1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_inum.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_mount.h" 29 #include "xfs_inode.h" 30 #include "xfs_btree.h" 31 #include "xfs_ialloc.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_alloc.h" 34 #include "xfs_rtalloc.h" 35 #include "xfs_error.h" 36 #include "xfs_bmap.h" 37 #include "xfs_cksum.h" 38 #include "xfs_trans.h" 39 #include "xfs_buf_item.h" 40 #include "xfs_icreate_item.h" 41 #include "xfs_icache.h" 42 #include "xfs_dinode.h" 43 #include "xfs_trace.h" 44 45 46 /* 47 * Allocation group level functions. 48 */ 49 static inline int 50 xfs_ialloc_cluster_alignment( 51 xfs_alloc_arg_t *args) 52 { 53 if (xfs_sb_version_hasalign(&args->mp->m_sb) && 54 args->mp->m_sb.sb_inoalignmt >= 55 XFS_B_TO_FSBT(args->mp, args->mp->m_inode_cluster_size)) 56 return args->mp->m_sb.sb_inoalignmt; 57 return 1; 58 } 59 60 /* 61 * Lookup a record by ino in the btree given by cur. 62 */ 63 int /* error */ 64 xfs_inobt_lookup( 65 struct xfs_btree_cur *cur, /* btree cursor */ 66 xfs_agino_t ino, /* starting inode of chunk */ 67 xfs_lookup_t dir, /* <=, >=, == */ 68 int *stat) /* success/failure */ 69 { 70 cur->bc_rec.i.ir_startino = ino; 71 cur->bc_rec.i.ir_freecount = 0; 72 cur->bc_rec.i.ir_free = 0; 73 return xfs_btree_lookup(cur, dir, stat); 74 } 75 76 /* 77 * Update the record referred to by cur to the value given. 78 * This either works (return 0) or gets an EFSCORRUPTED error. 79 */ 80 STATIC int /* error */ 81 xfs_inobt_update( 82 struct xfs_btree_cur *cur, /* btree cursor */ 83 xfs_inobt_rec_incore_t *irec) /* btree record */ 84 { 85 union xfs_btree_rec rec; 86 87 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 88 rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount); 89 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 90 return xfs_btree_update(cur, &rec); 91 } 92 93 /* 94 * Get the data from the pointed-to record. 95 */ 96 int /* error */ 97 xfs_inobt_get_rec( 98 struct xfs_btree_cur *cur, /* btree cursor */ 99 xfs_inobt_rec_incore_t *irec, /* btree record */ 100 int *stat) /* output: success/failure */ 101 { 102 union xfs_btree_rec *rec; 103 int error; 104 105 error = xfs_btree_get_rec(cur, &rec, stat); 106 if (!error && *stat == 1) { 107 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 108 irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount); 109 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 110 } 111 return error; 112 } 113 114 /* 115 * Insert a single inobt record. Cursor must already point to desired location. 116 */ 117 STATIC int 118 xfs_inobt_insert_rec( 119 struct xfs_btree_cur *cur, 120 __int32_t freecount, 121 xfs_inofree_t free, 122 int *stat) 123 { 124 cur->bc_rec.i.ir_freecount = freecount; 125 cur->bc_rec.i.ir_free = free; 126 return xfs_btree_insert(cur, stat); 127 } 128 129 /* 130 * Insert records describing a newly allocated inode chunk into the inobt. 131 */ 132 STATIC int 133 xfs_inobt_insert( 134 struct xfs_mount *mp, 135 struct xfs_trans *tp, 136 struct xfs_buf *agbp, 137 xfs_agino_t newino, 138 xfs_agino_t newlen, 139 xfs_btnum_t btnum) 140 { 141 struct xfs_btree_cur *cur; 142 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 143 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 144 xfs_agino_t thisino; 145 int i; 146 int error; 147 148 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 149 150 for (thisino = newino; 151 thisino < newino + newlen; 152 thisino += XFS_INODES_PER_CHUNK) { 153 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 154 if (error) { 155 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 156 return error; 157 } 158 ASSERT(i == 0); 159 160 error = xfs_inobt_insert_rec(cur, XFS_INODES_PER_CHUNK, 161 XFS_INOBT_ALL_FREE, &i); 162 if (error) { 163 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 164 return error; 165 } 166 ASSERT(i == 1); 167 } 168 169 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 170 171 return 0; 172 } 173 174 /* 175 * Verify that the number of free inodes in the AGI is correct. 176 */ 177 #ifdef DEBUG 178 STATIC int 179 xfs_check_agi_freecount( 180 struct xfs_btree_cur *cur, 181 struct xfs_agi *agi) 182 { 183 if (cur->bc_nlevels == 1) { 184 xfs_inobt_rec_incore_t rec; 185 int freecount = 0; 186 int error; 187 int i; 188 189 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 190 if (error) 191 return error; 192 193 do { 194 error = xfs_inobt_get_rec(cur, &rec, &i); 195 if (error) 196 return error; 197 198 if (i) { 199 freecount += rec.ir_freecount; 200 error = xfs_btree_increment(cur, 0, &i); 201 if (error) 202 return error; 203 } 204 } while (i == 1); 205 206 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) 207 ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); 208 } 209 return 0; 210 } 211 #else 212 #define xfs_check_agi_freecount(cur, agi) 0 213 #endif 214 215 /* 216 * Initialise a new set of inodes. When called without a transaction context 217 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 218 * than logging them (which in a transaction context puts them into the AIL 219 * for writeback rather than the xfsbufd queue). 220 */ 221 int 222 xfs_ialloc_inode_init( 223 struct xfs_mount *mp, 224 struct xfs_trans *tp, 225 struct list_head *buffer_list, 226 xfs_agnumber_t agno, 227 xfs_agblock_t agbno, 228 xfs_agblock_t length, 229 unsigned int gen) 230 { 231 struct xfs_buf *fbuf; 232 struct xfs_dinode *free; 233 int nbufs, blks_per_cluster, inodes_per_cluster; 234 int version; 235 int i, j; 236 xfs_daddr_t d; 237 xfs_ino_t ino = 0; 238 239 /* 240 * Loop over the new block(s), filling in the inodes. For small block 241 * sizes, manipulate the inodes in buffers which are multiples of the 242 * blocks size. 243 */ 244 blks_per_cluster = xfs_icluster_size_fsb(mp); 245 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 246 nbufs = length / blks_per_cluster; 247 248 /* 249 * Figure out what version number to use in the inodes we create. If 250 * the superblock version has caught up to the one that supports the new 251 * inode format, then use the new inode version. Otherwise use the old 252 * version so that old kernels will continue to be able to use the file 253 * system. 254 * 255 * For v3 inodes, we also need to write the inode number into the inode, 256 * so calculate the first inode number of the chunk here as 257 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not 258 * across multiple filesystem blocks (such as a cluster) and so cannot 259 * be used in the cluster buffer loop below. 260 * 261 * Further, because we are writing the inode directly into the buffer 262 * and calculating a CRC on the entire inode, we have ot log the entire 263 * inode so that the entire range the CRC covers is present in the log. 264 * That means for v3 inode we log the entire buffer rather than just the 265 * inode cores. 266 */ 267 if (xfs_sb_version_hascrc(&mp->m_sb)) { 268 version = 3; 269 ino = XFS_AGINO_TO_INO(mp, agno, 270 XFS_OFFBNO_TO_AGINO(mp, agbno, 0)); 271 272 /* 273 * log the initialisation that is about to take place as an 274 * logical operation. This means the transaction does not 275 * need to log the physical changes to the inode buffers as log 276 * recovery will know what initialisation is actually needed. 277 * Hence we only need to log the buffers as "ordered" buffers so 278 * they track in the AIL as if they were physically logged. 279 */ 280 if (tp) 281 xfs_icreate_log(tp, agno, agbno, mp->m_ialloc_inos, 282 mp->m_sb.sb_inodesize, length, gen); 283 } else 284 version = 2; 285 286 for (j = 0; j < nbufs; j++) { 287 /* 288 * Get the block. 