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
860 			error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
861 				       XFS_BTNUM_FINO, &rec, false);
862 			if (error)
863 				return error;
864 		}
865 	} else {
866 		/* full chunk - insert new records to both btrees */
867 		error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino, newlen,
868 					 XFS_BTNUM_INO);
869 		if (error)
870 			return error;
871 
872 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
873 			error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino,
874 						 newlen, XFS_BTNUM_FINO);
875 			if (error)
876 				return error;
877 		}
878 	}
879 
880 	/*
881 	 * Update AGI counts and newino.
882 	 */
883 	be32_add_cpu(&agi->agi_count, newlen);
884 	be32_add_cpu(&agi->agi_freecount, newlen);
885 	pag->pagi_freecount += newlen;
886 	pag->pagi_count += newlen;
887 	agi->agi_newino = cpu_to_be32(newino);
888 
889 	/*
890 	 * Log allocation group header fields
891 	 */
892 	xfs_ialloc_log_agi(tp, agbp,
893 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
894 	/*
895 	 * Modify/log superblock values for inode count and inode free count.
896 	 */
897 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
898 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
899 	return 0;
900 }
901 
902 /*
903  * Try to retrieve the next record to the left/right from the current one.
904  */
905 STATIC int
906 xfs_ialloc_next_rec(
907 	struct xfs_btree_cur	*cur,
908 	xfs_inobt_rec_incore_t	*rec,
909 	int			*done,
910 	int			left)
911 {
912 	int                     error;
913 	int			i;
914 
915 	if (left)
916 		error = xfs_btree_decrement(cur, 0, &i);
917 	else
918 		error = xfs_btree_increment(cur, 0, &i);
919 
920 	if (error)
921 		return error;
922 	*done = !i;
923 	if (i) {
924 		error = xfs_inobt_get_rec(cur, rec, &i);
925 		if (error)
926 			return error;
927 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
928 			return -EFSCORRUPTED;
929 	}
930 
931 	return 0;
932 }
933 
934 STATIC int
935 xfs_ialloc_get_rec(
936 	struct xfs_btree_cur	*cur,
937 	xfs_agino_t		agino,
938 	xfs_inobt_rec_incore_t	*rec,
939 	int			*done)
940 {
941 	int                     error;
942 	int			i;
943 
944 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
945 	if (error)
946 		return error;
947 	*done = !i;
948 	if (i) {
949 		error = xfs_inobt_get_rec(cur, rec, &i);
950 		if (error)
951 			return error;
952 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
953 			return -EFSCORRUPTED;
954 	}
955 
956 	return 0;
957 }
958 
959 /*
960  * Return the offset of the first free inode in the record. If the inode chunk
961  * is sparsely allocated, we convert the record holemask to inode granularity
962  * and mask off the unallocated regions from the inode free mask.
963  */
964 STATIC int
965 xfs_inobt_first_free_inode(
966 	struct xfs_inobt_rec_incore	*rec)
967 {
968 	xfs_inofree_t			realfree;
969 
970 	/* if there are no holes, return the first available offset */
971 	if (!xfs_inobt_issparse(rec->ir_holemask))
972 		return xfs_lowbit64(rec->ir_free);
973 
974 	realfree = xfs_inobt_irec_to_allocmask(rec);
975 	realfree &= rec->ir_free;
976 
977 	return xfs_lowbit64(realfree);
978 }
979 
980 /*
981  * Allocate an inode using the inobt-only algorithm.
982  */
983 STATIC int
984 xfs_dialloc_ag_inobt(
985 	struct xfs_trans	*tp,
986 	struct xfs_buf		*agbp,
987 	struct xfs_perag	*pag,
988 	xfs_ino_t		parent,
989 	xfs_ino_t		*inop)
990 {
991 	struct xfs_mount	*mp = tp->t_mountp;
992 	struct xfs_agi		*agi = agbp->b_addr;
993 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
994 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
995 	struct xfs_btree_cur	*cur, *tcur;
996 	struct xfs_inobt_rec_incore rec, trec;
997 	xfs_ino_t		ino;
998 	int			error;
999 	int			offset;
1000 	int			i, j;
1001 	int			searchdistance = 10;
1002 
1003 	ASSERT(pag->pagi_init);
1004 	ASSERT(pag->pagi_inodeok);
1005 	ASSERT(pag->pagi_freecount > 0);
1006 
1007  restart_pagno:
1008 	cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1009 	/*
1010 	 * If pagino is 0 (this is the root inode allocation) use newino.
1011 	 * This must work because we've just allocated some.
1012 	 */
1013 	if (!pagino)
1014 		pagino = be32_to_cpu(agi->agi_newino);
1015 
1016 	error = xfs_check_agi_freecount(cur);
1017 	if (error)
1018 		goto error0;
1019 
1020 	/*
1021 	 * If in the same AG as the parent, try to get near the parent.
1022 	 */
1023 	if (pagno == pag->pag_agno) {
1024 		int		doneleft;	/* done, to the left */
1025 		int		doneright;	/* done, to the right */
1026 
1027 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1028 		if (error)
1029 			goto error0;
1030 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1031 			error = -EFSCORRUPTED;
1032 			goto error0;
1033 		}
1034 
1035 		error = xfs_inobt_get_rec(cur, &rec, &j);
1036 		if (error)
1037 			goto error0;
1038 		if (XFS_IS_CORRUPT(mp, j != 1)) {
1039 			error = -EFSCORRUPTED;
1040 			goto error0;
1041 		}
1042 
1043 		if (rec.ir_freecount > 0) {
1044 			/*
1045 			 * Found a free inode in the same chunk
1046 			 * as the parent, done.
1047 			 */
1048 			goto alloc_inode;
1049 		}
1050 
1051 
1052 		/*
1053 		 * In the same AG as parent, but parent's chunk is full.
1054 		 */
1055 
1056 		/* duplicate the cursor, search left & right simultaneously */
1057 		error = xfs_btree_dup_cursor(cur, &tcur);
1058 		if (error)
1059 			goto error0;
1060 
1061 		/*
1062 		 * Skip to last blocks looked up if same parent inode.
1063 		 */
1064 		if (pagino != NULLAGINO &&
1065 		    pag->pagl_pagino == pagino &&
1066 		    pag->pagl_leftrec != NULLAGINO &&
1067 		    pag->pagl_rightrec != NULLAGINO) {
1068 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1069 						   &trec, &doneleft);
1070 			if (error)
1071 				goto error1;
1072 
1073 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1074 						   &rec, &doneright);
1075 			if (error)
1076 				goto error1;
1077 		} else {
1078 			/* search left with tcur, back up 1 record */
1079 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1080 			if (error)
1081 				goto error1;
1082 
1083 			/* search right with cur, go forward 1 record. */
1084 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1085 			if (error)
1086 				goto error1;
1087 		}
1088 
1089 		/*
1090 		 * Loop until we find an inode chunk with a free inode.
1091 		 */
1092 		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1093 			int	useleft;  /* using left inode chunk this time */
1094 
1095 			/* figure out the closer block if both are valid. */
1096 			if (!doneleft && !doneright) {
1097 				useleft = pagino -
1098 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1099 				  rec.ir_startino - pagino;
1100 			} else {
1101 				useleft = !doneleft;
1102 			}
1103 
1104 			/* free inodes to the left? */
1105 			if (useleft && trec.ir_freecount) {
1106 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1107 				cur = tcur;
1108 
1109 				pag->pagl_leftrec = trec.ir_startino;
1110 				pag->pagl_rightrec = rec.ir_startino;
1111 				pag->pagl_pagino = pagino;
1112 				rec = trec;
1113 				goto alloc_inode;
1114 			}
1115 
1116 			/* free inodes to the right? */
1117 			if (!useleft && rec.ir_freecount) {
1118 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1119 
1120 				pag->pagl_leftrec = trec.ir_startino;
1121 				pag->pagl_rightrec = rec.ir_startino;
1122 				pag->pagl_pagino = pagino;
1123 				goto alloc_inode;
1124 			}
1125 
1126 			/* get next record to check */
1127 			if (useleft) {
1128 				error = xfs_ialloc_next_rec(tcur, &trec,
1129 								 &doneleft, 1);
1130 			} else {
1131 				error = xfs_ialloc_next_rec(cur, &rec,
1132 								 &doneright, 0);
1133 			}
1134 			if (error)
1135 				goto error1;
1136 		}
1137 
1138 		if (searchdistance <= 0) {
1139 			/*
1140 			 * Not in range - save last search
1141 			 * location and allocate a new inode
1142 			 */
1143 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1144 			pag->pagl_leftrec = trec.ir_startino;
1145 			pag->pagl_rightrec = rec.ir_startino;
1146 			pag->pagl_pagino = pagino;
1147 
1148 		} else {
1149 			/*
1150 			 * We've reached the end of the btree. because
1151 			 * we are only searching a small chunk of the
1152 			 * btree each search, there is obviously free
1153 			 * inodes closer to the parent inode than we
1154 			 * are now. restart the search again.
