xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc.c (revision 96ac6d43)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_btree.h"
18 #include "xfs_ialloc.h"
19 #include "xfs_ialloc_btree.h"
20 #include "xfs_alloc.h"
21 #include "xfs_rtalloc.h"
22 #include "xfs_errortag.h"
23 #include "xfs_error.h"
24 #include "xfs_bmap.h"
25 #include "xfs_cksum.h"
26 #include "xfs_trans.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_icreate_item.h"
29 #include "xfs_icache.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 #include "xfs_rmap.h"
33 
34 
35 /*
36  * Allocation group level functions.
37  */
38 int
39 xfs_ialloc_cluster_alignment(
40 	struct xfs_mount	*mp)
41 {
42 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
43 	    mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
44 		return mp->m_sb.sb_inoalignmt;
45 	return 1;
46 }
47 
48 /*
49  * Lookup a record by ino in the btree given by cur.
50  */
51 int					/* error */
52 xfs_inobt_lookup(
53 	struct xfs_btree_cur	*cur,	/* btree cursor */
54 	xfs_agino_t		ino,	/* starting inode of chunk */
55 	xfs_lookup_t		dir,	/* <=, >=, == */
56 	int			*stat)	/* success/failure */
57 {
58 	cur->bc_rec.i.ir_startino = ino;
59 	cur->bc_rec.i.ir_holemask = 0;
60 	cur->bc_rec.i.ir_count = 0;
61 	cur->bc_rec.i.ir_freecount = 0;
62 	cur->bc_rec.i.ir_free = 0;
63 	return xfs_btree_lookup(cur, dir, stat);
64 }
65 
66 /*
67  * Update the record referred to by cur to the value given.
68  * This either works (return 0) or gets an EFSCORRUPTED error.
69  */
70 STATIC int				/* error */
71 xfs_inobt_update(
72 	struct xfs_btree_cur	*cur,	/* btree cursor */
73 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
74 {
75 	union xfs_btree_rec	rec;
76 
77 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
78 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
79 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
80 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
81 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
82 	} else {
83 		/* ir_holemask/ir_count not supported on-disk */
84 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
85 	}
86 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
87 	return xfs_btree_update(cur, &rec);
88 }
89 
90 /* Convert on-disk btree record to incore inobt record. */
91 void
92 xfs_inobt_btrec_to_irec(
93 	struct xfs_mount		*mp,
94 	union xfs_btree_rec		*rec,
95 	struct xfs_inobt_rec_incore	*irec)
96 {
97 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
98 	if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
99 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
100 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
101 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
102 	} else {
103 		/*
104 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
105 		 * values for full inode chunks.
106 		 */
107 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
108 		irec->ir_count = XFS_INODES_PER_CHUNK;
109 		irec->ir_freecount =
110 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
111 	}
112 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
113 }
114 
115 /*
116  * Get the data from the pointed-to record.
117  */
118 int
119 xfs_inobt_get_rec(
120 	struct xfs_btree_cur		*cur,
121 	struct xfs_inobt_rec_incore	*irec,
122 	int				*stat)
123 {
124 	struct xfs_mount		*mp = cur->bc_mp;
125 	xfs_agnumber_t			agno = cur->bc_private.a.agno;
126 	union xfs_btree_rec		*rec;
127 	int				error;
128 	uint64_t			realfree;
129 
130 	error = xfs_btree_get_rec(cur, &rec, stat);
131 	if (error || *stat == 0)
132 		return error;
133 
134 	xfs_inobt_btrec_to_irec(mp, rec, irec);
135 
136 	if (!xfs_verify_agino(mp, agno, irec->ir_startino))
137 		goto out_bad_rec;
138 	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
139 	    irec->ir_count > XFS_INODES_PER_CHUNK)
140 		goto out_bad_rec;
141 	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
142 		goto out_bad_rec;
143 
144 	/* if there are no holes, return the first available offset */
145 	if (!xfs_inobt_issparse(irec->ir_holemask))
146 		realfree = irec->ir_free;
147 	else
148 		realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
149 	if (hweight64(realfree) != irec->ir_freecount)
150 		goto out_bad_rec;
151 
152 	return 0;
153 
154 out_bad_rec:
155 	xfs_warn(mp,
156 		"%s Inode BTree record corruption in AG %d detected!",
157 		cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
158 	xfs_warn(mp,
159 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
160 		irec->ir_startino, irec->ir_count, irec->ir_freecount,
161 		irec->ir_free, irec->ir_holemask);
162 	return -EFSCORRUPTED;
163 }
164 
165 /*
166  * Insert a single inobt record. Cursor must already point to desired location.
167  */
168 int
169 xfs_inobt_insert_rec(
170 	struct xfs_btree_cur	*cur,
171 	uint16_t		holemask,
172 	uint8_t			count,
173 	int32_t			freecount,
174 	xfs_inofree_t		free,
175 	int			*stat)
176 {
177 	cur->bc_rec.i.ir_holemask = holemask;
178 	cur->bc_rec.i.ir_count = count;
179 	cur->bc_rec.i.ir_freecount = freecount;
180 	cur->bc_rec.i.ir_free = free;
181 	return xfs_btree_insert(cur, stat);
182 }
183 
184 /*
185  * Insert records describing a newly allocated inode chunk into the inobt.
186  */
187 STATIC int
188 xfs_inobt_insert(
189 	struct xfs_mount	*mp,
190 	struct xfs_trans	*tp,
191 	struct xfs_buf		*agbp,
192 	xfs_agino_t		newino,
193 	xfs_agino_t		newlen,
194 	xfs_btnum_t		btnum)
195 {
196 	struct xfs_btree_cur	*cur;
197 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
198 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
199 	xfs_agino_t		thisino;
200 	int			i;
201 	int			error;
202 
203 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
204 
205 	for (thisino = newino;
206 	     thisino < newino + newlen;
207 	     thisino += XFS_INODES_PER_CHUNK) {
208 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
209 		if (error) {
210 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
211 			return error;
212 		}
213 		ASSERT(i == 0);
214 
215 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
216 					     XFS_INODES_PER_CHUNK,
217 					     XFS_INODES_PER_CHUNK,
218 					     XFS_INOBT_ALL_FREE, &i);
219 		if (error) {
220 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
221 			return error;
222 		}
223 		ASSERT(i == 1);
224 	}
225 
226 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
227 
228 	return 0;
229 }
230 
231 /*
232  * Verify that the number of free inodes in the AGI is correct.
233  */
234 #ifdef DEBUG
235 STATIC int
236 xfs_check_agi_freecount(
237 	struct xfs_btree_cur	*cur,
238 	struct xfs_agi		*agi)
239 {
240 	if (cur->bc_nlevels == 1) {
241 		xfs_inobt_rec_incore_t rec;
242 		int		freecount = 0;
243 		int		error;
244 		int		i;
245 
246 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
247 		if (error)
248 			return error;
249 
250 		do {
251 			error = xfs_inobt_get_rec(cur, &rec, &i);
252 			if (error)
253 				return error;
254 
255 			if (i) {
256 				freecount += rec.ir_freecount;
257 				error = xfs_btree_increment(cur, 0, &i);
258 				if (error)
259 					return error;
260 			}
261 		} while (i == 1);
262 
263 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
264 			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
265 	}
266 	return 0;
267 }
268 #else
269 #define xfs_check_agi_freecount(cur, agi)	0
270 #endif
271 
272 /*
273  * Initialise a new set of inodes. When called without a transaction context
274  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
275  * than logging them (which in a transaction context puts them into the AIL
276  * for writeback rather than the xfsbufd queue).
277  */
278 int
279 xfs_ialloc_inode_init(
280 	struct xfs_mount	*mp,
281 	struct xfs_trans	*tp,
282 	struct list_head	*buffer_list,
283 	int			icount,
284 	xfs_agnumber_t		agno,
285 	xfs_agblock_t		agbno,
286 	xfs_agblock_t		length,
287 	unsigned int		gen)
288 {
289 	struct xfs_buf		*fbuf;
290 	struct xfs_dinode	*free;
291 	int			nbufs;
292 	int			version;
293 	int			i, j;
294 	xfs_daddr_t		d;
295 	xfs_ino_t		ino = 0;
296 
297 	/*
298 	 * Loop over the new block(s), filling in the inodes.  For small block
299 	 * sizes, manipulate the inodes in buffers  which are multiples of the
300 	 * blocks size.
301 	 */
302 	nbufs = length / mp->m_blocks_per_cluster;
303 
304 	/*
305 	 * Figure out what version number to use in the inodes we create.  If
306 	 * the superblock version has caught up to the one that supports the new
307 	 * inode format, then use the new inode version.  Otherwise use the old
308 	 * version so that old kernels will continue to be able to use the file
309 	 * system.
310 	 *
311 	 * For v3 inodes, we also need to write the inode number into the inode,
312 	 * so calculate the first inode number of the chunk here as
313 	 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
314 	 * across multiple filesystem blocks (such as a cluster) and so cannot
315 	 * be used in the cluster buffer loop below.
316 	 *
317 	 * Further, because we are writing the inode directly into the buffer
318 	 * and calculating a CRC on the entire inode, we have ot log the entire
319 	 * inode so that the entire range the CRC covers is present in the log.
320 	 * That means for v3 inode we log the entire buffer rather than just the
321 	 * inode cores.
322 	 */
323 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
324 		version = 3;
325 		ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
326 
327 		/*
328 		 * log the initialisation that is about to take place as an
329 		 * logical operation. This means the transaction does not
330 		 * need to log the physical changes to the inode buffers as log
331 		 * recovery will know what initialisation is actually needed.
332 		 * Hence we only need to log the buffers as "ordered" buffers so
333 		 * they track in the AIL as if they were physically logged.
334 		 */
335 		if (tp)
336 			xfs_icreate_log(tp, agno, agbno, icount,
337 					mp->m_sb.sb_inodesize, length, gen);
338 	} else
339 		version = 2;
340 
341 	for (j = 0; j < nbufs; j++) {
342 		/*
343 		 * Get the block.
344 		 */
345 		d = XFS_AGB_TO_DADDR(mp, agno, agbno +
346 				(j * mp->m_blocks_per_cluster));
347 		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
348 					 mp->m_bsize * mp->m_blocks_per_cluster,
349 					 XBF_UNMAPPED);
350 		if (!fbuf)
351 			return -ENOMEM;
352 
353 		/* Initialize the inode buffers and log them appropriately. */
354 		fbuf->b_ops = &xfs_inode_buf_ops;
355 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
356 		for (i = 0; i < mp->m_inodes_per_cluster; i++) {
357 			int	ioffset = i << mp->m_sb.sb_inodelog;
358 			uint	isize = xfs_dinode_size(version);
359 
360 			free = xfs_make_iptr(mp, fbuf, i);
361 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
362 			free->di_version = version;
363 			free->di_gen = cpu_to_be32(gen);
364 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
365 
366 			if (version == 3) {
367 				free->di_ino = cpu_to_be64(ino);
368 				ino++;
369 				uuid_copy(&free->di_uuid,
370 					  &mp->m_sb.sb_meta_uuid);
371 				xfs_dinode_calc_crc(mp, free);
372 			} else if (tp) {
373 				/* just log the inode core */
374 				xfs_trans_log_buf(tp, fbuf, ioffset,
375 						  ioffset + isize - 1);
376 			}
377 		}
378 
379 		if (tp) {
380 			/*
381 			 * Mark the buffer as an inode allocation buffer so it
382 			 * sticks in AIL at the point of this allocation
383 			 * transaction. This ensures the they are on disk before
384 			 * the tail of the log can be moved past this
385 			 * transaction (i.e. by preventing relogging from moving
386 			 * it forward in the log).