289 */ 290 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster)); 291 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 292 mp->m_bsize * blks_per_cluster, 293 XBF_UNMAPPED); 294 if (!fbuf) 295 return -ENOMEM; 296 297 /* Initialize the inode buffers and log them appropriately. */ 298 fbuf->b_ops = &xfs_inode_buf_ops; 299 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 300 for (i = 0; i < inodes_per_cluster; i++) { 301 int ioffset = i << mp->m_sb.sb_inodelog; 302 uint isize = xfs_dinode_size(version); 303 304 free = xfs_make_iptr(mp, fbuf, i); 305 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 306 free->di_version = version; 307 free->di_gen = cpu_to_be32(gen); 308 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 309 310 if (version == 3) { 311 free->di_ino = cpu_to_be64(ino); 312 ino++; 313 uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid); 314 xfs_dinode_calc_crc(mp, free); 315 } else if (tp) { 316 /* just log the inode core */ 317 xfs_trans_log_buf(tp, fbuf, ioffset, 318 ioffset + isize - 1); 319 } 320 } 321 322 if (tp) { 323 /* 324 * Mark the buffer as an inode allocation buffer so it 325 * sticks in AIL at the point of this allocation 326 * transaction. This ensures the they are on disk before 327 * the tail of the log can be moved past this 328 * transaction (i.e. by preventing relogging from moving 329 * it forward in the log). 330 */ 331 xfs_trans_inode_alloc_buf(tp, fbuf); 332 if (version == 3) { 333 /* 334 * Mark the buffer as ordered so that they are 335 * not physically logged in the transaction but 336 * still tracked in the AIL as part of the 337 * transaction and pin the log appropriately. 338 */ 339 xfs_trans_ordered_buf(tp, fbuf); 340 xfs_trans_log_buf(tp, fbuf, 0, 341 BBTOB(fbuf->b_length) - 1); 342 } 343 } else { 344 fbuf->b_flags |= XBF_DONE; 345 xfs_buf_delwri_queue(fbuf, buffer_list); 346 xfs_buf_relse(fbuf); 347 } 348 } 349 return 0; 350 } 351 352 /* 353 * Allocate new inodes in the allocation group specified by agbp. 354 * Return 0 for success, else error code. 355 */ 356 STATIC int /* error code or 0 */ 357 xfs_ialloc_ag_alloc( 358 xfs_trans_t *tp, /* transaction pointer */ 359 xfs_buf_t *agbp, /* alloc group buffer */ 360 int *alloc) 361 { 362 xfs_agi_t *agi; /* allocation group header */ 363 xfs_alloc_arg_t args; /* allocation argument structure */ 364 xfs_agnumber_t agno; 365 int error; 366 xfs_agino_t newino; /* new first inode's number */ 367 xfs_agino_t newlen; /* new number of inodes */ 368 int isaligned = 0; /* inode allocation at stripe unit */ 369 /* boundary */ 370 struct xfs_perag *pag; 371 372 memset(&args, 0, sizeof(args)); 373 args.tp = tp; 374 args.mp = tp->t_mountp; 375 376 /* 377 * Locking will ensure that we don't have two callers in here 378 * at one time. 379 */ 380 newlen = args.mp->m_ialloc_inos; 381 if (args.mp->m_maxicount && 382 args.mp->m_sb.sb_icount + newlen > args.mp->m_maxicount) 383 return -ENOSPC; 384 args.minlen = args.maxlen = args.mp->m_ialloc_blks; 385 /* 386 * First try to allocate inodes contiguous with the last-allocated 387 * chunk of inodes. If the filesystem is striped, this will fill 388 * an entire stripe unit with inodes. 389 */ 390 agi = XFS_BUF_TO_AGI(agbp); 391 newino = be32_to_cpu(agi->agi_newino); 392 agno = be32_to_cpu(agi->agi_seqno); 393 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 394 args.mp->m_ialloc_blks; 395 if (likely(newino != NULLAGINO && 396 (args.agbno < be32_to_cpu(agi->agi_length)))) { 397 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 398 args.type = XFS_ALLOCTYPE_THIS_BNO; 399 args.prod = 1; 400 401 /* 402 * We need to take into account alignment here to ensure that 403 * we don't modify the free list if we fail to have an exact 404 * block. If we don't have an exact match, and every oher 405 * attempt allocation attempt fails, we'll end up cancelling 406 * a dirty transaction and shutting down. 407 * 408 * For an exact allocation, alignment must be 1, 409 * however we need to take cluster alignment into account when 410 * fixing up the freelist. Use the minalignslop field to 411 * indicate that extra blocks might be required for alignment, 412 * but not to use them in the actual exact allocation. 413 */ 414 args.alignment = 1; 415 args.minalignslop = xfs_ialloc_cluster_alignment(&args) - 1; 416 417 /* Allow space for the inode btree to split. */ 418 args.minleft = args.mp->m_in_maxlevels - 1; 419 if ((error = xfs_alloc_vextent(&args))) 420 return error; 421 422 /* 423 * This request might have dirtied the transaction if the AG can 424 * satisfy the request, but the exact block was not available. 425 * If the allocation did fail, subsequent requests will relax 426 * the exact agbno requirement and increase the alignment 427 * instead. It is critical that the total size of the request 428 * (len + alignment + slop) does not increase from this point 429 * on, so reset minalignslop to ensure it is not included in 430 * subsequent requests. 431 */ 432 args.minalignslop = 0; 433 } else 434 args.fsbno = NULLFSBLOCK; 435 436 if (unlikely(args.fsbno == NULLFSBLOCK)) { 437 /* 438 * Set the alignment for the allocation. 439 * If stripe alignment is turned on then align at stripe unit 440 * boundary. 441 * If the cluster size is smaller than a filesystem block 442 * then we're doing I/O for inodes in filesystem block size 443 * pieces, so don't need alignment anyway. 444 */ 445 isaligned = 0; 446 if (args.mp->m_sinoalign) { 447 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); 448 args.alignment = args.mp->m_dalign; 449 isaligned = 1; 450 } else 451 args.alignment = xfs_ialloc_cluster_alignment(&args); 452 /* 453 * Need to figure out where to allocate the inode blocks. 454 * Ideally they should be spaced out through the a.g. 455 * For now, just allocate blocks up front. 456 */ 457 args.agbno = be32_to_cpu(agi->agi_root); 458 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 459 /* 460 * Allocate a fixed-size extent of inodes. 461 */ 462 args.type = XFS_ALLOCTYPE_NEAR_BNO; 463 args.prod = 1; 464 /* 465 * Allow space for the inode btree to split. 466 */ 467 args.minleft = args.mp->m_in_maxlevels - 1; 468 if ((error = xfs_alloc_vextent(&args))) 469 return error; 470 } 471 472 /* 473 * If stripe alignment is turned on, then try again with cluster 474 * alignment. 475 */ 476 if (isaligned && args.fsbno == NULLFSBLOCK) { 477 args.type = XFS_ALLOCTYPE_NEAR_BNO; 478 args.agbno = be32_to_cpu(agi->agi_root); 479 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 480 args.alignment = xfs_ialloc_cluster_alignment(&args); 481 if ((error = xfs_alloc_vextent(&args))) 482 return error; 483 } 484 485 if (args.fsbno == NULLFSBLOCK) { 486 *alloc = 0; 487 return 0; 488 } 489 ASSERT(args.len == args.minlen); 490 491 /* 492 * Stamp and write the inode buffers. 493 * 494 * Seed the new inode cluster with a random generation number. This 495 * prevents short-term reuse of generation numbers if a chunk is 496 * freed and then immediately reallocated. We use random numbers 497 * rather than a linear progression to prevent the next generation 498 * number from being easily guessable. 499 */ 500 error = xfs_ialloc_inode_init(args.mp, tp, NULL, agno, args.agbno, 501 args.len, prandom_u32()); 502 503 if (error) 504 return error; 505 /* 506 * Convert the results. 507 */ 508 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); 509 be32_add_cpu(&agi->agi_count, newlen); 510 be32_add_cpu(&agi->agi_freecount, newlen); 511 pag = xfs_perag_get(args.mp, agno); 512 pag->pagi_freecount += newlen; 513 xfs_perag_put(pag); 514 agi->agi_newino = cpu_to_be32(newino); 515 516 /* 517 * Insert records describing the new inode chunk into the btrees. 518 */ 519 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 520 XFS_BTNUM_INO); 521 if (error) 522 return error; 523 524 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 525 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 526 XFS_BTNUM_FINO); 527 if (error) 528 return error; 529 } 530 /* 531 * Log allocation group header fields 532 */ 533 xfs_ialloc_log_agi(tp, agbp, 534 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 535 /* 536 * Modify/log superblock values for inode count and inode free count. 