xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_errortag.h"
35 #include "xfs_error.h"
36 #include "xfs_bmap.h"
37 #include "xfs_cksum.h"
38 #include "xfs_trans.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_icreate_item.h"
41 #include "xfs_icache.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44 #include "xfs_rmap.h"
45 
46 
47 /*
48  * Allocation group level functions.
49  */
50 int
51 xfs_ialloc_cluster_alignment(
52 	struct xfs_mount	*mp)
53 {
54 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
55 	    mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
56 		return mp->m_sb.sb_inoalignmt;
57 	return 1;
58 }
59 
60 /*
61  * Lookup a record by ino in the btree given by cur.
62  */
63 int					/* error */
64 xfs_inobt_lookup(
65 	struct xfs_btree_cur	*cur,	/* btree cursor */
66 	xfs_agino_t		ino,	/* starting inode of chunk */
67 	xfs_lookup_t		dir,	/* <=, >=, == */
68 	int			*stat)	/* success/failure */
69 {
70 	cur->bc_rec.i.ir_startino = ino;
71 	cur->bc_rec.i.ir_holemask = 0;
72 	cur->bc_rec.i.ir_count = 0;
73 	cur->bc_rec.i.ir_freecount = 0;
74 	cur->bc_rec.i.ir_free = 0;
75 	return xfs_btree_lookup(cur, dir, stat);
76 }
77 
78 /*
79  * Update the record referred to by cur to the value given.
80  * This either works (return 0) or gets an EFSCORRUPTED error.
81  */
82 STATIC int				/* error */
83 xfs_inobt_update(
84 	struct xfs_btree_cur	*cur,	/* btree cursor */
85 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
86 {
87 	union xfs_btree_rec	rec;
88 
89 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
90 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
91 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
92 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
93 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
94 	} else {
95 		/* ir_holemask/ir_count not supported on-disk */
96 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
97 	}
98 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
99 	return xfs_btree_update(cur, &rec);
100 }
101 
102 /* Convert on-disk btree record to incore inobt record. */
103 void
104 xfs_inobt_btrec_to_irec(
105 	struct xfs_mount		*mp,
106 	union xfs_btree_rec		*rec,
107 	struct xfs_inobt_rec_incore	*irec)
108 {
109 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
110 	if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
111 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
112 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
113 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
114 	} else {
115 		/*
116 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
117 		 * values for full inode chunks.
118 		 */
119 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
120 		irec->ir_count = XFS_INODES_PER_CHUNK;
121 		irec->ir_freecount =
122 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
123 	}
124 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
125 }
126 
127 /*
128  * Get the data from the pointed-to record.
129  */
130 int
131 xfs_inobt_get_rec(
132 	struct xfs_btree_cur		*cur,
133 	struct xfs_inobt_rec_incore	*irec,
134 	int				*stat)
135 {
136 	union xfs_btree_rec		*rec;
137 	int				error;
138 
139 	error = xfs_btree_get_rec(cur, &rec, stat);
140 	if (error || *stat == 0)
141 		return error;
142 
143 	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec);
144 
145 	return 0;
146 }
147 
148 /*
149  * Insert a single inobt record. Cursor must already point to desired location.
150  */
151 STATIC int
152 xfs_inobt_insert_rec(
153 	struct xfs_btree_cur	*cur,
154 	uint16_t		holemask,
155 	uint8_t			count,
156 	int32_t			freecount,
157 	xfs_inofree_t		free,
158 	int			*stat)
159 {
160 	cur->bc_rec.i.ir_holemask = holemask;
161 	cur->bc_rec.i.ir_count = count;
162 	cur->bc_rec.i.ir_freecount = freecount;
163 	cur->bc_rec.i.ir_free = free;
164 	return xfs_btree_insert(cur, stat);
165 }
166 
167 /*
168  * Insert records describing a newly allocated inode chunk into the inobt.
169  */
170 STATIC int
171 xfs_inobt_insert(
172 	struct xfs_mount	*mp,
173 	struct xfs_trans	*tp,
174 	struct xfs_buf		*agbp,
175 	xfs_agino_t		newino,
176 	xfs_agino_t		newlen,
177 	xfs_btnum_t		btnum)
178 {
179 	struct xfs_btree_cur	*cur;
180 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
181 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
182 	xfs_agino_t		thisino;
183 	int			i;
184 	int			error;
185 
186 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
187 
188 	for (thisino = newino;
189 	     thisino < newino + newlen;
190 	     thisino += XFS_INODES_PER_CHUNK) {
191 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
192 		if (error) {
193 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
194 			return error;
195 		}
196 		ASSERT(i == 0);
197 
198 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
199 					     XFS_INODES_PER_CHUNK,
200 					     XFS_INODES_PER_CHUNK,
201 					     XFS_INOBT_ALL_FREE, &i);
202 		if (error) {
203 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
204 			return error;
205 		}
206 		ASSERT(i == 1);
207 	}
208 
209 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
210 
211 	return 0;
212 }
213 
214 /*
215  * Verify that the number of free inodes in the AGI is correct.
216  */
217 #ifdef DEBUG
218 STATIC int
219 xfs_check_agi_freecount(
220 	struct xfs_btree_cur	*cur,
221 	struct xfs_agi		*agi)
222 {
223 	if (cur->bc_nlevels == 1) {
224 		xfs_inobt_rec_incore_t rec;
225 		int		freecount = 0;
226 		int		error;
227 		int		i;
228 
229 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
230 		if (error)
231 			return error;
232 
233 		do {
234 			error = xfs_inobt_get_rec(cur, &rec, &i);
235 			if (error)
236 				return error;
237 
238 			if (i) {
239 				freecount += rec.ir_freecount;
240 				error = xfs_btree_increment(cur, 0, &i);
241 				if (error)
242 					return error;
243 			}
244 		} while (i == 1);
245 
246 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
247 			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
248 	}
249 	return 0;
250 }
251 #else
252 #define xfs_check_agi_freecount(cur, agi)	0
253 #endif
254 
255 /*
256  * Initialise a new set of inodes. When called without a transaction context
257  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258  * than logging them (which in a transaction context puts them into the AIL
259  * for writeback rather than the xfsbufd queue).
260  */
261 int
262 xfs_ialloc_inode_init(
263 	struct xfs_mount	*mp,
264 	struct xfs_trans	*tp,
265 	struct list_head	*buffer_list,
266 	int			icount,
267 	xfs_agnumber_t		agno,
268 	xfs_agblock_t		agbno,
269 	xfs_agblock_t		length,
270 	unsigned int		gen)
271 {
272 	struct xfs_buf		*fbuf;
273 	struct xfs_dinode	*free;
274 	int			nbufs, blks_per_cluster, inodes_per_cluster;
275 	int			version;
276 	int			i, j;
277 	xfs_daddr_t		d;
278 	xfs_ino_t		ino = 0;
279 
280 	/*
281 	 * Loop over the new block(s), filling in the inodes.  For small block
282 	 * sizes, manipulate the inodes in buffers  which are multiples of the
283 	 * blocks size.
284 	 */
285 	blks_per_cluster = xfs_icluster_size_fsb(mp);
286 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
287 	nbufs = length / blks_per_cluster;
288 
289 	/*
290 	 * Figure out what version number to use in the inodes we create.  If
291 	 * the superblock version has caught up to the one that supports the new
292 	 * inode format, then use the new inode version.  Otherwise use the old
293 	 * version so that old kernels will continue to be able to use the file
294 	 * system.
295 	 *
296 	 * For v3 inodes, we also need to write the inode number into the inode,
297 	 * so calculate the first inode number of the chunk here as
298 	 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
299 	 * across multiple filesystem blocks (such as a cluster) and so cannot
300 	 * be used in the cluster buffer loop below.
301 	 *
302 	 * Further, because we are writing the inode directly into the buffer
303 	 * and calculating a CRC on the entire inode, we have ot log the entire
304 	 * inode so that the entire range the CRC covers is present in the log.
305 	 * That means for v3 inode we log the entire buffer rather than just the
306 	 * inode cores.
307 	 */
308 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
309 		version = 3;
310 		ino = XFS_AGINO_TO_INO(mp, agno,
311 				       XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
312 
313 		/*
314 		 * log the initialisation that is about to take place as an
315 		 * logical operation. This means the transaction does not
316 		 * need to log the physical changes to the inode buffers as log
317 		 * recovery will know what initialisation is actually needed.
318 		 * Hence we only need to log the buffers as "ordered" buffers so
319 		 * they track in the AIL as if they were physically logged.
320 		 */
321 		if (tp)
322 			xfs_icreate_log(tp, agno, agbno, icount,
323 					mp->m_sb.sb_inodesize, length, gen);
324 	} else
325 		version = 2;
326 
327 	for (j = 0; j < nbufs; j++) {
328 		/*
329 		 * Get the block.
330 		 */
331 		d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
332 		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
333 					 mp->m_bsize * blks_per_cluster,
334 					 XBF_UNMAPPED);
335 		if (!fbuf)
336 			return -ENOMEM;
337 
338 		/* Initialize the inode buffers and log them appropriately. */
339 		fbuf->b_ops = &xfs_inode_buf_ops;
340 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
341 		for (i = 0; i < inodes_per_cluster; i++) {
342 			int	ioffset = i << mp->m_sb.sb_inodelog;
343 			uint	isize = xfs_dinode_size(version);
344 
345 			free = xfs_make_iptr(mp, fbuf, i);
346 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
347 			free->di_version = version;
348 			free->di_gen = cpu_to_be32(gen);
349 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
350 
351 			if (version == 3) {
352 				free->di_ino = cpu_to_be64(ino);
353 				ino++;
354 				uuid_copy(&free->di_uuid,
355 					  &mp->m_sb.sb_meta_uuid);
356 				xfs_dinode_calc_crc(mp, free);
357 			} else if (tp) {
358 				/* just log the inode core */
359 				xfs_trans_log_buf(tp, fbuf, ioffset,
360 						  ioffset + isize - 1);
361 			}
362 		}
363 
364 		if (tp) {
365 			/*
366 			 * Mark the buffer as an inode allocation buffer so it
367 			 * sticks in AIL at the point of this allocation
368 			 * transaction. This ensures the they are on disk before
369 			 * the tail of the log can be moved past this
370 			 * transaction (i.e. by preventing relogging from moving
371 			 * it forward in the log).
372 			 */
373 			xfs_trans_inode_alloc_buf(tp, fbuf);
374 			if (version == 3) {
375 				/*
376 				 * Mark the buffer as ordered so that they are
377 				 * not physically logged in the transaction but
378 				 * still tracked in the AIL as part of the
379 				 * transaction and pin the log appropriately.
380 				 */
381 				xfs_trans_ordered_buf(tp, fbuf);
382 			}
383 		} else {
384 			fbuf->b_flags |= XBF_DONE;
385 			xfs_buf_delwri_queue(fbuf, buffer_list);
386 			xfs_buf_relse(fbuf);
387 		}
388 	}
389 	return 0;
390 }
391 
392 /*
393  * Align startino and allocmask for a recently allocated sparse chunk such that
394  * they are fit for insertion (or merge) into the on-disk inode btrees.