387 			 */
388 			xfs_trans_inode_alloc_buf(tp, fbuf);
389 			if (version == 3) {
390 				/*
391 				 * Mark the buffer as ordered so that they are
392 				 * not physically logged in the transaction but
393 				 * still tracked in the AIL as part of the
394 				 * transaction and pin the log appropriately.
395 				 */
396 				xfs_trans_ordered_buf(tp, fbuf);
397 			}
398 		} else {
399 			fbuf->b_flags |= XBF_DONE;
400 			xfs_buf_delwri_queue(fbuf, buffer_list);
401 			xfs_buf_relse(fbuf);
402 		}
403 	}
404 	return 0;
405 }
406 
407 /*
408  * Align startino and allocmask for a recently allocated sparse chunk such that
409  * they are fit for insertion (or merge) into the on-disk inode btrees.
410  *
411  * Background:
412  *
413  * When enabled, sparse inode support increases the inode alignment from cluster
414  * size to inode chunk size. This means that the minimum range between two
415  * non-adjacent inode records in the inobt is large enough for a full inode
416  * record. This allows for cluster sized, cluster aligned block allocation
417  * without need to worry about whether the resulting inode record overlaps with
418  * another record in the tree. Without this basic rule, we would have to deal
419  * with the consequences of overlap by potentially undoing recent allocations in
420  * the inode allocation codepath.
421  *
422  * Because of this alignment rule (which is enforced on mount), there are two
423  * inobt possibilities for newly allocated sparse chunks. One is that the
424  * aligned inode record for the chunk covers a range of inodes not already
425  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
426  * other is that a record already exists at the aligned startino that considers
427  * the newly allocated range as sparse. In the latter case, record content is
428  * merged in hope that sparse inode chunks fill to full chunks over time.
429  */
430 STATIC void
431 xfs_align_sparse_ino(
432 	struct xfs_mount		*mp,
433 	xfs_agino_t			*startino,
434 	uint16_t			*allocmask)
435 {
436 	xfs_agblock_t			agbno;
437 	xfs_agblock_t			mod;
438 	int				offset;
439 
440 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
441 	mod = agbno % mp->m_sb.sb_inoalignmt;
442 	if (!mod)
443 		return;
444 
445 	/* calculate the inode offset and align startino */
446 	offset = XFS_AGB_TO_AGINO(mp, mod);
447 	*startino -= offset;
448 
449 	/*
450 	 * Since startino has been aligned down, left shift allocmask such that
451 	 * it continues to represent the same physical inodes relative to the
452 	 * new startino.
453 	 */
454 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
455 }
456 
457 /*
458  * Determine whether the source inode record can merge into the target. Both
459  * records must be sparse, the inode ranges must match and there must be no
460  * allocation overlap between the records.
461  */
462 STATIC bool
463 __xfs_inobt_can_merge(
464 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
465 	struct xfs_inobt_rec_incore	*srec)	/* src record */
466 {
467 	uint64_t			talloc;
468 	uint64_t			salloc;
469 
470 	/* records must cover the same inode range */
471 	if (trec->ir_startino != srec->ir_startino)
472 		return false;
473 
474 	/* both records must be sparse */
475 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
476 	    !xfs_inobt_issparse(srec->ir_holemask))
477 		return false;
478 
479 	/* both records must track some inodes */
480 	if (!trec->ir_count || !srec->ir_count)
481 		return false;
482 
483 	/* can't exceed capacity of a full record */
484 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
485 		return false;
486 
487 	/* verify there is no allocation overlap */
488 	talloc = xfs_inobt_irec_to_allocmask(trec);
489 	salloc = xfs_inobt_irec_to_allocmask(srec);
490 	if (talloc & salloc)
491 		return false;
492 
493 	return true;
494 }
495 
496 /*
497  * Merge the source inode record into the target. The caller must call
498  * __xfs_inobt_can_merge() to ensure the merge is valid.
499  */
500 STATIC void
501 __xfs_inobt_rec_merge(
502 	struct xfs_inobt_rec_incore	*trec,	/* target */
503 	struct xfs_inobt_rec_incore	*srec)	/* src */
504 {
505 	ASSERT(trec->ir_startino == srec->ir_startino);
506 
507 	/* combine the counts */
508 	trec->ir_count += srec->ir_count;
509 	trec->ir_freecount += srec->ir_freecount;
510 
511 	/*
512 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
513 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
514 	 */
515 	trec->ir_holemask &= srec->ir_holemask;
516 	trec->ir_free &= srec->ir_free;
517 }
518 
519 /*
520  * Insert a new sparse inode chunk into the associated inode btree. The inode
521  * record for the sparse chunk is pre-aligned to a startino that should match
522  * any pre-existing sparse inode record in the tree. This allows sparse chunks
523  * to fill over time.
524  *
525  * This function supports two modes of handling preexisting records depending on
526  * the merge flag. If merge is true, the provided record is merged with the
527  * existing record and updated in place. The merged record is returned in nrec.
528  * If merge is false, an existing record is replaced with the provided record.
529  * If no preexisting record exists, the provided record is always inserted.
530  *
531  * It is considered corruption if a merge is requested and not possible. Given
532  * the sparse inode alignment constraints, this should never happen.
533  */
534 STATIC int
535 xfs_inobt_insert_sprec(
536 	struct xfs_mount		*mp,
537 	struct xfs_trans		*tp,
538 	struct xfs_buf			*agbp,
539 	int				btnum,
540 	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
541 	bool				merge)	/* merge or replace */
542 {
543 	struct xfs_btree_cur		*cur;
544 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
545 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
546 	int				error;
547 	int				i;
548 	struct xfs_inobt_rec_incore	rec;
549 
550 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
551 
552 	/* the new record is pre-aligned so we know where to look */
553 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
554 	if (error)
555 		goto error;
556 	/* if nothing there, insert a new record and return */
557 	if (i == 0) {
558 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
559 					     nrec->ir_count, nrec->ir_freecount,
560 					     nrec->ir_free, &i);
561 		if (error)
562 			goto error;
563 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
564 
565 		goto out;
566 	}
567 
568 	/*
569 	 * A record exists at this startino. Merge or replace the record
570 	 * depending on what we've been asked to do.
571 	 */
572 	if (merge) {
573 		error = xfs_inobt_get_rec(cur, &rec, &i);
574 		if (error)
575 			goto error;
576 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
577 		XFS_WANT_CORRUPTED_GOTO(mp,
578 					rec.ir_startino == nrec->ir_startino,
579 					error);
580 
581 		/*
582 		 * This should never fail. If we have coexisting records that
583 		 * cannot merge, something is seriously wrong.
584 		 */
585 		XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
586 					error);
587 
588 		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
589 					 rec.ir_holemask, nrec->ir_startino,
590 					 nrec->ir_holemask);
591 
592 		/* merge to nrec to output the updated record */
593 		__xfs_inobt_rec_merge(nrec, &rec);
594 
595 		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
596 					  nrec->ir_holemask);
597 
598 		error = xfs_inobt_rec_check_count(mp, nrec);
599 		if (error)
600 			goto error;
601 	}
602 
603 	error = xfs_inobt_update(cur, nrec);
604 	if (error)
605 		goto error;
606 
607 out:
608 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
609 	return 0;
610 error:
611 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
612 	return error;
613 }
614 
615 /*
616  * Allocate new inodes in the allocation group specified by agbp.
617  * Return 0 for success, else error code.
618  */
619 STATIC int				/* error code or 0 */
620 xfs_ialloc_ag_alloc(
621 	xfs_trans_t	*tp,		/* transaction pointer */
622 	xfs_buf_t	*agbp,		/* alloc group buffer */
623 	int		*alloc)
624 {
625 	xfs_agi_t	*agi;		/* allocation group header */
626 	xfs_alloc_arg_t	args;		/* allocation argument structure */
627 	xfs_agnumber_t	agno;
628 	int		error;
629 	xfs_agino_t	newino;		/* new first inode's number */
630 	xfs_agino_t	newlen;		/* new number of inodes */
631 	int		isaligned = 0;	/* inode allocation at stripe unit */
632 					/* boundary */
633 	uint16_t	allocmask = (uint16_t) -1; /* init. to full chunk */
634 	struct xfs_inobt_rec_incore rec;
635 	struct xfs_perag *pag;
636 	int		do_sparse = 0;
637 
638 	memset(&args, 0, sizeof(args));
639 	args.tp = tp;
640 	args.mp = tp->t_mountp;
641 	args.fsbno = NULLFSBLOCK;
642 	args.oinfo = XFS_RMAP_OINFO_INODES;
643 
644 #ifdef DEBUG
645 	/* randomly do sparse inode allocations */
646 	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
647 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
648 		do_sparse = prandom_u32() & 1;
649 #endif
650 
651 	/*
652 	 * Locking will ensure that we don't have two callers in here
653 	 * at one time.
654 	 */
655 	newlen = args.mp->m_ialloc_inos;
656 	if (args.mp->m_maxicount &&
657 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
658 							args.mp->m_maxicount)
659 		return -ENOSPC;
660 	args.minlen = args.maxlen = args.mp->m_ialloc_blks;
661 	/*
662 	 * First try to allocate inodes contiguous with the last-allocated
663 	 * chunk of inodes.  If the filesystem is striped, this will fill
664 	 * an entire stripe unit with inodes.
665 	 */
666 	agi = XFS_BUF_TO_AGI(agbp);
667 	newino = be32_to_cpu(agi->agi_newino);
668 	agno = be32_to_cpu(agi->agi_seqno);
669 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
670 		     args.mp->m_ialloc_blks;
671 	if (do_sparse)
672 		goto sparse_alloc;
673 	if (likely(newino != NULLAGINO &&
674 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
675 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
676 		args.type = XFS_ALLOCTYPE_THIS_BNO;
677 		args.prod = 1;
678 
679 		/*
680 		 * We need to take into account alignment here to ensure that
681 		 * we don't modify the free list if we fail to have an exact
682 		 * block. If we don't have an exact match, and every oher
683 		 * attempt allocation attempt fails, we'll end up cancelling
684 		 * a dirty transaction and shutting down.