537 */ 538 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 539 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 540 *alloc = 1; 541 return 0; 542 } 543 544 STATIC xfs_agnumber_t 545 xfs_ialloc_next_ag( 546 xfs_mount_t *mp) 547 { 548 xfs_agnumber_t agno; 549 550 spin_lock(&mp->m_agirotor_lock); 551 agno = mp->m_agirotor; 552 if (++mp->m_agirotor >= mp->m_maxagi) 553 mp->m_agirotor = 0; 554 spin_unlock(&mp->m_agirotor_lock); 555 556 return agno; 557 } 558 559 /* 560 * Select an allocation group to look for a free inode in, based on the parent 561 * inode and the mode. Return the allocation group buffer. 562 */ 563 STATIC xfs_agnumber_t 564 xfs_ialloc_ag_select( 565 xfs_trans_t *tp, /* transaction pointer */ 566 xfs_ino_t parent, /* parent directory inode number */ 567 umode_t mode, /* bits set to indicate file type */ 568 int okalloc) /* ok to allocate more space */ 569 { 570 xfs_agnumber_t agcount; /* number of ag's in the filesystem */ 571 xfs_agnumber_t agno; /* current ag number */ 572 int flags; /* alloc buffer locking flags */ 573 xfs_extlen_t ineed; /* blocks needed for inode allocation */ 574 xfs_extlen_t longest = 0; /* longest extent available */ 575 xfs_mount_t *mp; /* mount point structure */ 576 int needspace; /* file mode implies space allocated */ 577 xfs_perag_t *pag; /* per allocation group data */ 578 xfs_agnumber_t pagno; /* parent (starting) ag number */ 579 int error; 580 581 /* 582 * Files of these types need at least one block if length > 0 583 * (and they won't fit in the inode, but that's hard to figure out). 584 */ 585 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 586 mp = tp->t_mountp; 587 agcount = mp->m_maxagi; 588 if (S_ISDIR(mode)) 589 pagno = xfs_ialloc_next_ag(mp); 590 else { 591 pagno = XFS_INO_TO_AGNO(mp, parent); 592 if (pagno >= agcount) 593 pagno = 0; 594 } 595 596 ASSERT(pagno < agcount); 597 598 /* 599 * Loop through allocation groups, looking for one with a little 600 * free space in it. Note we don't look for free inodes, exactly. 601 * Instead, we include whether there is a need to allocate inodes 602 * to mean that blocks must be allocated for them, 603 * if none are currently free. 604 */ 605 agno = pagno; 606 flags = XFS_ALLOC_FLAG_TRYLOCK; 607 for (;;) { 608 pag = xfs_perag_get(mp, agno); 609 if (!pag->pagi_inodeok) { 610 xfs_ialloc_next_ag(mp); 611 goto nextag; 612 } 613 614 if (!pag->pagi_init) { 615 error = xfs_ialloc_pagi_init(mp, tp, agno); 616 if (error) 617 goto nextag; 618 } 619 620 if (pag->pagi_freecount) { 621 xfs_perag_put(pag); 622 return agno; 623 } 624 625 if (!okalloc) 626 goto nextag; 627 628 if (!pag->pagf_init) { 629 error = xfs_alloc_pagf_init(mp, tp, agno, flags); 630 if (error) 631 goto nextag; 632 } 633 634 /* 635 * Is there enough free space for the file plus a block of 636 * inodes? (if we need to allocate some)? 637 */ 638 ineed = mp->m_ialloc_blks; 639 longest = pag->pagf_longest; 640 if (!longest) 641 longest = pag->pagf_flcount > 0; 642 643 if (pag->pagf_freeblks >= needspace + ineed && 644 longest >= ineed) { 645 xfs_perag_put(pag); 646 return agno; 647 } 648 nextag: 649 xfs_perag_put(pag); 650 /* 651 * No point in iterating over the rest, if we're shutting 652 * down. 653 */ 654 if (XFS_FORCED_SHUTDOWN(mp)) 655 return NULLAGNUMBER; 656 agno++; 657 if (agno >= agcount) 658 agno = 0; 659 if (agno == pagno) { 660 if (flags == 0) 661 return NULLAGNUMBER; 662 flags = 0; 663 } 664 } 665 } 666 667 /* 668 * Try to retrieve the next record to the left/right from the current one. 669 */ 670 STATIC int 671 xfs_ialloc_next_rec( 672 struct xfs_btree_cur *cur, 673 xfs_inobt_rec_incore_t *rec, 674 int *done, 675 int left) 676 { 677 int error; 678 int i; 679 680 if (left) 681 error = xfs_btree_decrement(cur, 0, &i); 682 else 683 error = xfs_btree_increment(cur, 0, &i); 684 685 if (error) 686 return error; 687 *done = !i; 688 if (i) { 689 error = xfs_inobt_get_rec(cur, rec, &i); 690 if (error) 691 return error; 692 XFS_WANT_CORRUPTED_RETURN(i == 1); 693 } 694 695 return 0; 696 } 697 698 STATIC int 699 xfs_ialloc_get_rec( 700 struct xfs_btree_cur *cur, 701 xfs_agino_t agino, 702 xfs_inobt_rec_incore_t *rec, 703 int *done) 704 { 705 int error; 706 int i; 707 708 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 709 if (error) 710 return error; 711 *done = !i; 712 if (i) { 713 error = xfs_inobt_get_rec(cur, rec, &i); 714 if (error) 715 return error; 716 XFS_WANT_CORRUPTED_RETURN(i == 1); 717 } 718 719 return 0; 720 } 721 722 /* 723 * Allocate an inode using the inobt-only algorithm. 724 */ 725 STATIC int 726 xfs_dialloc_ag_inobt( 727 struct xfs_trans *tp, 728 struct xfs_buf *agbp, 729 xfs_ino_t parent, 730 xfs_ino_t *inop) 731 { 732 struct xfs_mount *mp = tp->t_mountp; 733 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 734 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 735 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 736 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 737 struct xfs_perag *pag; 738 struct xfs_btree_cur *cur, *tcur; 739 struct xfs_inobt_rec_incore rec, trec; 740 xfs_ino_t ino; 741 int error; 742 int offset; 743 int i, j; 744 745 pag = xfs_perag_get(mp, agno); 746 747 ASSERT(pag->pagi_init); 748 ASSERT(pag->pagi_inodeok); 749 ASSERT(pag->pagi_freecount > 0); 750 751 restart_pagno: 752 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 753 /* 754 * If pagino is 0 (this is the root inode allocation) use newino. 755 * This must work because we've just allocated some. 756 */ 757 if (!pagino) 758 pagino = be32_to_cpu(agi->agi_newino); 759 760 error = xfs_check_agi_freecount(cur, agi); 761 if (error) 762 goto error0; 763 764 /* 765 * If in the same AG as the parent, try to get near the parent. 766 */ 767 if (pagno == agno) { 768 int doneleft; /* done, to the left */ 769 int doneright; /* done, to the right */ 770 int searchdistance = 10; 771 772 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 773 if (error) 774 goto error0; 775 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 776 777 error = xfs_inobt_get_rec(cur, &rec, &j); 778 if (error) 779 goto error0; 780 XFS_WANT_CORRUPTED_GOTO(j == 1, error0); 781 782 if (rec.ir_freecount > 0) { 783 /* 784 * Found a free inode in the same chunk 785 * as the parent, done. 786 */ 787 goto alloc_inode; 788 } 789 790 791 /* 792 * In the same AG as parent, but parent's chunk is full. 793 */ 794 795 /* duplicate the cursor, search left & right simultaneously */ 796 error = xfs_btree_dup_cursor(cur, &tcur); 797 if (error) 798 goto error0; 799 800 /* 801 * Skip to last blocks looked up if same parent inode. 802 */ 803 if (pagino != NULLAGINO && 804 pag->pagl_pagino == pagino && 805 pag->pagl_leftrec != NULLAGINO && 806 pag->pagl_rightrec != NULLAGINO) { 807 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 808 &trec, &doneleft); 809 if (error) 810 goto error1; 811 812 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 813 &rec, &doneright); 814 if (error) 815 goto error1; 816 } else { 817 /* search left with tcur, back up 1 record */ 818 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 819 if (error) 820 goto error1; 821 822 /* search right with cur, go forward 1 record. */ 823 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 824 if (error) 825 goto error1; 826 } 827 828 /* 829 * Loop until we find an inode chunk with a free inode. 830 */ 831 while (!doneleft || !doneright) { 832 int useleft; /* using left inode chunk this time */ 833 834 if (!