1155 			 */
1156 			pag->pagl_pagino = NULLAGINO;
1157 			pag->pagl_leftrec = NULLAGINO;
1158 			pag->pagl_rightrec = NULLAGINO;
1159 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1160 			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1161 			goto restart_pagno;
1162 		}
1163 	}
1164 
1165 	/*
1166 	 * In a different AG from the parent.
1167 	 * See if the most recently allocated block has any free.
1168 	 */
1169 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1170 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1171 					 XFS_LOOKUP_EQ, &i);
1172 		if (error)
1173 			goto error0;
1174 
1175 		if (i == 1) {
1176 			error = xfs_inobt_get_rec(cur, &rec, &j);
1177 			if (error)
1178 				goto error0;
1179 
1180 			if (j == 1 && rec.ir_freecount > 0) {
1181 				/*
1182 				 * The last chunk allocated in the group
1183 				 * still has a free inode.
1184 				 */
1185 				goto alloc_inode;
1186 			}
1187 		}
1188 	}
1189 
1190 	/*
1191 	 * None left in the last group, search the whole AG
1192 	 */
1193 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1194 	if (error)
1195 		goto error0;
1196 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1197 		error = -EFSCORRUPTED;
1198 		goto error0;
1199 	}
1200 
1201 	for (;;) {
1202 		error = xfs_inobt_get_rec(cur, &rec, &i);
1203 		if (error)
1204 			goto error0;
1205 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1206 			error = -EFSCORRUPTED;
1207 			goto error0;
1208 		}
1209 		if (rec.ir_freecount > 0)
1210 			break;
1211 		error = xfs_btree_increment(cur, 0, &i);
1212 		if (error)
1213 			goto error0;
1214 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1215 			error = -EFSCORRUPTED;
1216 			goto error0;
1217 		}
1218 	}
1219 
1220 alloc_inode:
1221 	offset = xfs_inobt_first_free_inode(&rec);
1222 	ASSERT(offset >= 0);
1223 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1224 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1225 				   XFS_INODES_PER_CHUNK) == 0);
1226 	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1227 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1228 	rec.ir_freecount--;
1229 	error = xfs_inobt_update(cur, &rec);
1230 	if (error)
1231 		goto error0;
1232 	be32_add_cpu(&agi->agi_freecount, -1);
1233 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1234 	pag->pagi_freecount--;
1235 
1236 	error = xfs_check_agi_freecount(cur);
1237 	if (error)
1238 		goto error0;
1239 
1240 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1241 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1242 	*inop = ino;
1243 	return 0;
1244 error1:
1245 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1246 error0:
1247 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1248 	return error;
1249 }
1250 
1251 /*
1252  * Use the free inode btree to allocate an inode based on distance from the
1253  * parent. Note that the provided cursor may be deleted and replaced.
1254  */
1255 STATIC int
1256 xfs_dialloc_ag_finobt_near(
1257 	xfs_agino_t			pagino,
1258 	struct xfs_btree_cur		**ocur,
1259 	struct xfs_inobt_rec_incore	*rec)
1260 {
1261 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1262 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1263 	struct xfs_inobt_rec_incore	rrec;
1264 	int				error;
1265 	int				i, j;
1266 
1267 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1268 	if (error)
1269 		return error;
1270 
1271 	if (i == 1) {
1272 		error = xfs_inobt_get_rec(lcur, rec, &i);
1273 		if (error)
1274 			return error;
1275 		if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1276 			return -EFSCORRUPTED;
1277 
1278 		/*
1279 		 * See if we've landed in the parent inode record. The finobt
1280 		 * only tracks chunks with at least one free inode, so record
1281 		 * existence is enough.
1282 		 */
1283 		if (pagino >= rec->ir_startino &&
1284 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1285 			return 0;
1286 	}
1287 
1288 	error = xfs_btree_dup_cursor(lcur, &rcur);
1289 	if (error)
1290 		return error;
1291 
1292 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1293 	if (error)
1294 		goto error_rcur;
1295 	if (j == 1) {
1296 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1297 		if (error)
1298 			goto error_rcur;
1299 		if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1300 			error = -EFSCORRUPTED;
1301 			goto error_rcur;
1302 		}
1303 	}
1304 
1305 	if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1306 		error = -EFSCORRUPTED;
1307 		goto error_rcur;
1308 	}
1309 	if (i == 1 && j == 1) {
1310 		/*
1311 		 * Both the left and right records are valid. Choose the closer
1312 		 * inode chunk to the target.
1313 		 */
1314 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1315 		    (rrec.ir_startino - pagino)) {
1316 			*rec = rrec;
1317 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1318 			*ocur = rcur;
1319 		} else {
1320 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1321 		}
1322 	} else if (j == 1) {
1323 		/* only the right record is valid */
1324 		*rec = rrec;
1325 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1326 		*ocur = rcur;
1327 	} else if (i == 1) {
1328 		/* only the left record is valid */
1329 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1330 	}
1331 
1332 	return 0;
1333 
1334 error_rcur:
1335 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1336 	return error;
1337 }
1338 
1339 /*
1340  * Use the free inode btree to find a free inode based on a newino hint. If
1341  * the hint is NULL, find the first free inode in the AG.
1342  */
1343 STATIC int
1344 xfs_dialloc_ag_finobt_newino(
1345 	struct xfs_agi			*agi,
1346 	struct xfs_btree_cur		*cur,
1347 	struct xfs_inobt_rec_incore	*rec)
1348 {
1349 	int error;
1350 	int i;
1351 
1352 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1353 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1354 					 XFS_LOOKUP_EQ, &i);
1355 		if (error)
1356 			return error;
1357 		if (i == 1) {
1358 			error = xfs_inobt_get_rec(cur, rec, &i);
1359 			if (error)
1360 				return error;
1361 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1362 				return -EFSCORRUPTED;
1363 			return 0;
1364 		}
1365 	}
1366 
1367 	/*
1368 	 * Find the first inode available in the AG.
1369 	 */
1370 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1371 	if (error)
1372 		return error;
1373 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1374 		return -EFSCORRUPTED;
1375 
1376 	error = xfs_inobt_get_rec(cur, rec, &i);
1377 	if (error)
1378 		return error;
1379 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1380 		return -EFSCORRUPTED;
1381 
1382 	return 0;
1383 }
1384 
1385 /*
1386  * Update the inobt based on a modification made to the finobt. Also ensure that
1387  * the records from both trees are equivalent post-modification.
1388  */
1389 STATIC int
1390 xfs_dialloc_ag_update_inobt(
1391 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1392 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1393 	int				offset) /* inode offset */
1394 {
1395 	struct xfs_inobt_rec_incore	rec;
1396 	int				error;
1397 	int				i;
1398 
1399 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1400 	if (error)
1401 		return error;
1402 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1403 		return -EFSCORRUPTED;
1404 
1405 	error = xfs_inobt_get_rec(cur, &rec, &i);
1406 	if (error)
1407 		return error;
1408 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1409 		return -EFSCORRUPTED;
1410 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1411 				   XFS_INODES_PER_CHUNK) == 0);
1412 
1413 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1414 	rec.ir_freecount--;
1415 
1416 	if (XFS_IS_CORRUPT(cur->bc_mp,
1417 			   rec.ir_free != frec->ir_free ||
1418 			   rec.ir_freecount != frec->ir_freecount))
1419 		return -EFSCORRUPTED;
1420 
1421 	return xfs_inobt_update(cur, &rec);
1422 }
1423 
1424 /*
1425  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1426  * back to the inobt search algorithm.
