xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc.c (revision 8684014d)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_inode.h"
28 #include "xfs_btree.h"
29 #include "xfs_ialloc.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_alloc.h"
32 #include "xfs_rtalloc.h"
33 #include "xfs_error.h"
34 #include "xfs_bmap.h"
35 #include "xfs_cksum.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_icreate_item.h"
39 #include "xfs_icache.h"
40 #include "xfs_trace.h"
41 
42 
43 /*
44  * Allocation group level functions.
45  */
46 static inline int
47 xfs_ialloc_cluster_alignment(
48 	struct xfs_mount	*mp)
49 {
50 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
51 	    mp->m_sb.sb_inoalignmt >=
52 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
53 		return mp->m_sb.sb_inoalignmt;
54 	return 1;
55 }
56 
57 /*
58  * Lookup a record by ino in the btree given by cur.
59  */
60 int					/* error */
61 xfs_inobt_lookup(
62 	struct xfs_btree_cur	*cur,	/* btree cursor */
63 	xfs_agino_t		ino,	/* starting inode of chunk */
64 	xfs_lookup_t		dir,	/* <=, >=, == */
65 	int			*stat)	/* success/failure */
66 {
67 	cur->bc_rec.i.ir_startino = ino;
68 	cur->bc_rec.i.ir_freecount = 0;
69 	cur->bc_rec.i.ir_free = 0;
70 	return xfs_btree_lookup(cur, dir, stat);
71 }
72 
73 /*
74  * Update the record referred to by cur to the value given.
75  * This either works (return 0) or gets an EFSCORRUPTED error.
76  */
77 STATIC int				/* error */
78 xfs_inobt_update(
79 	struct xfs_btree_cur	*cur,	/* btree cursor */
80 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
81 {
82 	union xfs_btree_rec	rec;
83 
84 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
85 	rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount);
86 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
87 	return xfs_btree_update(cur, &rec);
88 }
89 
90 /*
91  * Get the data from the pointed-to record.
92  */
93 int					/* error */
94 xfs_inobt_get_rec(
95 	struct xfs_btree_cur	*cur,	/* btree cursor */
96 	xfs_inobt_rec_incore_t	*irec,	/* btree record */
97 	int			*stat)	/* output: success/failure */
98 {
99 	union xfs_btree_rec	*rec;
100 	int			error;
101 
102 	error = xfs_btree_get_rec(cur, &rec, stat);
103 	if (!error && *stat == 1) {
104 		irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
105 		irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount);
106 		irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
107 	}
108 	return error;
109 }
110 
111 /*
112  * Insert a single inobt record. Cursor must already point to desired location.
113  */
114 STATIC int
115 xfs_inobt_insert_rec(
116 	struct xfs_btree_cur	*cur,
117 	__int32_t		freecount,
118 	xfs_inofree_t		free,
119 	int			*stat)
120 {
121 	cur->bc_rec.i.ir_freecount = freecount;
122 	cur->bc_rec.i.ir_free = free;
123 	return xfs_btree_insert(cur, stat);
124 }
125 
126 /*
127  * Insert records describing a newly allocated inode chunk into the inobt.
128  */
129 STATIC int
130 xfs_inobt_insert(
131 	struct xfs_mount	*mp,
132 	struct xfs_trans	*tp,
133 	struct xfs_buf		*agbp,
134 	xfs_agino_t		newino,
135 	xfs_agino_t		newlen,
136 	xfs_btnum_t		btnum)
137 {
138 	struct xfs_btree_cur	*cur;
139 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
140 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
141 	xfs_agino_t		thisino;
142 	int			i;
143 	int			error;
144 
145 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
146 
147 	for (thisino = newino;
148 	     thisino < newino + newlen;
149 	     thisino += XFS_INODES_PER_CHUNK) {
150 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
151 		if (error) {
152 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
153 			return error;
154 		}
155 		ASSERT(i == 0);
156 
157 		error = xfs_inobt_insert_rec(cur, XFS_INODES_PER_CHUNK,
158 					     XFS_INOBT_ALL_FREE, &i);
159 		if (error) {
160 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
161 			return error;
162 		}
163 		ASSERT(i == 1);
164 	}
165 
166 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
167 
168 	return 0;
169 }
170 
171 /*
172  * Verify that the number of free inodes in the AGI is correct.
173  */
174 #ifdef DEBUG
175 STATIC int
176 xfs_check_agi_freecount(
177 	struct xfs_btree_cur	*cur,
178 	struct xfs_agi		*agi)
179 {
180 	if (cur->bc_nlevels == 1) {
181 		xfs_inobt_rec_incore_t rec;
182 		int		freecount = 0;
183 		int		error;
184 		int		i;
185 
186 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
187 		if (error)
188 			return error;
189 
190 		do {
191 			error = xfs_inobt_get_rec(cur, &rec, &i);
192 			if (error)
193 				return error;
194 
195 			if (i) {
196 				freecount += rec.ir_freecount;
197 				error = xfs_btree_increment(cur, 0, &i);
198 				if (error)
199 					return error;
200 			}
201 		} while (i == 1);
202 
203 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
204 			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
205 	}
206 	return 0;
207 }
208 #else
209 #define xfs_check_agi_freecount(cur, agi)	0
210 #endif
211 
212 /*
213  * Initialise a new set of inodes. When called without a transaction context
214  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
215  * than logging them (which in a transaction context puts them into the AIL
216  * for writeback rather than the xfsbufd queue).
217  */
218 int
219 xfs_ialloc_inode_init(
220 	struct xfs_mount	*mp,
221 	struct xfs_trans	*tp,
222 	struct list_head	*buffer_list,
223 	xfs_agnumber_t		agno,
224 	xfs_agblock_t		agbno,
225 	xfs_agblock_t		length,
226 	unsigned int		gen)
227 {
228 	struct xfs_buf		*fbuf;
229 	struct xfs_dinode	*free;
230 	int			nbufs, blks_per_cluster, inodes_per_cluster;
231 	int			version;
232 	int			i, j;
233 	xfs_daddr_t		d;
234 	xfs_ino_t		ino = 0;
235 
236 	/*
237 	 * Loop over the new block(s), filling in the inodes.  For small block
238 	 * sizes, manipulate the inodes in buffers  which are multiples of the
239 	 * blocks size.
240 	 */
241 	blks_per_cluster = xfs_icluster_size_fsb(mp);
242 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
243 	nbufs = length / blks_per_cluster;
244 
245 	/*
246 	 * Figure out what version number to use in the inodes we create.  If
247 	 * the superblock version has caught up to the one that supports the new
248 	 * inode format, then use the new inode version.  Otherwise use the old
249 	 * version so that old kernels will continue to be able to use the file
250 	 * system.
251 	 *
252 	 * For v3 inodes, we also need to write the inode number into the inode,
253 	 * so calculate the first inode number of the chunk here as
254 	 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
255 	 * across multiple filesystem blocks (such as a cluster) and so cannot
256 	 * be used in the cluster buffer loop below.
257 	 *
258 	 * Further, because we are writing the inode directly into the buffer
259 	 * and calculating a CRC on the entire inode, we have ot log the entire
260 	 * inode so that the entire range the CRC covers is present in the log.
261 	 * That means for v3 inode we log the entire buffer rather than just the
262 	 * inode cores.
263 	 */
264 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
265 		version = 3;
266 		ino = XFS_AGINO_TO_INO(mp, agno,
267 				       XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
268 
269 		/*
270 		 * log the initialisation that is about to take place as an
271 		 * logical operation. This means the transaction does not
272 		 * need to log the physical changes to the inode buffers as log
273 		 * recovery will know what initialisation is actually needed.
274 		 * Hence we only need to log the buffers as "ordered" buffers so
275 		 * they track in the AIL as if they were physically logged.
276 		 */
277 		if (tp)
278 			xfs_icreate_log(tp, agno, agbno, mp->m_ialloc_inos,
279 					mp->m_sb.sb_inodesize, length, gen);
280 	} else
281 		version = 2;
282 
283 	for (j = 0; j < nbufs; j++) {
284 		/*
285 		 * Get the block.