685 		 *
686 		 * For an exact allocation, alignment must be 1,
687 		 * however we need to take cluster alignment into account when
688 		 * fixing up the freelist. Use the minalignslop field to
689 		 * indicate that extra blocks might be required for alignment,
690 		 * but not to use them in the actual exact allocation.
691 		 */
692 		args.alignment = 1;
693 		args.minalignslop = args.mp->m_cluster_align - 1;
694 
695 		/* Allow space for the inode btree to split. */
696 		args.minleft = args.mp->m_in_maxlevels - 1;
697 		if ((error = xfs_alloc_vextent(&args)))
698 			return error;
699 
700 		/*
701 		 * This request might have dirtied the transaction if the AG can
702 		 * satisfy the request, but the exact block was not available.
703 		 * If the allocation did fail, subsequent requests will relax
704 		 * the exact agbno requirement and increase the alignment
705 		 * instead. It is critical that the total size of the request
706 		 * (len + alignment + slop) does not increase from this point
707 		 * on, so reset minalignslop to ensure it is not included in
708 		 * subsequent requests.
709 		 */
710 		args.minalignslop = 0;
711 	}
712 
713 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
714 		/*
715 		 * Set the alignment for the allocation.
716 		 * If stripe alignment is turned on then align at stripe unit
717 		 * boundary.
718 		 * If the cluster size is smaller than a filesystem block
719 		 * then we're doing I/O for inodes in filesystem block size
720 		 * pieces, so don't need alignment anyway.
721 		 */
722 		isaligned = 0;
723 		if (args.mp->m_sinoalign) {
724 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
725 			args.alignment = args.mp->m_dalign;
726 			isaligned = 1;
727 		} else
728 			args.alignment = args.mp->m_cluster_align;
729 		/*
730 		 * Need to figure out where to allocate the inode blocks.
731 		 * Ideally they should be spaced out through the a.g.
732 		 * For now, just allocate blocks up front.
733 		 */
734 		args.agbno = be32_to_cpu(agi->agi_root);
735 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
736 		/*
737 		 * Allocate a fixed-size extent of inodes.
738 		 */
739 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
740 		args.prod = 1;
741 		/*
742 		 * Allow space for the inode btree to split.
743 		 */
744 		args.minleft = args.mp->m_in_maxlevels - 1;
745 		if ((error = xfs_alloc_vextent(&args)))
746 			return error;
747 	}
748 
749 	/*
750 	 * If stripe alignment is turned on, then try again with cluster
751 	 * alignment.
752 	 */
753 	if (isaligned && args.fsbno == NULLFSBLOCK) {
754 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
755 		args.agbno = be32_to_cpu(agi->agi_root);
756 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
757 		args.alignment = args.mp->m_cluster_align;
758 		if ((error = xfs_alloc_vextent(&args)))
759 			return error;
760 	}
761 
762 	/*
763 	 * Finally, try a sparse allocation if the filesystem supports it and
764 	 * the sparse allocation length is smaller than a full chunk.
765 	 */
766 	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
767 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
768 	    args.fsbno == NULLFSBLOCK) {
769 sparse_alloc:
770 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
771 		args.agbno = be32_to_cpu(agi->agi_root);
772 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
773 		args.alignment = args.mp->m_sb.sb_spino_align;
774 		args.prod = 1;
775 
776 		args.minlen = args.mp->m_ialloc_min_blks;
777 		args.maxlen = args.minlen;
778 
779 		/*
780 		 * The inode record will be aligned to full chunk size. We must
781 		 * prevent sparse allocation from AG boundaries that result in
782 		 * invalid inode records, such as records that start at agbno 0
783 		 * or extend beyond the AG.
784 		 *
785 		 * Set min agbno to the first aligned, non-zero agbno and max to
786 		 * the last aligned agbno that is at least one full chunk from
787 		 * the end of the AG.
788 		 */
789 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
790 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
791 					    args.mp->m_sb.sb_inoalignmt) -
792 				 args.mp->m_ialloc_blks;
793 
794 		error = xfs_alloc_vextent(&args);
795 		if (error)
796 			return error;
797 
798 		newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
799 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
800 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
801 	}
802 
803 	if (args.fsbno == NULLFSBLOCK) {
804 		*alloc = 0;
805 		return 0;
806 	}
807 	ASSERT(args.len == args.minlen);
808 
809 	/*
810 	 * Stamp and write the inode buffers.
811 	 *
812 	 * Seed the new inode cluster with a random generation number. This
813 	 * prevents short-term reuse of generation numbers if a chunk is
814 	 * freed and then immediately reallocated. We use random numbers
815 	 * rather than a linear progression to prevent the next generation
816 	 * number from being easily guessable.
817 	 */
818 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
819 			args.agbno, args.len, prandom_u32());
820 
821 	if (error)
822 		return error;
823 	/*
824 	 * Convert the results.
825 	 */
826 	newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
827 
828 	if (xfs_inobt_issparse(~allocmask)) {
829 		/*
830 		 * We've allocated a sparse chunk. Align the startino and mask.
831 		 */
832 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
833 
834 		rec.ir_startino = newino;
835 		rec.ir_holemask = ~allocmask;
836 		rec.ir_count = newlen;
837 		rec.ir_freecount = newlen;
838 		rec.ir_free = XFS_INOBT_ALL_FREE;
839 
840 		/*
841 		 * Insert the sparse record into the inobt and allow for a merge
842 		 * if necessary. If a merge does occur, rec is updated to the
843 		 * merged record.
844 		 */
845 		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
846 					       &rec, true);
847 		if (error == -EFSCORRUPTED) {
848 			xfs_alert(args.mp,
849 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
850 				  XFS_AGINO_TO_INO(args.mp, agno,
851 						   rec.ir_startino),
852 				  rec.ir_holemask, rec.ir_count);
853 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
854 		}
855 		if (error)
856 			return error;
857 
858 		/*
859 		 * We can't merge the part we've just allocated as for the inobt
860 		 * due to finobt semantics. The original record may or may not
861 		 * exist independent of whether physical inodes exist in this
862 		 * sparse chunk.
863 		 *
864 		 * We must update the finobt record based on the inobt record.
865 		 * rec contains the fully merged and up to date inobt record
866 		 * from the previous call. Set merge false to replace any
867 		 * existing record with this one.
868 		 */
869 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
870 			error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
871 						       XFS_BTNUM_FINO, &rec,
872 						       false);
873 			if (error)
874 				return error;
875 		}
876 	} else {
877 		/* full chunk - insert new records to both btrees */
878 		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
879 					 XFS_BTNUM_INO);
880 		if (error)
881 			return error;
882 
883 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
884 			error = xfs_inobt_insert(args.mp, tp, agbp, newino,
885 						 newlen, XFS_BTNUM_FINO);
886 			if (error)
887 				return error;
888 		}
889 	}
890 
891 	/*
892 	 * Update AGI counts and newino.
893 	 */
894 	be32_add_cpu(&agi->agi_count, newlen);
895 	be32_add_cpu(&agi->agi_freecount, newlen);
896 	pag = xfs_perag_get(args.mp, agno);
897 	pag->pagi_freecount += newlen;
898 	pag->pagi_count += newlen;
899 	xfs_perag_put(pag);
900 	agi->agi_newino = cpu_to_be32(newino);
901 
902 	/*
903 	 * Log allocation group header fields
904 	 */
905 	xfs_ialloc_log_agi(tp, agbp,
906 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
907 	/*
908 	 * Modify/log superblock values for inode count and inode free count.
909 	 */
910 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
911 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
912 	*alloc = 1;
913 	return 0;
914 }
915 
916 STATIC xfs_agnumber_t
917 xfs_ialloc_next_ag(
918 	xfs_mount_t	*mp)
919 {
920 	xfs_agnumber_t	agno;
921 
922 	spin_lock(&mp->m_agirotor_lock);
923 	agno = mp->m_agirotor;
924 	if (++mp->m_agirotor >= mp->m_maxagi)
925 		mp->m_agirotor = 0;
926 	spin_unlock(&mp->m_agirotor_lock);
927 
928 	return agno;
929 }
930 
931 /*
932  * Select an allocation group to look for a free inode in, based on the parent
933  * inode and the mode.  Return the allocation group buffer.
934  */
935 STATIC xfs_agnumber_t
936 xfs_ialloc_ag_select(
937 	xfs_trans_t	*tp,		/* transaction pointer */
938 	xfs_ino_t	parent,		/* parent directory inode number */
939 	umode_t		mode)		/* bits set to indicate file type */
940 {
941 	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
942 	xfs_agnumber_t	agno;		/* current ag number */
943 	int		flags;		/* alloc buffer locking flags */
944 	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
945 	xfs_extlen_t	longest = 0;	/* longest extent available */
946 	xfs_mount_t	*mp;		/* mount point structure */
947 	int		needspace;	/* file mode implies space allocated */
948 	xfs_perag_t	*pag;		/* per allocation group data */
949 	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
950 	int		error;
951 
952 	/*
953 	 * Files of these types need at least one block if length > 0
954 	 * (and they won't fit in the inode, but that's hard to figure out).
955 	 */
956 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
957 	mp = tp->t_mountp;
958 	agcount = mp->m_maxagi;
959 	if (S_ISDIR(mode))
960 		pagno = xfs_ialloc_next_ag(mp);
961 	else {
962 		pagno = XFS_INO_TO_AGNO(mp, parent);
963 		if (pagno >= agcount)
964 			pagno = 0;
965 	}
966 
967 	ASSERT(pagno < agcount);
968 
969 	/*
970 	 * Loop through allocation groups, looking for one with a little
971 	 * free space in it.  Note we don't look for free inodes, exactly.
972 	 * Instead, we include whether there is a need to allocate inodes
973 	 * to mean that blocks must be allocated for them,
974 	 * if none are currently free.
975 	 */
976 	agno = pagno;
977 	flags = XFS_ALLOC_FLAG_TRYLOCK;
978 	for (;;) {
979 		pag = xfs_perag_get(mp, agno);
980 		if (!pag->pagi_inodeok) {
981 			xfs_ialloc_next_ag(mp);
982 			goto nextag;
983 		}
984 
985 		if (!pag->pagi_init) {
986 			error = xfs_ialloc_pagi_init(mp, tp, agno);
987 			if (error)
988 				goto nextag;
989 		}
990 
991 		if (pag->pagi_freecount) {
992 			xfs_perag_put(pag);
993 			return agno;
994 		}
995 
996 		if (!pag->pagf_init) {
997 			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
998 			if (error)
999 				goto nextag;
1000 		}
1001 
1002 		/*
1003 		 * Check that there is enough free space for the file plus a
1004 		 * chunk of inodes if we need to allocate some. If this is the
1005 		 * first pass across the AGs, take into account the potential
1006 		 * space needed for alignment of inode chunks when checking the
1007 		 * longest contiguous free space in the AG - this prevents us
1008 		 * from getting ENOSPC because we have free space larger than
1009 		 * m_ialloc_blks but alignment constraints prevent us from using
1010 		 * it.