395  *
396  * Background:
397  *
398  * When enabled, sparse inode support increases the inode alignment from cluster
399  * size to inode chunk size. This means that the minimum range between two
400  * non-adjacent inode records in the inobt is large enough for a full inode
401  * record. This allows for cluster sized, cluster aligned block allocation
402  * without need to worry about whether the resulting inode record overlaps with
403  * another record in the tree. Without this basic rule, we would have to deal
404  * with the consequences of overlap by potentially undoing recent allocations in
405  * the inode allocation codepath.
406  *
407  * Because of this alignment rule (which is enforced on mount), there are two
408  * inobt possibilities for newly allocated sparse chunks. One is that the
409  * aligned inode record for the chunk covers a range of inodes not already
410  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
411  * other is that a record already exists at the aligned startino that considers
412  * the newly allocated range as sparse. In the latter case, record content is
413  * merged in hope that sparse inode chunks fill to full chunks over time.
414  */
415 STATIC void
416 xfs_align_sparse_ino(
417 	struct xfs_mount		*mp,
418 	xfs_agino_t			*startino,
419 	uint16_t			*allocmask)
420 {
421 	xfs_agblock_t			agbno;
422 	xfs_agblock_t			mod;
423 	int				offset;
424 
425 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
426 	mod = agbno % mp->m_sb.sb_inoalignmt;
427 	if (!mod)
428 		return;
429 
430 	/* calculate the inode offset and align startino */
431 	offset = mod << mp->m_sb.sb_inopblog;
432 	*startino -= offset;
433 
434 	/*
435 	 * Since startino has been aligned down, left shift allocmask such that
436 	 * it continues to represent the same physical inodes relative to the
437 	 * new startino.
438 	 */
439 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
440 }
441 
442 /*
443  * Determine whether the source inode record can merge into the target. Both
444  * records must be sparse, the inode ranges must match and there must be no
445  * allocation overlap between the records.
446  */
447 STATIC bool
448 __xfs_inobt_can_merge(
449 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
450 	struct xfs_inobt_rec_incore	*srec)	/* src record */
451 {
452 	uint64_t			talloc;
453 	uint64_t			salloc;
454 
455 	/* records must cover the same inode range */
456 	if (trec->ir_startino != srec->ir_startino)
457 		return false;
458 
459 	/* both records must be sparse */
460 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
461 	    !xfs_inobt_issparse(srec->ir_holemask))
462 		return false;
463 
464 	/* both records must track some inodes */
465 	if (!trec->ir_count || !srec->ir_count)
466 		return false;
467 
468 	/* can't exceed capacity of a full record */
469 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
470 		return false;
471 
472 	/* verify there is no allocation overlap */
473 	talloc = xfs_inobt_irec_to_allocmask(trec);
474 	salloc = xfs_inobt_irec_to_allocmask(srec);
475 	if (talloc & salloc)
476 		return false;
477 
478 	return true;
479 }
480 
481 /*
482  * Merge the source inode record into the target. The caller must call
483  * __xfs_inobt_can_merge() to ensure the merge is valid.
484  */
485 STATIC void
486 __xfs_inobt_rec_merge(
487 	struct xfs_inobt_rec_incore	*trec,	/* target */
488 	struct xfs_inobt_rec_incore	*srec)	/* src */
489 {
490 	ASSERT(trec->ir_startino == srec->ir_startino);
491 
492 	/* combine the counts */
493 	trec->ir_count += srec->ir_count;
494 	trec->ir_freecount += srec->ir_freecount;
495 
496 	/*
497 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
498 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
499 	 */
500 	trec->ir_holemask &= srec->ir_holemask;
501 	trec->ir_free &= srec->ir_free;
502 }
503 
504 /*
505  * Insert a new sparse inode chunk into the associated inode btree. The inode
506  * record for the sparse chunk is pre-aligned to a startino that should match
507  * any pre-existing sparse inode record in the tree. This allows sparse chunks
508  * to fill over time.
509  *
510  * This function supports two modes of handling preexisting records depending on
511  * the merge flag. If merge is true, the provided record is merged with the
512  * existing record and updated in place. The merged record is returned in nrec.
513  * If merge is false, an existing record is replaced with the provided record.
514  * If no preexisting record exists, the provided record is always inserted.
515  *
516  * It is considered corruption if a merge is requested and not possible. Given
517  * the sparse inode alignment constraints, this should never happen.
518  */
519 STATIC int
520 xfs_inobt_insert_sprec(
521 	struct xfs_mount		*mp,
522 	struct xfs_trans		*tp,
523 	struct xfs_buf			*agbp,
524 	int				btnum,
525 	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
526 	bool				merge)	/* merge or replace */
527 {
528 	struct xfs_btree_cur		*cur;
529 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
530 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
531 	int				error;
532 	int				i;
533 	struct xfs_inobt_rec_incore	rec;
534 
535 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
536 
537 	/* the new record is pre-aligned so we know where to look */
538 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
539 	if (error)
540 		goto error;
541 	/* if nothing there, insert a new record and return */
542 	if (i == 0) {
543 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
544 					     nrec->ir_count, nrec->ir_freecount,
545 					     nrec->ir_free, &i);
546 		if (error)
547 			goto error;
548 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
549 
550 		goto out;
551 	}
552 
553 	/*
554 	 * A record exists at this startino. Merge or replace the record
555 	 * depending on what we've been asked to do.
556 	 */
557 	if (merge) {
558 		error = xfs_inobt_get_rec(cur, &rec, &i);
559 		if (error)
560 			goto error;
561 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
562 		XFS_WANT_CORRUPTED_GOTO(mp,
563 					rec.ir_startino == nrec->ir_startino,
564 					error);
565 
566 		/*
567 		 * This should never fail. If we have coexisting records that
568 		 * cannot merge, something is seriously wrong.
569 		 */
570 		XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
571 					error);
572 
573 		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
574 					 rec.ir_holemask, nrec->ir_startino,
575 					 nrec->ir_holemask);
576 
577 		/* merge to nrec to output the updated record */
578 		__xfs_inobt_rec_merge(nrec, &rec);
579 
580 		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
581 					  nrec->ir_holemask);
582 
583 		error = xfs_inobt_rec_check_count(mp, nrec);
584 		if (error)
585 			goto error;
586 	}
587 
588 	error = xfs_inobt_update(cur, nrec);
589 	if (error)
590 		goto error;
591 
592 out:
593 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
594 	return 0;
595 error:
596 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
597 	return error;
598 }
599 
600 /*
601  * Allocate new inodes in the allocation group specified by agbp.
602  * Return 0 for success, else error code.
603  */
604 STATIC int				/* error code or 0 */
605 xfs_ialloc_ag_alloc(
606 	xfs_trans_t	*tp,		/* transaction pointer */
607 	xfs_buf_t	*agbp,		/* alloc group buffer */
608 	int		*alloc)
609 {
610 	xfs_agi_t	*agi;		/* allocation group header */
611 	xfs_alloc_arg_t	args;		/* allocation argument structure */
612 	xfs_agnumber_t	agno;
613 	int		error;
614 	xfs_agino_t	newino;		/* new first inode's number */
615 	xfs_agino_t	newlen;		/* new number of inodes */
616 	int		isaligned = 0;	/* inode allocation at stripe unit */
617 					/* boundary */
618 	uint16_t	allocmask = (uint16_t) -1; /* init. to full chunk */
619 	struct xfs_inobt_rec_incore rec;
620 	struct xfs_perag *pag;
621 	int		do_sparse = 0;
622 
623 	memset(&args, 0, sizeof(args));
624 	args.tp = tp;
625 	args.mp = tp->t_mountp;
626 	args.fsbno = NULLFSBLOCK;
627 	xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
628 
629 #ifdef DEBUG
630 	/* randomly do sparse inode allocations */
631 	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
632 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
633 		do_sparse = prandom_u32() & 1;
634 #endif
635 
636 	/*
637 	 * Locking will ensure that we don't have two callers in here
638 	 * at one time.
639 	 */
640 	newlen = args.mp->m_ialloc_inos;
641 	if (args.mp->m_maxicount &&
642 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
643 							args.mp->m_maxicount)
644 		return -ENOSPC;
645 	args.minlen = args.maxlen = args.mp->m_ialloc_blks;
646 	/*
647 	 * First try to allocate inodes contiguous with the last-allocated
648 	 * chunk of inodes.  If the filesystem is striped, this will fill
649 	 * an entire stripe unit with inodes.
650 	 */
651 	agi = XFS_BUF_TO_AGI(agbp);
652 	newino = be32_to_cpu(agi->agi_newino);
653 	agno = be32_to_cpu(agi->agi_seqno);
654 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
655 		     args.mp->m_ialloc_blks;
656 	if (do_sparse)
657 		goto sparse_alloc;
658 	if (likely(newino != NULLAGINO &&
659 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
660 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
661 		args.type = XFS_ALLOCTYPE_THIS_BNO;
662 		args.prod = 1;
663 
664 		/*
665 		 * We need to take into account alignment here to ensure that
666 		 * we don't modify the free list if we fail to have an exact
667 		 * block. If we don't have an exact match, and every oher
668 		 * attempt allocation attempt fails, we'll end up cancelling
669 		 * a dirty transaction and shutting down.
670 		 *
671 		 * For an exact allocation, alignment must be 1,
672 		 * however we need to take cluster alignment into account when
673 		 * fixing up the freelist. Use the minalignslop field to
674 		 * indicate that extra blocks might be required for alignment,
675 		 * but not to use them in the actual exact allocation.
676 		 */
677 		args.alignment = 1;
678 		args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
679 
680 		/* Allow space for the inode btree to split. */
681 		args.minleft = args.mp->m_in_maxlevels - 1;
682 		if ((error = xfs_alloc_vextent(&args)))
683 			return error;
684 
685 		/*
686 		 * This request might have dirtied the transaction if the AG can
687 		 * satisfy the request, but the exact block was not available.
688 		 * If the allocation did fail, subsequent requests will relax
689 		 * the exact agbno requirement and increase the alignment
690 		 * instead. It is critical that the total size of the request
691 		 * (len + alignment + slop) does not increase from this point
692 		 * on, so reset minalignslop to ensure it is not included in
693 		 * subsequent requests.
694 		 */
695 		args.minalignslop = 0;
696 	}
697 
698 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
699 		/*
700 		 * Set the alignment for the allocation.
701 		 * If stripe alignment is turned on then align at stripe unit
702 		 * boundary.
703 		 * If the cluster size is smaller than a filesystem block
704 		 * then we're doing I/O for inodes in filesystem block size
705 		 * pieces, so don't need alignment anyway.
706 		 */
707 		isaligned = 0;
708 		if (args.mp->m_sinoalign) {
709 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
710 			args.alignment = args.mp->m_dalign;
711 			isaligned = 1;
712 		} else
713 			args.alignment = xfs_ialloc_cluster_alignment(args.mp);
714 		/*
715 		 * Need to figure out where to allocate the inode blocks.
716 		 * Ideally they should be spaced out through the a.g.
717 		 * For now, just allocate blocks up front.
718 		 */
719 		args.agbno = be32_to_cpu(agi->agi_root);
720 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
721 		/*
722 		 * Allocate a fixed-size extent of inodes.
