xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_btree.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_ialloc_btree.h"
19 #include "xfs_alloc.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 #include "xfs_bmap.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_icreate_item.h"
26 #include "xfs_icache.h"
27 #include "xfs_trace.h"
28 #include "xfs_log.h"
29 #include "xfs_rmap.h"
30 
31 /*
32  * Lookup a record by ino in the btree given by cur.
33  */
34 int					/* error */
35 xfs_inobt_lookup(
36 	struct xfs_btree_cur	*cur,	/* btree cursor */
37 	xfs_agino_t		ino,	/* starting inode of chunk */
38 	xfs_lookup_t		dir,	/* <=, >=, == */
39 	int			*stat)	/* success/failure */
40 {
41 	cur->bc_rec.i.ir_startino = ino;
42 	cur->bc_rec.i.ir_holemask = 0;
43 	cur->bc_rec.i.ir_count = 0;
44 	cur->bc_rec.i.ir_freecount = 0;
45 	cur->bc_rec.i.ir_free = 0;
46 	return xfs_btree_lookup(cur, dir, stat);
47 }
48 
49 /*
50  * Update the record referred to by cur to the value given.
51  * This either works (return 0) or gets an EFSCORRUPTED error.
52  */
53 STATIC int				/* error */
54 xfs_inobt_update(
55 	struct xfs_btree_cur	*cur,	/* btree cursor */
56 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
57 {
58 	union xfs_btree_rec	rec;
59 
60 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
62 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 	} else {
66 		/* ir_holemask/ir_count not supported on-disk */
67 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 	}
69 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 	return xfs_btree_update(cur, &rec);
71 }
72 
73 /* Convert on-disk btree record to incore inobt record. */
74 void
75 xfs_inobt_btrec_to_irec(
76 	struct xfs_mount		*mp,
77 	union xfs_btree_rec		*rec,
78 	struct xfs_inobt_rec_incore	*irec)
79 {
80 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 	if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
82 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 	} else {
86 		/*
87 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 		 * values for full inode chunks.
89 		 */
90 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 		irec->ir_count = XFS_INODES_PER_CHUNK;
92 		irec->ir_freecount =
93 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 	}
95 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96 }
97 
98 /*
99  * Get the data from the pointed-to record.
100  */
101 int
102 xfs_inobt_get_rec(
103 	struct xfs_btree_cur		*cur,
104 	struct xfs_inobt_rec_incore	*irec,
105 	int				*stat)
106 {
107 	struct xfs_mount		*mp = cur->bc_mp;
108 	xfs_agnumber_t			agno = cur->bc_ag.agno;
109 	union xfs_btree_rec		*rec;
110 	int				error;
111 	uint64_t			realfree;
112 
113 	error = xfs_btree_get_rec(cur, &rec, stat);
114 	if (error || *stat == 0)
115 		return error;
116 
117 	xfs_inobt_btrec_to_irec(mp, rec, irec);
118 
119 	if (!xfs_verify_agino(mp, agno, irec->ir_startino))
120 		goto out_bad_rec;
121 	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
122 	    irec->ir_count > XFS_INODES_PER_CHUNK)
123 		goto out_bad_rec;
124 	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
125 		goto out_bad_rec;
126 
127 	/* if there are no holes, return the first available offset */
128 	if (!xfs_inobt_issparse(irec->ir_holemask))
129 		realfree = irec->ir_free;
130 	else
131 		realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
132 	if (hweight64(realfree) != irec->ir_freecount)
133 		goto out_bad_rec;
134 
135 	return 0;
136 
137 out_bad_rec:
138 	xfs_warn(mp,
139 		"%s Inode BTree record corruption in AG %d detected!",
140 		cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
141 	xfs_warn(mp,
142 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 		irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 		irec->ir_free, irec->ir_holemask);
145 	return -EFSCORRUPTED;
146 }
147 
148 /*
149  * Insert a single inobt record. Cursor must already point to desired location.
150  */
151 int
152 xfs_inobt_insert_rec(
153 	struct xfs_btree_cur	*cur,
154 	uint16_t		holemask,
155 	uint8_t			count,
156 	int32_t			freecount,
157 	xfs_inofree_t		free,
158 	int			*stat)
159 {
160 	cur->bc_rec.i.ir_holemask = holemask;
161 	cur->bc_rec.i.ir_count = count;
162 	cur->bc_rec.i.ir_freecount = freecount;
163 	cur->bc_rec.i.ir_free = free;
164 	return xfs_btree_insert(cur, stat);
165 }
166 
167 /*
168  * Insert records describing a newly allocated inode chunk into the inobt.