1427  *
1428  * The caller selected an AG for us, and made sure that free inodes are
1429  * available.
1430  */
1431 static int
1432 xfs_dialloc_ag(
1433 	struct xfs_trans	*tp,
1434 	struct xfs_buf		*agbp,
1435 	struct xfs_perag	*pag,
1436 	xfs_ino_t		parent,
1437 	xfs_ino_t		*inop)
1438 {
1439 	struct xfs_mount		*mp = tp->t_mountp;
1440 	struct xfs_agi			*agi = agbp->b_addr;
1441 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1442 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1443 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1444 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1445 	struct xfs_inobt_rec_incore	rec;
1446 	xfs_ino_t			ino;
1447 	int				error;
1448 	int				offset;
1449 	int				i;
1450 
1451 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1452 		return xfs_dialloc_ag_inobt(tp, agbp, pag, parent, inop);
1453 
1454 	/*
1455 	 * If pagino is 0 (this is the root inode allocation) use newino.
1456 	 * This must work because we've just allocated some.
1457 	 */
1458 	if (!pagino)
1459 		pagino = be32_to_cpu(agi->agi_newino);
1460 
1461 	cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
1462 
1463 	error = xfs_check_agi_freecount(cur);
1464 	if (error)
1465 		goto error_cur;
1466 
1467 	/*
1468 	 * The search algorithm depends on whether we're in the same AG as the
1469 	 * parent. If so, find the closest available inode to the parent. If
1470 	 * not, consider the agi hint or find the first free inode in the AG.
1471 	 */
1472 	if (pag->pag_agno == pagno)
1473 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1474 	else
1475 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1476 	if (error)
1477 		goto error_cur;
1478 
1479 	offset = xfs_inobt_first_free_inode(&rec);
1480 	ASSERT(offset >= 0);
1481 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1482 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1483 				   XFS_INODES_PER_CHUNK) == 0);
1484 	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1485 
1486 	/*
1487 	 * Modify or remove the finobt record.
1488 	 */
1489 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1490 	rec.ir_freecount--;
1491 	if (rec.ir_freecount)
1492 		error = xfs_inobt_update(cur, &rec);
1493 	else
1494 		error = xfs_btree_delete(cur, &i);
1495 	if (error)
1496 		goto error_cur;
1497 
1498 	/*
1499 	 * The finobt has now been updated appropriately. We haven't updated the
1500 	 * agi and superblock yet, so we can create an inobt cursor and validate
1501 	 * the original freecount. If all is well, make the equivalent update to
1502 	 * the inobt using the finobt record and offset information.
1503 	 */
1504 	icur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1505 
1506 	error = xfs_check_agi_freecount(icur);
1507 	if (error)
1508 		goto error_icur;
1509 
1510 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1511 	if (error)
1512 		goto error_icur;
1513 
1514 	/*
1515 	 * Both trees have now been updated. We must update the perag and
1516 	 * superblock before we can check the freecount for each btree.
1517 	 */
1518 	be32_add_cpu(&agi->agi_freecount, -1);
1519 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1520 	pag->pagi_freecount--;
1521 
1522 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1523 
1524 	error = xfs_check_agi_freecount(icur);
1525 	if (error)
1526 		goto error_icur;
1527 	error = xfs_check_agi_freecount(cur);
1528 	if (error)
1529 		goto error_icur;
1530 
1531 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1532 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1533 	*inop = ino;
1534 	return 0;
1535 
1536 error_icur:
1537 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1538 error_cur:
1539 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1540 	return error;
1541 }
1542 
1543 static int
1544 xfs_dialloc_roll(
1545 	struct xfs_trans	**tpp,
1546 	struct xfs_buf		*agibp)
1547 {
1548 	struct xfs_trans	*tp = *tpp;
1549 	struct xfs_dquot_acct	*dqinfo;
1550 	int			error;
1551 
1552 	/*
1553 	 * Hold to on to the agibp across the commit so no other allocation can
1554 	 * come in and take the free inodes we just allocated for our caller.
1555 	 */
1556 	xfs_trans_bhold(tp, agibp);
1557 
1558 	/*
1559 	 * We want the quota changes to be associated with the next transaction,
1560 	 * NOT this one. So, detach the dqinfo from this and attach it to the
1561 	 * next transaction.
1562 	 */
1563 	dqinfo = tp->t_dqinfo;
1564 	tp->t_dqinfo = NULL;
1565 
1566 	error = xfs_trans_roll(&tp);
1567 
1568 	/* Re-attach the quota info that we detached from prev trx. */
1569 	tp->t_dqinfo = dqinfo;
1570 
1571 	/*
1572 	 * Join the buffer even on commit error so that the buffer is released
1573 	 * when the caller cancels the transaction and doesn't have to handle
1574 	 * this error case specially.
1575 	 */
1576 	xfs_trans_bjoin(tp, agibp);
1577 	*tpp = tp;
1578 	return error;
1579 }
1580 
1581 static xfs_agnumber_t
1582 xfs_ialloc_next_ag(
1583 	xfs_mount_t	*mp)
1584 {
1585 	xfs_agnumber_t	agno;
1586 
1587 	spin_lock(&mp->m_agirotor_lock);
1588 	agno = mp->m_agirotor;
1589 	if (++mp->m_agirotor >= mp->m_maxagi)
1590 		mp->m_agirotor = 0;
1591 	spin_unlock(&mp->m_agirotor_lock);
1592 
1593 	return agno;
1594 }
1595 
1596 static bool
1597 xfs_dialloc_good_ag(
1598 	struct xfs_trans	*tp,
1599 	struct xfs_perag	*pag,
1600 	umode_t			mode,
1601 	int			flags,
1602 	bool			ok_alloc)
1603 {
1604 	struct xfs_mount	*mp = tp->t_mountp;
1605 	xfs_extlen_t		ineed;
1606 	xfs_extlen_t		longest = 0;
1607 	int			needspace;
1608 	int			error;
1609 
1610 	if (!pag->pagi_inodeok)
1611 		return false;
1612 
1613 	if (!pag->pagi_init) {
1614 		error = xfs_ialloc_pagi_init(mp, tp, pag->pag_agno);
1615 		if (error)
1616 			return false;
1617 	}
1618 
1619 	if (pag->pagi_freecount)
1620 		return true;
1621 	if (!ok_alloc)
1622 		return false;
1623 
1624 	if (!pag->pagf_init) {
1625 		error = xfs_alloc_pagf_init(mp, tp, pag->pag_agno, flags);
1626 		if (error)
1627 			return false;
1628 	}
1629 
1630 	/*
1631 	 * Check that there is enough free space for the file plus a chunk of
1632 	 * inodes if we need to allocate some. If this is the first pass across
1633 	 * the AGs, take into account the potential space needed for alignment
1634 	 * of inode chunks when checking the longest contiguous free space in
1635 	 * the AG - this prevents us from getting ENOSPC because we have free
1636 	 * space larger than ialloc_blks but alignment constraints prevent us
1637 	 * from using it.
1638 	 *
1639 	 * If we can't find an AG with space for full alignment slack to be
1640 	 * taken into account, we must be near ENOSPC in all AGs.  Hence we
1641 	 * don't include alignment for the second pass and so if we fail
1642 	 * allocation due to alignment issues then it is most likely a real
1643 	 * ENOSPC condition.
1644 	 *
1645 	 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1646 	 * reservations that xfs_alloc_fix_freelist() now does via
1647 	 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1648 	 * be more than large enough for the check below to succeed, but
1649 	 * xfs_alloc_space_available() will fail because of the non-zero
1650 	 * metadata reservation and hence we won't actually be able to allocate
1651 	 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1652 	 * because of this.
1653 	 */
1654 	ineed = M_IGEO(mp)->ialloc_min_blks;
1655 	if (flags && ineed > 1)
1656 		ineed += M_IGEO(mp)->cluster_align;
1657 	longest = pag->pagf_longest;
1658 	if (!longest)
1659 		longest = pag->pagf_flcount > 0;
1660 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1661 
1662 	if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1663 		return false;
1664 	return true;
1665 }
1666 
1667 static int
1668 xfs_dialloc_try_ag(
1669 	struct xfs_trans	**tpp,
1670 	struct xfs_perag	*pag,
1671 	xfs_ino_t		parent,
1672 	xfs_ino_t		*new_ino,
1673 	bool			ok_alloc)
1674 {
1675 	struct xfs_buf		*agbp;
1676 	xfs_ino_t		ino;
1677 	int			error;
1678 
1679 	/*
1680 	 * Then read in the AGI buffer and recheck with the AGI buffer
1681 	 * lock held.