286 		 */
287 		d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
288 		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
289 					 mp->m_bsize * blks_per_cluster,
290 					 XBF_UNMAPPED);
291 		if (!fbuf)
292 			return -ENOMEM;
293 
294 		/* Initialize the inode buffers and log them appropriately. */
295 		fbuf->b_ops = &xfs_inode_buf_ops;
296 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
297 		for (i = 0; i < inodes_per_cluster; i++) {
298 			int	ioffset = i << mp->m_sb.sb_inodelog;
299 			uint	isize = xfs_dinode_size(version);
300 
301 			free = xfs_make_iptr(mp, fbuf, i);
302 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
303 			free->di_version = version;
304 			free->di_gen = cpu_to_be32(gen);
305 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
306 
307 			if (version == 3) {
308 				free->di_ino = cpu_to_be64(ino);
309 				ino++;
310 				uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid);
311 				xfs_dinode_calc_crc(mp, free);
312 			} else if (tp) {
313 				/* just log the inode core */
314 				xfs_trans_log_buf(tp, fbuf, ioffset,
315 						  ioffset + isize - 1);
316 			}
317 		}
318 
319 		if (tp) {
320 			/*
321 			 * Mark the buffer as an inode allocation buffer so it
322 			 * sticks in AIL at the point of this allocation
323 			 * transaction. This ensures the they are on disk before
324 			 * the tail of the log can be moved past this
325 			 * transaction (i.e. by preventing relogging from moving
326 			 * it forward in the log).
327 			 */
328 			xfs_trans_inode_alloc_buf(tp, fbuf);
329 			if (version == 3) {
330 				/*
331 				 * Mark the buffer as ordered so that they are
332 				 * not physically logged in the transaction but
333 				 * still tracked in the AIL as part of the
334 				 * transaction and pin the log appropriately.
335 				 */
336 				xfs_trans_ordered_buf(tp, fbuf);
337 				xfs_trans_log_buf(tp, fbuf, 0,
338 						  BBTOB(fbuf->b_length) - 1);
339 			}
340 		} else {
341 			fbuf->b_flags |= XBF_DONE;
342 			xfs_buf_delwri_queue(fbuf, buffer_list);
343 			xfs_buf_relse(fbuf);
344 		}
345 	}
346 	return 0;
347 }
348 
349 /*
350  * Allocate new inodes in the allocation group specified by agbp.
351  * Return 0 for success, else error code.
352  */
353 STATIC int				/* error code or 0 */
354 xfs_ialloc_ag_alloc(
355 	xfs_trans_t	*tp,		/* transaction pointer */
356 	xfs_buf_t	*agbp,		/* alloc group buffer */
357 	int		*alloc)
358 {
359 	xfs_agi_t	*agi;		/* allocation group header */
360 	xfs_alloc_arg_t	args;		/* allocation argument structure */
361 	xfs_agnumber_t	agno;
362 	int		error;
363 	xfs_agino_t	newino;		/* new first inode's number */
364 	xfs_agino_t	newlen;		/* new number of inodes */
365 	int		isaligned = 0;	/* inode allocation at stripe unit */
366 					/* boundary */
367 	struct xfs_perag *pag;
368 
369 	memset(&args, 0, sizeof(args));
370 	args.tp = tp;
371 	args.mp = tp->t_mountp;
372 
373 	/*
374 	 * Locking will ensure that we don't have two callers in here
375 	 * at one time.
376 	 */
377 	newlen = args.mp->m_ialloc_inos;
378 	if (args.mp->m_maxicount &&
379 	    args.mp->m_sb.sb_icount + newlen > args.mp->m_maxicount)
380 		return -ENOSPC;
381 	args.minlen = args.maxlen = args.mp->m_ialloc_blks;
382 	/*
383 	 * First try to allocate inodes contiguous with the last-allocated
384 	 * chunk of inodes.  If the filesystem is striped, this will fill
385 	 * an entire stripe unit with inodes.
386 	 */
387 	agi = XFS_BUF_TO_AGI(agbp);
388 	newino = be32_to_cpu(agi->agi_newino);
389 	agno = be32_to_cpu(agi->agi_seqno);
390 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
391 		     args.mp->m_ialloc_blks;
392 	if (likely(newino != NULLAGINO &&
393 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
394 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
395 		args.type = XFS_ALLOCTYPE_THIS_BNO;
396 		args.prod = 1;
397 
398 		/*
399 		 * We need to take into account alignment here to ensure that
400 		 * we don't modify the free list if we fail to have an exact
401 		 * block. If we don't have an exact match, and every oher
402 		 * attempt allocation attempt fails, we'll end up cancelling
403 		 * a dirty transaction and shutting down.
404 		 *
405 		 * For an exact allocation, alignment must be 1,
406 		 * however we need to take cluster alignment into account when
407 		 * fixing up the freelist. Use the minalignslop field to
408 		 * indicate that extra blocks might be required for alignment,
409 		 * but not to use them in the actual exact allocation.
410 		 */
411 		args.alignment = 1;
412 		args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
413 
414 		/* Allow space for the inode btree to split. */
415 		args.minleft = args.mp->m_in_maxlevels - 1;
416 		if ((error = xfs_alloc_vextent(&args)))
417 			return error;
418 
419 		/*
420 		 * This request might have dirtied the transaction if the AG can
421 		 * satisfy the request, but the exact block was not available.
422 		 * If the allocation did fail, subsequent requests will relax
423 		 * the exact agbno requirement and increase the alignment
424 		 * instead. It is critical that the total size of the request
425 		 * (len + alignment + slop) does not increase from this point
426 		 * on, so reset minalignslop to ensure it is not included in
427 		 * subsequent requests.
428 		 */
429 		args.minalignslop = 0;
430 	} else
431 		args.fsbno = NULLFSBLOCK;
432 
433 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
434 		/*
435 		 * Set the alignment for the allocation.
436 		 * If stripe alignment is turned on then align at stripe unit
437 		 * boundary.
438 		 * If the cluster size is smaller than a filesystem block
439 		 * then we're doing I/O for inodes in filesystem block size
440 		 * pieces, so don't need alignment anyway.
441 		 */
442 		isaligned = 0;
443 		if (args.mp->m_sinoalign) {
444 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
445 			args.alignment = args.mp->m_dalign;
446 			isaligned = 1;
447 		} else
448 			args.alignment = xfs_ialloc_cluster_alignment(args.mp);
449 		/*
450 		 * Need to figure out where to allocate the inode blocks.
451 		 * Ideally they should be spaced out through the a.g.
452 		 * For now, just allocate blocks up front.
453 		 */
454 		args.agbno = be32_to_cpu(agi->agi_root);
455 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
456 		/*
457 		 * Allocate a fixed-size extent of inodes.
458 		 */
459 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
460 		args.prod = 1;
461 		/*
462 		 * Allow space for the inode btree to split.
463 		 */
464 		args.minleft = args.mp->m_in_maxlevels - 1;
465 		if ((error = xfs_alloc_vextent(&args)))
466 			return error;
467 	}
468 
469 	/*
470 	 * If stripe alignment is turned on, then try again with cluster
471 	 * alignment.
472 	 */
473 	if (isaligned && args.fsbno == NULLFSBLOCK) {
474 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
475 		args.agbno = be32_to_cpu(agi->agi_root);
476 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
477 		args.alignment = xfs_ialloc_cluster_alignment(args.mp);
478 		if ((error = xfs_alloc_vextent(&args)))
479 			return error;
480 	}
481 
482 	if (args.fsbno == NULLFSBLOCK) {
483 		*alloc = 0;
484 		return 0;
485 	}
486 	ASSERT(args.len == args.minlen);
487 
488 	/*
489 	 * Stamp and write the inode buffers.
490 	 *
491 	 * Seed the new inode cluster with a random generation number. This
492 	 * prevents short-term reuse of generation numbers if a chunk is
493 	 * freed and then immediately reallocated. We use random numbers
494 	 * rather than a linear progression to prevent the next generation
495 	 * number from being easily guessable.
496 	 */
497 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, agno, args.agbno,
498 			args.len, prandom_u32());
499 
500 	if (error)
501 		return error;
502 	/*
503 	 * Convert the results.
504 	 */
505 	newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
506 	be32_add_cpu(&agi->agi_count, newlen);
507 	be32_add_cpu(&agi->agi_freecount, newlen);
508 	pag = xfs_perag_get(args.mp, agno);
509 	pag->pagi_freecount += newlen;
510 	xfs_perag_put(pag);
511 	agi->agi_newino = cpu_to_be32(newino);
512 
513 	/*
514 	 * Insert records describing the new inode chunk into the btrees.
515 	 */
516 	error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
517 				 XFS_BTNUM_INO);
518 	if (error)
519 		return error;
520 
521 	if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
522 		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
523 					 XFS_BTNUM_FINO);
524 		if (error)
525 			return error;
526 	}
527 	/*
528 	 * Log allocation group header fields
529 	 */
530 	xfs_ialloc_log_agi(tp, agbp,
531 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
532 	/*
533 	 * Modify/log superblock values for inode count and inode free count.