169  */
170 STATIC int
171 xfs_inobt_insert(
172 	struct xfs_mount	*mp,
173 	struct xfs_trans	*tp,
174 	struct xfs_buf		*agbp,
175 	xfs_agino_t		newino,
176 	xfs_agino_t		newlen,
177 	xfs_btnum_t		btnum)
178 {
179 	struct xfs_btree_cur	*cur;
180 	struct xfs_agi		*agi = agbp->b_addr;
181 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
182 	xfs_agino_t		thisino;
183 	int			i;
184 	int			error;
185 
186 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
187 
188 	for (thisino = newino;
189 	     thisino < newino + newlen;
190 	     thisino += XFS_INODES_PER_CHUNK) {
191 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
192 		if (error) {
193 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
194 			return error;
195 		}
196 		ASSERT(i == 0);
197 
198 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
199 					     XFS_INODES_PER_CHUNK,
200 					     XFS_INODES_PER_CHUNK,
201 					     XFS_INOBT_ALL_FREE, &i);
202 		if (error) {
203 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
204 			return error;
205 		}
206 		ASSERT(i == 1);
207 	}
208 
209 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
210 
211 	return 0;
212 }
213 
214 /*
215  * Verify that the number of free inodes in the AGI is correct.
216  */
217 #ifdef DEBUG
218 STATIC int
219 xfs_check_agi_freecount(
220 	struct xfs_btree_cur	*cur,
221 	struct xfs_agi		*agi)
222 {
223 	if (cur->bc_nlevels == 1) {
224 		xfs_inobt_rec_incore_t rec;
225 		int		freecount = 0;
226 		int		error;
227 		int		i;
228 
229 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
230 		if (error)
231 			return error;
232 
233 		do {
234 			error = xfs_inobt_get_rec(cur, &rec, &i);
235 			if (error)
236 				return error;
237 
238 			if (i) {
239 				freecount += rec.ir_freecount;
240 				error = xfs_btree_increment(cur, 0, &i);
241 				if (error)
242 					return error;
243 			}
244 		} while (i == 1);
245 
246 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
247 			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
248 	}
249 	return 0;
250 }
251 #else
252 #define xfs_check_agi_freecount(cur, agi)	0
253 #endif
254 
255 /*
256  * Initialise a new set of inodes. When called without a transaction context
257  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258  * than logging them (which in a transaction context puts them into the AIL
259  * for writeback rather than the xfsbufd queue).
260  */
261 int
262 xfs_ialloc_inode_init(
263 	struct xfs_mount	*mp,
264 	struct xfs_trans	*tp,
265 	struct list_head	*buffer_list,
266 	int			icount,
267 	xfs_agnumber_t		agno,
268 	xfs_agblock_t		agbno,
269 	xfs_agblock_t		length,
270 	unsigned int		gen)
271 {
272 	struct xfs_buf		*fbuf;
273 	struct xfs_dinode	*free;
274 	int			nbufs;
275 	int			version;
276 	int			i, j;
277 	xfs_daddr_t		d;
278 	xfs_ino_t		ino = 0;
279 	int			error;
280 
281 	/*
282 	 * Loop over the new block(s), filling in the inodes.  For small block
283 	 * sizes, manipulate the inodes in buffers  which are multiples of the
284 	 * blocks size.
285 	 */
286 	nbufs = length / M_IGEO(mp)->blocks_per_cluster;
287 
288 	/*
289 	 * Figure out what version number to use in the inodes we create.  If
290 	 * the superblock version has caught up to the one that supports the new
291 	 * inode format, then use the new inode version.  Otherwise use the old
292 	 * version so that old kernels will continue to be able to use the file
293 	 * system.
294 	 *
295 	 * For v3 inodes, we also need to write the inode number into the inode,
296 	 * so calculate the first inode number of the chunk here as
297 	 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
298 	 * across multiple filesystem blocks (such as a cluster) and so cannot
299 	 * be used in the cluster buffer loop below.
300 	 *
301 	 * Further, because we are writing the inode directly into the buffer
302 	 * and calculating a CRC on the entire inode, we have ot log the entire
303 	 * inode so that the entire range the CRC covers is present in the log.
304 	 * That means for v3 inode we log the entire buffer rather than just the
305 	 * inode cores.
306 	 */
307 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
308 		version = 3;
309 		ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
310 
311 		/*
312 		 * log the initialisation that is about to take place as an
313 		 * logical operation. This means the transaction does not
314 		 * need to log the physical changes to the inode buffers as log
315 		 * recovery will know what initialisation is actually needed.
316 		 * Hence we only need to log the buffers as "ordered" buffers so
317 		 * they track in the AIL as if they were physically logged.