1682 	 */
1683 	error = xfs_ialloc_read_agi(pag->pag_mount, *tpp, pag->pag_agno, &agbp);
1684 	if (error)
1685 		return error;
1686 
1687 	if (!pag->pagi_freecount) {
1688 		if (!ok_alloc) {
1689 			error = -EAGAIN;
1690 			goto out_release;
1691 		}
1692 
1693 		error = xfs_ialloc_ag_alloc(*tpp, agbp, pag);
1694 		if (error < 0)
1695 			goto out_release;
1696 
1697 		/*
1698 		 * We successfully allocated space for an inode cluster in this
1699 		 * AG.  Roll the transaction so that we can allocate one of the
1700 		 * new inodes.
1701 		 */
1702 		ASSERT(pag->pagi_freecount > 0);
1703 		error = xfs_dialloc_roll(tpp, agbp);
1704 		if (error)
1705 			goto out_release;
1706 	}
1707 
1708 	/* Allocate an inode in the found AG */
1709 	error = xfs_dialloc_ag(*tpp, agbp, pag, parent, &ino);
1710 	if (!error)
1711 		*new_ino = ino;
1712 	return error;
1713 
1714 out_release:
1715 	xfs_trans_brelse(*tpp, agbp);
1716 	return error;
1717 }
1718 
1719 /*
1720  * Allocate an on-disk inode.
1721  *
1722  * Mode is used to tell whether the new inode is a directory and hence where to
1723  * locate it. The on-disk inode that is allocated will be returned in @new_ino
1724  * on success, otherwise an error will be set to indicate the failure (e.g.
1725  * -ENOSPC).
1726  */
1727 int
1728 xfs_dialloc(
1729 	struct xfs_trans	**tpp,
1730 	xfs_ino_t		parent,
1731 	umode_t			mode,
1732 	xfs_ino_t		*new_ino)
1733 {
1734 	struct xfs_mount	*mp = (*tpp)->t_mountp;
1735 	xfs_agnumber_t		agno;
1736 	int			error = 0;
1737 	xfs_agnumber_t		start_agno;
1738 	struct xfs_perag	*pag;
1739 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1740 	bool			ok_alloc = true;
1741 	int			flags;
1742 	xfs_ino_t		ino;
1743 
1744 	/*
1745 	 * Directories, symlinks, and regular files frequently allocate at least
1746 	 * one block, so factor that potential expansion when we examine whether
1747 	 * an AG has enough space for file creation.
1748 	 */
1749 	if (S_ISDIR(mode))
1750 		start_agno = xfs_ialloc_next_ag(mp);
1751 	else {
1752 		start_agno = XFS_INO_TO_AGNO(mp, parent);
1753 		if (start_agno >= mp->m_maxagi)
1754 			start_agno = 0;
1755 	}
1756 
1757 	/*
1758 	 * If we have already hit the ceiling of inode blocks then clear
1759 	 * ok_alloc so we scan all available agi structures for a free
1760 	 * inode.
1761 	 *
1762 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1763 	 * which will sacrifice the preciseness but improve the performance.
1764 	 */
1765 	if (igeo->maxicount &&
1766 	    percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1767 							> igeo->maxicount) {
1768 		ok_alloc = false;
1769 	}
1770 
1771 	/*
1772 	 * Loop until we find an allocation group that either has free inodes
1773 	 * or in which we can allocate some inodes.  Iterate through the
1774 	 * allocation groups upward, wrapping at the end.
1775 	 */
1776 	agno = start_agno;
1777 	flags = XFS_ALLOC_FLAG_TRYLOCK;
1778 	for (;;) {
1779 		pag = xfs_perag_get(mp, agno);
1780 		if (xfs_dialloc_good_ag(*tpp, pag, mode, flags, ok_alloc)) {
1781 			error = xfs_dialloc_try_ag(tpp, pag, parent,
1782 					&ino, ok_alloc);
1783 			if (error != -EAGAIN)
1784 				break;
1785 		}
1786 
1787 		if (XFS_FORCED_SHUTDOWN(mp)) {
1788 			error = -EFSCORRUPTED;
1789 			break;
1790 		}
1791 		if (++agno == mp->m_maxagi)
1792 			agno = 0;
1793 		if (agno == start_agno) {
1794 			if (!flags) {
1795 				error = -ENOSPC;
1796 				break;
1797 			}
1798 			flags = 0;
1799 		}
1800 		xfs_perag_put(pag);
1801 	}
1802 
1803 	if (!error)
1804 		*new_ino = ino;
1805 	xfs_perag_put(pag);
1806 	return error;
1807 }
1808 
1809 /*
1810  * Free the blocks of an inode chunk. We must consider that the inode chunk
1811  * might be sparse and only free the regions that are allocated as part of the
1812  * chunk.
1813  */
1814 STATIC void
1815 xfs_difree_inode_chunk(
1816 	struct xfs_trans		*tp,
1817 	xfs_agnumber_t			agno,
1818 	struct xfs_inobt_rec_incore	*rec)
1819 {
1820 	struct xfs_mount		*mp = tp->t_mountp;
1821 	xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp,
1822 							rec->ir_startino);
1823 	int				startidx, endidx;
1824 	int				nextbit;
1825 	xfs_agblock_t			agbno;
1826 	int				contigblk;
1827 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1828 
1829 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1830 		/* not sparse, calculate extent info directly */
1831 		xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1832 				  M_IGEO(mp)->ialloc_blks,
1833 				  &XFS_RMAP_OINFO_INODES);
1834 		return;
1835 	}
1836 
1837 	/* holemask is only 16-bits (fits in an unsigned long) */
1838 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1839 	holemask[0] = rec->ir_holemask;
1840 
1841 	/*
1842 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1843 	 * holemask and convert the start/end index of each range to an extent.
1844 	 * We start with the start and end index both pointing at the first 0 in
1845 	 * the mask.
1846 	 */
1847 	startidx = endidx = find_first_zero_bit(holemask,
1848 						XFS_INOBT_HOLEMASK_BITS);
1849 	nextbit = startidx + 1;
1850 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1851 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1852 					     nextbit);
1853 		/*
1854 		 * If the next zero bit is contiguous, update the end index of
1855 		 * the current range and continue.
1856 		 */
1857 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1858 		    nextbit == endidx + 1) {
1859 			endidx = nextbit;
1860 			goto next;
1861 		}
1862 
1863 		/*
1864 		 * nextbit is not contiguous with the current end index. Convert
1865 		 * the current start/end to an extent and add it to the free
1866 		 * list.
1867 		 */
1868 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1869 				  mp->m_sb.sb_inopblock;
1870 		contigblk = ((endidx - startidx + 1) *
1871 			     XFS_INODES_PER_HOLEMASK_BIT) /
1872 			    mp->m_sb.sb_inopblock;
1873 
1874 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1875 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1876 		xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1877 				  contigblk, &XFS_RMAP_OINFO_INODES);
1878 
1879 		/* reset range to current bit and carry on... */
1880 		startidx = endidx = nextbit;
1881 
1882 next:
1883 		nextbit++;
1884 	}
1885 }
1886 
1887 STATIC int
1888 xfs_difree_inobt(
1889 	struct xfs_mount		*mp,
1890 	struct xfs_trans		*tp,
1891 	struct xfs_buf			*agbp,
1892 	struct xfs_perag		*pag,
1893 	xfs_agino_t			agino,
1894 	struct xfs_icluster		*xic,
1895 	struct xfs_inobt_rec_incore	*orec)
1896 {
1897 	struct xfs_agi			*agi = agbp->b_addr;
1898 	struct xfs_btree_cur		*cur;
1899 	struct xfs_inobt_rec_incore	rec;
1900 	int				ilen;
1901 	int				error;
1902 	int				i;
1903 	int				off;
1904 
1905 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1906 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1907 
1908 	/*
1909 	 * Initialize the cursor.
1910 	 */
1911 	cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1912 
1913 	error = xfs_check_agi_freecount(cur);
1914 	if (error)
1915 		goto error0;
1916 
1917 	/*
1918 	 * Look for the entry describing this inode.