534 	 */
535 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
536 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
537 	*alloc = 1;
538 	return 0;
539 }
540 
541 STATIC xfs_agnumber_t
542 xfs_ialloc_next_ag(
543 	xfs_mount_t	*mp)
544 {
545 	xfs_agnumber_t	agno;
546 
547 	spin_lock(&mp->m_agirotor_lock);
548 	agno = mp->m_agirotor;
549 	if (++mp->m_agirotor >= mp->m_maxagi)
550 		mp->m_agirotor = 0;
551 	spin_unlock(&mp->m_agirotor_lock);
552 
553 	return agno;
554 }
555 
556 /*
557  * Select an allocation group to look for a free inode in, based on the parent
558  * inode and the mode.  Return the allocation group buffer.
559  */
560 STATIC xfs_agnumber_t
561 xfs_ialloc_ag_select(
562 	xfs_trans_t	*tp,		/* transaction pointer */
563 	xfs_ino_t	parent,		/* parent directory inode number */
564 	umode_t		mode,		/* bits set to indicate file type */
565 	int		okalloc)	/* ok to allocate more space */
566 {
567 	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
568 	xfs_agnumber_t	agno;		/* current ag number */
569 	int		flags;		/* alloc buffer locking flags */
570 	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
571 	xfs_extlen_t	longest = 0;	/* longest extent available */
572 	xfs_mount_t	*mp;		/* mount point structure */
573 	int		needspace;	/* file mode implies space allocated */
574 	xfs_perag_t	*pag;		/* per allocation group data */
575 	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
576 	int		error;
577 
578 	/*
579 	 * Files of these types need at least one block if length > 0
580 	 * (and they won't fit in the inode, but that's hard to figure out).
581 	 */
582 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
583 	mp = tp->t_mountp;
584 	agcount = mp->m_maxagi;
585 	if (S_ISDIR(mode))
586 		pagno = xfs_ialloc_next_ag(mp);
587 	else {
588 		pagno = XFS_INO_TO_AGNO(mp, parent);
589 		if (pagno >= agcount)
590 			pagno = 0;
591 	}
592 
593 	ASSERT(pagno < agcount);
594 
595 	/*
596 	 * Loop through allocation groups, looking for one with a little
597 	 * free space in it.  Note we don't look for free inodes, exactly.
598 	 * Instead, we include whether there is a need to allocate inodes
599 	 * to mean that blocks must be allocated for them,
600 	 * if none are currently free.
601 	 */
602 	agno = pagno;
603 	flags = XFS_ALLOC_FLAG_TRYLOCK;
604 	for (;;) {
605 		pag = xfs_perag_get(mp, agno);
606 		if (!pag->pagi_inodeok) {
607 			xfs_ialloc_next_ag(mp);
608 			goto nextag;
609 		}
610 
611 		if (!pag->pagi_init) {
612 			error = xfs_ialloc_pagi_init(mp, tp, agno);
613 			if (error)
614 				goto nextag;
615 		}
616 
617 		if (pag->pagi_freecount) {
618 			xfs_perag_put(pag);
619 			return agno;
620 		}
621 
622 		if (!okalloc)
623 			goto nextag;
624 
625 		if (!pag->pagf_init) {
626 			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
627 			if (error)
628 				goto nextag;
629 		}
630 
631 		/*
632 		 * Check that there is enough free space for the file plus a
633 		 * chunk of inodes if we need to allocate some. If this is the
634 		 * first pass across the AGs, take into account the potential
635 		 * space needed for alignment of inode chunks when checking the
636 		 * longest contiguous free space in the AG - this prevents us
637 		 * from getting ENOSPC because we have free space larger than
638 		 * m_ialloc_blks but alignment constraints prevent us from using
639 		 * it.
640 		 *
641 		 * If we can't find an AG with space for full alignment slack to
642 		 * be taken into account, we must be near ENOSPC in all AGs.
643 		 * Hence we don't include alignment for the second pass and so
644 		 * if we fail allocation due to alignment issues then it is most
645 		 * likely a real ENOSPC condition.
646 		 */
647 		ineed = mp->m_ialloc_blks;
648 		if (flags && ineed > 1)
649 			ineed += xfs_ialloc_cluster_alignment(mp);
650 		longest = pag->pagf_longest;
651 		if (!longest)
652 			longest = pag->pagf_flcount > 0;
653 
654 		if (pag->pagf_freeblks >= needspace + ineed &&
655 		    longest >= ineed) {
656 			xfs_perag_put(pag);
657 			return agno;
658 		}
659 nextag:
660 		xfs_perag_put(pag);
661 		/*
662 		 * No point in iterating over the rest, if we're shutting
663 		 * down.
664 		 */
665 		if (XFS_FORCED_SHUTDOWN(mp))
666 			return NULLAGNUMBER;
667 		agno++;
668 		if (agno >= agcount)
669 			agno = 0;
670 		if (agno == pagno) {
671 			if (flags == 0)
672 				return NULLAGNUMBER;
673 			flags = 0;
674 		}
675 	}
676 }
677 
678 /*
679  * Try to retrieve the next record to the left/right from the current one.
680  */
681 STATIC int
682 xfs_ialloc_next_rec(
683 	struct xfs_btree_cur	*cur,
684 	xfs_inobt_rec_incore_t	*rec,
685 	int			*done,
686 	int			left)
687 {
688 	int                     error;
689 	int			i;
690 
691 	if (left)
692 		error = xfs_btree_decrement(cur, 0, &i);
693 	else
694 		error = xfs_btree_increment(cur, 0, &i);
695 
696 	if (error)
697 		return error;
698 	*done = !i;
699 	if (i) {
700 		error = xfs_inobt_get_rec(cur, rec, &i);
701 		if (error)
702 			return error;
703 		XFS_WANT_CORRUPTED_RETURN(i == 1);
704 	}
705 
706 	return 0;
707 }
708 
709 STATIC int
710 xfs_ialloc_get_rec(
711 	struct xfs_btree_cur	*cur,
712 	xfs_agino_t		agino,
713 	xfs_inobt_rec_incore_t	*rec,
714 	int			*done)
715 {
716 	int                     error;
717 	int			i;
718 
719 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
720 	if (error)
721 		return error;
722 	*done = !i;
723 	if (i) {
724 		error = xfs_inobt_get_rec(cur, rec, &i);
725 		if (error)
726 			return error;
727 		XFS_WANT_CORRUPTED_RETURN(i == 1);
728 	}
729 
730 	return 0;
731 }
732 
733 /*
734  * Allocate an inode using the inobt-only algorithm.
735  */
736 STATIC int
737 xfs_dialloc_ag_inobt(
738 	struct xfs_trans	*tp,
739 	struct xfs_buf		*agbp,
740 	xfs_ino_t		parent,
741 	xfs_ino_t		*inop)
742 {
743 	struct xfs_mount	*mp = tp->t_mountp;
744 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
745 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
746 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
747 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
748 	struct xfs_perag	*pag;
749 	struct xfs_btree_cur	*cur, *tcur;
750 	struct xfs_inobt_rec_incore rec, trec;
751 	xfs_ino_t		ino;
752 	int			error;
753 	int			offset;
754 	int			i, j;
755 
756 	pag = xfs_perag_get(mp, agno);
757 
758 	ASSERT(pag->pagi_init);
759 	ASSERT(pag->pagi_inodeok);
760 	ASSERT(pag->pagi_freecount > 0);
761 
762  restart_pagno:
763 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
764 	/*
765 	 * If pagino is 0 (this is the root inode allocation) use newino.
766 	 * This must work because we've just allocated some.
767 	 */
768 	if (!pagino)
769 		pagino = be32_to_cpu(agi->agi_newino);
770 
771 	error = xfs_check_agi_freecount(cur, agi);
772 	if (error)
773 		goto error0;
774 
775 	/*
776 	 * If in the same AG as the parent, try to get near the parent.
777 	 */
778 	if (pagno == agno) {
779 		int		doneleft;	/* done, to the left */
780 		int		doneright;	/* done, to the right */
781 		int		searchdistance = 10;
782 
783 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
784 		if (error)
785 			goto error0;
786 		XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
787 
788 		error = xfs_inobt_get_rec(cur, &rec, &j);
789 		if (error)
790 			goto error0;
791 		XFS_WANT_CORRUPTED_GOTO(j == 1, error0);
792 
793 		if (rec.ir_freecount > 0) {
794 			/*
795 			 * Found a free inode in the same chunk
796 			 * as the parent, done.
797 			 */
798 			goto alloc_inode;
799 		}
800 
801 
802 		/*
803 		 * In the same AG as parent, but parent's chunk is full.
804 		 */
805 
806 		/* duplicate the cursor, search left & right simultaneously */
807 		error = xfs_btree_dup_cursor(cur, &tcur);
808 		if (error)
809 			goto error0;
810 
811 		/*
812 		 * Skip to last blocks looked up if same parent inode.