723 		 */
724 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
725 		args.prod = 1;
726 		/*
727 		 * Allow space for the inode btree to split.
728 		 */
729 		args.minleft = args.mp->m_in_maxlevels - 1;
730 		if ((error = xfs_alloc_vextent(&args)))
731 			return error;
732 	}
733 
734 	/*
735 	 * If stripe alignment is turned on, then try again with cluster
736 	 * alignment.
737 	 */
738 	if (isaligned && args.fsbno == NULLFSBLOCK) {
739 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
740 		args.agbno = be32_to_cpu(agi->agi_root);
741 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
742 		args.alignment = xfs_ialloc_cluster_alignment(args.mp);
743 		if ((error = xfs_alloc_vextent(&args)))
744 			return error;
745 	}
746 
747 	/*
748 	 * Finally, try a sparse allocation if the filesystem supports it and
749 	 * the sparse allocation length is smaller than a full chunk.
750 	 */
751 	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
752 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
753 	    args.fsbno == NULLFSBLOCK) {
754 sparse_alloc:
755 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
756 		args.agbno = be32_to_cpu(agi->agi_root);
757 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
758 		args.alignment = args.mp->m_sb.sb_spino_align;
759 		args.prod = 1;
760 
761 		args.minlen = args.mp->m_ialloc_min_blks;
762 		args.maxlen = args.minlen;
763 
764 		/*
765 		 * The inode record will be aligned to full chunk size. We must
766 		 * prevent sparse allocation from AG boundaries that result in
767 		 * invalid inode records, such as records that start at agbno 0
768 		 * or extend beyond the AG.
769 		 *
770 		 * Set min agbno to the first aligned, non-zero agbno and max to
771 		 * the last aligned agbno that is at least one full chunk from
772 		 * the end of the AG.
773 		 */
774 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
775 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
776 					    args.mp->m_sb.sb_inoalignmt) -
777 				 args.mp->m_ialloc_blks;
778 
779 		error = xfs_alloc_vextent(&args);
780 		if (error)
781 			return error;
782 
783 		newlen = args.len << args.mp->m_sb.sb_inopblog;
784 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
785 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
786 	}
787 
788 	if (args.fsbno == NULLFSBLOCK) {
789 		*alloc = 0;
790 		return 0;
791 	}
792 	ASSERT(args.len == args.minlen);
793 
794 	/*
795 	 * Stamp and write the inode buffers.
796 	 *
797 	 * Seed the new inode cluster with a random generation number. This
798 	 * prevents short-term reuse of generation numbers if a chunk is
799 	 * freed and then immediately reallocated. We use random numbers
800 	 * rather than a linear progression to prevent the next generation
801 	 * number from being easily guessable.
802 	 */
803 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
804 			args.agbno, args.len, prandom_u32());
805 
806 	if (error)
807 		return error;
808 	/*
809 	 * Convert the results.
810 	 */
811 	newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
812 
813 	if (xfs_inobt_issparse(~allocmask)) {
814 		/*
815 		 * We've allocated a sparse chunk. Align the startino and mask.
816 		 */
817 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
818 
819 		rec.ir_startino = newino;
820 		rec.ir_holemask = ~allocmask;
821 		rec.ir_count = newlen;
822 		rec.ir_freecount = newlen;
823 		rec.ir_free = XFS_INOBT_ALL_FREE;
824 
825 		/*
826 		 * Insert the sparse record into the inobt and allow for a merge
827 		 * if necessary. If a merge does occur, rec is updated to the
828 		 * merged record.
829 		 */
830 		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
831 					       &rec, true);
832 		if (error == -EFSCORRUPTED) {
833 			xfs_alert(args.mp,
834 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
835 				  XFS_AGINO_TO_INO(args.mp, agno,
836 						   rec.ir_startino),
837 				  rec.ir_holemask, rec.ir_count);
838 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
839 		}
840 		if (error)
841 			return error;
842 
843 		/*
844 		 * We can't merge the part we've just allocated as for the inobt
845 		 * due to finobt semantics. The original record may or may not
846 		 * exist independent of whether physical inodes exist in this
847 		 * sparse chunk.
848 		 *
849 		 * We must update the finobt record based on the inobt record.
850 		 * rec contains the fully merged and up to date inobt record
851 		 * from the previous call. Set merge false to replace any
852 		 * existing record with this one.
853 		 */
854 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
855 			error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
856 						       XFS_BTNUM_FINO, &rec,
857 						       false);
858 			if (error)
859 				return error;
860 		}
861 	} else {
862 		/* full chunk - insert new records to both btrees */
863 		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
864 					 XFS_BTNUM_INO);
865 		if (error)
866 			return error;
867 
868 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
869 			error = xfs_inobt_insert(args.mp, tp, agbp, newino,
870 						 newlen, XFS_BTNUM_FINO);
871 			if (error)
872 				return error;
873 		}
874 	}
875 
876 	/*
877 	 * Update AGI counts and newino.
878 	 */
879 	be32_add_cpu(&agi->agi_count, newlen);
880 	be32_add_cpu(&agi->agi_freecount, newlen);
881 	pag = xfs_perag_get(args.mp, agno);
882 	pag->pagi_freecount += newlen;
883 	xfs_perag_put(pag);
884 	agi->agi_newino = cpu_to_be32(newino);
885 
886 	/*
887 	 * Log allocation group header fields
888 	 */
889 	xfs_ialloc_log_agi(tp, agbp,
890 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
891 	/*
892 	 * Modify/log superblock values for inode count and inode free count.
893 	 */
894 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
895 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
896 	*alloc = 1;
897 	return 0;
898 }
899 
900 STATIC xfs_agnumber_t
901 xfs_ialloc_next_ag(
902 	xfs_mount_t	*mp)
903 {
904 	xfs_agnumber_t	agno;
905 
906 	spin_lock(&mp->m_agirotor_lock);
907 	agno = mp->m_agirotor;
908 	if (++mp->m_agirotor >= mp->m_maxagi)
909 		mp->m_agirotor = 0;
910 	spin_unlock(&mp->m_agirotor_lock);
911 
912 	return agno;
913 }
914 
915 /*
916  * Select an allocation group to look for a free inode in, based on the parent
917  * inode and the mode.  Return the allocation group buffer.
918  */
919 STATIC xfs_agnumber_t
920 xfs_ialloc_ag_select(
921 	xfs_trans_t	*tp,		/* transaction pointer */
922 	xfs_ino_t	parent,		/* parent directory inode number */
923 	umode_t		mode)		/* bits set to indicate file type */
924 {
925 	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
926 	xfs_agnumber_t	agno;		/* current ag number */
927 	int		flags;		/* alloc buffer locking flags */
928 	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
929 	xfs_extlen_t	longest = 0;	/* longest extent available */
930 	xfs_mount_t	*mp;		/* mount point structure */
931 	int		needspace;	/* file mode implies space allocated */
932 	xfs_perag_t	*pag;		/* per allocation group data */
933 	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
934 	int		error;
935 
936 	/*
937 	 * Files of these types need at least one block if length > 0
938 	 * (and they won't fit in the inode, but that's hard to figure out).
939 	 */
940 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
941 	mp = tp->t_mountp;
942 	agcount = mp->m_maxagi;
943 	if (S_ISDIR(mode))
944 		pagno = xfs_ialloc_next_ag(mp);
945 	else {
946 		pagno = XFS_INO_TO_AGNO(mp, parent);
947 		if (pagno >= agcount)
948 			pagno = 0;
949 	}
950 
951 	ASSERT(pagno < agcount);
952 
953 	/*
954 	 * Loop through allocation groups, looking for one with a little
955 	 * free space in it.  Note we don't look for free inodes, exactly.
956 	 * Instead, we include whether there is a need to allocate inodes
957 	 * to mean that blocks must be allocated for them,
958 	 * if none are currently free.
959 	 */
960 	agno = pagno;
961 	flags = XFS_ALLOC_FLAG_TRYLOCK;
962 	for (;;) {
963 		pag = xfs_perag_get(mp, agno);
964 		if (!pag->pagi_inodeok) {
965 			xfs_ialloc_next_ag(mp);
966 			goto nextag;
967 		}
968 
969 		if (!pag->pagi_init) {
970 			error = xfs_ialloc_pagi_init(mp, tp, agno);
971 			if (error)
972 				goto nextag;
973 		}
974 
975 		if (pag->pagi_freecount) {
976 			xfs_perag_put(pag);
977 			return agno;
978 		}
979 
980 		if (!pag->pagf_init) {
981 			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
982 			if (error)
983 				goto nextag;
984 		}
985 
986 		/*
987 		 * Check that there is enough free space for the file plus a
988 		 * chunk of inodes if we need to allocate some. If this is the
989 		 * first pass across the AGs, take into account the potential
990 		 * space needed for alignment of inode chunks when checking the
991 		 * longest contiguous free space in the AG - this prevents us
992 		 * from getting ENOSPC because we have free space larger than
993 		 * m_ialloc_blks but alignment constraints prevent us from using
994 		 * it.
995 		 *
996 		 * If we can't find an AG with space for full alignment slack to
997 		 * be taken into account, we must be near ENOSPC in all AGs.
998 		 * Hence we don't include alignment for the second pass and so
999 		 * if we fail allocation due to alignment issues then it is most
1000 		 * likely a real ENOSPC condition.
1001 		 */
1002 		ineed = mp->m_ialloc_min_blks;
1003 		if (flags && ineed > 1)
1004 			ineed += xfs_ialloc_cluster_alignment(mp);
1005 		longest = pag->pagf_longest;
1006 		if (!longest)
1007 			longest = pag->pagf_flcount > 0;
1008 
1009 		if (pag->pagf_freeblks >= needspace + ineed &&
1010 		    longest >= ineed) {
1011 			xfs_perag_put(pag);
1012 			return agno;
1013 		}
1014 nextag:
1015 		xfs_perag_put(pag);
1016 		/*
1017 		 * No point in iterating over the rest, if we're shutting
1018 		 * down.
1019 		 */
1020 		if (XFS_FORCED_SHUTDOWN(mp))
1021 			return NULLAGNUMBER;
1022 		agno++;
1023 		if (agno >= agcount)
1024 			agno = 0;
1025 		if (agno == pagno) {
1026 			if (flags == 0)
1027 				return NULLAGNUMBER;
1028 			flags = 0;
1029 		}
1030 	}
1031 }
1032 
1033 /*
1034  * Try to retrieve the next record to the left/right from the current one.