--searchdistance) { 835 /* 836 * Not in range - save last search 837 * location and allocate a new inode 838 */ 839 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 840 pag->pagl_leftrec = trec.ir_startino; 841 pag->pagl_rightrec = rec.ir_startino; 842 pag->pagl_pagino = pagino; 843 goto newino; 844 } 845 846 /* figure out the closer block if both are valid. */ 847 if (!doneleft && !doneright) { 848 useleft = pagino - 849 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 850 rec.ir_startino - pagino; 851 } else { 852 useleft = !doneleft; 853 } 854 855 /* free inodes to the left? */ 856 if (useleft && trec.ir_freecount) { 857 rec = trec; 858 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 859 cur = tcur; 860 861 pag->pagl_leftrec = trec.ir_startino; 862 pag->pagl_rightrec = rec.ir_startino; 863 pag->pagl_pagino = pagino; 864 goto alloc_inode; 865 } 866 867 /* free inodes to the right? */ 868 if (!useleft && rec.ir_freecount) { 869 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 870 871 pag->pagl_leftrec = trec.ir_startino; 872 pag->pagl_rightrec = rec.ir_startino; 873 pag->pagl_pagino = pagino; 874 goto alloc_inode; 875 } 876 877 /* get next record to check */ 878 if (useleft) { 879 error = xfs_ialloc_next_rec(tcur, &trec, 880 &doneleft, 1); 881 } else { 882 error = xfs_ialloc_next_rec(cur, &rec, 883 &doneright, 0); 884 } 885 if (error) 886 goto error1; 887 } 888 889 /* 890 * We've reached the end of the btree. because 891 * we are only searching a small chunk of the 892 * btree each search, there is obviously free 893 * inodes closer to the parent inode than we 894 * are now. restart the search again. 895 */ 896 pag->pagl_pagino = NULLAGINO; 897 pag->pagl_leftrec = NULLAGINO; 898 pag->pagl_rightrec = NULLAGINO; 899 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 900 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 901 goto restart_pagno; 902 } 903 904 /* 905 * In a different AG from the parent. 906 * See if the most recently allocated block has any free. 907 */ 908 newino: 909 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 910 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 911 XFS_LOOKUP_EQ, &i); 912 if (error) 913 goto error0; 914 915 if (i == 1) { 916 error = xfs_inobt_get_rec(cur, &rec, &j); 917 if (error) 918 goto error0; 919 920 if (j == 1 && rec.ir_freecount > 0) { 921 /* 922 * The last chunk allocated in the group 923 * still has a free inode. 924 */ 925 goto alloc_inode; 926 } 927 } 928 } 929 930 /* 931 * None left in the last group, search the whole AG 932 */ 933 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 934 if (error) 935 goto error0; 936 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 937 938 for (;;) { 939 error = xfs_inobt_get_rec(cur, &rec, &i); 940 if (error) 941 goto error0; 942 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 943 if (rec.ir_freecount > 0) 944 break; 945 error = xfs_btree_increment(cur, 0, &i); 946 if (error) 947 goto error0; 948 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 949 } 950 951 alloc_inode: 952 offset = xfs_lowbit64(rec.ir_free); 953 ASSERT(offset >= 0); 954 ASSERT(offset < XFS_INODES_PER_CHUNK); 955 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 956 XFS_INODES_PER_CHUNK) == 0); 957 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 958 rec.ir_free &= ~XFS_INOBT_MASK(offset); 959 rec.ir_freecount--; 960 error = xfs_inobt_update(cur, &rec); 961 if (error) 962 goto error0; 963 be32_add_cpu(&agi->agi_freecount, -1); 964 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 965 pag->pagi_freecount--; 966 967 error = xfs_check_agi_freecount(cur, agi); 968 if (error) 969 goto error0; 970 971 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 972 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 973 xfs_perag_put(pag); 974 *inop = ino; 975 return 0; 976 error1: 977 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 978 error0: 979 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 980 xfs_perag_put(pag); 981 return error; 982 } 983 984 /* 985 * Use the free inode btree to allocate an inode based on distance from the 986 * parent. Note that the provided cursor may be deleted and replaced. 987 */ 988 STATIC int 989 xfs_dialloc_ag_finobt_near( 990 xfs_agino_t pagino, 991 struct xfs_btree_cur **ocur, 992 struct xfs_inobt_rec_incore *rec) 993 { 994 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 995 struct xfs_btree_cur *rcur; /* right search cursor */ 996 struct xfs_inobt_rec_incore rrec; 997 int error; 998 int i, j; 999 1000 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1001 if (error) 1002 return error; 1003 1004 if (i == 1) { 1005 error = xfs_inobt_get_rec(lcur, rec, &i); 1006 if (error) 1007 return error; 1008 XFS_WANT_CORRUPTED_RETURN(i == 1); 1009 1010 /* 1011 * See if we've landed in the parent inode record. The finobt 1012 * only tracks chunks with at least one free inode, so record 1013 * existence is enough. 1014 */ 1015 if (pagino >= rec->ir_startino && 1016 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1017 return 0; 1018 } 1019 1020 error = xfs_btree_dup_cursor(lcur, &rcur); 1021 if (error) 1022 return error; 1023 1024 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1025 if (error) 1026 goto error_rcur; 1027 if (j == 1) { 1028 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1029 if (error) 1030 goto error_rcur; 1031 XFS_WANT_CORRUPTED_GOTO(j == 1, error_rcur); 1032 } 1033 1034 XFS_WANT_CORRUPTED_GOTO(i == 1 || j == 1, error_rcur); 1035 if (i == 1 && j == 1) { 1036 /* 1037 * Both the left and right records are valid. Choose the closer 1038 * inode chunk to the target. 1039 */ 1040 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1041 (rrec.ir_startino - pagino)) { 1042 *rec = rrec; 1043 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1044 *ocur = rcur; 1045 } else { 1046 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1047 } 1048 } else if (j == 1) { 1049 /* only the right record is valid */ 1050 *rec = rrec; 1051 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1052 *ocur = rcur; 1053 } else if (i == 1) { 1054 /* only the left record is valid */ 1055 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1056 } 1057 1058 return 0; 1059 1060 error_rcur: 1061 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1062 return error; 1063 } 1064 1065 /* 1066 * Use the free inode btree to find a free inode based on a newino hint. If 1067 * the hint is NULL, find the first free inode in the AG. 1068 */ 1069 STATIC int 1070 xfs_dialloc_ag_finobt_newino( 1071 struct xfs_agi *agi, 1072 struct xfs_btree_cur *cur, 1073 struct xfs_inobt_rec_incore *rec) 1074 { 1075 int error; 1076 int i; 1077 1078 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1079 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1080 XFS_LOOKUP_EQ, &i); 1081 if (error) 1082 return error; 1083 if (i == 1) { 1084 error = xfs_inobt_get_rec(cur, rec, &i); 1085 if (error) 1086 return error; 1087 XFS_WANT_CORRUPTED_RETURN(i == 1); 1088 return 0; 1089 } 1090 } 1091 1092 /* 1093 * Find the first inode available in the AG. 1094 */ 1095 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1096 if (error) 1097 return error; 1098 XFS_WANT_CORRUPTED_RETURN(i == 1); 1099 1100 error = xfs_inobt_get_rec(cur, rec, &i); 1101 if (error) 1102 return error; 1103 XFS_WANT_CORRUPTED_RETURN(i == 1); 1104 1105 return 0; 1106 } 1107 1108 /* 1109 * Update the inobt based on a modification made to the finobt. Also ensure that 1110 * the records from both trees are equivalent post-modification. 1111 */ 1112 STATIC int 1113 xfs_dialloc_ag_update_inobt( 1114 struct xfs_btree_cur *cur, /* inobt cursor */ 1115 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1116 int offset) /* inode offset */ 1117 { 1118 struct xfs_inobt_rec_incore rec; 1119 int error; 1120 int i; 1121 1122 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1123 if (error) 1124 return error; 1125 XFS_WANT_CORRUPTED_RETURN(i == 1); 1126 1127 error = xfs_inobt_get_rec(cur, &rec, &i); 1128 if (error) 1129 return error; 1130 XFS_WANT_CORRUPTED_RETURN(i == 1); 1131 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1132 XFS_INODES_PER_CHUNK) == 0); 1133 1134 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1135 rec.ir_freecount--; 1136 1137 XFS_WANT_CORRUPTED_RETURN((rec.ir_free == frec->ir_free) && 1138 (rec.ir_freecount == frec->ir_freecount)); 1139 1140 error = xfs_inobt_update(cur, &rec); 1141 if (error) 1142 return error; 1143 1144 return 0; 1145 } 1146 1147 /* 1148 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1149 * back to the inobt search algorithm. 