1919 	 */
1920 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1921 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1922 			__func__, error);
1923 		goto error0;
1924 	}
1925 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1926 		error = -EFSCORRUPTED;
1927 		goto error0;
1928 	}
1929 	error = xfs_inobt_get_rec(cur, &rec, &i);
1930 	if (error) {
1931 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1932 			__func__, error);
1933 		goto error0;
1934 	}
1935 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1936 		error = -EFSCORRUPTED;
1937 		goto error0;
1938 	}
1939 	/*
1940 	 * Get the offset in the inode chunk.
1941 	 */
1942 	off = agino - rec.ir_startino;
1943 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1944 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1945 	/*
1946 	 * Mark the inode free & increment the count.
1947 	 */
1948 	rec.ir_free |= XFS_INOBT_MASK(off);
1949 	rec.ir_freecount++;
1950 
1951 	/*
1952 	 * When an inode chunk is free, it becomes eligible for removal. Don't
1953 	 * remove the chunk if the block size is large enough for multiple inode
1954 	 * chunks (that might not be free).
1955 	 */
1956 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1957 	    rec.ir_free == XFS_INOBT_ALL_FREE &&
1958 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1959 		struct xfs_perag	*pag = agbp->b_pag;
1960 
1961 		xic->deleted = true;
1962 		xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1963 				rec.ir_startino);
1964 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1965 
1966 		/*
1967 		 * Remove the inode cluster from the AGI B+Tree, adjust the
1968 		 * AGI and Superblock inode counts, and mark the disk space
1969 		 * to be freed when the transaction is committed.
1970 		 */
1971 		ilen = rec.ir_freecount;
1972 		be32_add_cpu(&agi->agi_count, -ilen);
1973 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1974 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1975 		pag->pagi_freecount -= ilen - 1;
1976 		pag->pagi_count -= ilen;
1977 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1978 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1979 
1980 		if ((error = xfs_btree_delete(cur, &i))) {
1981 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1982 				__func__, error);
1983 			goto error0;
1984 		}
1985 
1986 		xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
1987 	} else {
1988 		xic->deleted = false;
1989 
1990 		error = xfs_inobt_update(cur, &rec);
1991 		if (error) {
1992 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1993 				__func__, error);
1994 			goto error0;
1995 		}
1996 
1997 		/*
1998 		 * Change the inode free counts and log the ag/sb changes.
1999 		 */
2000 		be32_add_cpu(&agi->agi_freecount, 1);
2001 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2002 		pag->pagi_freecount++;
2003 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2004 	}
2005 
2006 	error = xfs_check_agi_freecount(cur);
2007 	if (error)
2008 		goto error0;
2009 
2010 	*orec = rec;
2011 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2012 	return 0;
2013 
2014 error0:
2015 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2016 	return error;
2017 }
2018 
2019 /*
2020  * Free an inode in the free inode btree.
2021  */
2022 STATIC int
2023 xfs_difree_finobt(
2024 	struct xfs_mount		*mp,
2025 	struct xfs_trans		*tp,
2026 	struct xfs_buf			*agbp,
2027 	struct xfs_perag		*pag,
2028 	xfs_agino_t			agino,
2029 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2030 {
2031 	struct xfs_btree_cur		*cur;
2032 	struct xfs_inobt_rec_incore	rec;
2033 	int				offset = agino - ibtrec->ir_startino;
2034 	int				error;
2035 	int				i;
2036 
2037 	cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
2038 
2039 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2040 	if (error)
2041 		goto error;
2042 	if (i == 0) {
2043 		/*
2044 		 * If the record does not exist in the finobt, we must have just
2045 		 * freed an inode in a previously fully allocated chunk. If not,
2046 		 * something is out of sync.
2047 		 */
2048 		if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2049 			error = -EFSCORRUPTED;
2050 			goto error;
2051 		}
2052 
2053 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2054 					     ibtrec->ir_count,
2055 					     ibtrec->ir_freecount,
2056 					     ibtrec->ir_free, &i);
2057 		if (error)
2058 			goto error;
2059 		ASSERT(i == 1);
2060 
2061 		goto out;
2062 	}
2063 
2064 	/*
2065 	 * Read and update the existing record. We could just copy the ibtrec
2066 	 * across here, but that would defeat the purpose of having redundant
2067 	 * metadata. By making the modifications independently, we can catch
2068 	 * corruptions that we wouldn't see if we just copied from one record
2069 	 * to another.
2070 	 */
2071 	error = xfs_inobt_get_rec(cur, &rec, &i);
2072 	if (error)
2073 		goto error;
2074 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2075 		error = -EFSCORRUPTED;
2076 		goto error;
2077 	}
2078 
2079 	rec.ir_free |= XFS_INOBT_MASK(offset);
2080 	rec.ir_freecount++;
2081 
2082 	if (XFS_IS_CORRUPT(mp,
2083 			   rec.ir_free != ibtrec->ir_free ||
2084 			   rec.ir_freecount != ibtrec->ir_freecount)) {
2085 		error = -EFSCORRUPTED;
2086 		goto error;
2087 	}
2088 
2089 	/*
2090 	 * The content of inobt records should always match between the inobt
2091 	 * and finobt. The lifecycle of records in the finobt is different from
2092 	 * the inobt in that the finobt only tracks records with at least one
2093 	 * free inode. Hence, if all of the inodes are free and we aren't
2094 	 * keeping inode chunks permanently on disk, remove the record.
2095 	 * Otherwise, update the record with the new information.
2096 	 *
2097 	 * Note that we currently can't free chunks when the block size is large
2098 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2099 	 * with the inobt.
2100 	 */
2101 	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2102 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2103 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2104 		error = xfs_btree_delete(cur, &i);
2105 		if (error)
2106 			goto error;
2107 		ASSERT(i == 1);
2108 	} else {
2109 		error = xfs_inobt_update(cur, &rec);
2110 		if (error)
2111 			goto error;
2112 	}
2113 
2114 out:
2115 	error = xfs_check_agi_freecount(cur);
2116 	if (error)
2117 		goto error;
2118 
2119 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2120 	return 0;
2121 
2122 error:
2123 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2124 	return error;
2125 }
2126 
2127 /*
2128  * Free disk inode.  Carefully avoids touching the incore inode, all
2129  * manipulations incore are the caller's responsibility.
2130  * The on-disk inode is not changed by this operation, only the
2131  * btree (free inode mask) is changed.
2132  */
2133 int
2134 xfs_difree(
2135 	struct xfs_trans	*tp,
2136 	struct xfs_perag	*pag,
2137 	xfs_ino_t		inode,
2138 	struct xfs_icluster	*xic)
2139 {
2140 	/* REFERENCED */
2141 	xfs_agblock_t		agbno;	/* block number containing inode */
2142 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2143 	xfs_agino_t		agino;	/* allocation group inode number */
2144 	int			error;	/* error return value */
2145 	struct xfs_mount	*mp = tp->t_mountp;
2146 	struct xfs_inobt_rec_incore rec;/* btree record */
2147 
2148 	/*
2149 	 * Break up inode number into its components.
2150 	 */
2151 	if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2152 		xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2153 			__func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2154 		ASSERT(0);
2155 		return -EINVAL;
2156 	}
2157 	agino = XFS_INO_TO_AGINO(mp, inode);
2158 	if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino))  {
2159 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2160 			__func__, (unsigned long long)inode,
2161 			(unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2162 		ASSERT(0);
2163 		return -EINVAL;
2164 	}
2165 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2166 	if (agbno >= mp->m_sb.sb_agblocks)  {
2167 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2168 			__func__, agbno, mp->m_sb.sb_agblocks);
2169 		ASSERT(0);
2170 		return -EINVAL;
2171 	}
2172 	/*
2173 	 * Get the allocation group header.
2174 	 */
2175 	error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp);
2176 	if (error) {
2177 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2178 			__func__, error);
2179 		return error;
2180 	}
2181 
2182 	/*
2183 	 * Fix up the inode allocation btree.
2184 	 */
2185 	error = xfs_difree_inobt(mp, tp, agbp, pag, agino, xic, &rec);
2186 	if (error)
2187 		goto error0;
2188 
2189 	/*
2190 	 * Fix up the free inode btree.