1035  */
1036 STATIC int
1037 xfs_ialloc_next_rec(
1038 	struct xfs_btree_cur	*cur,
1039 	xfs_inobt_rec_incore_t	*rec,
1040 	int			*done,
1041 	int			left)
1042 {
1043 	int                     error;
1044 	int			i;
1045 
1046 	if (left)
1047 		error = xfs_btree_decrement(cur, 0, &i);
1048 	else
1049 		error = xfs_btree_increment(cur, 0, &i);
1050 
1051 	if (error)
1052 		return error;
1053 	*done = !i;
1054 	if (i) {
1055 		error = xfs_inobt_get_rec(cur, rec, &i);
1056 		if (error)
1057 			return error;
1058 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1059 	}
1060 
1061 	return 0;
1062 }
1063 
1064 STATIC int
1065 xfs_ialloc_get_rec(
1066 	struct xfs_btree_cur	*cur,
1067 	xfs_agino_t		agino,
1068 	xfs_inobt_rec_incore_t	*rec,
1069 	int			*done)
1070 {
1071 	int                     error;
1072 	int			i;
1073 
1074 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1075 	if (error)
1076 		return error;
1077 	*done = !i;
1078 	if (i) {
1079 		error = xfs_inobt_get_rec(cur, rec, &i);
1080 		if (error)
1081 			return error;
1082 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 /*
1089  * Return the offset of the first free inode in the record. If the inode chunk
1090  * is sparsely allocated, we convert the record holemask to inode granularity
1091  * and mask off the unallocated regions from the inode free mask.
1092  */
1093 STATIC int
1094 xfs_inobt_first_free_inode(
1095 	struct xfs_inobt_rec_incore	*rec)
1096 {
1097 	xfs_inofree_t			realfree;
1098 
1099 	/* if there are no holes, return the first available offset */
1100 	if (!xfs_inobt_issparse(rec->ir_holemask))
1101 		return xfs_lowbit64(rec->ir_free);
1102 
1103 	realfree = xfs_inobt_irec_to_allocmask(rec);
1104 	realfree &= rec->ir_free;
1105 
1106 	return xfs_lowbit64(realfree);
1107 }
1108 
1109 /*
1110  * Allocate an inode using the inobt-only algorithm.
1111  */
1112 STATIC int
1113 xfs_dialloc_ag_inobt(
1114 	struct xfs_trans	*tp,
1115 	struct xfs_buf		*agbp,
1116 	xfs_ino_t		parent,
1117 	xfs_ino_t		*inop)
1118 {
1119 	struct xfs_mount	*mp = tp->t_mountp;
1120 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
1121 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
1122 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1123 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1124 	struct xfs_perag	*pag;
1125 	struct xfs_btree_cur	*cur, *tcur;
1126 	struct xfs_inobt_rec_incore rec, trec;
1127 	xfs_ino_t		ino;
1128 	int			error;
1129 	int			offset;
1130 	int			i, j;
1131 	int			searchdistance = 10;
1132 
1133 	pag = xfs_perag_get(mp, agno);
1134 
1135 	ASSERT(pag->pagi_init);
1136 	ASSERT(pag->pagi_inodeok);
1137 	ASSERT(pag->pagi_freecount > 0);
1138 
1139  restart_pagno:
1140 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1141 	/*
1142 	 * If pagino is 0 (this is the root inode allocation) use newino.
1143 	 * This must work because we've just allocated some.
1144 	 */
1145 	if (!pagino)
1146 		pagino = be32_to_cpu(agi->agi_newino);
1147 
1148 	error = xfs_check_agi_freecount(cur, agi);
1149 	if (error)
1150 		goto error0;
1151 
1152 	/*
1153 	 * If in the same AG as the parent, try to get near the parent.
1154 	 */
1155 	if (pagno == agno) {
1156 		int		doneleft;	/* done, to the left */
1157 		int		doneright;	/* done, to the right */
1158 
1159 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1160 		if (error)
1161 			goto error0;
1162 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1163 
1164 		error = xfs_inobt_get_rec(cur, &rec, &j);
1165 		if (error)
1166 			goto error0;
1167 		XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1168 
1169 		if (rec.ir_freecount > 0) {
1170 			/*
1171 			 * Found a free inode in the same chunk
1172 			 * as the parent, done.
1173 			 */
1174 			goto alloc_inode;
1175 		}
1176 
1177 
1178 		/*
1179 		 * In the same AG as parent, but parent's chunk is full.
1180 		 */
1181 
1182 		/* duplicate the cursor, search left & right simultaneously */
1183 		error = xfs_btree_dup_cursor(cur, &tcur);
1184 		if (error)
1185 			goto error0;
1186 
1187 		/*
1188 		 * Skip to last blocks looked up if same parent inode.
1189 		 */
1190 		if (pagino != NULLAGINO &&
1191 		    pag->pagl_pagino == pagino &&
1192 		    pag->pagl_leftrec != NULLAGINO &&
1193 		    pag->pagl_rightrec != NULLAGINO) {
1194 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1195 						   &trec, &doneleft);
1196 			if (error)
1197 				goto error1;
1198 
1199 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1200 						   &rec, &doneright);
1201 			if (error)
1202 				goto error1;
1203 		} else {
1204 			/* search left with tcur, back up 1 record */
1205 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1206 			if (error)
1207 				goto error1;
1208 
1209 			/* search right with cur, go forward 1 record. */
1210 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1211 			if (error)
1212 				goto error1;
1213 		}
1214 
1215 		/*
1216 		 * Loop until we find an inode chunk with a free inode.
1217 		 */
1218 		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1219 			int	useleft;  /* using left inode chunk this time */
1220 
1221 			/* figure out the closer block if both are valid. */
1222 			if (!doneleft && !doneright) {
1223 				useleft = pagino -
1224 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1225 				  rec.ir_startino - pagino;
1226 			} else {
1227 				useleft = !doneleft;
1228 			}
1229 
1230 			/* free inodes to the left? */
1231 			if (useleft && trec.ir_freecount) {
1232 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1233 				cur = tcur;
1234 
1235 				pag->pagl_leftrec = trec.ir_startino;
1236 				pag->pagl_rightrec = rec.ir_startino;
1237 				pag->pagl_pagino = pagino;
1238 				rec = trec;
1239 				goto alloc_inode;
1240 			}
1241 
1242 			/* free inodes to the right? */
1243 			if (!useleft && rec.ir_freecount) {
1244 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1245 
1246 				pag->pagl_leftrec = trec.ir_startino;
1247 				pag->pagl_rightrec = rec.ir_startino;
1248 				pag->pagl_pagino = pagino;
1249 				goto alloc_inode;
1250 			}
1251 
1252 			/* get next record to check */
1253 			if (useleft) {
1254 				error = xfs_ialloc_next_rec(tcur, &trec,
1255 								 &doneleft, 1);
1256 			} else {
1257 				error = xfs_ialloc_next_rec(cur, &rec,
1258 								 &doneright, 0);
1259 			}
1260 			if (error)
1261 				goto error1;
1262 		}
1263 
1264 		if (searchdistance <= 0) {
1265 			/*
1266 			 * Not in range - save last search
1267 			 * location and allocate a new inode
1268 			 */
1269 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1270 			pag->pagl_leftrec = trec.ir_startino;
1271 			pag->pagl_rightrec = rec.ir_startino;
1272 			pag->pagl_pagino = pagino;
1273 
1274 		} else {
1275 			/*
1276 			 * We've reached the end of the btree. because
1277 			 * we are only searching a small chunk of the
1278 			 * btree each search, there is obviously free
1279 			 * inodes closer to the parent inode than we
1280 			 * are now. restart the search again.
1281 			 */
1282 			pag->pagl_pagino = NULLAGINO;
1283 			pag->pagl_leftrec = NULLAGINO;
1284 			pag->pagl_rightrec = NULLAGINO;
1285 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1286 			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1287 			goto restart_pagno;
1288 		}
1289 	}
1290 
1291 	/*
1292 	 * In a different AG from the parent.
1293 	 * See if the most recently allocated block has any free.
1294 	 */
1295 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1296 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1297 					 XFS_LOOKUP_EQ, &i);
1298 		if (error)
1299 			goto error0;
1300 
1301 		if (i == 1) {
1302 			error = xfs_inobt_get_rec(cur, &rec, &j);
1303 			if (error)
1304 				goto error0;
1305 
1306 			if (j == 1 && rec.ir_freecount > 0) {
1307 				/*
1308 				 * The last chunk allocated in the group
1309 				 * still has a free inode.
1310 				 */
1311 				goto alloc_inode;
1312 			}
1313 		}
1314 	}
1315 
1316 	/*
1317 	 * None left in the last group, search the whole AG
1318 	 */
1319 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1320 	if (error)
1321 		goto error0;
1322 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1323 
1324 	for (;;) {
1325 		error = xfs_inobt_get_rec(cur, &rec, &i);
1326 		if (error)
1327 			goto error0;
1328 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1329 		if (rec.ir_freecount > 0)
1330 			break;
1331 		error = xfs_btree_increment(cur, 0, &i);
1332 		if (error)
1333 			goto error0;
1334 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1335 	}
1336 
1337 alloc_inode:
1338 	offset = xfs_inobt_first_free_inode(&rec);
1339 	ASSERT(offset >= 0);
1340 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1341 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1342 				   XFS_INODES_PER_CHUNK) == 0);
1343 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1344 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1345 	rec.ir_freecount--;
1346 	error = xfs_inobt_update(cur, &rec);
1347 	if (error)
1348 		goto error0;
1349 	be32_add_cpu(&agi->agi_freecount, -1);
1350 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1351 	pag->pagi_freecount--;
1352 
1353 	error = xfs_check_agi_freecount(cur, agi);
1354 	if (error)
1355 		goto error0;
1356 
1357 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1358 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1359 	xfs_perag_put(pag);
1360 	*inop = ino;
1361 	return 0;
1362 error1:
1363 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1364 error0:
1365 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1366 	xfs_perag_put(pag);
1367 	return error;
1368 }
1369 
1370 /*
1371  * Use the free inode btree to allocate an inode based on distance from the
1372  * parent. Note that the provided cursor may be deleted and replaced.
1373  */
1374 STATIC int
1375 xfs_dialloc_ag_finobt_near(
1376 	xfs_agino_t			pagino,
1377 	struct xfs_btree_cur		**ocur,
1378 	struct xfs_inobt_rec_incore	*rec)
1379 {
1380 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1381 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1382 	struct xfs_inobt_rec_incore	rrec;
1383 	int				error;
1384 	int				i, j;
1385 
1386 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1387 	if (error)
1388 		return error;
1389 
1390 	if (i == 1) {
1391 		error = xfs_inobt_get_rec(lcur, rec, &i);
1392 		if (error)
1393 			return error;
1394 		XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1395 
1396 		/*
1397 		 * See if we've landed in the parent inode record. The finobt
1398 		 * only tracks chunks with at least one free inode, so record
1399 		 * existence is enough.
1400 		 */
1401 		if (pagino >= rec->ir_startino &&
1402 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1403 			return 0;
1404 	}
1405 
1406 	error = xfs_btree_dup_cursor(lcur, &rcur);
1407 	if (error)
1408 		return error;
1409 
1410 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1411 	if (error)
1412 		goto error_rcur;
1413 	if (j == 1) {
1414 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1415 		if (error)
1416 			goto error_rcur;
1417 		XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1418 	}
1419 
1420 	XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1421 	if (i == 1 && j == 1) {
1422 		/*
1423 		 * Both the left and right records are valid. Choose the closer
1424 		 * inode chunk to the target.