813 		 */
814 		if (pagino != NULLAGINO &&
815 		    pag->pagl_pagino == pagino &&
816 		    pag->pagl_leftrec != NULLAGINO &&
817 		    pag->pagl_rightrec != NULLAGINO) {
818 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
819 						   &trec, &doneleft);
820 			if (error)
821 				goto error1;
822 
823 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
824 						   &rec, &doneright);
825 			if (error)
826 				goto error1;
827 		} else {
828 			/* search left with tcur, back up 1 record */
829 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
830 			if (error)
831 				goto error1;
832 
833 			/* search right with cur, go forward 1 record. */
834 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
835 			if (error)
836 				goto error1;
837 		}
838 
839 		/*
840 		 * Loop until we find an inode chunk with a free inode.
841 		 */
842 		while (!doneleft || !doneright) {
843 			int	useleft;  /* using left inode chunk this time */
844 
845 			if (!--searchdistance) {
846 				/*
847 				 * Not in range - save last search
848 				 * location and allocate a new inode
849 				 */
850 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
851 				pag->pagl_leftrec = trec.ir_startino;
852 				pag->pagl_rightrec = rec.ir_startino;
853 				pag->pagl_pagino = pagino;
854 				goto newino;
855 			}
856 
857 			/* figure out the closer block if both are valid. */
858 			if (!doneleft && !doneright) {
859 				useleft = pagino -
860 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
861 				  rec.ir_startino - pagino;
862 			} else {
863 				useleft = !doneleft;
864 			}
865 
866 			/* free inodes to the left? */
867 			if (useleft && trec.ir_freecount) {
868 				rec = trec;
869 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
870 				cur = tcur;
871 
872 				pag->pagl_leftrec = trec.ir_startino;
873 				pag->pagl_rightrec = rec.ir_startino;
874 				pag->pagl_pagino = pagino;
875 				goto alloc_inode;
876 			}
877 
878 			/* free inodes to the right? */
879 			if (!useleft && rec.ir_freecount) {
880 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
881 
882 				pag->pagl_leftrec = trec.ir_startino;
883 				pag->pagl_rightrec = rec.ir_startino;
884 				pag->pagl_pagino = pagino;
885 				goto alloc_inode;
886 			}
887 
888 			/* get next record to check */
889 			if (useleft) {
890 				error = xfs_ialloc_next_rec(tcur, &trec,
891 								 &doneleft, 1);
892 			} else {
893 				error = xfs_ialloc_next_rec(cur, &rec,
894 								 &doneright, 0);
895 			}
896 			if (error)
897 				goto error1;
898 		}
899 
900 		/*
901 		 * We've reached the end of the btree. because
902 		 * we are only searching a small chunk of the
903 		 * btree each search, there is obviously free
904 		 * inodes closer to the parent inode than we
905 		 * are now. restart the search again.
906 		 */
907 		pag->pagl_pagino = NULLAGINO;
908 		pag->pagl_leftrec = NULLAGINO;
909 		pag->pagl_rightrec = NULLAGINO;
910 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
911 		xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
912 		goto restart_pagno;
913 	}
914 
915 	/*
916 	 * In a different AG from the parent.
917 	 * See if the most recently allocated block has any free.
918 	 */
919 newino:
920 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
921 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
922 					 XFS_LOOKUP_EQ, &i);
923 		if (error)
924 			goto error0;
925 
926 		if (i == 1) {
927 			error = xfs_inobt_get_rec(cur, &rec, &j);
928 			if (error)
929 				goto error0;
930 
931 			if (j == 1 && rec.ir_freecount > 0) {
932 				/*
933 				 * The last chunk allocated in the group
934 				 * still has a free inode.
935 				 */
936 				goto alloc_inode;
937 			}
938 		}
939 	}
940 
941 	/*
942 	 * None left in the last group, search the whole AG
943 	 */
944 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
945 	if (error)
946 		goto error0;
947 	XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
948 
949 	for (;;) {
950 		error = xfs_inobt_get_rec(cur, &rec, &i);
951 		if (error)
952 			goto error0;
953 		XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
954 		if (rec.ir_freecount > 0)
955 			break;
956 		error = xfs_btree_increment(cur, 0, &i);
957 		if (error)
958 			goto error0;
959 		XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
960 	}
961 
962 alloc_inode:
963 	offset = xfs_lowbit64(rec.ir_free);
964 	ASSERT(offset >= 0);
965 	ASSERT(offset < XFS_INODES_PER_CHUNK);
966 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
967 				   XFS_INODES_PER_CHUNK) == 0);
968 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
969 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
970 	rec.ir_freecount--;
971 	error = xfs_inobt_update(cur, &rec);
972 	if (error)
973 		goto error0;
974 	be32_add_cpu(&agi->agi_freecount, -1);
975 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
976 	pag->pagi_freecount--;
977 
978 	error = xfs_check_agi_freecount(cur, agi);
979 	if (error)
980 		goto error0;
981 
982 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
983 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
984 	xfs_perag_put(pag);
985 	*inop = ino;
986 	return 0;
987 error1:
988 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
989 error0:
990 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
991 	xfs_perag_put(pag);
992 	return error;
993 }
994 
995 /*
996  * Use the free inode btree to allocate an inode based on distance from the
997  * parent. Note that the provided cursor may be deleted and replaced.
998  */
999 STATIC int
1000 xfs_dialloc_ag_finobt_near(
1001 	xfs_agino_t			pagino,
1002 	struct xfs_btree_cur		**ocur,
1003 	struct xfs_inobt_rec_incore	*rec)
1004 {
1005 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1006 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1007 	struct xfs_inobt_rec_incore	rrec;
1008 	int				error;
1009 	int				i, j;
1010 
1011 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1012 	if (error)
1013 		return error;
1014 
1015 	if (i == 1) {
1016 		error = xfs_inobt_get_rec(lcur, rec, &i);
1017 		if (error)
1018 			return error;
1019 		XFS_WANT_CORRUPTED_RETURN(i == 1);
1020 
1021 		/*
1022 		 * See if we've landed in the parent inode record. The finobt
1023 		 * only tracks chunks with at least one free inode, so record
1024 		 * existence is enough.
1025 		 */
1026 		if (pagino >= rec->ir_startino &&
1027 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1028 			return 0;
1029 	}
1030 
1031 	error = xfs_btree_dup_cursor(lcur, &rcur);
1032 	if (error)
1033 		return error;
1034 
1035 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1036 	if (error)
1037 		goto error_rcur;
1038 	if (j == 1) {
1039 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1040 		if (error)
1041 			goto error_rcur;
1042 		XFS_WANT_CORRUPTED_GOTO(j == 1, error_rcur);
1043 	}
1044 
1045 	XFS_WANT_CORRUPTED_GOTO(i == 1 || j == 1, error_rcur);
1046 	if (i == 1 && j == 1) {
1047 		/*
1048 		 * Both the left and right records are valid. Choose the closer
1049 		 * inode chunk to the target.
1050 		 */
1051 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1052 		    (rrec.ir_startino - pagino)) {
1053 			*rec = rrec;
1054 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1055 			*ocur = rcur;
1056 		} else {
1057 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1058 		}
1059 	} else if (j == 1) {
1060 		/* only the right record is valid */
1061 		*rec = rrec;
1062 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1063 		*ocur = rcur;
1064 	} else if (i == 1) {
1065 		/* only the left record is valid */
1066 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1067 	}
1068 
1069 	return 0;
1070 
1071 error_rcur:
1072 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1073 	return error;
1074 }
1075 
1076 /*
1077  * Use the free inode btree to find a free inode based on a newino hint. If
1078  * the hint is NULL, find the first free inode in the AG.
1079  */
1080 STATIC int
1081 xfs_dialloc_ag_finobt_newino(
1082 	struct xfs_agi			*agi,
1083 	struct xfs_btree_cur		*cur,
1084 	struct xfs_inobt_rec_incore	*rec)
1085 {
1086 	int error;
1087 	int i;
1088 
1089 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1090 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1091 					 XFS_LOOKUP_EQ, &i);
1092 		if (error)
1093 			return error;
1094 		if (i == 1) {
1095 			error = xfs_inobt_get_rec(cur, rec, &i);
1096 			if (error)
1097 				return error;
1098 			XFS_WANT_CORRUPTED_RETURN(i == 1);
1099 			return 0;
1100 		}
1101 	}
1102 
1103 	/*
1104 	 * Find the first inode available in the AG.
1105 	 */
1106 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1107 	if (error)
1108 		return error;
1109 	XFS_WANT_CORRUPTED_RETURN(i == 1);
1110 
1111 	error = xfs_inobt_get_rec(cur, rec, &i);
1112 	if (error)
1113 		return error;
1114 	XFS_WANT_CORRUPTED_RETURN(i == 1);
1115 
1116 	return 0;
1117 }
1118 
1119 /*
1120  * Update the inobt based on a modification made to the finobt. Also ensure that
1121  * the records from both trees are equivalent post-modification.