1150 * 1151 * The caller selected an AG for us, and made sure that free inodes are 1152 * available. 1153 */ 1154 STATIC int 1155 xfs_dialloc_ag( 1156 struct xfs_trans *tp, 1157 struct xfs_buf *agbp, 1158 xfs_ino_t parent, 1159 xfs_ino_t *inop) 1160 { 1161 struct xfs_mount *mp = tp->t_mountp; 1162 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1163 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1164 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1165 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1166 struct xfs_perag *pag; 1167 struct xfs_btree_cur *cur; /* finobt cursor */ 1168 struct xfs_btree_cur *icur; /* inobt cursor */ 1169 struct xfs_inobt_rec_incore rec; 1170 xfs_ino_t ino; 1171 int error; 1172 int offset; 1173 int i; 1174 1175 if (!xfs_sb_version_hasfinobt(&mp->m_sb)) 1176 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); 1177 1178 pag = xfs_perag_get(mp, agno); 1179 1180 /* 1181 * If pagino is 0 (this is the root inode allocation) use newino. 1182 * This must work because we've just allocated some. 1183 */ 1184 if (!pagino) 1185 pagino = be32_to_cpu(agi->agi_newino); 1186 1187 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1188 1189 error = xfs_check_agi_freecount(cur, agi); 1190 if (error) 1191 goto error_cur; 1192 1193 /* 1194 * The search algorithm depends on whether we're in the same AG as the 1195 * parent. If so, find the closest available inode to the parent. If 1196 * not, consider the agi hint or find the first free inode in the AG. 1197 */ 1198 if (agno == pagno) 1199 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1200 else 1201 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1202 if (error) 1203 goto error_cur; 1204 1205 offset = xfs_lowbit64(rec.ir_free); 1206 ASSERT(offset >= 0); 1207 ASSERT(offset < XFS_INODES_PER_CHUNK); 1208 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1209 XFS_INODES_PER_CHUNK) == 0); 1210 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1211 1212 /* 1213 * Modify or remove the finobt record. 1214 */ 1215 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1216 rec.ir_freecount--; 1217 if (rec.ir_freecount) 1218 error = xfs_inobt_update(cur, &rec); 1219 else 1220 error = xfs_btree_delete(cur, &i); 1221 if (error) 1222 goto error_cur; 1223 1224 /* 1225 * The finobt has now been updated appropriately. We haven't updated the 1226 * agi and superblock yet, so we can create an inobt cursor and validate 1227 * the original freecount. If all is well, make the equivalent update to 1228 * the inobt using the finobt record and offset information. 1229 */ 1230 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1231 1232 error = xfs_check_agi_freecount(icur, agi); 1233 if (error) 1234 goto error_icur; 1235 1236 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1237 if (error) 1238 goto error_icur; 1239 1240 /* 1241 * Both trees have now been updated. We must update the perag and 1242 * superblock before we can check the freecount for each btree. 1243 */ 1244 be32_add_cpu(&agi->agi_freecount, -1); 1245 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1246 pag->pagi_freecount--; 1247 1248 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1249 1250 error = xfs_check_agi_freecount(icur, agi); 1251 if (error) 1252 goto error_icur; 1253 error = xfs_check_agi_freecount(cur, agi); 1254 if (error) 1255 goto error_icur; 1256 1257 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1258 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1259 xfs_perag_put(pag); 1260 *inop = ino; 1261 return 0; 1262 1263 error_icur: 1264 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1265 error_cur: 1266 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1267 xfs_perag_put(pag); 1268 return error; 1269 } 1270 1271 /* 1272 * Allocate an inode on disk. 1273 * 1274 * Mode is used to tell whether the new inode will need space, and whether it 1275 * is a directory. 1276 * 1277 * This function is designed to be called twice if it has to do an allocation 1278 * to make more free inodes. On the first call, *IO_agbp should be set to NULL. 1279 * If an inode is available without having to performn an allocation, an inode 1280 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation 1281 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. 1282 * The caller should then commit the current transaction, allocate a 1283 * new transaction, and call xfs_dialloc() again, passing in the previous value 1284 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI 1285 * buffer is locked across the two calls, the second call is guaranteed to have 1286 * a free inode available. 1287 * 1288 * Once we successfully pick an inode its number is returned and the on-disk 1289 * data structures are updated. The inode itself is not read in, since doing so 1290 * would break ordering constraints with xfs_reclaim. 1291 */ 1292 int 1293 xfs_dialloc( 1294 struct xfs_trans *tp, 1295 xfs_ino_t parent, 1296 umode_t mode, 1297 int okalloc, 1298 struct xfs_buf **IO_agbp, 1299 xfs_ino_t *inop) 1300 { 1301 struct xfs_mount *mp = tp->t_mountp; 1302 struct xfs_buf *agbp; 1303 xfs_agnumber_t agno; 1304 int error; 1305 int ialloced; 1306 int noroom = 0; 1307 xfs_agnumber_t start_agno; 1308 struct xfs_perag *pag; 1309 1310 if (*IO_agbp) { 1311 /* 1312 * If the caller passes in a pointer to the AGI buffer, 1313 * continue where we left off before. In this case, we 1314 * know that the allocation group has free inodes. 1315 */ 1316 agbp = *IO_agbp; 1317 goto out_alloc; 1318 } 1319 1320 /* 1321 * We do not have an agbp, so select an initial allocation 1322 * group for inode allocation. 1323 */ 1324 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc); 1325 if (start_agno == NULLAGNUMBER) { 1326 *inop = NULLFSINO; 1327 return 0; 1328 } 1329 1330 /* 1331 * If we have already hit the ceiling of inode blocks then clear 1332 * okalloc so we scan all available agi structures for a free 1333 * inode. 1334 */ 1335 if (mp->m_maxicount && 1336 mp->m_sb.sb_icount + mp->m_ialloc_inos > mp->m_maxicount) { 1337 noroom = 1; 1338 okalloc = 0; 1339 } 1340 1341 /* 1342 * Loop until we find an allocation group that either has free inodes 1343 * or in which we can allocate some inodes. Iterate through the 1344 * allocation groups upward, wrapping at the end. 1345 */ 1346 agno = start_agno; 1347 for (;;) { 1348 pag = xfs_perag_get(mp, agno); 1349 if (!pag->pagi_inodeok) { 1350 xfs_ialloc_next_ag(mp); 1351 goto nextag; 1352 } 1353 1354 if (!pag->pagi_init) { 1355 error = xfs_ialloc_pagi_init(mp, tp, agno); 1356 if (error) 1357 goto out_error; 1358 } 1359 1360 /* 1361 * Do a first racy fast path check if this AG is usable. 1362 */ 1363 if (!pag->pagi_freecount && !okalloc) 1364 goto nextag; 1365 1366 /* 1367 * Then read in the AGI buffer and recheck with the AGI buffer 1368 * lock held. 1369 */ 1370 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1371 if (error) 1372 goto out_error; 1373 1374 if (pag->pagi_freecount) { 1375 xfs_perag_put(pag); 1376 goto out_alloc; 1377 } 1378 1379 if (!okalloc) 1380 goto nextag_relse_buffer; 1381 1382 1383 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); 1384 if (error) { 1385 xfs_trans_brelse(tp, agbp); 1386 1387 if (error != -ENOSPC) 1388 goto out_error; 1389 1390 xfs_perag_put(pag); 1391 *inop = NULLFSINO; 1392 return 0; 1393 } 1394 1395 if (ialloced) { 1396 /* 1397 * We successfully allocated some inodes, return 1398 * the current context to the caller so that it 1399 * can commit the current transaction and call 1400 * us again where we left off. 1401 */ 1402 ASSERT(pag->pagi_freecount > 0); 1403 xfs_perag_put(pag); 1404 1405 *IO_agbp = agbp; 1406 *inop = NULLFSINO; 1407 return 0; 1408 } 1409 1410 nextag_relse_buffer: 1411 xfs_trans_brelse(tp, agbp); 1412 nextag: 1413 xfs_perag_put(pag); 1414 if (++agno == mp->m_sb.sb_agcount) 1415 agno = 0; 1416 if (agno == start_agno) { 1417 *inop = NULLFSINO; 1418 return noroom ? -ENOSPC : 0; 1419 } 1420 } 1421 1422 out_alloc: 1423 *IO_agbp = NULL; 1424 return xfs_dialloc_ag(tp, agbp, parent, inop); 1425 out_error: 1426 xfs_perag_put(pag); 1427 return error; 1428 } 1429 1430 STATIC int 1431 xfs_difree_inobt( 1432 struct xfs_mount *mp, 1433 struct xfs_trans *tp, 1434 struct xfs_buf *agbp, 1435 xfs_agino_t agino, 1436 struct xfs_bmap_free *flist, 1437 int *deleted, 1438 xfs_ino_t *first_ino, 1439 struct xfs_inobt_rec_incore *orec) 1440 { 1441 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1442 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1443 struct xfs_perag *pag; 1444 struct xfs_btree_cur *cur; 1445 struct xfs_inobt_rec_incore rec; 1446 int ilen; 1447 int error; 1448 int i; 1449 int off; 1450 1451 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1452 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 1453 1454 /* 1455 * Initialize the cursor. 