1425 		 */
1426 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1427 		    (rrec.ir_startino - pagino)) {
1428 			*rec = rrec;
1429 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1430 			*ocur = rcur;
1431 		} else {
1432 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1433 		}
1434 	} else if (j == 1) {
1435 		/* only the right record is valid */
1436 		*rec = rrec;
1437 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1438 		*ocur = rcur;
1439 	} else if (i == 1) {
1440 		/* only the left record is valid */
1441 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1442 	}
1443 
1444 	return 0;
1445 
1446 error_rcur:
1447 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1448 	return error;
1449 }
1450 
1451 /*
1452  * Use the free inode btree to find a free inode based on a newino hint. If
1453  * the hint is NULL, find the first free inode in the AG.
1454  */
1455 STATIC int
1456 xfs_dialloc_ag_finobt_newino(
1457 	struct xfs_agi			*agi,
1458 	struct xfs_btree_cur		*cur,
1459 	struct xfs_inobt_rec_incore	*rec)
1460 {
1461 	int error;
1462 	int i;
1463 
1464 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1465 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1466 					 XFS_LOOKUP_EQ, &i);
1467 		if (error)
1468 			return error;
1469 		if (i == 1) {
1470 			error = xfs_inobt_get_rec(cur, rec, &i);
1471 			if (error)
1472 				return error;
1473 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1474 			return 0;
1475 		}
1476 	}
1477 
1478 	/*
1479 	 * Find the first inode available in the AG.
1480 	 */
1481 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1482 	if (error)
1483 		return error;
1484 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1485 
1486 	error = xfs_inobt_get_rec(cur, rec, &i);
1487 	if (error)
1488 		return error;
1489 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1490 
1491 	return 0;
1492 }
1493 
1494 /*
1495  * Update the inobt based on a modification made to the finobt. Also ensure that
1496  * the records from both trees are equivalent post-modification.
1497  */
1498 STATIC int
1499 xfs_dialloc_ag_update_inobt(
1500 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1501 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1502 	int				offset) /* inode offset */
1503 {
1504 	struct xfs_inobt_rec_incore	rec;
1505 	int				error;
1506 	int				i;
1507 
1508 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1509 	if (error)
1510 		return error;
1511 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1512 
1513 	error = xfs_inobt_get_rec(cur, &rec, &i);
1514 	if (error)
1515 		return error;
1516 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1517 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1518 				   XFS_INODES_PER_CHUNK) == 0);
1519 
1520 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1521 	rec.ir_freecount--;
1522 
1523 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1524 				  (rec.ir_freecount == frec->ir_freecount));
1525 
1526 	return xfs_inobt_update(cur, &rec);
1527 }
1528 
1529 /*
1530  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1531  * back to the inobt search algorithm.
1532  *
1533  * The caller selected an AG for us, and made sure that free inodes are
1534  * available.
1535  */
1536 STATIC int
1537 xfs_dialloc_ag(
1538 	struct xfs_trans	*tp,
1539 	struct xfs_buf		*agbp,
1540 	xfs_ino_t		parent,
1541 	xfs_ino_t		*inop)
1542 {
1543 	struct xfs_mount		*mp = tp->t_mountp;
1544 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1545 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1546 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1547 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1548 	struct xfs_perag		*pag;
1549 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1550 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1551 	struct xfs_inobt_rec_incore	rec;
1552 	xfs_ino_t			ino;
1553 	int				error;
1554 	int				offset;
1555 	int				i;
1556 
1557 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1558 		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1559 
1560 	pag = xfs_perag_get(mp, agno);
1561 
1562 	/*
1563 	 * If pagino is 0 (this is the root inode allocation) use newino.
1564 	 * This must work because we've just allocated some.
1565 	 */
1566 	if (!pagino)
1567 		pagino = be32_to_cpu(agi->agi_newino);
1568 
1569 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1570 
1571 	error = xfs_check_agi_freecount(cur, agi);
1572 	if (error)
1573 		goto error_cur;
1574 
1575 	/*
1576 	 * The search algorithm depends on whether we're in the same AG as the
1577 	 * parent. If so, find the closest available inode to the parent. If
1578 	 * not, consider the agi hint or find the first free inode in the AG.
1579 	 */
1580 	if (agno == pagno)
1581 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1582 	else
1583 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1584 	if (error)
1585 		goto error_cur;
1586 
1587 	offset = xfs_inobt_first_free_inode(&rec);
1588 	ASSERT(offset >= 0);
1589 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1590 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1591 				   XFS_INODES_PER_CHUNK) == 0);
1592 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1593 
1594 	/*
1595 	 * Modify or remove the finobt record.
1596 	 */
1597 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1598 	rec.ir_freecount--;
1599 	if (rec.ir_freecount)
1600 		error = xfs_inobt_update(cur, &rec);
1601 	else
1602 		error = xfs_btree_delete(cur, &i);
1603 	if (error)
1604 		goto error_cur;
1605 
1606 	/*
1607 	 * The finobt has now been updated appropriately. We haven't updated the
1608 	 * agi and superblock yet, so we can create an inobt cursor and validate
1609 	 * the original freecount. If all is well, make the equivalent update to
1610 	 * the inobt using the finobt record and offset information.
1611 	 */
1612 	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1613 
1614 	error = xfs_check_agi_freecount(icur, agi);
1615 	if (error)
1616 		goto error_icur;
1617 
1618 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1619 	if (error)
1620 		goto error_icur;
1621 
1622 	/*
1623 	 * Both trees have now been updated. We must update the perag and
1624 	 * superblock before we can check the freecount for each btree.
1625 	 */
1626 	be32_add_cpu(&agi->agi_freecount, -1);
1627 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1628 	pag->pagi_freecount--;
1629 
1630 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1631 
1632 	error = xfs_check_agi_freecount(icur, agi);
1633 	if (error)
1634 		goto error_icur;
1635 	error = xfs_check_agi_freecount(cur, agi);
1636 	if (error)
1637 		goto error_icur;
1638 
1639 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1640 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1641 	xfs_perag_put(pag);
1642 	*inop = ino;
1643 	return 0;
1644 
1645 error_icur:
1646 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1647 error_cur:
1648 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1649 	xfs_perag_put(pag);
1650 	return error;
1651 }
1652 
1653 /*
1654  * Allocate an inode on disk.
1655  *
1656  * Mode is used to tell whether the new inode will need space, and whether it
1657  * is a directory.
1658  *
1659  * This function is designed to be called twice if it has to do an allocation
1660  * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1661  * If an inode is available without having to performn an allocation, an inode
1662  * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1663  * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1664  * The caller should then commit the current transaction, allocate a
1665  * new transaction, and call xfs_dialloc() again, passing in the previous value
1666  * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1667  * buffer is locked across the two calls, the second call is guaranteed to have
1668  * a free inode available.
1669  *
1670  * Once we successfully pick an inode its number is returned and the on-disk
1671  * data structures are updated.  The inode itself is not read in, since doing so
1672  * would break ordering constraints with xfs_reclaim.
1673  */
1674 int
1675 xfs_dialloc(
1676 	struct xfs_trans	*tp,
1677 	xfs_ino_t		parent,
1678 	umode_t			mode,
1679 	struct xfs_buf		**IO_agbp,
1680 	xfs_ino_t		*inop)
1681 {
1682 	struct xfs_mount	*mp = tp->t_mountp;
1683 	struct xfs_buf		*agbp;
1684 	xfs_agnumber_t		agno;
1685 	int			error;
1686 	int			ialloced;
1687 	int			noroom = 0;
1688 	xfs_agnumber_t		start_agno;
1689 	struct xfs_perag	*pag;
1690 	int			okalloc = 1;
1691 
1692 	if (*IO_agbp) {
1693 		/*
1694 		 * If the caller passes in a pointer to the AGI buffer,
1695 		 * continue where we left off before.  In this case, we
1696 		 * know that the allocation group has free inodes.
1697 		 */
1698 		agbp = *IO_agbp;
1699 		goto out_alloc;
1700 	}
1701 
1702 	/*
1703 	 * We do not have an agbp, so select an initial allocation
1704 	 * group for inode allocation.
1705 	 */
1706 	start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1707 	if (start_agno == NULLAGNUMBER) {
1708 		*inop = NULLFSINO;
1709 		return 0;
1710 	}
1711 
1712 	/*
1713 	 * If we have already hit the ceiling of inode blocks then clear
1714 	 * okalloc so we scan all available agi structures for a free
1715 	 * inode.
1716 	 *
1717 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1718 	 * which will sacrifice the preciseness but improve the performance.
1719 	 */
1720 	if (mp->m_maxicount &&
1721 	    percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1722 							> mp->m_maxicount) {
1723 		noroom = 1;
1724 		okalloc = 0;
1725 	}
1726 
1727 	/*
1728 	 * Loop until we find an allocation group that either has free inodes
1729 	 * or in which we can allocate some inodes.  Iterate through the
1730 	 * allocation groups upward, wrapping at the end.
1731 	 */
1732 	agno = start_agno;
1733 	for (;;) {
1734 		pag = xfs_perag_get(mp, agno);
1735 		if (!pag->pagi_inodeok) {
1736 			xfs_ialloc_next_ag(mp);
1737 			goto nextag;
1738 		}
1739 
1740 		if (!pag->pagi_init) {
1741 			error = xfs_ialloc_pagi_init(mp, tp, agno);
1742 			if (error)
1743 				goto out_error;
1744 		}
1745 
1746 		/*
1747 		 * Do a first racy fast path check if this AG is usable.
1748 		 */
1749 		if (!pag->pagi_freecount && !okalloc)
1750 			goto nextag;
1751 
1752 		/*
1753 		 * Then read in the AGI buffer and recheck with the AGI buffer
1754 		 * lock held.
1755 		 */
1756 		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1757 		if (error)
1758 			goto out_error;
1759 
1760 		if (pag->pagi_freecount) {
1761 			xfs_perag_put(pag);
1762 			goto out_alloc;
1763 		}
1764 
1765 		if (!okalloc)
1766 			goto nextag_relse_buffer;
1767 
1768 
1769 		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1770 		if (error) {
1771 			xfs_trans_brelse(tp, agbp);
1772 
1773 			if (error != -ENOSPC)
1774 				goto out_error;
1775 
1776 			xfs_perag_put(pag);
1777 			*inop = NULLFSINO;
1778 			return 0;
1779 		}
1780 
1781 		if (ialloced) {
1782 			/*
1783 			 * We successfully allocated some inodes, return
1784 			 * the current context to the caller so that it
1785 			 * can commit the current transaction and call
1786 			 * us again where we left off.
1787 			 */
1788 			ASSERT(pag->pagi_freecount > 0);
1789 			xfs_perag_put(pag);
1790 
1791 			*IO_agbp = agbp;
1792 			*inop = NULLFSINO;
1793 			return 0;
1794 		}
1795 
1796 nextag_relse_buffer:
1797 		xfs_trans_brelse(tp, agbp);
1798 nextag:
1799 		xfs_perag_put(pag);
1800 		if (++agno == mp->m_sb.sb_agcount)
1801 			agno = 0;
1802 		if (agno == start_agno) {
1803 			*inop = NULLFSINO;
1804 			return noroom ? -ENOSPC : 0;
1805 		}
1806 	}
1807 
1808 out_alloc:
1809 	*IO_agbp = NULL;
1810 	return xfs_dialloc_ag(tp, agbp, parent, inop);
1811 out_error:
1812 	xfs_perag_put(pag);
1813 	return error;
1814 }
1815 
1816 /*
1817  * Free the blocks of an inode chunk. We must consider that the inode chunk
1818  * might be sparse and only free the regions that are allocated as part of the
1819  * chunk.