1122  */
1123 STATIC int
1124 xfs_dialloc_ag_update_inobt(
1125 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1126 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1127 	int				offset) /* inode offset */
1128 {
1129 	struct xfs_inobt_rec_incore	rec;
1130 	int				error;
1131 	int				i;
1132 
1133 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1134 	if (error)
1135 		return error;
1136 	XFS_WANT_CORRUPTED_RETURN(i == 1);
1137 
1138 	error = xfs_inobt_get_rec(cur, &rec, &i);
1139 	if (error)
1140 		return error;
1141 	XFS_WANT_CORRUPTED_RETURN(i == 1);
1142 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1143 				   XFS_INODES_PER_CHUNK) == 0);
1144 
1145 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1146 	rec.ir_freecount--;
1147 
1148 	XFS_WANT_CORRUPTED_RETURN((rec.ir_free == frec->ir_free) &&
1149 				  (rec.ir_freecount == frec->ir_freecount));
1150 
1151 	return xfs_inobt_update(cur, &rec);
1152 }
1153 
1154 /*
1155  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1156  * back to the inobt search algorithm.
1157  *
1158  * The caller selected an AG for us, and made sure that free inodes are
1159  * available.
1160  */
1161 STATIC int
1162 xfs_dialloc_ag(
1163 	struct xfs_trans	*tp,
1164 	struct xfs_buf		*agbp,
1165 	xfs_ino_t		parent,
1166 	xfs_ino_t		*inop)
1167 {
1168 	struct xfs_mount		*mp = tp->t_mountp;
1169 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1170 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1171 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1172 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1173 	struct xfs_perag		*pag;
1174 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1175 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1176 	struct xfs_inobt_rec_incore	rec;
1177 	xfs_ino_t			ino;
1178 	int				error;
1179 	int				offset;
1180 	int				i;
1181 
1182 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1183 		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1184 
1185 	pag = xfs_perag_get(mp, agno);
1186 
1187 	/*
1188 	 * If pagino is 0 (this is the root inode allocation) use newino.
1189 	 * This must work because we've just allocated some.
1190 	 */
1191 	if (!pagino)
1192 		pagino = be32_to_cpu(agi->agi_newino);
1193 
1194 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1195 
1196 	error = xfs_check_agi_freecount(cur, agi);
1197 	if (error)
1198 		goto error_cur;
1199 
1200 	/*
1201 	 * The search algorithm depends on whether we're in the same AG as the
1202 	 * parent. If so, find the closest available inode to the parent. If
1203 	 * not, consider the agi hint or find the first free inode in the AG.
1204 	 */
1205 	if (agno == pagno)
1206 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1207 	else
1208 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1209 	if (error)
1210 		goto error_cur;
1211 
1212 	offset = xfs_lowbit64(rec.ir_free);
1213 	ASSERT(offset >= 0);
1214 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1215 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1216 				   XFS_INODES_PER_CHUNK) == 0);
1217 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1218 
1219 	/*
1220 	 * Modify or remove the finobt record.
1221 	 */
1222 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1223 	rec.ir_freecount--;
1224 	if (rec.ir_freecount)
1225 		error = xfs_inobt_update(cur, &rec);
1226 	else
1227 		error = xfs_btree_delete(cur, &i);
1228 	if (error)
1229 		goto error_cur;
1230 
1231 	/*
1232 	 * The finobt has now been updated appropriately. We haven't updated the
1233 	 * agi and superblock yet, so we can create an inobt cursor and validate
1234 	 * the original freecount. If all is well, make the equivalent update to
1235 	 * the inobt using the finobt record and offset information.
1236 	 */
1237 	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1238 
1239 	error = xfs_check_agi_freecount(icur, agi);
1240 	if (error)
1241 		goto error_icur;
1242 
1243 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1244 	if (error)
1245 		goto error_icur;
1246 
1247 	/*
1248 	 * Both trees have now been updated. We must update the perag and
1249 	 * superblock before we can check the freecount for each btree.
1250 	 */
1251 	be32_add_cpu(&agi->agi_freecount, -1);
1252 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1253 	pag->pagi_freecount--;
1254 
1255 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1256 
1257 	error = xfs_check_agi_freecount(icur, agi);
1258 	if (error)
1259 		goto error_icur;
1260 	error = xfs_check_agi_freecount(cur, agi);
1261 	if (error)
1262 		goto error_icur;
1263 
1264 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1265 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1266 	xfs_perag_put(pag);
1267 	*inop = ino;
1268 	return 0;
1269 
1270 error_icur:
1271 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1272 error_cur:
1273 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1274 	xfs_perag_put(pag);
1275 	return error;
1276 }
1277 
1278 /*
1279  * Allocate an inode on disk.
1280  *
1281  * Mode is used to tell whether the new inode will need space, and whether it
1282  * is a directory.
1283  *
1284  * This function is designed to be called twice if it has to do an allocation
1285  * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1286  * If an inode is available without having to performn an allocation, an inode
1287  * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1288  * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1289  * The caller should then commit the current transaction, allocate a
1290  * new transaction, and call xfs_dialloc() again, passing in the previous value
1291  * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1292  * buffer is locked across the two calls, the second call is guaranteed to have
1293  * a free inode available.
1294  *
1295  * Once we successfully pick an inode its number is returned and the on-disk
1296  * data structures are updated.  The inode itself is not read in, since doing so
1297  * would break ordering constraints with xfs_reclaim.
1298  */
1299 int
1300 xfs_dialloc(
1301 	struct xfs_trans	*tp,
1302 	xfs_ino_t		parent,
1303 	umode_t			mode,
1304 	int			okalloc,
1305 	struct xfs_buf		**IO_agbp,
1306 	xfs_ino_t		*inop)
1307 {
1308 	struct xfs_mount	*mp = tp->t_mountp;
1309 	struct xfs_buf		*agbp;
1310 	xfs_agnumber_t		agno;
1311 	int			error;
1312 	int			ialloced;
1313 	int			noroom = 0;
1314 	xfs_agnumber_t		start_agno;
1315 	struct xfs_perag	*pag;
1316 
1317 	if (*IO_agbp) {
1318 		/*
1319 		 * If the caller passes in a pointer to the AGI buffer,
1320 		 * continue where we left off before.  In this case, we
1321 		 * know that the allocation group has free inodes.
1322 		 */
1323 		agbp = *IO_agbp;
1324 		goto out_alloc;
1325 	}
1326 
1327 	/*
1328 	 * We do not have an agbp, so select an initial allocation
1329 	 * group for inode allocation.
1330 	 */
1331 	start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1332 	if (start_agno == NULLAGNUMBER) {
1333 		*inop = NULLFSINO;
1334 		return 0;
1335 	}
1336 
1337 	/*
1338 	 * If we have already hit the ceiling of inode blocks then clear
1339 	 * okalloc so we scan all available agi structures for a free
1340 	 * inode.
1341 	 */
1342 	if (mp->m_maxicount &&
1343 	    mp->m_sb.sb_icount + mp->m_ialloc_inos > mp->m_maxicount) {
1344 		noroom = 1;
1345 		okalloc = 0;
1346 	}
1347 
1348 	/*
1349 	 * Loop until we find an allocation group that either has free inodes
1350 	 * or in which we can allocate some inodes.  Iterate through the
1351 	 * allocation groups upward, wrapping at the end.
1352 	 */
1353 	agno = start_agno;
1354 	for (;;) {
1355 		pag = xfs_perag_get(mp, agno);
1356 		if (!pag->pagi_inodeok) {
1357 			xfs_ialloc_next_ag(mp);
1358 			goto nextag;
1359 		}
1360 
1361 		if (!pag->pagi_init) {
1362 			error = xfs_ialloc_pagi_init(mp, tp, agno);
1363 			if (error)
1364 				goto out_error;
1365 		}
1366 
1367 		/*
1368 		 * Do a first racy fast path check if this AG is usable.
1369 		 */
1370 		if (!pag->pagi_freecount && !okalloc)
1371 			goto nextag;
1372 
1373 		/*
1374 		 * Then read in the AGI buffer and recheck with the AGI buffer
1375 		 * lock held.
1376 		 */
1377 		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1378 		if (error)
1379 			goto out_error;
1380 
1381 		if (pag->pagi_freecount) {
1382 			xfs_perag_put(pag);
1383 			goto out_alloc;
1384 		}
1385 
1386 		if (!okalloc)
1387 			goto nextag_relse_buffer;
1388 
1389 
1390 		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1391 		if (error) {
1392 			xfs_trans_brelse(tp, agbp);
1393 
1394 			if (error != -ENOSPC)
1395 				goto out_error;
1396 
1397 			xfs_perag_put(pag);
1398 			*inop = NULLFSINO;
1399 			return 0;
1400 		}
1401 
1402 		if (ialloced) {
1403 			/*
1404 			 * We successfully allocated some inodes, return
1405 			 * the current context to the caller so that it
1406 			 * can commit the current transaction and call
1407 			 * us again where we left off.