1011 		 *
1012 		 * If we can't find an AG with space for full alignment slack to
1013 		 * be taken into account, we must be near ENOSPC in all AGs.
1014 		 * Hence we don't include alignment for the second pass and so
1015 		 * if we fail allocation due to alignment issues then it is most
1016 		 * likely a real ENOSPC condition.
1017 		 */
1018 		ineed = mp->m_ialloc_min_blks;
1019 		if (flags && ineed > 1)
1020 			ineed += mp->m_cluster_align;
1021 		longest = pag->pagf_longest;
1022 		if (!longest)
1023 			longest = pag->pagf_flcount > 0;
1024 
1025 		if (pag->pagf_freeblks >= needspace + ineed &&
1026 		    longest >= ineed) {
1027 			xfs_perag_put(pag);
1028 			return agno;
1029 		}
1030 nextag:
1031 		xfs_perag_put(pag);
1032 		/*
1033 		 * No point in iterating over the rest, if we're shutting
1034 		 * down.
1035 		 */
1036 		if (XFS_FORCED_SHUTDOWN(mp))
1037 			return NULLAGNUMBER;
1038 		agno++;
1039 		if (agno >= agcount)
1040 			agno = 0;
1041 		if (agno == pagno) {
1042 			if (flags == 0)
1043 				return NULLAGNUMBER;
1044 			flags = 0;
1045 		}
1046 	}
1047 }
1048 
1049 /*
1050  * Try to retrieve the next record to the left/right from the current one.
1051  */
1052 STATIC int
1053 xfs_ialloc_next_rec(
1054 	struct xfs_btree_cur	*cur,
1055 	xfs_inobt_rec_incore_t	*rec,
1056 	int			*done,
1057 	int			left)
1058 {
1059 	int                     error;
1060 	int			i;
1061 
1062 	if (left)
1063 		error = xfs_btree_decrement(cur, 0, &i);
1064 	else
1065 		error = xfs_btree_increment(cur, 0, &i);
1066 
1067 	if (error)
1068 		return error;
1069 	*done = !i;
1070 	if (i) {
1071 		error = xfs_inobt_get_rec(cur, rec, &i);
1072 		if (error)
1073 			return error;
1074 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 STATIC int
1081 xfs_ialloc_get_rec(
1082 	struct xfs_btree_cur	*cur,
1083 	xfs_agino_t		agino,
1084 	xfs_inobt_rec_incore_t	*rec,
1085 	int			*done)
1086 {
1087 	int                     error;
1088 	int			i;
1089 
1090 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1091 	if (error)
1092 		return error;
1093 	*done = !i;
1094 	if (i) {
1095 		error = xfs_inobt_get_rec(cur, rec, &i);
1096 		if (error)
1097 			return error;
1098 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 /*
1105  * Return the offset of the first free inode in the record. If the inode chunk
1106  * is sparsely allocated, we convert the record holemask to inode granularity
1107  * and mask off the unallocated regions from the inode free mask.
1108  */
1109 STATIC int
1110 xfs_inobt_first_free_inode(
1111 	struct xfs_inobt_rec_incore	*rec)
1112 {
1113 	xfs_inofree_t			realfree;
1114 
1115 	/* if there are no holes, return the first available offset */
1116 	if (!xfs_inobt_issparse(rec->ir_holemask))
1117 		return xfs_lowbit64(rec->ir_free);
1118 
1119 	realfree = xfs_inobt_irec_to_allocmask(rec);
1120 	realfree &= rec->ir_free;
1121 
1122 	return xfs_lowbit64(realfree);
1123 }
1124 
1125 /*
1126  * Allocate an inode using the inobt-only algorithm.
1127  */
1128 STATIC int
1129 xfs_dialloc_ag_inobt(
1130 	struct xfs_trans	*tp,
1131 	struct xfs_buf		*agbp,
1132 	xfs_ino_t		parent,
1133 	xfs_ino_t		*inop)
1134 {
1135 	struct xfs_mount	*mp = tp->t_mountp;
1136 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
1137 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
1138 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1139 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1140 	struct xfs_perag	*pag;
1141 	struct xfs_btree_cur	*cur, *tcur;
1142 	struct xfs_inobt_rec_incore rec, trec;
1143 	xfs_ino_t		ino;
1144 	int			error;
1145 	int			offset;
1146 	int			i, j;
1147 	int			searchdistance = 10;
1148 
1149 	pag = xfs_perag_get(mp, agno);
1150 
1151 	ASSERT(pag->pagi_init);
1152 	ASSERT(pag->pagi_inodeok);
1153 	ASSERT(pag->pagi_freecount > 0);
1154 
1155  restart_pagno:
1156 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1157 	/*
1158 	 * If pagino is 0 (this is the root inode allocation) use newino.
1159 	 * This must work because we've just allocated some.
1160 	 */
1161 	if (!pagino)
1162 		pagino = be32_to_cpu(agi->agi_newino);
1163 
1164 	error = xfs_check_agi_freecount(cur, agi);
1165 	if (error)
1166 		goto error0;
1167 
1168 	/*
1169 	 * If in the same AG as the parent, try to get near the parent.
1170 	 */
1171 	if (pagno == agno) {
1172 		int		doneleft;	/* done, to the left */
1173 		int		doneright;	/* done, to the right */
1174 
1175 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1176 		if (error)
1177 			goto error0;
1178 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1179 
1180 		error = xfs_inobt_get_rec(cur, &rec, &j);
1181 		if (error)
1182 			goto error0;
1183 		XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1184 
1185 		if (rec.ir_freecount > 0) {
1186 			/*
1187 			 * Found a free inode in the same chunk
1188 			 * as the parent, done.
1189 			 */
1190 			goto alloc_inode;
1191 		}
1192 
1193 
1194 		/*
1195 		 * In the same AG as parent, but parent's chunk is full.
1196 		 */
1197 
1198 		/* duplicate the cursor, search left & right simultaneously */
1199 		error = xfs_btree_dup_cursor(cur, &tcur);
1200 		if (error)
1201 			goto error0;
1202 
1203 		/*
1204 		 * Skip to last blocks looked up if same parent inode.
1205 		 */
1206 		if (pagino != NULLAGINO &&
1207 		    pag->pagl_pagino == pagino &&
1208 		    pag->pagl_leftrec != NULLAGINO &&
1209 		    pag->pagl_rightrec != NULLAGINO) {
1210 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1211 						   &trec, &doneleft);
1212 			if (error)
1213 				goto error1;
1214 
1215 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1216 						   &rec, &doneright);
1217 			if (error)
1218 				goto error1;
1219 		} else {
1220 			/* search left with tcur, back up 1 record */
1221 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1222 			if (error)
1223 				goto error1;
1224 
1225 			/* search right with cur, go forward 1 record. */
1226 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1227 			if (error)
1228 				goto error1;
1229 		}
1230 
1231 		/*
1232 		 * Loop until we find an inode chunk with a free inode.
1233 		 */
1234 		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1235 			int	useleft;  /* using left inode chunk this time */
1236 
1237 			/* figure out the closer block if both are valid. */
1238 			if (!doneleft && !doneright) {
1239 				useleft = pagino -
1240 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1241 				  rec.ir_startino - pagino;
1242 			} else {
1243 				useleft = !doneleft;
1244 			}
1245 
1246 			/* free inodes to the left? */
1247 			if (useleft && trec.ir_freecount) {
1248 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1249 				cur = tcur;
1250 
1251 				pag->pagl_leftrec = trec.ir_startino;
1252 				pag->pagl_rightrec = rec.ir_startino;
1253 				pag->pagl_pagino = pagino;
1254 				rec = trec;
1255 				goto alloc_inode;
1256 			}
1257 
1258 			/* free inodes to the right? */
1259 			if (!useleft && rec.ir_freecount) {
1260 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1261 
1262 				pag->pagl_leftrec = trec.ir_startino;
1263 				pag->pagl_rightrec = rec.ir_startino;
1264 				pag->pagl_pagino = pagino;
1265 				goto alloc_inode;
1266 			}
1267 
1268 			/* get next record to check */
1269 			if (useleft) {
1270 				error = xfs_ialloc_next_rec(tcur, &trec,
1271 								 &doneleft, 1);
1272 			} else {
1273 				error = xfs_ialloc_next_rec(cur, &rec,
1274 								 &doneright, 0);
1275 			}
1276 			if (error)
1277 				goto error1;
1278 		}
1279 
1280 		if (searchdistance <= 0) {
1281 			/*
1282 			 * Not in range - save last search
1283 			 * location and allocate a new inode
1284 			 */
1285 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1286 			pag->pagl_leftrec = trec.ir_startino;
1287 			pag->pagl_rightrec = rec.ir_startino;
1288 			pag->pagl_pagino = pagino;
1289 
1290 		} else {
1291 			/*
1292 			 * We've reached the end of the btree. because
1293 			 * we are only searching a small chunk of the
1294 			 * btree each search, there is obviously free
1295 			 * inodes closer to the parent inode than we
1296 			 * are now. restart the search again.
1297 			 */
1298 			pag->pagl_pagino = NULLAGINO;
1299 			pag->pagl_leftrec = NULLAGINO;
1300 			pag->pagl_rightrec = NULLAGINO;
1301 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1302 			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1303 			goto restart_pagno;
1304 		}
1305 	}
1306 
1307 	/*
1308 	 * In a different AG from the parent.
1309 	 * See if the most recently allocated block has any free.
1310 	 */
1311 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1312 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1313 					 XFS_LOOKUP_EQ, &i);
1314 		if (error)
1315 			goto error0;
1316 
1317 		if (i == 1) {
1318 			error = xfs_inobt_get_rec(cur, &rec, &j);
1319 			if (error)
1320 				goto error0;
1321 
1322 			if (j == 1 && rec.ir_freecount > 0) {
1323 				/*
1324 				 * The last chunk allocated in the group
1325 				 * still has a free inode.
1326 				 */
1327 				goto alloc_inode;
1328 			}
1329 		}
1330 	}
1331 
1332 	/*
1333 	 * None left in the last group, search the whole AG
1334 	 */
1335 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1336 	if (error)
1337 		goto error0;
1338 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1339 
1340 	for (;;) {
1341 		error = xfs_inobt_get_rec(cur, &rec, &i);
1342 		if (error)
1343 			goto error0;
1344 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1345 		if (rec.ir_freecount > 0)
1346 			break;
1347 		error = xfs_btree_increment(cur, 0, &i);
1348 		if (error)
1349 			goto error0;
1350 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1351 	}
1352 
1353 alloc_inode:
1354 	offset = xfs_inobt_first_free_inode(&rec);
1355 	ASSERT(offset >= 0);
1356 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1357 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1358 				   XFS_INODES_PER_CHUNK) == 0);
1359 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1360 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1361 	rec.ir_freecount--;
1362 	error = xfs_inobt_update(cur, &rec);
1363 	if (error)
1364 		goto error0;
1365 	be32_add_cpu(&agi->agi_freecount, -1);
1366 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1367 	pag->pagi_freecount--;
1368 
1369 	error = xfs_check_agi_freecount(cur, agi);
1370 	if (error)
1371 		goto error0;
1372 
1373 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1374 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1375 	xfs_perag_put(pag);
1376 	*inop = ino;
1377 	return 0;
1378 error1:
1379 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1380 error0:
1381 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1382 	xfs_perag_put(pag);
1383 	return error;
1384 }
1385 
1386 /*
1387  * Use the free inode btree to allocate an inode based on distance from the
1388  * parent. Note that the provided cursor may be deleted and replaced.