2191 	 */
2192 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2193 		error = xfs_difree_finobt(mp, tp, agbp, pag, agino, &rec);
2194 		if (error)
2195 			goto error0;
2196 	}
2197 
2198 	return 0;
2199 
2200 error0:
2201 	return error;
2202 }
2203 
2204 STATIC int
2205 xfs_imap_lookup(
2206 	struct xfs_mount	*mp,
2207 	struct xfs_trans	*tp,
2208 	struct xfs_perag	*pag,
2209 	xfs_agino_t		agino,
2210 	xfs_agblock_t		agbno,
2211 	xfs_agblock_t		*chunk_agbno,
2212 	xfs_agblock_t		*offset_agbno,
2213 	int			flags)
2214 {
2215 	struct xfs_inobt_rec_incore rec;
2216 	struct xfs_btree_cur	*cur;
2217 	struct xfs_buf		*agbp;
2218 	int			error;
2219 	int			i;
2220 
2221 	error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp);
2222 	if (error) {
2223 		xfs_alert(mp,
2224 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2225 			__func__, error, pag->pag_agno);
2226 		return error;
2227 	}
2228 
2229 	/*
2230 	 * Lookup the inode record for the given agino. If the record cannot be
2231 	 * found, then it's an invalid inode number and we should abort. Once
2232 	 * we have a record, we need to ensure it contains the inode number
2233 	 * we are looking up.
2234 	 */
2235 	cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
2236 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2237 	if (!error) {
2238 		if (i)
2239 			error = xfs_inobt_get_rec(cur, &rec, &i);
2240 		if (!error && i == 0)
2241 			error = -EINVAL;
2242 	}
2243 
2244 	xfs_trans_brelse(tp, agbp);
2245 	xfs_btree_del_cursor(cur, error);
2246 	if (error)
2247 		return error;
2248 
2249 	/* check that the returned record contains the required inode */
2250 	if (rec.ir_startino > agino ||
2251 	    rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2252 		return -EINVAL;
2253 
2254 	/* for untrusted inodes check it is allocated first */
2255 	if ((flags & XFS_IGET_UNTRUSTED) &&
2256 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2257 		return -EINVAL;
2258 
2259 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2260 	*offset_agbno = agbno - *chunk_agbno;
2261 	return 0;
2262 }
2263 
2264 /*
2265  * Return the location of the inode in imap, for mapping it into a buffer.
2266  */
2267 int
2268 xfs_imap(
2269 	struct xfs_mount	 *mp,	/* file system mount structure */
2270 	struct xfs_trans	 *tp,	/* transaction pointer */
2271 	xfs_ino_t		ino,	/* inode to locate */
2272 	struct xfs_imap		*imap,	/* location map structure */
2273 	uint			flags)	/* flags for inode btree lookup */
2274 {
2275 	xfs_agblock_t		agbno;	/* block number of inode in the alloc group */
2276 	xfs_agino_t		agino;	/* inode number within alloc group */
2277 	xfs_agblock_t		chunk_agbno;	/* first block in inode chunk */
2278 	xfs_agblock_t		cluster_agbno;	/* first block in inode cluster */
2279 	int			error;	/* error code */
2280 	int			offset;	/* index of inode in its buffer */
2281 	xfs_agblock_t		offset_agbno;	/* blks from chunk start to inode */
2282 	struct xfs_perag	*pag;
2283 
2284 	ASSERT(ino != NULLFSINO);
2285 
2286 	/*
2287 	 * Split up the inode number into its parts.
2288 	 */
2289 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
2290 	agino = XFS_INO_TO_AGINO(mp, ino);
2291 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2292 	if (!pag || agbno >= mp->m_sb.sb_agblocks ||
2293 	    ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2294 		error = -EINVAL;
2295 #ifdef DEBUG
2296 		/*
2297 		 * Don't output diagnostic information for untrusted inodes
2298 		 * as they can be invalid without implying corruption.
2299 		 */
2300 		if (flags & XFS_IGET_UNTRUSTED)
2301 			goto out_drop;
2302 		if (!pag) {
2303 			xfs_alert(mp,
2304 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2305 				__func__, XFS_INO_TO_AGNO(mp, ino),
2306 				mp->m_sb.sb_agcount);
2307 		}
2308 		if (agbno >= mp->m_sb.sb_agblocks) {
2309 			xfs_alert(mp,
2310 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2311 				__func__, (unsigned long long)agbno,
2312 				(unsigned long)mp->m_sb.sb_agblocks);
2313 		}
2314 		if (pag && ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2315 			xfs_alert(mp,
2316 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2317 				__func__, ino,
2318 				XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2319 		}
2320 		xfs_stack_trace();
2321 #endif /* DEBUG */
2322 		goto out_drop;
2323 	}
2324 
2325 	/*
2326 	 * For bulkstat and handle lookups, we have an untrusted inode number
2327 	 * that we have to verify is valid. We cannot do this just by reading
2328 	 * the inode buffer as it may have been unlinked and removed leaving
2329 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2330 	 * in all cases where an untrusted inode number is passed.
2331 	 */
2332 	if (flags & XFS_IGET_UNTRUSTED) {
2333 		error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
2334 					&chunk_agbno, &offset_agbno, flags);
2335 		if (error)
2336 			goto out_drop;
2337 		goto out_map;
2338 	}
2339 
2340 	/*
2341 	 * If the inode cluster size is the same as the blocksize or
2342 	 * smaller we get to the buffer by simple arithmetics.
2343 	 */
2344 	if (M_IGEO(mp)->blocks_per_cluster == 1) {
2345 		offset = XFS_INO_TO_OFFSET(mp, ino);
2346 		ASSERT(offset < mp->m_sb.sb_inopblock);
2347 
2348 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2349 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2350 		imap->im_boffset = (unsigned short)(offset <<
2351 							mp->m_sb.sb_inodelog);
2352 		error = 0;
2353 		goto out_drop;
2354 	}
2355 
2356 	/*
2357 	 * If the inode chunks are aligned then use simple maths to
2358 	 * find the location. Otherwise we have to do a btree
2359 	 * lookup to find the location.
2360 	 */
2361 	if (M_IGEO(mp)->inoalign_mask) {
2362 		offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2363 		chunk_agbno = agbno - offset_agbno;
2364 	} else {
2365 		error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
2366 					&chunk_agbno, &offset_agbno, flags);
2367 		if (error)
2368 			goto out_drop;
2369 	}
2370 
2371 out_map:
2372 	ASSERT(agbno >= chunk_agbno);
2373 	cluster_agbno = chunk_agbno +
2374 		((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2375 		 M_IGEO(mp)->blocks_per_cluster);
2376 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2377 		XFS_INO_TO_OFFSET(mp, ino);
2378 
2379 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2380 	imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2381 	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2382 
2383 	/*
2384 	 * If the inode number maps to a block outside the bounds
2385 	 * of the file system then return NULL rather than calling
2386 	 * read_buf and panicing when we get an error from the
2387 	 * driver.
2388 	 */
2389 	if ((imap->im_blkno + imap->im_len) >
2390 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2391 		xfs_alert(mp,
2392 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2393 			__func__, (unsigned long long) imap->im_blkno,
2394 			(unsigned long long) imap->im_len,
2395 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2396 		error = -EINVAL;
2397 		goto out_drop;
2398 	}
2399 	error = 0;
2400 out_drop:
2401 	if (pag)
2402 		xfs_perag_put(pag);
2403 	return error;
2404 }
2405 
2406 /*
2407  * Log specified fields for the ag hdr (inode section). The growth of the agi
2408  * structure over time requires that we interpret the buffer as two logical
2409  * regions delineated by the end of the unlinked list. This is due to the size
2410  * of the hash table and its location in the middle of the agi.
2411  *
2412  * For example, a request to log a field before agi_unlinked and a field after
2413  * agi_unlinked could cause us to log the entire hash table and use an excessive
2414  * amount of log space. To avoid this behavior, log the region up through
2415  * agi_unlinked in one call and the region after agi_unlinked through the end of
2416  * the structure in another.