1456 */ 1457 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1458 1459 error = xfs_check_agi_freecount(cur, agi); 1460 if (error) 1461 goto error0; 1462 1463 /* 1464 * Look for the entry describing this inode. 1465 */ 1466 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 1467 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 1468 __func__, error); 1469 goto error0; 1470 } 1471 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 1472 error = xfs_inobt_get_rec(cur, &rec, &i); 1473 if (error) { 1474 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 1475 __func__, error); 1476 goto error0; 1477 } 1478 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 1479 /* 1480 * Get the offset in the inode chunk. 1481 */ 1482 off = agino - rec.ir_startino; 1483 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 1484 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 1485 /* 1486 * Mark the inode free & increment the count. 1487 */ 1488 rec.ir_free |= XFS_INOBT_MASK(off); 1489 rec.ir_freecount++; 1490 1491 /* 1492 * When an inode cluster is free, it becomes eligible for removal 1493 */ 1494 if (!(mp->m_flags & XFS_MOUNT_IKEEP) && 1495 (rec.ir_freecount == mp->m_ialloc_inos)) { 1496 1497 *deleted = 1; 1498 *first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); 1499 1500 /* 1501 * Remove the inode cluster from the AGI B+Tree, adjust the 1502 * AGI and Superblock inode counts, and mark the disk space 1503 * to be freed when the transaction is committed. 1504 */ 1505 ilen = mp->m_ialloc_inos; 1506 be32_add_cpu(&agi->agi_count, -ilen); 1507 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 1508 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 1509 pag = xfs_perag_get(mp, agno); 1510 pag->pagi_freecount -= ilen - 1; 1511 xfs_perag_put(pag); 1512 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 1513 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 1514 1515 if ((error = xfs_btree_delete(cur, &i))) { 1516 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 1517 __func__, error); 1518 goto error0; 1519 } 1520 1521 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, 1522 XFS_AGINO_TO_AGBNO(mp, rec.ir_startino)), 1523 mp->m_ialloc_blks, flist, mp); 1524 } else { 1525 *deleted = 0; 1526 1527 error = xfs_inobt_update(cur, &rec); 1528 if (error) { 1529 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 1530 __func__, error); 1531 goto error0; 1532 } 1533 1534 /* 1535 * Change the inode free counts and log the ag/sb changes. 1536 */ 1537 be32_add_cpu(&agi->agi_freecount, 1); 1538 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1539 pag = xfs_perag_get(mp, agno); 1540 pag->pagi_freecount++; 1541 xfs_perag_put(pag); 1542 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 1543 } 1544 1545 error = xfs_check_agi_freecount(cur, agi); 1546 if (error) 1547 goto error0; 1548 1549 *orec = rec; 1550 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1551 return 0; 1552 1553 error0: 1554 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1555 return error; 1556 } 1557 1558 /* 1559 * Free an inode in the free inode btree. 1560 */ 1561 STATIC int 1562 xfs_difree_finobt( 1563 struct xfs_mount *mp, 1564 struct xfs_trans *tp, 1565 struct xfs_buf *agbp, 1566 xfs_agino_t agino, 1567 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 1568 { 1569 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1570 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1571 struct xfs_btree_cur *cur; 1572 struct xfs_inobt_rec_incore rec; 1573 int offset = agino - ibtrec->ir_startino; 1574 int error; 1575 int i; 1576 1577 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1578 1579 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 1580 if (error) 1581 goto error; 1582 if (i == 0) { 1583 /* 1584 * If the record does not exist in the finobt, we must have just 1585 * freed an inode in a previously fully allocated chunk. If not, 1586 * something is out of sync. 1587 */ 1588 XFS_WANT_CORRUPTED_GOTO(ibtrec->ir_freecount == 1, error); 1589 1590 error = xfs_inobt_insert_rec(cur, ibtrec->ir_freecount, 1591 ibtrec->ir_free, &i); 1592 if (error) 1593 goto error; 1594 ASSERT(i == 1); 1595 1596 goto out; 1597 } 1598 1599 /* 1600 * Read and update the existing record. We could just copy the ibtrec 1601 * across here, but that would defeat the purpose of having redundant 1602 * metadata. By making the modifications independently, we can catch 1603 * corruptions that we wouldn't see if we just copied from one record 1604 * to another. 1605 */ 1606 error = xfs_inobt_get_rec(cur, &rec, &i); 1607 if (error) 1608 goto error; 1609 XFS_WANT_CORRUPTED_GOTO(i == 1, error); 1610 1611 rec.ir_free |= XFS_INOBT_MASK(offset); 1612 rec.ir_freecount++; 1613 1614 XFS_WANT_CORRUPTED_GOTO((rec.ir_free == ibtrec->ir_free) && 1615 (rec.ir_freecount == ibtrec->ir_freecount), 1616 error); 1617 1618 /* 1619 * The content of inobt records should always match between the inobt 1620 * and finobt. The lifecycle of records in the finobt is different from 1621 * the inobt in that the finobt only tracks records with at least one 1622 * free inode. Hence, if all of the inodes are free and we aren't 1623 * keeping inode chunks permanently on disk, remove the record. 1624 * Otherwise, update the record with the new information. 1625 */ 1626 if (rec.ir_freecount == mp->m_ialloc_inos && 1627 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 1628 error = xfs_btree_delete(cur, &i); 1629 if (error) 1630 goto error; 1631 ASSERT(i == 1); 1632 } else { 1633 error = xfs_inobt_update(cur, &rec); 1634 if (error) 1635 goto error; 1636 } 1637 1638 out: 1639 error = xfs_check_agi_freecount(cur, agi); 1640 if (error) 1641 goto error; 1642 1643 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1644 return 0; 1645 1646 error: 1647 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1648 return error; 1649 } 1650 1651 /* 1652 * Free disk inode. Carefully avoids touching the incore inode, all 1653 * manipulations incore are the caller's responsibility. 1654 * The on-disk inode is not changed by this operation, only the 1655 * btree (free inode mask) is changed. 1656 */ 1657 int 1658 xfs_difree( 1659 struct xfs_trans *tp, /* transaction pointer */ 1660 xfs_ino_t inode, /* inode to be freed */ 1661 struct xfs_bmap_free *flist, /* extents to free */ 1662 int *deleted,/* set if inode cluster was deleted */ 1663 xfs_ino_t *first_ino)/* first inode in deleted cluster */ 1664 { 1665 /* REFERENCED */ 1666 xfs_agblock_t agbno; /* block number containing inode */ 1667 struct xfs_buf *agbp; /* buffer for allocation group header */ 1668 xfs_agino_t agino; /* allocation group inode number */ 1669 xfs_agnumber_t agno; /* allocation group number */ 1670 int error; /* error return value */ 1671 struct xfs_mount *mp; /* mount structure for filesystem */ 1672 struct xfs_inobt_rec_incore rec;/* btree record */ 1673 1674 mp = tp->t_mountp; 1675 1676 /* 1677 * Break up inode number into its components. 