1389  */
1390 STATIC int
1391 xfs_dialloc_ag_finobt_near(
1392 	xfs_agino_t			pagino,
1393 	struct xfs_btree_cur		**ocur,
1394 	struct xfs_inobt_rec_incore	*rec)
1395 {
1396 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1397 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1398 	struct xfs_inobt_rec_incore	rrec;
1399 	int				error;
1400 	int				i, j;
1401 
1402 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1403 	if (error)
1404 		return error;
1405 
1406 	if (i == 1) {
1407 		error = xfs_inobt_get_rec(lcur, rec, &i);
1408 		if (error)
1409 			return error;
1410 		XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1411 
1412 		/*
1413 		 * See if we've landed in the parent inode record. The finobt
1414 		 * only tracks chunks with at least one free inode, so record
1415 		 * existence is enough.
1416 		 */
1417 		if (pagino >= rec->ir_startino &&
1418 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1419 			return 0;
1420 	}
1421 
1422 	error = xfs_btree_dup_cursor(lcur, &rcur);
1423 	if (error)
1424 		return error;
1425 
1426 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1427 	if (error)
1428 		goto error_rcur;
1429 	if (j == 1) {
1430 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1431 		if (error)
1432 			goto error_rcur;
1433 		XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1434 	}
1435 
1436 	XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1437 	if (i == 1 && j == 1) {
1438 		/*
1439 		 * Both the left and right records are valid. Choose the closer
1440 		 * inode chunk to the target.
1441 		 */
1442 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1443 		    (rrec.ir_startino - pagino)) {
1444 			*rec = rrec;
1445 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1446 			*ocur = rcur;
1447 		} else {
1448 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1449 		}
1450 	} else if (j == 1) {
1451 		/* only the right record is valid */
1452 		*rec = rrec;
1453 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1454 		*ocur = rcur;
1455 	} else if (i == 1) {
1456 		/* only the left record is valid */
1457 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1458 	}
1459 
1460 	return 0;
1461 
1462 error_rcur:
1463 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1464 	return error;
1465 }
1466 
1467 /*
1468  * Use the free inode btree to find a free inode based on a newino hint. If
1469  * the hint is NULL, find the first free inode in the AG.
1470  */
1471 STATIC int
1472 xfs_dialloc_ag_finobt_newino(
1473 	struct xfs_agi			*agi,
1474 	struct xfs_btree_cur		*cur,
1475 	struct xfs_inobt_rec_incore	*rec)
1476 {
1477 	int error;
1478 	int i;
1479 
1480 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1481 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1482 					 XFS_LOOKUP_EQ, &i);
1483 		if (error)
1484 			return error;
1485 		if (i == 1) {
1486 			error = xfs_inobt_get_rec(cur, rec, &i);
1487 			if (error)
1488 				return error;
1489 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1490 			return 0;
1491 		}
1492 	}
1493 
1494 	/*
1495 	 * Find the first inode available in the AG.
1496 	 */
1497 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1498 	if (error)
1499 		return error;
1500 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1501 
1502 	error = xfs_inobt_get_rec(cur, rec, &i);
1503 	if (error)
1504 		return error;
1505 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1506 
1507 	return 0;
1508 }
1509 
1510 /*
1511  * Update the inobt based on a modification made to the finobt. Also ensure that
1512  * the records from both trees are equivalent post-modification.
1513  */
1514 STATIC int
1515 xfs_dialloc_ag_update_inobt(
1516 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1517 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1518 	int				offset) /* inode offset */
1519 {
1520 	struct xfs_inobt_rec_incore	rec;
1521 	int				error;
1522 	int				i;
1523 
1524 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1525 	if (error)
1526 		return error;
1527 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1528 
1529 	error = xfs_inobt_get_rec(cur, &rec, &i);
1530 	if (error)
1531 		return error;
1532 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1533 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1534 				   XFS_INODES_PER_CHUNK) == 0);
1535 
1536 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1537 	rec.ir_freecount--;
1538 
1539 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1540 				  (rec.ir_freecount == frec->ir_freecount));
1541 
1542 	return xfs_inobt_update(cur, &rec);
1543 }
1544 
1545 /*
1546  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1547  * back to the inobt search algorithm.
1548  *
1549  * The caller selected an AG for us, and made sure that free inodes are
1550  * available.
1551  */
1552 STATIC int
1553 xfs_dialloc_ag(
1554 	struct xfs_trans	*tp,
1555 	struct xfs_buf		*agbp,
1556 	xfs_ino_t		parent,
1557 	xfs_ino_t		*inop)
1558 {
1559 	struct xfs_mount		*mp = tp->t_mountp;
1560 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1561 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1562 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1563 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1564 	struct xfs_perag		*pag;
1565 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1566 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1567 	struct xfs_inobt_rec_incore	rec;
1568 	xfs_ino_t			ino;
1569 	int				error;
1570 	int				offset;
1571 	int				i;
1572 
1573 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1574 		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1575 
1576 	pag = xfs_perag_get(mp, agno);
1577 
1578 	/*
1579 	 * If pagino is 0 (this is the root inode allocation) use newino.
1580 	 * This must work because we've just allocated some.
1581 	 */
1582 	if (!pagino)
1583 		pagino = be32_to_cpu(agi->agi_newino);
1584 
1585 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1586 
1587 	error = xfs_check_agi_freecount(cur, agi);
1588 	if (error)
1589 		goto error_cur;
1590 
1591 	/*
1592 	 * The search algorithm depends on whether we're in the same AG as the
1593 	 * parent. If so, find the closest available inode to the parent. If
1594 	 * not, consider the agi hint or find the first free inode in the AG.
1595 	 */
1596 	if (agno == pagno)
1597 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1598 	else
1599 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1600 	if (error)
1601 		goto error_cur;
1602 
1603 	offset = xfs_inobt_first_free_inode(&rec);
1604 	ASSERT(offset >= 0);
1605 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1606 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1607 				   XFS_INODES_PER_CHUNK) == 0);
1608 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1609 
1610 	/*
1611 	 * Modify or remove the finobt record.
1612 	 */
1613 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1614 	rec.ir_freecount--;
1615 	if (rec.ir_freecount)
1616 		error = xfs_inobt_update(cur, &rec);
1617 	else
1618 		error = xfs_btree_delete(cur, &i);
1619 	if (error)
1620 		goto error_cur;
1621 
1622 	/*
1623 	 * The finobt has now been updated appropriately. We haven't updated the
1624 	 * agi and superblock yet, so we can create an inobt cursor and validate
1625 	 * the original freecount. If all is well, make the equivalent update to
1626 	 * the inobt using the finobt record and offset information.
1627 	 */
1628 	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1629 
1630 	error = xfs_check_agi_freecount(icur, agi);
1631 	if (error)
1632 		goto error_icur;
1633 
1634 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1635 	if (error)
1636 		goto error_icur;
1637 
1638 	/*
1639 	 * Both trees have now been updated. We must update the perag and
1640 	 * superblock before we can check the freecount for each btree.
1641 	 */
1642 	be32_add_cpu(&agi->agi_freecount, -1);
1643 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1644 	pag->pagi_freecount--;
1645 
1646 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1647 
1648 	error = xfs_check_agi_freecount(icur, agi);
1649 	if (error)
1650 		goto error_icur;
1651 	error = xfs_check_agi_freecount(cur, agi);
1652 	if (error)
1653 		goto error_icur;
1654 
1655 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1656 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1657 	xfs_perag_put(pag);
1658 	*inop = ino;
1659 	return 0;
1660 
1661 error_icur:
1662 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1663 error_cur:
1664 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1665 	xfs_perag_put(pag);
1666 	return error;
1667 }
1668 
1669 /*
1670  * Allocate an inode on disk.
1671  *
1672  * Mode is used to tell whether the new inode will need space, and whether it
1673  * is a directory.
1674  *
1675  * This function is designed to be called twice if it has to do an allocation
1676  * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1677  * If an inode is available without having to performn an allocation, an inode
1678  * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1679  * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1680  * The caller should then commit the current transaction, allocate a
1681  * new transaction, and call xfs_dialloc() again, passing in the previous value
1682  * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1683  * buffer is locked across the two calls, the second call is guaranteed to have
1684  * a free inode available.
1685  *
1686  * Once we successfully pick an inode its number is returned and the on-disk
1687  * data structures are updated.  The inode itself is not read in, since doing so
1688  * would break ordering constraints with xfs_reclaim.
1689  */
1690 int
1691 xfs_dialloc(
1692 	struct xfs_trans	*tp,
1693 	xfs_ino_t		parent,
1694 	umode_t			mode,
1695 	struct xfs_buf		**IO_agbp,
1696 	xfs_ino_t		*inop)
1697 {
1698 	struct xfs_mount	*mp = tp->t_mountp;
1699 	struct xfs_buf		*agbp;
1700 	xfs_agnumber_t		agno;
1701 	int			error;
1702 	int			ialloced;
1703 	int			noroom = 0;
1704 	xfs_agnumber_t		start_agno;
1705 	struct xfs_perag	*pag;
1706 	int			okalloc = 1;
1707 
1708 	if (*IO_agbp) {
1709 		/*
1710 		 * If the caller passes in a pointer to the AGI buffer,
1711 		 * continue where we left off before.  In this case, we
1712 		 * know that the allocation group has free inodes.
1713 		 */
1714 		agbp = *IO_agbp;
1715 		goto out_alloc;
1716 	}
1717 
1718 	/*
1719 	 * We do not have an agbp, so select an initial allocation
1720 	 * group for inode allocation.
1721 	 */
1722 	start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1723 	if (start_agno == NULLAGNUMBER) {
1724 		*inop = NULLFSINO;
1725 		return 0;
1726 	}
1727 
1728 	/*
1729 	 * If we have already hit the ceiling of inode blocks then clear
1730 	 * okalloc so we scan all available agi structures for a free
1731 	 * inode.
1732 	 *
1733 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1734 	 * which will sacrifice the preciseness but improve the performance.