2417  */
2418 void
2419 xfs_ialloc_log_agi(
2420 	xfs_trans_t	*tp,		/* transaction pointer */
2421 	struct xfs_buf	*bp,		/* allocation group header buffer */
2422 	int		fields)		/* bitmask of fields to log */
2423 {
2424 	int			first;		/* first byte number */
2425 	int			last;		/* last byte number */
2426 	static const short	offsets[] = {	/* field starting offsets */
2427 					/* keep in sync with bit definitions */
2428 		offsetof(xfs_agi_t, agi_magicnum),
2429 		offsetof(xfs_agi_t, agi_versionnum),
2430 		offsetof(xfs_agi_t, agi_seqno),
2431 		offsetof(xfs_agi_t, agi_length),
2432 		offsetof(xfs_agi_t, agi_count),
2433 		offsetof(xfs_agi_t, agi_root),
2434 		offsetof(xfs_agi_t, agi_level),
2435 		offsetof(xfs_agi_t, agi_freecount),
2436 		offsetof(xfs_agi_t, agi_newino),
2437 		offsetof(xfs_agi_t, agi_dirino),
2438 		offsetof(xfs_agi_t, agi_unlinked),
2439 		offsetof(xfs_agi_t, agi_free_root),
2440 		offsetof(xfs_agi_t, agi_free_level),
2441 		offsetof(xfs_agi_t, agi_iblocks),
2442 		sizeof(xfs_agi_t)
2443 	};
2444 #ifdef DEBUG
2445 	struct xfs_agi		*agi = bp->b_addr;
2446 
2447 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2448 #endif
2449 
2450 	/*
2451 	 * Compute byte offsets for the first and last fields in the first
2452 	 * region and log the agi buffer. This only logs up through
2453 	 * agi_unlinked.
2454 	 */
2455 	if (fields & XFS_AGI_ALL_BITS_R1) {
2456 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2457 				  &first, &last);
2458 		xfs_trans_log_buf(tp, bp, first, last);
2459 	}
2460 
2461 	/*
2462 	 * Mask off the bits in the first region and calculate the first and
2463 	 * last field offsets for any bits in the second region.
2464 	 */
2465 	fields &= ~XFS_AGI_ALL_BITS_R1;
2466 	if (fields) {
2467 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2468 				  &first, &last);
2469 		xfs_trans_log_buf(tp, bp, first, last);
2470 	}
2471 }
2472 
2473 static xfs_failaddr_t
2474 xfs_agi_verify(
2475 	struct xfs_buf	*bp)
2476 {
2477 	struct xfs_mount *mp = bp->b_mount;
2478 	struct xfs_agi	*agi = bp->b_addr;
2479 	int		i;
2480 
2481 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2482 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2483 			return __this_address;
2484 		if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2485 			return __this_address;
2486 	}
2487 
2488 	/*
2489 	 * Validate the magic number of the agi block.
2490 	 */
2491 	if (!xfs_verify_magic(bp, agi->agi_magicnum))
2492 		return __this_address;
2493 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2494 		return __this_address;
2495 
2496 	if (be32_to_cpu(agi->agi_level) < 1 ||
2497 	    be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2498 		return __this_address;
2499 
2500 	if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2501 	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2502 	     be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2503 		return __this_address;
2504 
2505 	/*
2506 	 * during growfs operations, the perag is not fully initialised,
2507 	 * so we can't use it for any useful checking. growfs ensures we can't
2508 	 * use it by using uncached buffers that don't have the perag attached
2509 	 * so we can detect and avoid this problem.
2510 	 */
2511 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2512 		return __this_address;
2513 
2514 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2515 		if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2516 			continue;
2517 		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2518 			return __this_address;
2519 	}
2520 
2521 	return NULL;
2522 }
2523 
2524 static void
2525 xfs_agi_read_verify(
2526 	struct xfs_buf	*bp)
2527 {
2528 	struct xfs_mount *mp = bp->b_mount;
2529 	xfs_failaddr_t	fa;
2530 
2531 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2532 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2533 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2534 	else {
2535 		fa = xfs_agi_verify(bp);
2536 		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2537 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2538 	}
2539 }
2540 
2541 static void
2542 xfs_agi_write_verify(
2543 	struct xfs_buf	*bp)
2544 {
2545 	struct xfs_mount	*mp = bp->b_mount;
2546 	struct xfs_buf_log_item	*bip = bp->b_log_item;
2547 	struct xfs_agi		*agi = bp->b_addr;
2548 	xfs_failaddr_t		fa;
2549 
2550 	fa = xfs_agi_verify(bp);
2551 	if (fa) {
2552 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2553 		return;
2554 	}
2555 
2556 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2557 		return;
2558 
2559 	if (bip)
2560 		agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2561 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2562 }
2563 
2564 const struct xfs_buf_ops xfs_agi_buf_ops = {
2565 	.name = "xfs_agi",
2566 	.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2567 	.verify_read = xfs_agi_read_verify,
2568 	.verify_write = xfs_agi_write_verify,
2569 	.verify_struct = xfs_agi_verify,
2570 };
2571 
2572 /*
2573  * Read in the allocation group header (inode allocation section)
2574  */
2575 int
2576 xfs_read_agi(
2577 	struct xfs_mount	*mp,	/* file system mount structure */
2578 	struct xfs_trans	*tp,	/* transaction pointer */
2579 	xfs_agnumber_t		agno,	/* allocation group number */
2580 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2581 {
2582 	int			error;
2583 
2584 	trace_xfs_read_agi(mp, agno);
2585 
2586 	ASSERT(agno != NULLAGNUMBER);
2587 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2588 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2589 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2590 	if (error)
2591 		return error;
2592 	if (tp)
2593 		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2594 
2595 	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2596 	return 0;
2597 }
2598 
2599 int
2600 xfs_ialloc_read_agi(
2601 	struct xfs_mount	*mp,	/* file system mount structure */
2602 	struct xfs_trans	*tp,	/* transaction pointer */
2603 	xfs_agnumber_t		agno,	/* allocation group number */
2604 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2605 {
2606 	struct xfs_agi		*agi;	/* allocation group header */
2607 	struct xfs_perag	*pag;	/* per allocation group data */
2608 	int			error;
2609 
2610 	trace_xfs_ialloc_read_agi(mp, agno);
2611 
2612 	error = xfs_read_agi(mp, tp, agno, bpp);
2613 	if (error)
2614 		return error;
2615 
2616 	agi = (*bpp)->b_addr;
2617 	pag = (*bpp)->b_pag;
2618 	if (!pag->pagi_init) {
2619 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2620 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2621 		pag->pagi_init = 1;
2622 	}
2623 
2624 	/*
2625 	 * It's possible for these to be out of sync if
2626 	 * we are in the middle of a forced shutdown.