1408 			 */
1409 			ASSERT(pag->pagi_freecount > 0);
1410 			xfs_perag_put(pag);
1411 
1412 			*IO_agbp = agbp;
1413 			*inop = NULLFSINO;
1414 			return 0;
1415 		}
1416 
1417 nextag_relse_buffer:
1418 		xfs_trans_brelse(tp, agbp);
1419 nextag:
1420 		xfs_perag_put(pag);
1421 		if (++agno == mp->m_sb.sb_agcount)
1422 			agno = 0;
1423 		if (agno == start_agno) {
1424 			*inop = NULLFSINO;
1425 			return noroom ? -ENOSPC : 0;
1426 		}
1427 	}
1428 
1429 out_alloc:
1430 	*IO_agbp = NULL;
1431 	return xfs_dialloc_ag(tp, agbp, parent, inop);
1432 out_error:
1433 	xfs_perag_put(pag);
1434 	return error;
1435 }
1436 
1437 STATIC int
1438 xfs_difree_inobt(
1439 	struct xfs_mount		*mp,
1440 	struct xfs_trans		*tp,
1441 	struct xfs_buf			*agbp,
1442 	xfs_agino_t			agino,
1443 	struct xfs_bmap_free		*flist,
1444 	int				*deleted,
1445 	xfs_ino_t			*first_ino,
1446 	struct xfs_inobt_rec_incore	*orec)
1447 {
1448 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1449 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1450 	struct xfs_perag		*pag;
1451 	struct xfs_btree_cur		*cur;
1452 	struct xfs_inobt_rec_incore	rec;
1453 	int				ilen;
1454 	int				error;
1455 	int				i;
1456 	int				off;
1457 
1458 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1459 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1460 
1461 	/*
1462 	 * Initialize the cursor.
1463 	 */
1464 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1465 
1466 	error = xfs_check_agi_freecount(cur, agi);
1467 	if (error)
1468 		goto error0;
1469 
1470 	/*
1471 	 * Look for the entry describing this inode.
1472 	 */
1473 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1474 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1475 			__func__, error);
1476 		goto error0;
1477 	}
1478 	XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
1479 	error = xfs_inobt_get_rec(cur, &rec, &i);
1480 	if (error) {
1481 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1482 			__func__, error);
1483 		goto error0;
1484 	}
1485 	XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
1486 	/*
1487 	 * Get the offset in the inode chunk.
1488 	 */
1489 	off = agino - rec.ir_startino;
1490 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1491 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1492 	/*
1493 	 * Mark the inode free & increment the count.
1494 	 */
1495 	rec.ir_free |= XFS_INOBT_MASK(off);
1496 	rec.ir_freecount++;
1497 
1498 	/*
1499 	 * When an inode cluster is free, it becomes eligible for removal
1500 	 */
1501 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1502 	    (rec.ir_freecount == mp->m_ialloc_inos)) {
1503 
1504 		*deleted = 1;
1505 		*first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1506 
1507 		/*
1508 		 * Remove the inode cluster from the AGI B+Tree, adjust the
1509 		 * AGI and Superblock inode counts, and mark the disk space
1510 		 * to be freed when the transaction is committed.
1511 		 */
1512 		ilen = mp->m_ialloc_inos;
1513 		be32_add_cpu(&agi->agi_count, -ilen);
1514 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1515 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1516 		pag = xfs_perag_get(mp, agno);
1517 		pag->pagi_freecount -= ilen - 1;
1518 		xfs_perag_put(pag);
1519 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1520 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1521 
1522 		if ((error = xfs_btree_delete(cur, &i))) {
1523 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1524 				__func__, error);
1525 			goto error0;
1526 		}
1527 
1528 		xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
1529 				  XFS_AGINO_TO_AGBNO(mp, rec.ir_startino)),
1530 				  mp->m_ialloc_blks, flist, mp);
1531 	} else {
1532 		*deleted = 0;
1533 
1534 		error = xfs_inobt_update(cur, &rec);
1535 		if (error) {
1536 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1537 				__func__, error);
1538 			goto error0;
1539 		}
1540 
1541 		/*
1542 		 * Change the inode free counts and log the ag/sb changes.
1543 		 */
1544 		be32_add_cpu(&agi->agi_freecount, 1);
1545 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1546 		pag = xfs_perag_get(mp, agno);
1547 		pag->pagi_freecount++;
1548 		xfs_perag_put(pag);
1549 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1550 	}
1551 
1552 	error = xfs_check_agi_freecount(cur, agi);
1553 	if (error)
1554 		goto error0;
1555 
1556 	*orec = rec;
1557 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1558 	return 0;
1559 
1560 error0:
1561 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1562 	return error;
1563 }
1564 
1565 /*
1566  * Free an inode in the free inode btree.
1567  */
1568 STATIC int
1569 xfs_difree_finobt(
1570 	struct xfs_mount		*mp,
1571 	struct xfs_trans		*tp,
1572 	struct xfs_buf			*agbp,
1573 	xfs_agino_t			agino,
1574 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
1575 {
1576 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1577 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1578 	struct xfs_btree_cur		*cur;
1579 	struct xfs_inobt_rec_incore	rec;
1580 	int				offset = agino - ibtrec->ir_startino;
1581 	int				error;
1582 	int				i;
1583 
1584 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1585 
1586 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
1587 	if (error)
1588 		goto error;
1589 	if (i == 0) {
1590 		/*
1591 		 * If the record does not exist in the finobt, we must have just
1592 		 * freed an inode in a previously fully allocated chunk. If not,
1593 		 * something is out of sync.
1594 		 */
1595 		XFS_WANT_CORRUPTED_GOTO(ibtrec->ir_freecount == 1, error);
1596 
1597 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_freecount,
1598 					     ibtrec->ir_free, &i);
1599 		if (error)
1600 			goto error;
1601 		ASSERT(i == 1);
1602 
1603 		goto out;
1604 	}
1605 
1606 	/*
1607 	 * Read and update the existing record. We could just copy the ibtrec
1608 	 * across here, but that would defeat the purpose of having redundant
1609 	 * metadata. By making the modifications independently, we can catch
1610 	 * corruptions that we wouldn't see if we just copied from one record
1611 	 * to another.
1612 	 */
1613 	error = xfs_inobt_get_rec(cur, &rec, &i);
1614 	if (error)
1615 		goto error;
1616 	XFS_WANT_CORRUPTED_GOTO(i == 1, error);
1617 
1618 	rec.ir_free |= XFS_INOBT_MASK(offset);
1619 	rec.ir_freecount++;
1620 
1621 	XFS_WANT_CORRUPTED_GOTO((rec.ir_free == ibtrec->ir_free) &&
1622 				(rec.ir_freecount == ibtrec->ir_freecount),
1623 				error);
1624 
1625 	/*
1626 	 * The content of inobt records should always match between the inobt
1627 	 * and finobt. The lifecycle of records in the finobt is different from
1628 	 * the inobt in that the finobt only tracks records with at least one
1629 	 * free inode. Hence, if all of the inodes are free and we aren't
1630 	 * keeping inode chunks permanently on disk, remove the record.
1631 	 * Otherwise, update the record with the new information.
1632 	 */
1633 	if (rec.ir_freecount == mp->m_ialloc_inos &&
1634 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
1635 		error = xfs_btree_delete(cur, &i);
1636 		if (error)
1637 			goto error;
1638 		ASSERT(i == 1);
1639 	} else {
1640 		error = xfs_inobt_update(cur, &rec);
1641 		if (error)
1642 			goto error;
1643 	}
1644 
1645 out:
1646 	error = xfs_check_agi_freecount(cur, agi);
1647 	if (error)
1648 		goto error;
1649 
1650 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1651 	return 0;
1652 
1653 error:
1654 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1655 	return error;
1656 }
1657 
1658 /*
1659  * Free disk inode.  Carefully avoids touching the incore inode, all
1660  * manipulations incore are the caller's responsibility.
1661  * The on-disk inode is not changed by this operation, only the
1662  * btree (free inode mask) is changed.
1663  */
1664 int
1665 xfs_difree(
1666 	struct xfs_trans	*tp,		/* transaction pointer */
1667 	xfs_ino_t		inode,		/* inode to be freed */
1668 	struct xfs_bmap_free	*flist,		/* extents to free */
1669 	int			*deleted,/* set if inode cluster was deleted */
1670 	xfs_ino_t		*first_ino)/* first inode in deleted cluster */
1671 {
1672 	/* REFERENCED */
1673 	xfs_agblock_t		agbno;	/* block number containing inode */
1674 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
1675 	xfs_agino_t		agino;	/* allocation group inode number */
1676 	xfs_agnumber_t		agno;	/* allocation group number */
1677 	int			error;	/* error return value */
1678 	struct xfs_mount	*mp;	/* mount structure for filesystem */
1679 	struct xfs_inobt_rec_incore rec;/* btree record */
1680 
1681 	mp = tp->t_mountp;
1682 
1683 	/*
1684 	 * Break up inode number into its components.