1735 	 */
1736 	if (mp->m_maxicount &&
1737 	    percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1738 							> mp->m_maxicount) {
1739 		noroom = 1;
1740 		okalloc = 0;
1741 	}
1742 
1743 	/*
1744 	 * Loop until we find an allocation group that either has free inodes
1745 	 * or in which we can allocate some inodes.  Iterate through the
1746 	 * allocation groups upward, wrapping at the end.
1747 	 */
1748 	agno = start_agno;
1749 	for (;;) {
1750 		pag = xfs_perag_get(mp, agno);
1751 		if (!pag->pagi_inodeok) {
1752 			xfs_ialloc_next_ag(mp);
1753 			goto nextag;
1754 		}
1755 
1756 		if (!pag->pagi_init) {
1757 			error = xfs_ialloc_pagi_init(mp, tp, agno);
1758 			if (error)
1759 				goto out_error;
1760 		}
1761 
1762 		/*
1763 		 * Do a first racy fast path check if this AG is usable.
1764 		 */
1765 		if (!pag->pagi_freecount && !okalloc)
1766 			goto nextag;
1767 
1768 		/*
1769 		 * Then read in the AGI buffer and recheck with the AGI buffer
1770 		 * lock held.
1771 		 */
1772 		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1773 		if (error)
1774 			goto out_error;
1775 
1776 		if (pag->pagi_freecount) {
1777 			xfs_perag_put(pag);
1778 			goto out_alloc;
1779 		}
1780 
1781 		if (!okalloc)
1782 			goto nextag_relse_buffer;
1783 
1784 
1785 		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1786 		if (error) {
1787 			xfs_trans_brelse(tp, agbp);
1788 
1789 			if (error != -ENOSPC)
1790 				goto out_error;
1791 
1792 			xfs_perag_put(pag);
1793 			*inop = NULLFSINO;
1794 			return 0;
1795 		}
1796 
1797 		if (ialloced) {
1798 			/*
1799 			 * We successfully allocated some inodes, return
1800 			 * the current context to the caller so that it
1801 			 * can commit the current transaction and call
1802 			 * us again where we left off.
1803 			 */
1804 			ASSERT(pag->pagi_freecount > 0);
1805 			xfs_perag_put(pag);
1806 
1807 			*IO_agbp = agbp;
1808 			*inop = NULLFSINO;
1809 			return 0;
1810 		}
1811 
1812 nextag_relse_buffer:
1813 		xfs_trans_brelse(tp, agbp);
1814 nextag:
1815 		xfs_perag_put(pag);
1816 		if (++agno == mp->m_sb.sb_agcount)
1817 			agno = 0;
1818 		if (agno == start_agno) {
1819 			*inop = NULLFSINO;
1820 			return noroom ? -ENOSPC : 0;
1821 		}
1822 	}
1823 
1824 out_alloc:
1825 	*IO_agbp = NULL;
1826 	return xfs_dialloc_ag(tp, agbp, parent, inop);
1827 out_error:
1828 	xfs_perag_put(pag);
1829 	return error;
1830 }
1831 
1832 /*
1833  * Free the blocks of an inode chunk. We must consider that the inode chunk
1834  * might be sparse and only free the regions that are allocated as part of the
1835  * chunk.
1836  */
1837 STATIC void
1838 xfs_difree_inode_chunk(
1839 	struct xfs_trans		*tp,
1840 	xfs_agnumber_t			agno,
1841 	struct xfs_inobt_rec_incore	*rec)
1842 {
1843 	struct xfs_mount		*mp = tp->t_mountp;
1844 	xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp,
1845 							rec->ir_startino);
1846 	int				startidx, endidx;
1847 	int				nextbit;
1848 	xfs_agblock_t			agbno;
1849 	int				contigblk;
1850 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1851 
1852 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1853 		/* not sparse, calculate extent info directly */
1854 		xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1855 				  mp->m_ialloc_blks, &XFS_RMAP_OINFO_INODES);
1856 		return;
1857 	}
1858 
1859 	/* holemask is only 16-bits (fits in an unsigned long) */
1860 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1861 	holemask[0] = rec->ir_holemask;
1862 
1863 	/*
1864 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1865 	 * holemask and convert the start/end index of each range to an extent.
1866 	 * We start with the start and end index both pointing at the first 0 in
1867 	 * the mask.
1868 	 */
1869 	startidx = endidx = find_first_zero_bit(holemask,
1870 						XFS_INOBT_HOLEMASK_BITS);
1871 	nextbit = startidx + 1;
1872 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1873 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1874 					     nextbit);
1875 		/*
1876 		 * If the next zero bit is contiguous, update the end index of
1877 		 * the current range and continue.
1878 		 */
1879 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1880 		    nextbit == endidx + 1) {
1881 			endidx = nextbit;
1882 			goto next;
1883 		}
1884 
1885 		/*
1886 		 * nextbit is not contiguous with the current end index. Convert
1887 		 * the current start/end to an extent and add it to the free
1888 		 * list.
1889 		 */
1890 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1891 				  mp->m_sb.sb_inopblock;
1892 		contigblk = ((endidx - startidx + 1) *
1893 			     XFS_INODES_PER_HOLEMASK_BIT) /
1894 			    mp->m_sb.sb_inopblock;
1895 
1896 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1897 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1898 		xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1899 				  contigblk, &XFS_RMAP_OINFO_INODES);
1900 
1901 		/* reset range to current bit and carry on... */
1902 		startidx = endidx = nextbit;
1903 
1904 next:
1905 		nextbit++;
1906 	}
1907 }
1908 
1909 STATIC int
1910 xfs_difree_inobt(
1911 	struct xfs_mount		*mp,
1912 	struct xfs_trans		*tp,
1913 	struct xfs_buf			*agbp,
1914 	xfs_agino_t			agino,
1915 	struct xfs_icluster		*xic,
1916 	struct xfs_inobt_rec_incore	*orec)
1917 {
1918 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1919 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1920 	struct xfs_perag		*pag;
1921 	struct xfs_btree_cur		*cur;
1922 	struct xfs_inobt_rec_incore	rec;
1923 	int				ilen;
1924 	int				error;
1925 	int				i;
1926 	int				off;
1927 
1928 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1929 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1930 
1931 	/*
1932 	 * Initialize the cursor.
1933 	 */
1934 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1935 
1936 	error = xfs_check_agi_freecount(cur, agi);
1937 	if (error)
1938 		goto error0;
1939 
1940 	/*
1941 	 * Look for the entry describing this inode.
1942 	 */
1943 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1944 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1945 			__func__, error);
1946 		goto error0;
1947 	}
1948 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1949 	error = xfs_inobt_get_rec(cur, &rec, &i);
1950 	if (error) {
1951 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1952 			__func__, error);
1953 		goto error0;
1954 	}
1955 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1956 	/*
1957 	 * Get the offset in the inode chunk.
1958 	 */
1959 	off = agino - rec.ir_startino;
1960 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1961 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1962 	/*
1963 	 * Mark the inode free & increment the count.
1964 	 */
1965 	rec.ir_free |= XFS_INOBT_MASK(off);
1966 	rec.ir_freecount++;
1967 
1968 	/*
1969 	 * When an inode chunk is free, it becomes eligible for removal. Don't
1970 	 * remove the chunk if the block size is large enough for multiple inode
1971 	 * chunks (that might not be free).
1972 	 */
1973 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1974 	    rec.ir_free == XFS_INOBT_ALL_FREE &&
1975 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1976 		xic->deleted = true;
1977 		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1978 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1979 
1980 		/*
1981 		 * Remove the inode cluster from the AGI B+Tree, adjust the
1982 		 * AGI and Superblock inode counts, and mark the disk space
1983 		 * to be freed when the transaction is committed.
1984 		 */
1985 		ilen = rec.ir_freecount;
1986 		be32_add_cpu(&agi->agi_count, -ilen);
1987 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1988 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1989 		pag = xfs_perag_get(mp, agno);
1990 		pag->pagi_freecount -= ilen - 1;
1991 		pag->pagi_count -= ilen;
1992 		xfs_perag_put(pag);
1993 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1994 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1995 
1996 		if ((error = xfs_btree_delete(cur, &i))) {
1997 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1998 				__func__, error);
1999 			goto error0;
2000 		}
2001 
2002 		xfs_difree_inode_chunk(tp, agno, &rec);
2003 	} else {
2004 		xic->deleted = false;
2005 
2006 		error = xfs_inobt_update(cur, &rec);
2007 		if (error) {
2008 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2009 				__func__, error);
2010 			goto error0;
2011 		}
2012 
2013 		/*
2014 		 * Change the inode free counts and log the ag/sb changes.
2015 		 */
2016 		be32_add_cpu(&agi->agi_freecount, 1);
2017 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2018 		pag = xfs_perag_get(mp, agno);
2019 		pag->pagi_freecount++;
2020 		xfs_perag_put(pag);
2021 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2022 	}
2023 
2024 	error = xfs_check_agi_freecount(cur, agi);
2025 	if (error)
2026 		goto error0;
2027 
2028 	*orec = rec;
2029 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2030 	return 0;
2031 
2032 error0:
2033 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2034 	return error;
2035 }
2036 
2037 /*
2038  * Free an inode in the free inode btree.
2039  */
2040 STATIC int
2041 xfs_difree_finobt(
2042 	struct xfs_mount		*mp,
2043 	struct xfs_trans		*tp,
2044 	struct xfs_buf			*agbp,
2045 	xfs_agino_t			agino,
2046 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2047 {
2048 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
2049 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
2050 	struct xfs_btree_cur		*cur;
2051 	struct xfs_inobt_rec_incore	rec;
2052 	int				offset = agino - ibtrec->ir_startino;
2053 	int				error;
2054 	int				i;
2055 
2056 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2057 
2058 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2059 	if (error)
2060 		goto error;
2061 	if (i == 0) {
2062 		/*
2063 		 * If the record does not exist in the finobt, we must have just
2064 		 * freed an inode in a previously fully allocated chunk. If not,
2065 		 * something is out of sync.
2066 		 */
2067 		XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2068 
2069 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2070 					     ibtrec->ir_count,
2071 					     ibtrec->ir_freecount,
2072 					     ibtrec->ir_free, &i);
2073 		if (error)
2074 			goto error;
2075 		ASSERT(i == 1);
2076 
2077 		goto out;
2078 	}
2079 
2080 	/*
2081 	 * Read and update the existing record. We could just copy the ibtrec
2082 	 * across here, but that would defeat the purpose of having redundant
2083 	 * metadata. By making the modifications independently, we can catch
2084 	 * corruptions that we wouldn't see if we just copied from one record
2085 	 * to another.
2086 	 */
2087 	error = xfs_inobt_get_rec(cur, &rec, &i);
2088 	if (error)
2089 		goto error;
2090 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2091 
2092 	rec.ir_free |= XFS_INOBT_MASK(offset);
2093 	rec.ir_freecount++;
2094 
2095 	XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2096 				(rec.ir_freecount == ibtrec->ir_freecount),
2097 				error);
2098 
2099 	/*
2100 	 * The content of inobt records should always match between the inobt
2101 	 * and finobt. The lifecycle of records in the finobt is different from
2102 	 * the inobt in that the finobt only tracks records with at least one
2103 	 * free inode. Hence, if all of the inodes are free and we aren't
2104 	 * keeping inode chunks permanently on disk, remove the record.