1678 */ 1679 agno = XFS_INO_TO_AGNO(mp, inode); 1680 if (agno >= mp->m_sb.sb_agcount) { 1681 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", 1682 __func__, agno, mp->m_sb.sb_agcount); 1683 ASSERT(0); 1684 return -EINVAL; 1685 } 1686 agino = XFS_INO_TO_AGINO(mp, inode); 1687 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { 1688 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 1689 __func__, (unsigned long long)inode, 1690 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); 1691 ASSERT(0); 1692 return -EINVAL; 1693 } 1694 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 1695 if (agbno >= mp->m_sb.sb_agblocks) { 1696 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 1697 __func__, agbno, mp->m_sb.sb_agblocks); 1698 ASSERT(0); 1699 return -EINVAL; 1700 } 1701 /* 1702 * Get the allocation group header. 1703 */ 1704 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1705 if (error) { 1706 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 1707 __func__, error); 1708 return error; 1709 } 1710 1711 /* 1712 * Fix up the inode allocation btree. 1713 */ 1714 error = xfs_difree_inobt(mp, tp, agbp, agino, flist, deleted, first_ino, 1715 &rec); 1716 if (error) 1717 goto error0; 1718 1719 /* 1720 * Fix up the free inode btree. 1721 */ 1722 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 1723 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); 1724 if (error) 1725 goto error0; 1726 } 1727 1728 return 0; 1729 1730 error0: 1731 return error; 1732 } 1733 1734 STATIC int 1735 xfs_imap_lookup( 1736 struct xfs_mount *mp, 1737 struct xfs_trans *tp, 1738 xfs_agnumber_t agno, 1739 xfs_agino_t agino, 1740 xfs_agblock_t agbno, 1741 xfs_agblock_t *chunk_agbno, 1742 xfs_agblock_t *offset_agbno, 1743 int flags) 1744 { 1745 struct xfs_inobt_rec_incore rec; 1746 struct xfs_btree_cur *cur; 1747 struct xfs_buf *agbp; 1748 int error; 1749 int i; 1750 1751 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1752 if (error) { 1753 xfs_alert(mp, 1754 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 1755 __func__, error, agno); 1756 return error; 1757 } 1758 1759 /* 1760 * Lookup the inode record for the given agino. If the record cannot be 1761 * found, then it's an invalid inode number and we should abort. Once 1762 * we have a record, we need to ensure it contains the inode number 1763 * we are looking up. 1764 */ 1765 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1766 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 1767 if (!error) { 1768 if (i) 1769 error = xfs_inobt_get_rec(cur, &rec, &i); 1770 if (!error && i == 0) 1771 error = -EINVAL; 1772 } 1773 1774 xfs_trans_brelse(tp, agbp); 1775 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1776 if (error) 1777 return error; 1778 1779 /* check that the returned record contains the required inode */ 1780 if (rec.ir_startino > agino || 1781 rec.ir_startino + mp->m_ialloc_inos <= agino) 1782 return -EINVAL; 1783 1784 /* for untrusted inodes check it is allocated first */ 1785 if ((flags & XFS_IGET_UNTRUSTED) && 1786 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 1787 return -EINVAL; 1788 1789 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 1790 *offset_agbno = agbno - *chunk_agbno; 1791 return 0; 1792 } 1793 1794 /* 1795 * Return the location of the inode in imap, for mapping it into a buffer. 1796 */ 1797 int 1798 xfs_imap( 1799 xfs_mount_t *mp, /* file system mount structure */ 1800 xfs_trans_t *tp, /* transaction pointer */ 1801 xfs_ino_t ino, /* inode to locate */ 1802 struct xfs_imap *imap, /* location map structure */ 1803 uint flags) /* flags for inode btree lookup */ 1804 { 1805 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 1806 xfs_agino_t agino; /* inode number within alloc group */ 1807 xfs_agnumber_t agno; /* allocation group number */ 1808 int blks_per_cluster; /* num blocks per inode cluster */ 1809 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 1810 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 1811 int error; /* error code */ 1812 int offset; /* index of inode in its buffer */ 1813 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 1814 1815 ASSERT(ino != NULLFSINO); 1816 1817 /* 1818 * Split up the inode number into its parts. 1819 */ 1820 agno = XFS_INO_TO_AGNO(mp, ino); 1821 agino = XFS_INO_TO_AGINO(mp, ino); 1822 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 1823 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || 1824 ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 1825 #ifdef DEBUG 1826 /* 1827 * Don't output diagnostic information for untrusted inodes 1828 * as they can be invalid without implying corruption. 1829 */ 1830 if (flags & XFS_IGET_UNTRUSTED) 1831 return -EINVAL; 1832 if (agno >= mp->m_sb.sb_agcount) { 1833 xfs_alert(mp, 1834 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", 1835 __func__, agno, mp->m_sb.sb_agcount); 1836 } 1837 if (agbno >= mp->m_sb.sb_agblocks) { 1838 xfs_alert(mp, 1839 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 1840 __func__, (unsigned long long)agbno, 1841 (unsigned long)mp->m_sb.sb_agblocks); 1842 } 1843 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 1844 xfs_alert(mp, 1845 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 1846 __func__, ino, 1847 XFS_AGINO_TO_INO(mp, agno, agino)); 1848 } 1849 xfs_stack_trace(); 1850 #endif /* DEBUG */ 1851 return -EINVAL; 1852 } 1853 1854 blks_per_cluster = xfs_icluster_size_fsb(mp); 1855 1856 /* 1857 * For bulkstat and handle lookups, we have an untrusted inode number 1858 * that we have to verify is valid. We cannot do this just by reading 1859 * the inode buffer as it may have been unlinked and removed leaving 1860 * inodes in stale state on disk. Hence we have to do a btree lookup 1861 * in all cases where an untrusted inode number is passed. 1862 */ 1863 if (flags & XFS_IGET_UNTRUSTED) { 1864 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 1865 &chunk_agbno, &offset_agbno, flags); 1866 if (error) 1867 return error; 1868 goto out_map; 1869 } 1870 1871 /* 1872 * If the inode cluster size is the same as the blocksize or 1873 * smaller we get to the buffer by simple arithmetics. 1874 */ 1875 if (blks_per_cluster == 1) { 1876 offset = XFS_INO_TO_OFFSET(mp, ino); 1877 ASSERT(offset < mp->m_sb.sb_inopblock); 1878 1879 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); 1880 imap->im_len = XFS_FSB_TO_BB(mp, 1); 1881 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog); 1882 return 0; 1883 } 1884 1885 /* 1886 * If the inode chunks are aligned then use simple maths to 1887 * find the location. Otherwise we have to do a btree 1888 * lookup to find the location. 1889 */ 1890 if (mp->m_inoalign_mask) { 1891 offset_agbno = agbno & mp->m_inoalign_mask; 1892 chunk_agbno = agbno - offset_agbno; 1893 } else { 1894 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 1895 &chunk_agbno, &offset_agbno, flags); 1896 if (error) 1897 return error; 1898 } 1899 1900 out_map: 1901 ASSERT(agbno >= chunk_agbno); 1902 cluster_agbno = chunk_agbno + 1903 ((offset_agbno / blks_per_cluster) * blks_per_cluster); 1904 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 1905 XFS_INO_TO_OFFSET(mp, ino); 1906 1907 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); 1908 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster); 1909 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog); 1910 1911 /* 1912 * If the inode number maps to a block outside the bounds 1913 * of the file system then return NULL rather than calling 1914 * read_buf and panicing when we get an error from the 1915 * driver. 1916 */ 1917 if ((imap->im_blkno + imap->im_len) > 1918 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 1919 xfs_alert(mp, 1920 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 1921 __func__, (unsigned long long) imap->im_blkno, 1922 (unsigned long long) imap->im_len, 1923 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 1924 return -EINVAL; 1925 } 1926 return 0; 1927 } 1928 1929 /* 1930 * Compute and fill in value of m_in_maxlevels. 