1820  */
1821 STATIC void
1822 xfs_difree_inode_chunk(
1823 	struct xfs_mount		*mp,
1824 	xfs_agnumber_t			agno,
1825 	struct xfs_inobt_rec_incore	*rec,
1826 	struct xfs_defer_ops		*dfops)
1827 {
1828 	xfs_agblock_t	sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1829 	int		startidx, endidx;
1830 	int		nextbit;
1831 	xfs_agblock_t	agbno;
1832 	int		contigblk;
1833 	struct xfs_owner_info	oinfo;
1834 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1835 	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1836 
1837 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1838 		/* not sparse, calculate extent info directly */
1839 		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1840 				  mp->m_ialloc_blks, &oinfo);
1841 		return;
1842 	}
1843 
1844 	/* holemask is only 16-bits (fits in an unsigned long) */
1845 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1846 	holemask[0] = rec->ir_holemask;
1847 
1848 	/*
1849 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1850 	 * holemask and convert the start/end index of each range to an extent.
1851 	 * We start with the start and end index both pointing at the first 0 in
1852 	 * the mask.
1853 	 */
1854 	startidx = endidx = find_first_zero_bit(holemask,
1855 						XFS_INOBT_HOLEMASK_BITS);
1856 	nextbit = startidx + 1;
1857 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1858 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1859 					     nextbit);
1860 		/*
1861 		 * If the next zero bit is contiguous, update the end index of
1862 		 * the current range and continue.
1863 		 */
1864 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1865 		    nextbit == endidx + 1) {
1866 			endidx = nextbit;
1867 			goto next;
1868 		}
1869 
1870 		/*
1871 		 * nextbit is not contiguous with the current end index. Convert
1872 		 * the current start/end to an extent and add it to the free
1873 		 * list.
1874 		 */
1875 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1876 				  mp->m_sb.sb_inopblock;
1877 		contigblk = ((endidx - startidx + 1) *
1878 			     XFS_INODES_PER_HOLEMASK_BIT) /
1879 			    mp->m_sb.sb_inopblock;
1880 
1881 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1882 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1883 		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1884 				  contigblk, &oinfo);
1885 
1886 		/* reset range to current bit and carry on... */
1887 		startidx = endidx = nextbit;
1888 
1889 next:
1890 		nextbit++;
1891 	}
1892 }
1893 
1894 STATIC int
1895 xfs_difree_inobt(
1896 	struct xfs_mount		*mp,
1897 	struct xfs_trans		*tp,
1898 	struct xfs_buf			*agbp,
1899 	xfs_agino_t			agino,
1900 	struct xfs_defer_ops		*dfops,
1901 	struct xfs_icluster		*xic,
1902 	struct xfs_inobt_rec_incore	*orec)
1903 {
1904 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1905 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1906 	struct xfs_perag		*pag;
1907 	struct xfs_btree_cur		*cur;
1908 	struct xfs_inobt_rec_incore	rec;
1909 	int				ilen;
1910 	int				error;
1911 	int				i;
1912 	int				off;
1913 
1914 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1915 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1916 
1917 	/*
1918 	 * Initialize the cursor.
1919 	 */
1920 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1921 
1922 	error = xfs_check_agi_freecount(cur, agi);
1923 	if (error)
1924 		goto error0;
1925 
1926 	/*
1927 	 * Look for the entry describing this inode.
1928 	 */
1929 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1930 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1931 			__func__, error);
1932 		goto error0;
1933 	}
1934 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1935 	error = xfs_inobt_get_rec(cur, &rec, &i);
1936 	if (error) {
1937 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1938 			__func__, error);
1939 		goto error0;
1940 	}
1941 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1942 	/*
1943 	 * Get the offset in the inode chunk.
1944 	 */
1945 	off = agino - rec.ir_startino;
1946 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1947 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1948 	/*
1949 	 * Mark the inode free & increment the count.
1950 	 */
1951 	rec.ir_free |= XFS_INOBT_MASK(off);
1952 	rec.ir_freecount++;
1953 
1954 	/*
1955 	 * When an inode chunk is free, it becomes eligible for removal. Don't
1956 	 * remove the chunk if the block size is large enough for multiple inode
1957 	 * chunks (that might not be free).
1958 	 */
1959 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1960 	    rec.ir_free == XFS_INOBT_ALL_FREE &&
1961 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1962 		xic->deleted = true;
1963 		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1964 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1965 
1966 		/*
1967 		 * Remove the inode cluster from the AGI B+Tree, adjust the
1968 		 * AGI and Superblock inode counts, and mark the disk space
1969 		 * to be freed when the transaction is committed.
1970 		 */
1971 		ilen = rec.ir_freecount;
1972 		be32_add_cpu(&agi->agi_count, -ilen);
1973 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1974 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1975 		pag = xfs_perag_get(mp, agno);
1976 		pag->pagi_freecount -= ilen - 1;
1977 		xfs_perag_put(pag);
1978 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1979 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1980 
1981 		if ((error = xfs_btree_delete(cur, &i))) {
1982 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1983 				__func__, error);
1984 			goto error0;
1985 		}
1986 
1987 		xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1988 	} else {
1989 		xic->deleted = false;
1990 
1991 		error = xfs_inobt_update(cur, &rec);
1992 		if (error) {
1993 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1994 				__func__, error);
1995 			goto error0;
1996 		}
1997 
1998 		/*
1999 		 * Change the inode free counts and log the ag/sb changes.
2000 		 */
2001 		be32_add_cpu(&agi->agi_freecount, 1);
2002 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2003 		pag = xfs_perag_get(mp, agno);
2004 		pag->pagi_freecount++;
2005 		xfs_perag_put(pag);
2006 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2007 	}
2008 
2009 	error = xfs_check_agi_freecount(cur, agi);
2010 	if (error)
2011 		goto error0;
2012 
2013 	*orec = rec;
2014 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2015 	return 0;
2016 
2017 error0:
2018 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2019 	return error;
2020 }
2021 
2022 /*
2023  * Free an inode in the free inode btree.
2024  */
2025 STATIC int
2026 xfs_difree_finobt(
2027 	struct xfs_mount		*mp,
2028 	struct xfs_trans		*tp,
2029 	struct xfs_buf			*agbp,
2030 	xfs_agino_t			agino,
2031 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2032 {
2033 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
2034 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
2035 	struct xfs_btree_cur		*cur;
2036 	struct xfs_inobt_rec_incore	rec;
2037 	int				offset = agino - ibtrec->ir_startino;
2038 	int				error;
2039 	int				i;
2040 
2041 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2042 
2043 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2044 	if (error)
2045 		goto error;
2046 	if (i == 0) {
2047 		/*
2048 		 * If the record does not exist in the finobt, we must have just
2049 		 * freed an inode in a previously fully allocated chunk. If not,
2050 		 * something is out of sync.
2051 		 */
2052 		XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2053 
2054 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2055 					     ibtrec->ir_count,
2056 					     ibtrec->ir_freecount,
2057 					     ibtrec->ir_free, &i);
2058 		if (error)
2059 			goto error;
2060 		ASSERT(i == 1);
2061 
2062 		goto out;
2063 	}
2064 
2065 	/*
2066 	 * Read and update the existing record. We could just copy the ibtrec
2067 	 * across here, but that would defeat the purpose of having redundant
2068 	 * metadata. By making the modifications independently, we can catch
2069 	 * corruptions that we wouldn't see if we just copied from one record
2070 	 * to another.
2071 	 */
2072 	error = xfs_inobt_get_rec(cur, &rec, &i);
2073 	if (error)
2074 		goto error;
2075 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2076 
2077 	rec.ir_free |= XFS_INOBT_MASK(offset);
2078 	rec.ir_freecount++;
2079 
2080 	XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2081 				(rec.ir_freecount == ibtrec->ir_freecount),
2082 				error);
2083 
2084 	/*
2085 	 * The content of inobt records should always match between the inobt
2086 	 * and finobt. The lifecycle of records in the finobt is different from
2087 	 * the inobt in that the finobt only tracks records with at least one
2088 	 * free inode. Hence, if all of the inodes are free and we aren't
2089 	 * keeping inode chunks permanently on disk, remove the record.
2090 	 * Otherwise, update the record with the new information.
2091 	 *
2092 	 * Note that we currently can't free chunks when the block size is large
2093 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2094 	 * with the inobt.
2095 	 */
2096 	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2097 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2098 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2099 		error = xfs_btree_delete(cur, &i);
2100 		if (error)
2101 			goto error;
2102 		ASSERT(i == 1);
2103 	} else {
2104 		error = xfs_inobt_update(cur, &rec);
2105 		if (error)
2106 			goto error;
2107 	}
2108 
2109 out:
2110 	error = xfs_check_agi_freecount(cur, agi);
2111 	if (error)
2112 		goto error;
2113 
2114 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2115 	return 0;
2116 
2117 error:
2118 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2119 	return error;
2120 }
2121 
2122 /*
2123  * Free disk inode.  Carefully avoids touching the incore inode, all
2124  * manipulations incore are the caller's responsibility.
2125  * The on-disk inode is not changed by this operation, only the
2126  * btree (free inode mask) is changed.
2127  */
2128 int
2129 xfs_difree(
2130 	struct xfs_trans	*tp,		/* transaction pointer */
2131 	xfs_ino_t		inode,		/* inode to be freed */
2132 	struct xfs_defer_ops	*dfops,		/* extents to free */
2133 	struct xfs_icluster	*xic)	/* cluster info if deleted */
2134 {
2135 	/* REFERENCED */
2136 	xfs_agblock_t		agbno;	/* block number containing inode */
2137 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2138 	xfs_agino_t		agino;	/* allocation group inode number */
2139 	xfs_agnumber_t		agno;	/* allocation group number */
2140 	int			error;	/* error return value */
2141 	struct xfs_mount	*mp;	/* mount structure for filesystem */
2142 	struct xfs_inobt_rec_incore rec;/* btree record */
2143 
2144 	mp = tp->t_mountp;
2145 
2146 	/*
2147 	 * Break up inode number into its components.
2148 	 */
2149 	agno = XFS_INO_TO_AGNO(mp, inode);
2150 	if (agno >= mp->m_sb.sb_agcount)  {
2151 		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2152 			__func__, agno, mp->m_sb.sb_agcount);
2153 		ASSERT(0);
2154 		return -EINVAL;
2155 	}
2156 	agino = XFS_INO_TO_AGINO(mp, inode);
2157 	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2158 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2159 			__func__, (unsigned long long)inode,
2160 			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2161 		ASSERT(0);
2162 		return -EINVAL;
2163 	}
2164 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2165 	if (agbno >= mp->m_sb.sb_agblocks)  {
2166 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2167 			__func__, agbno, mp->m_sb.sb_agblocks);
2168 		ASSERT(0);
2169 		return -EINVAL;
2170 	}
2171 	/*
2172 	 * Get the allocation group header.