2627 	 */
2628 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2629 		XFS_FORCED_SHUTDOWN(mp));
2630 	return 0;
2631 }
2632 
2633 /*
2634  * Read in the agi to initialise the per-ag data in the mount structure
2635  */
2636 int
2637 xfs_ialloc_pagi_init(
2638 	xfs_mount_t	*mp,		/* file system mount structure */
2639 	xfs_trans_t	*tp,		/* transaction pointer */
2640 	xfs_agnumber_t	agno)		/* allocation group number */
2641 {
2642 	struct xfs_buf	*bp = NULL;
2643 	int		error;
2644 
2645 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2646 	if (error)
2647 		return error;
2648 	if (bp)
2649 		xfs_trans_brelse(tp, bp);
2650 	return 0;
2651 }
2652 
2653 /* Is there an inode record covering a given range of inode numbers? */
2654 int
2655 xfs_ialloc_has_inode_record(
2656 	struct xfs_btree_cur	*cur,
2657 	xfs_agino_t		low,
2658 	xfs_agino_t		high,
2659 	bool			*exists)
2660 {
2661 	struct xfs_inobt_rec_incore	irec;
2662 	xfs_agino_t		agino;
2663 	uint16_t		holemask;
2664 	int			has_record;
2665 	int			i;
2666 	int			error;
2667 
2668 	*exists = false;
2669 	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2670 	while (error == 0 && has_record) {
2671 		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2672 		if (error || irec.ir_startino > high)
2673 			break;
2674 
2675 		agino = irec.ir_startino;
2676 		holemask = irec.ir_holemask;
2677 		for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2678 				i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2679 			if (holemask & 1)
2680 				continue;
2681 			if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2682 					agino <= high) {
2683 				*exists = true;
2684 				return 0;
2685 			}
2686 		}
2687 
2688 		error = xfs_btree_increment(cur, 0, &has_record);
2689 	}
2690 	return error;
2691 }
2692 
2693 /* Is there an inode record covering a given extent? */
2694 int
2695 xfs_ialloc_has_inodes_at_extent(
2696 	struct xfs_btree_cur	*cur,
2697 	xfs_agblock_t		bno,
2698 	xfs_extlen_t		len,
2699 	bool			*exists)
2700 {
2701 	xfs_agino_t		low;
2702 	xfs_agino_t		high;
2703 
2704 	low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2705 	high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2706 
2707 	return xfs_ialloc_has_inode_record(cur, low, high, exists);
2708 }
2709 
2710 struct xfs_ialloc_count_inodes {
2711 	xfs_agino_t			count;
2712 	xfs_agino_t			freecount;
2713 };
2714 
2715 /* Record inode counts across all inobt records. */
2716 STATIC int
2717 xfs_ialloc_count_inodes_rec(
2718 	struct xfs_btree_cur		*cur,
2719 	union xfs_btree_rec		*rec,
2720 	void				*priv)
2721 {
2722 	struct xfs_inobt_rec_incore	irec;
2723 	struct xfs_ialloc_count_inodes	*ci = priv;
2724 
2725 	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2726 	ci->count += irec.ir_count;
2727 	ci->freecount += irec.ir_freecount;
2728 
2729 	return 0;
2730 }
2731 
2732 /* Count allocated and free inodes under an inobt. */
2733 int
2734 xfs_ialloc_count_inodes(
2735 	struct xfs_btree_cur		*cur,
2736 	xfs_agino_t			*count,
2737 	xfs_agino_t			*freecount)
2738 {
2739 	struct xfs_ialloc_count_inodes	ci = {0};
2740 	int				error;
2741 
2742 	ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2743 	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2744 	if (error)
2745 		return error;
2746 
2747 	*count = ci.count;
2748 	*freecount = ci.freecount;
2749 	return 0;
2750 }
2751 
2752 /*
2753  * Initialize inode-related geometry information.
2754  *
2755  * Compute the inode btree min and max levels and set maxicount.
2756  *
2757  * Set the inode cluster size.  This may still be overridden by the file
2758  * system block size if it is larger than the chosen cluster size.
2759  *
2760  * For v5 filesystems, scale the cluster size with the inode size to keep a
2761  * constant ratio of inode per cluster buffer, but only if mkfs has set the
2762  * inode alignment value appropriately for larger cluster sizes.
2763  *
2764  * Then compute the inode cluster alignment information.
2765  */
2766 void
2767 xfs_ialloc_setup_geometry(
2768 	struct xfs_mount	*mp)
2769 {
2770 	struct xfs_sb		*sbp = &mp->m_sb;
2771 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2772 	uint64_t		icount;
2773 	uint			inodes;
2774 
2775 	igeo->new_diflags2 = 0;
2776 	if (xfs_sb_version_hasbigtime(&mp->m_sb))
2777 		igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2778 
2779 	/* Compute inode btree geometry. */
2780 	igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2781 	igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2782 	igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2783 	igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2784 	igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2785 
2786 	igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2787 			sbp->sb_inopblock);
2788 	igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2789 
2790 	if (sbp->sb_spino_align)
2791 		igeo->ialloc_min_blks = sbp->sb_spino_align;
2792 	else
2793 		igeo->ialloc_min_blks = igeo->ialloc_blks;
2794 
2795 	/* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2796 	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2797 	igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2798 			inodes);
2799 
2800 	/*
2801 	 * Set the maximum inode count for this filesystem, being careful not
2802 	 * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2803 	 * users should never get here due to failing sb verification, but
2804 	 * certain users (xfs_db) need to be usable even with corrupt metadata.
2805 	 */
2806 	if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2807 		/*
2808 		 * Make sure the maximum inode count is a multiple
2809 		 * of the units we allocate inodes in.
2810 		 */
2811 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2812 		do_div(icount, 100);
2813 		do_div(icount, igeo->ialloc_blks);
2814 		igeo->maxicount = XFS_FSB_TO_INO(mp,
2815 				icount * igeo->ialloc_blks);
2816 	} else {
2817 		igeo->maxicount = 0;
2818 	}
2819 
2820 	/*
2821 	 * Compute the desired size of an inode cluster buffer size, which
2822 	 * starts at 8K and (on v5 filesystems) scales up with larger inode
2823 	 * sizes.
2824 	 *
2825 	 * Preserve the desired inode cluster size because the sparse inodes
2826 	 * feature uses that desired size (not the actual size) to compute the
2827 	 * sparse inode alignment.  The mount code validates this value, so we
2828 	 * cannot change the behavior.
2829 	 */
2830 	igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2831 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
2832 		int	new_size = igeo->inode_cluster_size_raw;
2833 
2834 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2835 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2836 			igeo->inode_cluster_size_raw = new_size;
2837 	}
2838 
2839 	/* Calculate inode cluster ratios. */
2840 	if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2841 		igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2842 				igeo->inode_cluster_size_raw);
2843 	else
2844 		igeo->blocks_per_cluster = 1;
2845 	igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2846 	igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2847 
2848 	/* Calculate inode cluster alignment. */
2849 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
2850 	    mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2851 		igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2852 	else
2853 		igeo->cluster_align = 1;
2854 	igeo->inoalign_mask = igeo->cluster_align - 1;
2855 	igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2856 
2857 	/*
2858 	 * If we are using stripe alignment, check whether
2859 	 * the stripe unit is a multiple of the inode alignment
2860 	 */
2861 	if (mp->m_dalign && igeo->inoalign_mask &&
2862 	    !(mp->m_dalign & igeo->inoalign_mask))
2863 		igeo->ialloc_align = mp->m_dalign;
2864 	else
2865 		igeo->ialloc_align = 0;
2866 }
2867 
2868 /* Compute the location of the root directory inode that is laid out by mkfs. */
2869 xfs_ino_t
2870 xfs_ialloc_calc_rootino(
2871 	struct xfs_mount	*mp,
2872 	int			sunit)
2873 {
2874 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2875 	xfs_agblock_t		first_bno;
2876 
2877 	/*
2878 	 * Pre-calculate the geometry of AG 0.  We know what it looks like
2879 	 * because libxfs knows how to create allocation groups now.
2880 	 *
2881 	 * first_bno is the first block in which mkfs could possibly have
2882 	 * allocated the root directory inode, once we factor in the metadata
2883 	 * that mkfs formats before it.  Namely, the four AG headers...
2884 	 */
2885 	first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2886 
2887 	/* ...the two free space btree roots... */
2888 	first_bno += 2;
2889 
2890 	/* ...the inode btree root... */
2891 	first_bno += 1;
2892 
2893 	/* ...the initial AGFL... */
2894 	first_bno += xfs_alloc_min_freelist(mp, NULL);
2895 
2896 	/* ...the free inode btree root... */
2897 	if (xfs_sb_version_hasfinobt(&mp->m_sb))
2898 		first_bno++;
2899 
2900 	/* ...the reverse mapping btree root... */
2901 	if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2902 		first_bno++;
2903 
2904 	/* ...the reference count btree... */
2905 	if (xfs_sb_version_hasreflink(&mp->m_sb))
2906 		first_bno++;
2907 
2908 	/*
2909 	 * ...and the log, if it is allocated in the first allocation group.
2910 	 *
2911 	 * This can happen with filesystems that only have a single
2912 	 * allocation group, or very odd geometries created by old mkfs
2913 	 * versions on very small filesystems.
2914 	 */
2915 	if (mp->m_sb.sb_logstart &&
2916 	    XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0)
2917 		 first_bno += mp->m_sb.sb_logblocks;
2918 
2919 	/*
2920 	 * Now round first_bno up to whatever allocation alignment is given
2921 	 * by the filesystem or was passed in.
2922 	 */
2923 	if (xfs_sb_version_hasdalign(&mp->m_sb) && igeo->ialloc_align > 0)
2924 		first_bno = roundup(first_bno, sunit);
2925 	else if (xfs_sb_version_hasalign(&mp->m_sb) &&
2926 			mp->m_sb.sb_inoalignmt > 1)
2927 		first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2928 
2929 	return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2930 }
2931