2105 	 * Otherwise, update the record with the new information.
2106 	 *
2107 	 * Note that we currently can't free chunks when the block size is large
2108 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2109 	 * with the inobt.
2110 	 */
2111 	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2112 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2113 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2114 		error = xfs_btree_delete(cur, &i);
2115 		if (error)
2116 			goto error;
2117 		ASSERT(i == 1);
2118 	} else {
2119 		error = xfs_inobt_update(cur, &rec);
2120 		if (error)
2121 			goto error;
2122 	}
2123 
2124 out:
2125 	error = xfs_check_agi_freecount(cur, agi);
2126 	if (error)
2127 		goto error;
2128 
2129 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2130 	return 0;
2131 
2132 error:
2133 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2134 	return error;
2135 }
2136 
2137 /*
2138  * Free disk inode.  Carefully avoids touching the incore inode, all
2139  * manipulations incore are the caller's responsibility.
2140  * The on-disk inode is not changed by this operation, only the
2141  * btree (free inode mask) is changed.
2142  */
2143 int
2144 xfs_difree(
2145 	struct xfs_trans	*tp,		/* transaction pointer */
2146 	xfs_ino_t		inode,		/* inode to be freed */
2147 	struct xfs_icluster	*xic)	/* cluster info if deleted */
2148 {
2149 	/* REFERENCED */
2150 	xfs_agblock_t		agbno;	/* block number containing inode */
2151 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2152 	xfs_agino_t		agino;	/* allocation group inode number */
2153 	xfs_agnumber_t		agno;	/* allocation group number */
2154 	int			error;	/* error return value */
2155 	struct xfs_mount	*mp;	/* mount structure for filesystem */
2156 	struct xfs_inobt_rec_incore rec;/* btree record */
2157 
2158 	mp = tp->t_mountp;
2159 
2160 	/*
2161 	 * Break up inode number into its components.
2162 	 */
2163 	agno = XFS_INO_TO_AGNO(mp, inode);
2164 	if (agno >= mp->m_sb.sb_agcount)  {
2165 		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2166 			__func__, agno, mp->m_sb.sb_agcount);
2167 		ASSERT(0);
2168 		return -EINVAL;
2169 	}
2170 	agino = XFS_INO_TO_AGINO(mp, inode);
2171 	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2172 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2173 			__func__, (unsigned long long)inode,
2174 			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2175 		ASSERT(0);
2176 		return -EINVAL;
2177 	}
2178 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2179 	if (agbno >= mp->m_sb.sb_agblocks)  {
2180 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2181 			__func__, agbno, mp->m_sb.sb_agblocks);
2182 		ASSERT(0);
2183 		return -EINVAL;
2184 	}
2185 	/*
2186 	 * Get the allocation group header.
2187 	 */
2188 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2189 	if (error) {
2190 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2191 			__func__, error);
2192 		return error;
2193 	}
2194 
2195 	/*
2196 	 * Fix up the inode allocation btree.
2197 	 */
2198 	error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec);
2199 	if (error)
2200 		goto error0;
2201 
2202 	/*
2203 	 * Fix up the free inode btree.
2204 	 */
2205 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2206 		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2207 		if (error)
2208 			goto error0;
2209 	}
2210 
2211 	return 0;
2212 
2213 error0:
2214 	return error;
2215 }
2216 
2217 STATIC int
2218 xfs_imap_lookup(
2219 	struct xfs_mount	*mp,
2220 	struct xfs_trans	*tp,
2221 	xfs_agnumber_t		agno,
2222 	xfs_agino_t		agino,
2223 	xfs_agblock_t		agbno,
2224 	xfs_agblock_t		*chunk_agbno,
2225 	xfs_agblock_t		*offset_agbno,
2226 	int			flags)
2227 {
2228 	struct xfs_inobt_rec_incore rec;
2229 	struct xfs_btree_cur	*cur;
2230 	struct xfs_buf		*agbp;
2231 	int			error;
2232 	int			i;
2233 
2234 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2235 	if (error) {
2236 		xfs_alert(mp,
2237 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2238 			__func__, error, agno);
2239 		return error;
2240 	}
2241 
2242 	/*
2243 	 * Lookup the inode record for the given agino. If the record cannot be
2244 	 * found, then it's an invalid inode number and we should abort. Once
2245 	 * we have a record, we need to ensure it contains the inode number
2246 	 * we are looking up.
2247 	 */
2248 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2249 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2250 	if (!error) {
2251 		if (i)
2252 			error = xfs_inobt_get_rec(cur, &rec, &i);
2253 		if (!error && i == 0)
2254 			error = -EINVAL;
2255 	}
2256 
2257 	xfs_trans_brelse(tp, agbp);
2258 	xfs_btree_del_cursor(cur, error);
2259 	if (error)
2260 		return error;
2261 
2262 	/* check that the returned record contains the required inode */
2263 	if (rec.ir_startino > agino ||
2264 	    rec.ir_startino + mp->m_ialloc_inos <= agino)
2265 		return -EINVAL;
2266 
2267 	/* for untrusted inodes check it is allocated first */
2268 	if ((flags & XFS_IGET_UNTRUSTED) &&
2269 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2270 		return -EINVAL;
2271 
2272 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2273 	*offset_agbno = agbno - *chunk_agbno;
2274 	return 0;
2275 }
2276 
2277 /*
2278  * Return the location of the inode in imap, for mapping it into a buffer.
2279  */
2280 int
2281 xfs_imap(
2282 	xfs_mount_t	 *mp,	/* file system mount structure */
2283 	xfs_trans_t	 *tp,	/* transaction pointer */
2284 	xfs_ino_t	ino,	/* inode to locate */
2285 	struct xfs_imap	*imap,	/* location map structure */
2286 	uint		flags)	/* flags for inode btree lookup */
2287 {
2288 	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
2289 	xfs_agino_t	agino;	/* inode number within alloc group */
2290 	xfs_agnumber_t	agno;	/* allocation group number */
2291 	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
2292 	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
2293 	int		error;	/* error code */
2294 	int		offset;	/* index of inode in its buffer */
2295 	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
2296 
2297 	ASSERT(ino != NULLFSINO);
2298 
2299 	/*
2300 	 * Split up the inode number into its parts.
2301 	 */
2302 	agno = XFS_INO_TO_AGNO(mp, ino);
2303 	agino = XFS_INO_TO_AGINO(mp, ino);
2304 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2305 	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2306 	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2307 #ifdef DEBUG
2308 		/*
2309 		 * Don't output diagnostic information for untrusted inodes
2310 		 * as they can be invalid without implying corruption.
2311 		 */
2312 		if (flags & XFS_IGET_UNTRUSTED)
2313 			return -EINVAL;
2314 		if (agno >= mp->m_sb.sb_agcount) {
2315 			xfs_alert(mp,
2316 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2317 				__func__, agno, mp->m_sb.sb_agcount);
2318 		}
2319 		if (agbno >= mp->m_sb.sb_agblocks) {
2320 			xfs_alert(mp,
2321 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2322 				__func__, (unsigned long long)agbno,
2323 				(unsigned long)mp->m_sb.sb_agblocks);
2324 		}
2325 		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2326 			xfs_alert(mp,
2327 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2328 				__func__, ino,
2329 				XFS_AGINO_TO_INO(mp, agno, agino));
2330 		}
2331 		xfs_stack_trace();
2332 #endif /* DEBUG */
2333 		return -EINVAL;
2334 	}
2335 
2336 	/*
2337 	 * For bulkstat and handle lookups, we have an untrusted inode number
2338 	 * that we have to verify is valid. We cannot do this just by reading
2339 	 * the inode buffer as it may have been unlinked and removed leaving
2340 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2341 	 * in all cases where an untrusted inode number is passed.
2342 	 */
2343 	if (flags & XFS_IGET_UNTRUSTED) {
2344 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2345 					&chunk_agbno, &offset_agbno, flags);
2346 		if (error)
2347 			return error;
2348 		goto out_map;
2349 	}
2350 
2351 	/*
2352 	 * If the inode cluster size is the same as the blocksize or
2353 	 * smaller we get to the buffer by simple arithmetics.
2354 	 */
2355 	if (mp->m_blocks_per_cluster == 1) {
2356 		offset = XFS_INO_TO_OFFSET(mp, ino);
2357 		ASSERT(offset < mp->m_sb.sb_inopblock);
2358 
2359 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2360 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2361 		imap->im_boffset = (unsigned short)(offset <<
2362 							mp->m_sb.sb_inodelog);
2363 		return 0;
2364 	}
2365 
2366 	/*
2367 	 * If the inode chunks are aligned then use simple maths to
2368 	 * find the location. Otherwise we have to do a btree
2369 	 * lookup to find the location.
2370 	 */
2371 	if (mp->m_inoalign_mask) {
2372 		offset_agbno = agbno & mp->m_inoalign_mask;
2373 		chunk_agbno = agbno - offset_agbno;
2374 	} else {
2375 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2376 					&chunk_agbno, &offset_agbno, flags);
2377 		if (error)
2378 			return error;
2379 	}
2380 
2381 out_map:
2382 	ASSERT(agbno >= chunk_agbno);
2383 	cluster_agbno = chunk_agbno +
2384 		((offset_agbno / mp->m_blocks_per_cluster) *
2385 		 mp->m_blocks_per_cluster);
2386 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2387 		XFS_INO_TO_OFFSET(mp, ino);
2388 
2389 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2390 	imap->im_len = XFS_FSB_TO_BB(mp, mp->m_blocks_per_cluster);
2391 	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2392 
2393 	/*
2394 	 * If the inode number maps to a block outside the bounds
2395 	 * of the file system then return NULL rather than calling
2396 	 * read_buf and panicing when we get an error from the
2397 	 * driver.
2398 	 */
2399 	if ((imap->im_blkno + imap->im_len) >
2400 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2401 		xfs_alert(mp,
2402 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2403 			__func__, (unsigned long long) imap->im_blkno,
2404 			(unsigned long long) imap->im_len,
2405 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2406 		return -EINVAL;
2407 	}
2408 	return 0;
2409 }
2410 
2411 /*
2412  * Compute and fill in value of m_in_maxlevels.
2413  */
2414 void
2415 xfs_ialloc_compute_maxlevels(
2416 	xfs_mount_t	*mp)		/* file system mount structure */
2417 {
2418 	uint		inodes;
2419 
2420 	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2421 	mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp->m_inobt_mnr,
2422 							 inodes);
2423 }
2424 
2425 /*
2426  * Log specified fields for the ag hdr (inode section). The growth of the agi
2427  * structure over time requires that we interpret the buffer as two logical
2428  * regions delineated by the end of the unlinked list. This is due to the size
2429  * of the hash table and its location in the middle of the agi.