1685 	 */
1686 	agno = XFS_INO_TO_AGNO(mp, inode);
1687 	if (agno >= mp->m_sb.sb_agcount)  {
1688 		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
1689 			__func__, agno, mp->m_sb.sb_agcount);
1690 		ASSERT(0);
1691 		return -EINVAL;
1692 	}
1693 	agino = XFS_INO_TO_AGINO(mp, inode);
1694 	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
1695 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
1696 			__func__, (unsigned long long)inode,
1697 			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
1698 		ASSERT(0);
1699 		return -EINVAL;
1700 	}
1701 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1702 	if (agbno >= mp->m_sb.sb_agblocks)  {
1703 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
1704 			__func__, agbno, mp->m_sb.sb_agblocks);
1705 		ASSERT(0);
1706 		return -EINVAL;
1707 	}
1708 	/*
1709 	 * Get the allocation group header.
1710 	 */
1711 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1712 	if (error) {
1713 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
1714 			__func__, error);
1715 		return error;
1716 	}
1717 
1718 	/*
1719 	 * Fix up the inode allocation btree.
1720 	 */
1721 	error = xfs_difree_inobt(mp, tp, agbp, agino, flist, deleted, first_ino,
1722 				 &rec);
1723 	if (error)
1724 		goto error0;
1725 
1726 	/*
1727 	 * Fix up the free inode btree.
1728 	 */
1729 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
1730 		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
1731 		if (error)
1732 			goto error0;
1733 	}
1734 
1735 	return 0;
1736 
1737 error0:
1738 	return error;
1739 }
1740 
1741 STATIC int
1742 xfs_imap_lookup(
1743 	struct xfs_mount	*mp,
1744 	struct xfs_trans	*tp,
1745 	xfs_agnumber_t		agno,
1746 	xfs_agino_t		agino,
1747 	xfs_agblock_t		agbno,
1748 	xfs_agblock_t		*chunk_agbno,
1749 	xfs_agblock_t		*offset_agbno,
1750 	int			flags)
1751 {
1752 	struct xfs_inobt_rec_incore rec;
1753 	struct xfs_btree_cur	*cur;
1754 	struct xfs_buf		*agbp;
1755 	int			error;
1756 	int			i;
1757 
1758 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1759 	if (error) {
1760 		xfs_alert(mp,
1761 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
1762 			__func__, error, agno);
1763 		return error;
1764 	}
1765 
1766 	/*
1767 	 * Lookup the inode record for the given agino. If the record cannot be
1768 	 * found, then it's an invalid inode number and we should abort. Once
1769 	 * we have a record, we need to ensure it contains the inode number
1770 	 * we are looking up.
1771 	 */
1772 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1773 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
1774 	if (!error) {
1775 		if (i)
1776 			error = xfs_inobt_get_rec(cur, &rec, &i);
1777 		if (!error && i == 0)
1778 			error = -EINVAL;
1779 	}
1780 
1781 	xfs_trans_brelse(tp, agbp);
1782 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1783 	if (error)
1784 		return error;
1785 
1786 	/* check that the returned record contains the required inode */
1787 	if (rec.ir_startino > agino ||
1788 	    rec.ir_startino + mp->m_ialloc_inos <= agino)
1789 		return -EINVAL;
1790 
1791 	/* for untrusted inodes check it is allocated first */
1792 	if ((flags & XFS_IGET_UNTRUSTED) &&
1793 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
1794 		return -EINVAL;
1795 
1796 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
1797 	*offset_agbno = agbno - *chunk_agbno;
1798 	return 0;
1799 }
1800 
1801 /*
1802  * Return the location of the inode in imap, for mapping it into a buffer.
1803  */
1804 int
1805 xfs_imap(
1806 	xfs_mount_t	 *mp,	/* file system mount structure */
1807 	xfs_trans_t	 *tp,	/* transaction pointer */
1808 	xfs_ino_t	ino,	/* inode to locate */
1809 	struct xfs_imap	*imap,	/* location map structure */
1810 	uint		flags)	/* flags for inode btree lookup */
1811 {
1812 	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
1813 	xfs_agino_t	agino;	/* inode number within alloc group */
1814 	xfs_agnumber_t	agno;	/* allocation group number */
1815 	int		blks_per_cluster; /* num blocks per inode cluster */
1816 	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
1817 	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
1818 	int		error;	/* error code */
1819 	int		offset;	/* index of inode in its buffer */
1820 	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
1821 
1822 	ASSERT(ino != NULLFSINO);
1823 
1824 	/*
1825 	 * Split up the inode number into its parts.
1826 	 */
1827 	agno = XFS_INO_TO_AGNO(mp, ino);
1828 	agino = XFS_INO_TO_AGINO(mp, ino);
1829 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1830 	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
1831 	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1832 #ifdef DEBUG
1833 		/*
1834 		 * Don't output diagnostic information for untrusted inodes
1835 		 * as they can be invalid without implying corruption.
1836 		 */
1837 		if (flags & XFS_IGET_UNTRUSTED)
1838 			return -EINVAL;
1839 		if (agno >= mp->m_sb.sb_agcount) {
1840 			xfs_alert(mp,
1841 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
1842 				__func__, agno, mp->m_sb.sb_agcount);
1843 		}
1844 		if (agbno >= mp->m_sb.sb_agblocks) {
1845 			xfs_alert(mp,
1846 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
1847 				__func__, (unsigned long long)agbno,
1848 				(unsigned long)mp->m_sb.sb_agblocks);
1849 		}
1850 		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1851 			xfs_alert(mp,
1852 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
1853 				__func__, ino,
1854 				XFS_AGINO_TO_INO(mp, agno, agino));
1855 		}
1856 		xfs_stack_trace();
1857 #endif /* DEBUG */
1858 		return -EINVAL;
1859 	}
1860 
1861 	blks_per_cluster = xfs_icluster_size_fsb(mp);
1862 
1863 	/*
1864 	 * For bulkstat and handle lookups, we have an untrusted inode number
1865 	 * that we have to verify is valid. We cannot do this just by reading
1866 	 * the inode buffer as it may have been unlinked and removed leaving
1867 	 * inodes in stale state on disk. Hence we have to do a btree lookup
1868 	 * in all cases where an untrusted inode number is passed.
1869 	 */
1870 	if (flags & XFS_IGET_UNTRUSTED) {
1871 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1872 					&chunk_agbno, &offset_agbno, flags);
1873 		if (error)
1874 			return error;
1875 		goto out_map;
1876 	}
1877 
1878 	/*
1879 	 * If the inode cluster size is the same as the blocksize or
1880 	 * smaller we get to the buffer by simple arithmetics.
1881 	 */
1882 	if (blks_per_cluster == 1) {
1883 		offset = XFS_INO_TO_OFFSET(mp, ino);
1884 		ASSERT(offset < mp->m_sb.sb_inopblock);
1885 
1886 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
1887 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
1888 		imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1889 		return 0;
1890 	}
1891 
1892 	/*
1893 	 * If the inode chunks are aligned then use simple maths to
1894 	 * find the location. Otherwise we have to do a btree
1895 	 * lookup to find the location.
1896 	 */
1897 	if (mp->m_inoalign_mask) {
1898 		offset_agbno = agbno & mp->m_inoalign_mask;
1899 		chunk_agbno = agbno - offset_agbno;
1900 	} else {
1901 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1902 					&chunk_agbno, &offset_agbno, flags);
1903 		if (error)
1904 			return error;
1905 	}
1906 
1907 out_map:
1908 	ASSERT(agbno >= chunk_agbno);
1909 	cluster_agbno = chunk_agbno +
1910 		((offset_agbno / blks_per_cluster) * blks_per_cluster);
1911 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
1912 		XFS_INO_TO_OFFSET(mp, ino);
1913 
1914 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
1915 	imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
1916 	imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1917 
1918 	/*
1919 	 * If the inode number maps to a block outside the bounds
1920 	 * of the file system then return NULL rather than calling
1921 	 * read_buf and panicing when we get an error from the
1922 	 * driver.
1923 	 */
1924 	if ((imap->im_blkno + imap->im_len) >
1925 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
1926 		xfs_alert(mp,
1927 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
1928 			__func__, (unsigned long long) imap->im_blkno,
1929 			(unsigned long long) imap->im_len,
1930 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
1931 		return -EINVAL;
1932 	}
1933 	return 0;
1934 }
1935 
1936 /*
1937  * Compute and fill in value of m_in_maxlevels.