2173 	 */
2174 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2175 	if (error) {
2176 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2177 			__func__, error);
2178 		return error;
2179 	}
2180 
2181 	/*
2182 	 * Fix up the inode allocation btree.
2183 	 */
2184 	error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2185 	if (error)
2186 		goto error0;
2187 
2188 	/*
2189 	 * Fix up the free inode btree.
2190 	 */
2191 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2192 		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2193 		if (error)
2194 			goto error0;
2195 	}
2196 
2197 	return 0;
2198 
2199 error0:
2200 	return error;
2201 }
2202 
2203 STATIC int
2204 xfs_imap_lookup(
2205 	struct xfs_mount	*mp,
2206 	struct xfs_trans	*tp,
2207 	xfs_agnumber_t		agno,
2208 	xfs_agino_t		agino,
2209 	xfs_agblock_t		agbno,
2210 	xfs_agblock_t		*chunk_agbno,
2211 	xfs_agblock_t		*offset_agbno,
2212 	int			flags)
2213 {
2214 	struct xfs_inobt_rec_incore rec;
2215 	struct xfs_btree_cur	*cur;
2216 	struct xfs_buf		*agbp;
2217 	int			error;
2218 	int			i;
2219 
2220 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2221 	if (error) {
2222 		xfs_alert(mp,
2223 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2224 			__func__, error, agno);
2225 		return error;
2226 	}
2227 
2228 	/*
2229 	 * Lookup the inode record for the given agino. If the record cannot be
2230 	 * found, then it's an invalid inode number and we should abort. Once
2231 	 * we have a record, we need to ensure it contains the inode number
2232 	 * we are looking up.
2233 	 */
2234 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2235 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2236 	if (!error) {
2237 		if (i)
2238 			error = xfs_inobt_get_rec(cur, &rec, &i);
2239 		if (!error && i == 0)
2240 			error = -EINVAL;
2241 	}
2242 
2243 	xfs_trans_brelse(tp, agbp);
2244 	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2245 	if (error)
2246 		return error;
2247 
2248 	/* check that the returned record contains the required inode */
2249 	if (rec.ir_startino > agino ||
2250 	    rec.ir_startino + mp->m_ialloc_inos <= agino)
2251 		return -EINVAL;
2252 
2253 	/* for untrusted inodes check it is allocated first */
2254 	if ((flags & XFS_IGET_UNTRUSTED) &&
2255 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2256 		return -EINVAL;
2257 
2258 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2259 	*offset_agbno = agbno - *chunk_agbno;
2260 	return 0;
2261 }
2262 
2263 /*
2264  * Return the location of the inode in imap, for mapping it into a buffer.
2265  */
2266 int
2267 xfs_imap(
2268 	xfs_mount_t	 *mp,	/* file system mount structure */
2269 	xfs_trans_t	 *tp,	/* transaction pointer */
2270 	xfs_ino_t	ino,	/* inode to locate */
2271 	struct xfs_imap	*imap,	/* location map structure */
2272 	uint		flags)	/* flags for inode btree lookup */
2273 {
2274 	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
2275 	xfs_agino_t	agino;	/* inode number within alloc group */
2276 	xfs_agnumber_t	agno;	/* allocation group number */
2277 	int		blks_per_cluster; /* num blocks per inode cluster */
2278 	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
2279 	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
2280 	int		error;	/* error code */
2281 	int		offset;	/* index of inode in its buffer */
2282 	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
2283 
2284 	ASSERT(ino != NULLFSINO);
2285 
2286 	/*
2287 	 * Split up the inode number into its parts.
2288 	 */
2289 	agno = XFS_INO_TO_AGNO(mp, ino);
2290 	agino = XFS_INO_TO_AGINO(mp, ino);
2291 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2292 	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2293 	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2294 #ifdef DEBUG
2295 		/*
2296 		 * Don't output diagnostic information for untrusted inodes
2297 		 * as they can be invalid without implying corruption.
2298 		 */
2299 		if (flags & XFS_IGET_UNTRUSTED)
2300 			return -EINVAL;
2301 		if (agno >= mp->m_sb.sb_agcount) {
2302 			xfs_alert(mp,
2303 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2304 				__func__, agno, mp->m_sb.sb_agcount);
2305 		}
2306 		if (agbno >= mp->m_sb.sb_agblocks) {
2307 			xfs_alert(mp,
2308 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2309 				__func__, (unsigned long long)agbno,
2310 				(unsigned long)mp->m_sb.sb_agblocks);
2311 		}
2312 		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2313 			xfs_alert(mp,
2314 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2315 				__func__, ino,
2316 				XFS_AGINO_TO_INO(mp, agno, agino));
2317 		}
2318 		xfs_stack_trace();
2319 #endif /* DEBUG */
2320 		return -EINVAL;
2321 	}
2322 
2323 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2324 
2325 	/*
2326 	 * For bulkstat and handle lookups, we have an untrusted inode number
2327 	 * that we have to verify is valid. We cannot do this just by reading
2328 	 * the inode buffer as it may have been unlinked and removed leaving
2329 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2330 	 * in all cases where an untrusted inode number is passed.
2331 	 */
2332 	if (flags & XFS_IGET_UNTRUSTED) {
2333 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2334 					&chunk_agbno, &offset_agbno, flags);
2335 		if (error)
2336 			return error;
2337 		goto out_map;
2338 	}
2339 
2340 	/*
2341 	 * If the inode cluster size is the same as the blocksize or
2342 	 * smaller we get to the buffer by simple arithmetics.
2343 	 */
2344 	if (blks_per_cluster == 1) {
2345 		offset = XFS_INO_TO_OFFSET(mp, ino);
2346 		ASSERT(offset < mp->m_sb.sb_inopblock);
2347 
2348 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2349 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2350 		imap->im_boffset = (unsigned short)(offset <<
2351 							mp->m_sb.sb_inodelog);
2352 		return 0;
2353 	}
2354 
2355 	/*
2356 	 * If the inode chunks are aligned then use simple maths to
2357 	 * find the location. Otherwise we have to do a btree
2358 	 * lookup to find the location.
2359 	 */
2360 	if (mp->m_inoalign_mask) {
2361 		offset_agbno = agbno & mp->m_inoalign_mask;
2362 		chunk_agbno = agbno - offset_agbno;
2363 	} else {
2364 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2365 					&chunk_agbno, &offset_agbno, flags);
2366 		if (error)
2367 			return error;
2368 	}
2369 
2370 out_map:
2371 	ASSERT(agbno >= chunk_agbno);
2372 	cluster_agbno = chunk_agbno +
2373 		((offset_agbno / blks_per_cluster) * blks_per_cluster);
2374 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2375 		XFS_INO_TO_OFFSET(mp, ino);
2376 
2377 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2378 	imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2379 	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2380 
2381 	/*
2382 	 * If the inode number maps to a block outside the bounds
2383 	 * of the file system then return NULL rather than calling
2384 	 * read_buf and panicing when we get an error from the
2385 	 * driver.
2386 	 */
2387 	if ((imap->im_blkno + imap->im_len) >
2388 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2389 		xfs_alert(mp,
2390 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2391 			__func__, (unsigned long long) imap->im_blkno,
2392 			(unsigned long long) imap->im_len,
2393 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2394 		return -EINVAL;
2395 	}
2396 	return 0;
2397 }
2398 
2399 /*
2400  * Compute and fill in value of m_in_maxlevels.
2401  */
2402 void
2403 xfs_ialloc_compute_maxlevels(
2404 	xfs_mount_t	*mp)		/* file system mount structure */
2405 {
2406 	uint		inodes;
2407 
2408 	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2409 	mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr,
2410 							 inodes);
2411 }
2412 
2413 /*
2414  * Log specified fields for the ag hdr (inode section). The growth of the agi
2415  * structure over time requires that we interpret the buffer as two logical
2416  * regions delineated by the end of the unlinked list. This is due to the size
2417  * of the hash table and its location in the middle of the agi.
2418  *
2419  * For example, a request to log a field before agi_unlinked and a field after
2420  * agi_unlinked could cause us to log the entire hash table and use an excessive
2421  * amount of log space. To avoid this behavior, log the region up through
2422  * agi_unlinked in one call and the region after agi_unlinked through the end of
2423  * the structure in another.
2424  */
2425 void
2426 xfs_ialloc_log_agi(
2427 	xfs_trans_t	*tp,		/* transaction pointer */
2428 	xfs_buf_t	*bp,		/* allocation group header buffer */
2429 	int		fields)		/* bitmask of fields to log */
2430 {
2431 	int			first;		/* first byte number */
2432 	int			last;		/* last byte number */
2433 	static const short	offsets[] = {	/* field starting offsets */
2434 					/* keep in sync with bit definitions */
2435 		offsetof(xfs_agi_t, agi_magicnum),
2436 		offsetof(xfs_agi_t, agi_versionnum),
2437 		offsetof(xfs_agi_t, agi_seqno),
2438 		offsetof(xfs_agi_t, agi_length),
2439 		offsetof(xfs_agi_t, agi_count),
2440 		offsetof(xfs_agi_t, agi_root),
2441 		offsetof(xfs_agi_t, agi_level),
2442 		offsetof(xfs_agi_t, agi_freecount),
2443 		offsetof(xfs_agi_t, agi_newino),
2444 		offsetof(xfs_agi_t, agi_dirino),
2445 		offsetof(xfs_agi_t, agi_unlinked),
2446 		offsetof(xfs_agi_t, agi_free_root),
2447 		offsetof(xfs_agi_t, agi_free_level),
2448 		sizeof(xfs_agi_t)
2449 	};
2450 #ifdef DEBUG
2451 	xfs_agi_t		*agi;	/* allocation group header */
2452 
2453 	agi = XFS_BUF_TO_AGI(bp);
2454 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2455 #endif
2456 
2457 	/*
2458 	 * Compute byte offsets for the first and last fields in the first
2459 	 * region and log the agi buffer. This only logs up through
2460 	 * agi_unlinked.
2461 	 */
2462 	if (fields & XFS_AGI_ALL_BITS_R1) {
2463 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2464 				  &first, &last);
2465 		xfs_trans_log_buf(tp, bp, first, last);
2466 	}
2467 
2468 	/*
2469 	 * Mask off the bits in the first region and calculate the first and
2470 	 * last field offsets for any bits in the second region.
2471 	 */
2472 	fields &= ~XFS_AGI_ALL_BITS_R1;
2473 	if (fields) {
2474 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2475 				  &first, &last);
2476 		xfs_trans_log_buf(tp, bp, first, last);
2477 	}
2478 }
2479 
2480 #ifdef DEBUG
2481 STATIC void
2482 xfs_check_agi_unlinked(
2483 	struct xfs_agi		*agi)
2484 {
2485 	int			i;
2486 
2487 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2488 		ASSERT(agi->agi_unlinked[i]);
2489 }
2490 #else
2491 #define xfs_check_agi_unlinked(agi)
2492 #endif
2493 
2494 static xfs_failaddr_t
2495 xfs_agi_verify(
2496 	struct xfs_buf	*bp)
2497 {
2498 	struct xfs_mount *mp = bp->b_target->bt_mount;
2499 	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp);
2500 
2501 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2502 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2503 			return __this_address;
2504 		if (!xfs_log_check_lsn(mp,
2505 				be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2506 			return __this_address;
2507 	}
2508 
2509 	/*
2510 	 * Validate the magic number of the agi block.