1931 */ 1932 void 1933 xfs_ialloc_compute_maxlevels( 1934 xfs_mount_t *mp) /* file system mount structure */ 1935 { 1936 int level; 1937 uint maxblocks; 1938 uint maxleafents; 1939 int minleafrecs; 1940 int minnoderecs; 1941 1942 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >> 1943 XFS_INODES_PER_CHUNK_LOG; 1944 minleafrecs = mp->m_alloc_mnr[0]; 1945 minnoderecs = mp->m_alloc_mnr[1]; 1946 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs; 1947 for (level = 1; maxblocks > 1; level++) 1948 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs; 1949 mp->m_in_maxlevels = level; 1950 } 1951 1952 /* 1953 * Log specified fields for the ag hdr (inode section). The growth of the agi 1954 * structure over time requires that we interpret the buffer as two logical 1955 * regions delineated by the end of the unlinked list. This is due to the size 1956 * of the hash table and its location in the middle of the agi. 1957 * 1958 * For example, a request to log a field before agi_unlinked and a field after 1959 * agi_unlinked could cause us to log the entire hash table and use an excessive 1960 * amount of log space. To avoid this behavior, log the region up through 1961 * agi_unlinked in one call and the region after agi_unlinked through the end of 1962 * the structure in another. 1963 */ 1964 void 1965 xfs_ialloc_log_agi( 1966 xfs_trans_t *tp, /* transaction pointer */ 1967 xfs_buf_t *bp, /* allocation group header buffer */ 1968 int fields) /* bitmask of fields to log */ 1969 { 1970 int first; /* first byte number */ 1971 int last; /* last byte number */ 1972 static const short offsets[] = { /* field starting offsets */ 1973 /* keep in sync with bit definitions */ 1974 offsetof(xfs_agi_t, agi_magicnum), 1975 offsetof(xfs_agi_t, agi_versionnum), 1976 offsetof(xfs_agi_t, agi_seqno), 1977 offsetof(xfs_agi_t, agi_length), 1978 offsetof(xfs_agi_t, agi_count), 1979 offsetof(xfs_agi_t, agi_root), 1980 offsetof(xfs_agi_t, agi_level), 1981 offsetof(xfs_agi_t, agi_freecount), 1982 offsetof(xfs_agi_t, agi_newino), 1983 offsetof(xfs_agi_t, agi_dirino), 1984 offsetof(xfs_agi_t, agi_unlinked), 1985 offsetof(xfs_agi_t, agi_free_root), 1986 offsetof(xfs_agi_t, agi_free_level), 1987 sizeof(xfs_agi_t) 1988 }; 1989 #ifdef DEBUG 1990 xfs_agi_t *agi; /* allocation group header */ 1991 1992 agi = XFS_BUF_TO_AGI(bp); 1993 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1994 #endif 1995 1996 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF); 1997 1998 /* 1999 * Compute byte offsets for the first and last fields in the first 2000 * region and log the agi buffer. This only logs up through 2001 * agi_unlinked. 2002 */ 2003 if (fields & XFS_AGI_ALL_BITS_R1) { 2004 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2005 &first, &last); 2006 xfs_trans_log_buf(tp, bp, first, last); 2007 } 2008 2009 /* 2010 * Mask off the bits in the first region and calculate the first and 2011 * last field offsets for any bits in the second region. 2012 */ 2013 fields &= ~XFS_AGI_ALL_BITS_R1; 2014 if (fields) { 2015 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2016 &first, &last); 2017 xfs_trans_log_buf(tp, bp, first, last); 2018 } 2019 } 2020 2021 #ifdef DEBUG 2022 STATIC void 2023 xfs_check_agi_unlinked( 2024 struct xfs_agi *agi) 2025 { 2026 int i; 2027 2028 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) 2029 ASSERT(agi->agi_unlinked[i]); 2030 } 2031 #else 2032 #define xfs_check_agi_unlinked(agi) 2033 #endif 2034 2035 static bool 2036 xfs_agi_verify( 2037 struct xfs_buf *bp) 2038 { 2039 struct xfs_mount *mp = bp->b_target->bt_mount; 2040 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); 2041 2042 if (xfs_sb_version_hascrc(&mp->m_sb) && 2043 !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid)) 2044 return false; 2045 /* 2046 * Validate the magic number of the agi block. 2047 */ 2048 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC)) 2049 return false; 2050 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2051 return false; 2052 2053 if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS) 2054 return false; 2055 /* 2056 * during growfs operations, the perag is not fully initialised, 2057 * so we can't use it for any useful checking. growfs ensures we can't 2058 * use it by using uncached buffers that don't have the perag attached 2059 * so we can detect and avoid this problem. 2060 */ 2061 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) 2062 return false; 2063 2064 xfs_check_agi_unlinked(agi); 2065 return true; 2066 } 2067 2068 static void 2069 xfs_agi_read_verify( 2070 struct xfs_buf *bp) 2071 { 2072 struct xfs_mount *mp = bp->b_target->bt_mount; 2073 2074 if (xfs_sb_version_hascrc(&mp->m_sb) && 2075 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2076 xfs_buf_ioerror(bp, -EFSBADCRC); 2077 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp, 2078 XFS_ERRTAG_IALLOC_READ_AGI, 2079 XFS_RANDOM_IALLOC_READ_AGI)) 2080 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2081 2082 if (bp->b_error) 2083 xfs_verifier_error(bp); 2084 } 2085 2086 static void 2087 xfs_agi_write_verify( 2088 struct xfs_buf *bp) 2089 { 2090 struct xfs_mount *mp = bp->b_target->bt_mount; 2091 struct xfs_buf_log_item *bip = bp->b_fspriv; 2092 2093 if (!xfs_agi_verify(bp)) { 2094 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2095 xfs_verifier_error(bp); 2096 return; 2097 } 2098 2099 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2100 return; 2101 2102 if (bip) 2103 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2104 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2105 } 2106 2107 const struct xfs_buf_ops xfs_agi_buf_ops = { 2108 .verify_read = xfs_agi_read_verify, 2109 .verify_write = xfs_agi_write_verify, 2110 }; 2111 2112 /* 2113 * Read in the allocation group header (inode allocation section) 2114 */ 2115 int 2116 xfs_read_agi( 2117 struct xfs_mount *mp, /* file system mount structure */ 2118 struct xfs_trans *tp, /* transaction pointer */ 2119 xfs_agnumber_t agno, /* allocation group number */ 2120 struct xfs_buf **bpp) /* allocation group hdr buf */ 2121 { 2122 int error; 2123 2124 trace_xfs_read_agi(mp, agno); 2125 2126 ASSERT(agno != NULLAGNUMBER); 2127 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2128 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 2129 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); 2130 if (error) 2131 return error; 2132 2133 xfs_buf_set_ref(*bpp, XFS_AGI_REF); 2134 return 0; 2135 } 2136 2137 int 2138 xfs_ialloc_read_agi( 2139 struct xfs_mount *mp, /* file system mount structure */ 2140 struct xfs_trans *tp, /* transaction pointer */ 2141 xfs_agnumber_t agno, /* allocation group number */ 2142 struct xfs_buf **bpp) /* allocation group hdr buf */ 2143 { 2144 struct xfs_agi *agi; /* allocation group header */ 2145 struct xfs_perag *pag; /* per allocation group data */ 2146 int error; 2147 2148 trace_xfs_ialloc_read_agi(mp, agno); 2149 2150 error = xfs_read_agi(mp, tp, agno, bpp); 2151 if (error) 2152 return error; 2153 2154 agi = XFS_BUF_TO_AGI(*bpp); 2155 pag = xfs_perag_get(mp, agno); 2156 if (!pag->pagi_init) { 2157 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2158 pag->pagi_count = be32_to_cpu(agi->agi_count); 2159 pag->pagi_init = 1; 2160 } 2161 2162 /* 2163 * It's possible for these to be out of sync if 2164 * we are in the middle of a forced shutdown. 2165 */ 2166 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2167 XFS_FORCED_SHUTDOWN(mp)); 2168 xfs_perag_put(pag); 2169 return 0; 2170 } 2171 2172 /* 2173 * Read in the agi to initialise the per-ag data in the mount structure 2174 */ 2175 int 2176 xfs_ialloc_pagi_init( 2177 xfs_mount_t *mp, /* file system mount structure */ 2178 xfs_trans_t *tp, /* transaction pointer */ 2179 xfs_agnumber_t agno) /* allocation group number */ 2180 { 2181 xfs_buf_t *bp = NULL; 2182 int error; 2183 2184 error = xfs_ialloc_read_agi(mp, tp, agno, &bp); 2185 if (error) 2186 return error; 2187 if (bp) 2188 xfs_trans_brelse(tp, bp); 2189 return 0; 2190 } 2191