1938  */
1939 void
1940 xfs_ialloc_compute_maxlevels(
1941 	xfs_mount_t	*mp)		/* file system mount structure */
1942 {
1943 	int		level;
1944 	uint		maxblocks;
1945 	uint		maxleafents;
1946 	int		minleafrecs;
1947 	int		minnoderecs;
1948 
1949 	maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
1950 		XFS_INODES_PER_CHUNK_LOG;
1951 	minleafrecs = mp->m_alloc_mnr[0];
1952 	minnoderecs = mp->m_alloc_mnr[1];
1953 	maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
1954 	for (level = 1; maxblocks > 1; level++)
1955 		maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
1956 	mp->m_in_maxlevels = level;
1957 }
1958 
1959 /*
1960  * Log specified fields for the ag hdr (inode section). The growth of the agi
1961  * structure over time requires that we interpret the buffer as two logical
1962  * regions delineated by the end of the unlinked list. This is due to the size
1963  * of the hash table and its location in the middle of the agi.
1964  *
1965  * For example, a request to log a field before agi_unlinked and a field after
1966  * agi_unlinked could cause us to log the entire hash table and use an excessive
1967  * amount of log space. To avoid this behavior, log the region up through
1968  * agi_unlinked in one call and the region after agi_unlinked through the end of
1969  * the structure in another.
1970  */
1971 void
1972 xfs_ialloc_log_agi(
1973 	xfs_trans_t	*tp,		/* transaction pointer */
1974 	xfs_buf_t	*bp,		/* allocation group header buffer */
1975 	int		fields)		/* bitmask of fields to log */
1976 {
1977 	int			first;		/* first byte number */
1978 	int			last;		/* last byte number */
1979 	static const short	offsets[] = {	/* field starting offsets */
1980 					/* keep in sync with bit definitions */
1981 		offsetof(xfs_agi_t, agi_magicnum),
1982 		offsetof(xfs_agi_t, agi_versionnum),
1983 		offsetof(xfs_agi_t, agi_seqno),
1984 		offsetof(xfs_agi_t, agi_length),
1985 		offsetof(xfs_agi_t, agi_count),
1986 		offsetof(xfs_agi_t, agi_root),
1987 		offsetof(xfs_agi_t, agi_level),
1988 		offsetof(xfs_agi_t, agi_freecount),
1989 		offsetof(xfs_agi_t, agi_newino),
1990 		offsetof(xfs_agi_t, agi_dirino),
1991 		offsetof(xfs_agi_t, agi_unlinked),
1992 		offsetof(xfs_agi_t, agi_free_root),
1993 		offsetof(xfs_agi_t, agi_free_level),
1994 		sizeof(xfs_agi_t)
1995 	};
1996 #ifdef DEBUG
1997 	xfs_agi_t		*agi;	/* allocation group header */
1998 
1999 	agi = XFS_BUF_TO_AGI(bp);
2000 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2001 #endif
2002 
2003 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2004 
2005 	/*
2006 	 * Compute byte offsets for the first and last fields in the first
2007 	 * region and log the agi buffer. This only logs up through
2008 	 * agi_unlinked.
2009 	 */
2010 	if (fields & XFS_AGI_ALL_BITS_R1) {
2011 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2012 				  &first, &last);
2013 		xfs_trans_log_buf(tp, bp, first, last);
2014 	}
2015 
2016 	/*
2017 	 * Mask off the bits in the first region and calculate the first and
2018 	 * last field offsets for any bits in the second region.
2019 	 */
2020 	fields &= ~XFS_AGI_ALL_BITS_R1;
2021 	if (fields) {
2022 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2023 				  &first, &last);
2024 		xfs_trans_log_buf(tp, bp, first, last);
2025 	}
2026 }
2027 
2028 #ifdef DEBUG
2029 STATIC void
2030 xfs_check_agi_unlinked(
2031 	struct xfs_agi		*agi)
2032 {
2033 	int			i;
2034 
2035 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2036 		ASSERT(agi->agi_unlinked[i]);
2037 }
2038 #else
2039 #define xfs_check_agi_unlinked(agi)
2040 #endif
2041 
2042 static bool
2043 xfs_agi_verify(
2044 	struct xfs_buf	*bp)
2045 {
2046 	struct xfs_mount *mp = bp->b_target->bt_mount;
2047 	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp);
2048 
2049 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2050 	    !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid))
2051 			return false;
2052 	/*
2053 	 * Validate the magic number of the agi block.
2054 	 */
2055 	if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2056 		return false;
2057 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2058 		return false;
2059 
2060 	if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2061 		return false;
2062 	/*
2063 	 * during growfs operations, the perag is not fully initialised,
2064 	 * so we can't use it for any useful checking. growfs ensures we can't
2065 	 * use it by using uncached buffers that don't have the perag attached
2066 	 * so we can detect and avoid this problem.
2067 	 */
2068 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2069 		return false;
2070 
2071 	xfs_check_agi_unlinked(agi);
2072 	return true;
2073 }
2074 
2075 static void
2076 xfs_agi_read_verify(
2077 	struct xfs_buf	*bp)
2078 {
2079 	struct xfs_mount *mp = bp->b_target->bt_mount;
2080 
2081 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2082 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2083 		xfs_buf_ioerror(bp, -EFSBADCRC);
2084 	else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2085 				XFS_ERRTAG_IALLOC_READ_AGI,
2086 				XFS_RANDOM_IALLOC_READ_AGI))
2087 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2088 
2089 	if (bp->b_error)
2090 		xfs_verifier_error(bp);
2091 }
2092 
2093 static void
2094 xfs_agi_write_verify(
2095 	struct xfs_buf	*bp)
2096 {
2097 	struct xfs_mount *mp = bp->b_target->bt_mount;
2098 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
2099 
2100 	if (!xfs_agi_verify(bp)) {
2101 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2102 		xfs_verifier_error(bp);
2103 		return;
2104 	}
2105 
2106 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2107 		return;
2108 
2109 	if (bip)
2110 		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2111 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2112 }
2113 
2114 const struct xfs_buf_ops xfs_agi_buf_ops = {
2115 	.verify_read = xfs_agi_read_verify,
2116 	.verify_write = xfs_agi_write_verify,
2117 };
2118 
2119 /*
2120  * Read in the allocation group header (inode allocation section)
2121  */
2122 int
2123 xfs_read_agi(
2124 	struct xfs_mount	*mp,	/* file system mount structure */
2125 	struct xfs_trans	*tp,	/* transaction pointer */
2126 	xfs_agnumber_t		agno,	/* allocation group number */
2127 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2128 {
2129 	int			error;
2130 
2131 	trace_xfs_read_agi(mp, agno);
2132 
2133 	ASSERT(agno != NULLAGNUMBER);
2134 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2135 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2136 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2137 	if (error)
2138 		return error;
2139 
2140 	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2141 	return 0;
2142 }
2143 
2144 int
2145 xfs_ialloc_read_agi(
2146 	struct xfs_mount	*mp,	/* file system mount structure */
2147 	struct xfs_trans	*tp,	/* transaction pointer */
2148 	xfs_agnumber_t		agno,	/* allocation group number */
2149 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2150 {
2151 	struct xfs_agi		*agi;	/* allocation group header */
2152 	struct xfs_perag	*pag;	/* per allocation group data */
2153 	int			error;
2154 
2155 	trace_xfs_ialloc_read_agi(mp, agno);
2156 
2157 	error = xfs_read_agi(mp, tp, agno, bpp);
2158 	if (error)
2159 		return error;
2160 
2161 	agi = XFS_BUF_TO_AGI(*bpp);
2162 	pag = xfs_perag_get(mp, agno);
2163 	if (!pag->pagi_init) {
2164 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2165 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2166 		pag->pagi_init = 1;
2167 	}
2168 
2169 	/*
2170 	 * It's possible for these to be out of sync if
2171 	 * we are in the middle of a forced shutdown.
2172 	 */
2173 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2174 		XFS_FORCED_SHUTDOWN(mp));
2175 	xfs_perag_put(pag);
2176 	return 0;
2177 }
2178 
2179 /*
2180  * Read in the agi to initialise the per-ag data in the mount structure
2181  */
2182 int
2183 xfs_ialloc_pagi_init(
2184 	xfs_mount_t	*mp,		/* file system mount structure */
2185 	xfs_trans_t	*tp,		/* transaction pointer */
2186 	xfs_agnumber_t	agno)		/* allocation group number */
2187 {
2188 	xfs_buf_t	*bp = NULL;
2189 	int		error;
2190 
2191 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2192 	if (error)
2193 		return error;
2194 	if (bp)
2195 		xfs_trans_brelse(tp, bp);
2196 	return 0;
2197 }
2198