2511 	 */
2512 	if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2513 		return __this_address;
2514 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2515 		return __this_address;
2516 
2517 	if (be32_to_cpu(agi->agi_level) < 1 ||
2518 	    be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2519 		return __this_address;
2520 
2521 	if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2522 	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2523 	     be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2524 		return __this_address;
2525 
2526 	/*
2527 	 * during growfs operations, the perag is not fully initialised,
2528 	 * so we can't use it for any useful checking. growfs ensures we can't
2529 	 * use it by using uncached buffers that don't have the perag attached
2530 	 * so we can detect and avoid this problem.
2531 	 */
2532 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2533 		return __this_address;
2534 
2535 	xfs_check_agi_unlinked(agi);
2536 	return NULL;
2537 }
2538 
2539 static void
2540 xfs_agi_read_verify(
2541 	struct xfs_buf	*bp)
2542 {
2543 	struct xfs_mount *mp = bp->b_target->bt_mount;
2544 	xfs_failaddr_t	fa;
2545 
2546 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2547 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2548 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2549 	else {
2550 		fa = xfs_agi_verify(bp);
2551 		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2552 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2553 	}
2554 }
2555 
2556 static void
2557 xfs_agi_write_verify(
2558 	struct xfs_buf	*bp)
2559 {
2560 	struct xfs_mount	*mp = bp->b_target->bt_mount;
2561 	struct xfs_buf_log_item	*bip = bp->b_log_item;
2562 	xfs_failaddr_t		fa;
2563 
2564 	fa = xfs_agi_verify(bp);
2565 	if (fa) {
2566 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2567 		return;
2568 	}
2569 
2570 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2571 		return;
2572 
2573 	if (bip)
2574 		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2575 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2576 }
2577 
2578 const struct xfs_buf_ops xfs_agi_buf_ops = {
2579 	.name = "xfs_agi",
2580 	.verify_read = xfs_agi_read_verify,
2581 	.verify_write = xfs_agi_write_verify,
2582 	.verify_struct = xfs_agi_verify,
2583 };
2584 
2585 /*
2586  * Read in the allocation group header (inode allocation section)
2587  */
2588 int
2589 xfs_read_agi(
2590 	struct xfs_mount	*mp,	/* file system mount structure */
2591 	struct xfs_trans	*tp,	/* transaction pointer */
2592 	xfs_agnumber_t		agno,	/* allocation group number */
2593 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2594 {
2595 	int			error;
2596 
2597 	trace_xfs_read_agi(mp, agno);
2598 
2599 	ASSERT(agno != NULLAGNUMBER);
2600 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2601 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2602 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2603 	if (error)
2604 		return error;
2605 	if (tp)
2606 		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2607 
2608 	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2609 	return 0;
2610 }
2611 
2612 int
2613 xfs_ialloc_read_agi(
2614 	struct xfs_mount	*mp,	/* file system mount structure */
2615 	struct xfs_trans	*tp,	/* transaction pointer */
2616 	xfs_agnumber_t		agno,	/* allocation group number */
2617 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2618 {
2619 	struct xfs_agi		*agi;	/* allocation group header */
2620 	struct xfs_perag	*pag;	/* per allocation group data */
2621 	int			error;
2622 
2623 	trace_xfs_ialloc_read_agi(mp, agno);
2624 
2625 	error = xfs_read_agi(mp, tp, agno, bpp);
2626 	if (error)
2627 		return error;
2628 
2629 	agi = XFS_BUF_TO_AGI(*bpp);
2630 	pag = xfs_perag_get(mp, agno);
2631 	if (!pag->pagi_init) {
2632 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2633 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2634 		pag->pagi_init = 1;
2635 	}
2636 
2637 	/*
2638 	 * It's possible for these to be out of sync if
2639 	 * we are in the middle of a forced shutdown.
2640 	 */
2641 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2642 		XFS_FORCED_SHUTDOWN(mp));
2643 	xfs_perag_put(pag);
2644 	return 0;
2645 }
2646 
2647 /*
2648  * Read in the agi to initialise the per-ag data in the mount structure
2649  */
2650 int
2651 xfs_ialloc_pagi_init(
2652 	xfs_mount_t	*mp,		/* file system mount structure */
2653 	xfs_trans_t	*tp,		/* transaction pointer */
2654 	xfs_agnumber_t	agno)		/* allocation group number */
2655 {
2656 	xfs_buf_t	*bp = NULL;
2657 	int		error;
2658 
2659 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2660 	if (error)
2661 		return error;
2662 	if (bp)
2663 		xfs_trans_brelse(tp, bp);
2664 	return 0;
2665 }
2666 
2667 /* Calculate the first and last possible inode number in an AG. */
2668 void
2669 xfs_ialloc_agino_range(
2670 	struct xfs_mount	*mp,
2671 	xfs_agnumber_t		agno,
2672 	xfs_agino_t		*first,
2673 	xfs_agino_t		*last)
2674 {
2675 	xfs_agblock_t		bno;
2676 	xfs_agblock_t		eoag;
2677 
2678 	eoag = xfs_ag_block_count(mp, agno);
2679 
2680 	/*
2681 	 * Calculate the first inode, which will be in the first
2682 	 * cluster-aligned block after the AGFL.
2683 	 */
2684 	bno = round_up(XFS_AGFL_BLOCK(mp) + 1,
2685 			xfs_ialloc_cluster_alignment(mp));
2686 	*first = XFS_OFFBNO_TO_AGINO(mp, bno, 0);
2687 
2688 	/*
2689 	 * Calculate the last inode, which will be at the end of the
2690 	 * last (aligned) cluster that can be allocated in the AG.
2691 	 */
2692 	bno = round_down(eoag, xfs_ialloc_cluster_alignment(mp));
2693 	*last = XFS_OFFBNO_TO_AGINO(mp, bno, 0) - 1;
2694 }
2695 
2696 /*
2697  * Verify that an AG inode number pointer neither points outside the AG
2698  * nor points at static metadata.
2699  */
2700 bool
2701 xfs_verify_agino(
2702 	struct xfs_mount	*mp,
2703 	xfs_agnumber_t		agno,
2704 	xfs_agino_t		agino)
2705 {
2706 	xfs_agino_t		first;
2707 	xfs_agino_t		last;
2708 
2709 	xfs_ialloc_agino_range(mp, agno, &first, &last);
2710 	return agino >= first && agino <= last;
2711 }
2712 
2713 /*
2714  * Verify that an FS inode number pointer neither points outside the
2715  * filesystem nor points at static AG metadata.
2716  */
2717 bool
2718 xfs_verify_ino(
2719 	struct xfs_mount	*mp,
2720 	xfs_ino_t		ino)
2721 {
2722 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ino);
2723 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
2724 
2725 	if (agno >= mp->m_sb.sb_agcount)
2726 		return false;
2727 	if (XFS_AGINO_TO_INO(mp, agno, agino) != ino)
2728 		return false;
2729 	return xfs_verify_agino(mp, agno, agino);
2730 }
2731 
2732 /* Is this an internal inode number? */
2733 bool
2734 xfs_internal_inum(
2735 	struct xfs_mount	*mp,
2736 	xfs_ino_t		ino)
2737 {
2738 	return ino == mp->m_sb.sb_rbmino || ino == mp->m_sb.sb_rsumino ||
2739 		(xfs_sb_version_hasquota(&mp->m_sb) &&
2740 		 xfs_is_quota_inode(&mp->m_sb, ino));
2741 }
2742 
2743 /*
2744  * Verify that a directory entry's inode number doesn't point at an internal
2745  * inode, empty space, or static AG metadata.
2746  */
2747 bool
2748 xfs_verify_dir_ino(
2749 	struct xfs_mount	*mp,
2750 	xfs_ino_t		ino)
2751 {
2752 	if (xfs_internal_inum(mp, ino))
2753 		return false;
2754 	return xfs_verify_ino(mp, ino);
2755 }
2756 
2757 /* Is there an inode record covering a given range of inode numbers? */
2758 int
2759 xfs_ialloc_has_inode_record(
2760 	struct xfs_btree_cur	*cur,
2761 	xfs_agino_t		low,
2762 	xfs_agino_t		high,
2763 	bool			*exists)
2764 {
2765 	struct xfs_inobt_rec_incore	irec;
2766 	xfs_agino_t		agino;
2767 	uint16_t		holemask;
2768 	int			has_record;
2769 	int			i;
2770 	int			error;
2771 
2772 	*exists = false;
2773 	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2774 	while (error == 0 && has_record) {
2775 		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2776 		if (error || irec.ir_startino > high)
2777 			break;
2778 
2779 		agino = irec.ir_startino;
2780 		holemask = irec.ir_holemask;
2781 		for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2782 				i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2783 			if (holemask & 1)
2784 				continue;
2785 			if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2786 					agino <= high) {
2787 				*exists = true;
2788 				return 0;
2789 			}
2790 		}
2791 
2792 		error = xfs_btree_increment(cur, 0, &has_record);
2793 	}
2794 	return error;
2795 }
2796 
2797 /* Is there an inode record covering a given extent? */
2798 int
2799 xfs_ialloc_has_inodes_at_extent(
2800 	struct xfs_btree_cur	*cur,
2801 	xfs_agblock_t		bno,
2802 	xfs_extlen_t		len,
2803 	bool			*exists)
2804 {
2805 	xfs_agino_t		low;
2806 	xfs_agino_t		high;
2807 
2808 	low = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno, 0);
2809 	high = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno + len, 0) - 1;
2810 
2811 	return xfs_ialloc_has_inode_record(cur, low, high, exists);
2812 }
2813 
2814 struct xfs_ialloc_count_inodes {
2815 	xfs_agino_t			count;
2816 	xfs_agino_t			freecount;
2817 };
2818 
2819 /* Record inode counts across all inobt records. */
2820 STATIC int
2821 xfs_ialloc_count_inodes_rec(
2822 	struct xfs_btree_cur		*cur,
2823 	union xfs_btree_rec		*rec,
2824 	void				*priv)
2825 {
2826 	struct xfs_inobt_rec_incore	irec;
2827 	struct xfs_ialloc_count_inodes	*ci = priv;
2828 
2829 	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2830 	ci->count += irec.ir_count;
2831 	ci->freecount += irec.ir_freecount;
2832 
2833 	return 0;
2834 }
2835 
2836 /* Count allocated and free inodes under an inobt. */
2837 int
2838 xfs_ialloc_count_inodes(
2839 	struct xfs_btree_cur		*cur,
2840 	xfs_agino_t			*count,
2841 	xfs_agino_t			*freecount)
2842 {
2843 	struct xfs_ialloc_count_inodes	ci = {0};
2844 	int				error;
2845 
2846 	ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2847 	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2848 	if (error)
2849 		return error;
2850 
2851 	*count = ci.count;
2852 	*freecount = ci.freecount;
2853 	return 0;
2854 }
2855