2430  *
2431  * For example, a request to log a field before agi_unlinked and a field after
2432  * agi_unlinked could cause us to log the entire hash table and use an excessive
2433  * amount of log space. To avoid this behavior, log the region up through
2434  * agi_unlinked in one call and the region after agi_unlinked through the end of
2435  * the structure in another.
2436  */
2437 void
2438 xfs_ialloc_log_agi(
2439 	xfs_trans_t	*tp,		/* transaction pointer */
2440 	xfs_buf_t	*bp,		/* allocation group header buffer */
2441 	int		fields)		/* bitmask of fields to log */
2442 {
2443 	int			first;		/* first byte number */
2444 	int			last;		/* last byte number */
2445 	static const short	offsets[] = {	/* field starting offsets */
2446 					/* keep in sync with bit definitions */
2447 		offsetof(xfs_agi_t, agi_magicnum),
2448 		offsetof(xfs_agi_t, agi_versionnum),
2449 		offsetof(xfs_agi_t, agi_seqno),
2450 		offsetof(xfs_agi_t, agi_length),
2451 		offsetof(xfs_agi_t, agi_count),
2452 		offsetof(xfs_agi_t, agi_root),
2453 		offsetof(xfs_agi_t, agi_level),
2454 		offsetof(xfs_agi_t, agi_freecount),
2455 		offsetof(xfs_agi_t, agi_newino),
2456 		offsetof(xfs_agi_t, agi_dirino),
2457 		offsetof(xfs_agi_t, agi_unlinked),
2458 		offsetof(xfs_agi_t, agi_free_root),
2459 		offsetof(xfs_agi_t, agi_free_level),
2460 		sizeof(xfs_agi_t)
2461 	};
2462 #ifdef DEBUG
2463 	xfs_agi_t		*agi;	/* allocation group header */
2464 
2465 	agi = XFS_BUF_TO_AGI(bp);
2466 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2467 #endif
2468 
2469 	/*
2470 	 * Compute byte offsets for the first and last fields in the first
2471 	 * region and log the agi buffer. This only logs up through
2472 	 * agi_unlinked.
2473 	 */
2474 	if (fields & XFS_AGI_ALL_BITS_R1) {
2475 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2476 				  &first, &last);
2477 		xfs_trans_log_buf(tp, bp, first, last);
2478 	}
2479 
2480 	/*
2481 	 * Mask off the bits in the first region and calculate the first and
2482 	 * last field offsets for any bits in the second region.
2483 	 */
2484 	fields &= ~XFS_AGI_ALL_BITS_R1;
2485 	if (fields) {
2486 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2487 				  &first, &last);
2488 		xfs_trans_log_buf(tp, bp, first, last);
2489 	}
2490 }
2491 
2492 static xfs_failaddr_t
2493 xfs_agi_verify(
2494 	struct xfs_buf	*bp)
2495 {
2496 	struct xfs_mount *mp = bp->b_target->bt_mount;
2497 	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp);
2498 	int		i;
2499 
2500 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2501 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2502 			return __this_address;
2503 		if (!xfs_log_check_lsn(mp,
2504 				be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2505 			return __this_address;
2506 	}
2507 
2508 	/*
2509 	 * Validate the magic number of the agi block.
2510 	 */
2511 	if (!xfs_verify_magic(bp, agi->agi_magicnum))
2512 		return __this_address;
2513 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2514 		return __this_address;
2515 
2516 	if (be32_to_cpu(agi->agi_level) < 1 ||
2517 	    be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2518 		return __this_address;
2519 
2520 	if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2521 	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2522 	     be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2523 		return __this_address;
2524 
2525 	/*
2526 	 * during growfs operations, the perag is not fully initialised,
2527 	 * so we can't use it for any useful checking. growfs ensures we can't
2528 	 * use it by using uncached buffers that don't have the perag attached
2529 	 * so we can detect and avoid this problem.
2530 	 */
2531 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2532 		return __this_address;
2533 
2534 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2535 		if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2536 			continue;
2537 		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2538 			return __this_address;
2539 	}
2540 
2541 	return NULL;
2542 }
2543 
2544 static void
2545 xfs_agi_read_verify(
2546 	struct xfs_buf	*bp)
2547 {
2548 	struct xfs_mount *mp = bp->b_target->bt_mount;
2549 	xfs_failaddr_t	fa;
2550 
2551 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2552 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2553 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2554 	else {
2555 		fa = xfs_agi_verify(bp);
2556 		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2557 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2558 	}
2559 }
2560 
2561 static void
2562 xfs_agi_write_verify(
2563 	struct xfs_buf	*bp)
2564 {
2565 	struct xfs_mount	*mp = bp->b_target->bt_mount;
2566 	struct xfs_buf_log_item	*bip = bp->b_log_item;
2567 	xfs_failaddr_t		fa;
2568 
2569 	fa = xfs_agi_verify(bp);
2570 	if (fa) {
2571 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2572 		return;
2573 	}
2574 
2575 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2576 		return;
2577 
2578 	if (bip)
2579 		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2580 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2581 }
2582 
2583 const struct xfs_buf_ops xfs_agi_buf_ops = {
2584 	.name = "xfs_agi",
2585 	.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2586 	.verify_read = xfs_agi_read_verify,
2587 	.verify_write = xfs_agi_write_verify,
2588 	.verify_struct = xfs_agi_verify,
2589 };
2590 
2591 /*
2592  * Read in the allocation group header (inode allocation section)
2593  */
2594 int
2595 xfs_read_agi(
2596 	struct xfs_mount	*mp,	/* file system mount structure */
2597 	struct xfs_trans	*tp,	/* transaction pointer */
2598 	xfs_agnumber_t		agno,	/* allocation group number */
2599 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2600 {
2601 	int			error;
2602 
2603 	trace_xfs_read_agi(mp, agno);
2604 
2605 	ASSERT(agno != NULLAGNUMBER);
2606 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2607 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2608 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2609 	if (error)
2610 		return error;
2611 	if (tp)
2612 		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2613 
2614 	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2615 	return 0;
2616 }
2617 
2618 int
2619 xfs_ialloc_read_agi(
2620 	struct xfs_mount	*mp,	/* file system mount structure */
2621 	struct xfs_trans	*tp,	/* transaction pointer */
2622 	xfs_agnumber_t		agno,	/* allocation group number */
2623 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2624 {
2625 	struct xfs_agi		*agi;	/* allocation group header */
2626 	struct xfs_perag	*pag;	/* per allocation group data */
2627 	int			error;
2628 
2629 	trace_xfs_ialloc_read_agi(mp, agno);
2630 
2631 	error = xfs_read_agi(mp, tp, agno, bpp);
2632 	if (error)
2633 		return error;
2634 
2635 	agi = XFS_BUF_TO_AGI(*bpp);
2636 	pag = xfs_perag_get(mp, agno);
2637 	if (!pag->pagi_init) {
2638 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2639 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2640 		pag->pagi_init = 1;
2641 	}
2642 
2643 	/*
2644 	 * It's possible for these to be out of sync if
2645 	 * we are in the middle of a forced shutdown.
2646 	 */
2647 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2648 		XFS_FORCED_SHUTDOWN(mp));
2649 	xfs_perag_put(pag);
2650 	return 0;
2651 }
2652 
2653 /*
2654  * Read in the agi to initialise the per-ag data in the mount structure
2655  */
2656 int
2657 xfs_ialloc_pagi_init(
2658 	xfs_mount_t	*mp,		/* file system mount structure */
2659 	xfs_trans_t	*tp,		/* transaction pointer */
2660 	xfs_agnumber_t	agno)		/* allocation group number */
2661 {
2662 	xfs_buf_t	*bp = NULL;
2663 	int		error;
2664 
2665 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2666 	if (error)
2667 		return error;
2668 	if (bp)
2669 		xfs_trans_brelse(tp, bp);
2670 	return 0;
2671 }
2672 
2673 /* Is there an inode record covering a given range of inode numbers? */
2674 int
2675 xfs_ialloc_has_inode_record(
2676 	struct xfs_btree_cur	*cur,
2677 	xfs_agino_t		low,
2678 	xfs_agino_t		high,
2679 	bool			*exists)
2680 {
2681 	struct xfs_inobt_rec_incore	irec;
2682 	xfs_agino_t		agino;
2683 	uint16_t		holemask;
2684 	int			has_record;
2685 	int			i;
2686 	int			error;
2687 
2688 	*exists = false;
2689 	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2690 	while (error == 0 && has_record) {
2691 		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2692 		if (error || irec.ir_startino > high)
2693 			break;
2694 
2695 		agino = irec.ir_startino;
2696 		holemask = irec.ir_holemask;
2697 		for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2698 				i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2699 			if (holemask & 1)
2700 				continue;
2701 			if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2702 					agino <= high) {
2703 				*exists = true;
2704 				return 0;
2705 			}
2706 		}
2707 
2708 		error = xfs_btree_increment(cur, 0, &has_record);
2709 	}
2710 	return error;
2711 }
2712 
2713 /* Is there an inode record covering a given extent? */
2714 int
2715 xfs_ialloc_has_inodes_at_extent(
2716 	struct xfs_btree_cur	*cur,
2717 	xfs_agblock_t		bno,
2718 	xfs_extlen_t		len,
2719 	bool			*exists)
2720 {
2721 	xfs_agino_t		low;
2722 	xfs_agino_t		high;
2723 
2724 	low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2725 	high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2726 
2727 	return xfs_ialloc_has_inode_record(cur, low, high, exists);
2728 }
2729 
2730 struct xfs_ialloc_count_inodes {
2731 	xfs_agino_t			count;
2732 	xfs_agino_t			freecount;
2733 };
2734 
2735 /* Record inode counts across all inobt records. */
2736 STATIC int
2737 xfs_ialloc_count_inodes_rec(
2738 	struct xfs_btree_cur		*cur,
2739 	union xfs_btree_rec		*rec,
2740 	void				*priv)
2741 {
2742 	struct xfs_inobt_rec_incore	irec;
2743 	struct xfs_ialloc_count_inodes	*ci = priv;
2744 
2745 	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2746 	ci->count += irec.ir_count;
2747 	ci->freecount += irec.ir_freecount;
2748 
2749 	return 0;
2750 }
2751 
2752 /* Count allocated and free inodes under an inobt. */
2753 int
2754 xfs_ialloc_count_inodes(
2755 	struct xfs_btree_cur		*cur,
2756 	xfs_agino_t			*count,
2757 	xfs_agino_t			*freecount)
2758 {
2759 	struct xfs_ialloc_count_inodes	ci = {0};
2760 	int				error;
2761 
2762 	ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2763 	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2764 	if (error)
2765 		return error;
2766 
2767 	*count = ci.count;
2768 	*freecount = ci.freecount;
2769 	return 0;
2770 }
2771