318 		 */
319 		if (tp)
320 			xfs_icreate_log(tp, agno, agbno, icount,
321 					mp->m_sb.sb_inodesize, length, gen);
322 	} else
323 		version = 2;
324 
325 	for (j = 0; j < nbufs; j++) {
326 		/*
327 		 * Get the block.
328 		 */
329 		d = XFS_AGB_TO_DADDR(mp, agno, agbno +
330 				(j * M_IGEO(mp)->blocks_per_cluster));
331 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
332 				mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
333 				XBF_UNMAPPED, &fbuf);
334 		if (error)
335 			return error;
336 
337 		/* Initialize the inode buffers and log them appropriately. */
338 		fbuf->b_ops = &xfs_inode_buf_ops;
339 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
340 		for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
341 			int	ioffset = i << mp->m_sb.sb_inodelog;
342 			uint	isize = XFS_DINODE_SIZE(&mp->m_sb);
343 
344 			free = xfs_make_iptr(mp, fbuf, i);
345 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
346 			free->di_version = version;
347 			free->di_gen = cpu_to_be32(gen);
348 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
349 
350 			if (version == 3) {
351 				free->di_ino = cpu_to_be64(ino);
352 				ino++;
353 				uuid_copy(&free->di_uuid,
354 					  &mp->m_sb.sb_meta_uuid);
355 				xfs_dinode_calc_crc(mp, free);
356 			} else if (tp) {
357 				/* just log the inode core */
358 				xfs_trans_log_buf(tp, fbuf, ioffset,
359 						  ioffset + isize - 1);
360 			}
361 		}
362 
363 		if (tp) {
364 			/*
365 			 * Mark the buffer as an inode allocation buffer so it
366 			 * sticks in AIL at the point of this allocation
367 			 * transaction. This ensures the they are on disk before
368 			 * the tail of the log can be moved past this
369 			 * transaction (i.e. by preventing relogging from moving
370 			 * it forward in the log).
371 			 */
372 			xfs_trans_inode_alloc_buf(tp, fbuf);
373 			if (version == 3) {
374 				/*
375 				 * Mark the buffer as ordered so that they are
376 				 * not physically logged in the transaction but
377 				 * still tracked in the AIL as part of the
378 				 * transaction and pin the log appropriately.
379 				 */
380 				xfs_trans_ordered_buf(tp, fbuf);
381 			}
382 		} else {
383 			fbuf->b_flags |= XBF_DONE;
384 			xfs_buf_delwri_queue(fbuf, buffer_list);
385 			xfs_buf_relse(fbuf);
386 		}
387 	}
388 	return 0;
389 }
390 
391 /*
392  * Align startino and allocmask for a recently allocated sparse chunk such that
393  * they are fit for insertion (or merge) into the on-disk inode btrees.
394  *
395  * Background:
396  *
397  * When enabled, sparse inode support increases the inode alignment from cluster
398  * size to inode chunk size. This means that the minimum range between two
399  * non-adjacent inode records in the inobt is large enough for a full inode
400  * record. This allows for cluster sized, cluster aligned block allocation
401  * without need to worry about whether the resulting inode record overlaps with
402  * another record in the tree. Without this basic rule, we would have to deal
403  * with the consequences of overlap by potentially undoing recent allocations in
404  * the inode allocation codepath.
405  *
406  * Because of this alignment rule (which is enforced on mount), there are two
407  * inobt possibilities for newly allocated sparse chunks. One is that the
408  * aligned inode record for the chunk covers a range of inodes not already
409  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
410  * other is that a record already exists at the aligned startino that considers
411  * the newly allocated range as sparse. In the latter case, record content is
412  * merged in hope that sparse inode chunks fill to full chunks over time.
413  */
414 STATIC void
415 xfs_align_sparse_ino(
416 	struct xfs_mount		*mp,
417 	xfs_agino_t			*startino,
418 	uint16_t			*allocmask)
419 {
420 	xfs_agblock_t			agbno;
421 	xfs_agblock_t			mod;
422 	int				offset;
423 
424 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
425 	mod = agbno % mp->m_sb.sb_inoalignmt;
426 	if (!mod)
427 		return;
428 
429 	/* calculate the inode offset and align startino */
430 	offset = XFS_AGB_TO_AGINO(mp, mod);
431 	*startino -= offset;
432 
433 	/*
434 	 * Since startino has been aligned down, left shift allocmask such that
435 	 * it continues to represent the same physical inodes relative to the
436 	 * new startino.
437 	 */
438 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
439 }
440 
441 /*
442  * Determine whether the source inode record can merge into the target. Both
443  * records must be sparse, the inode ranges must match and there must be no
444  * allocation overlap between the records.
445  */
446 STATIC bool
447 __xfs_inobt_can_merge(
448 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
449 	struct xfs_inobt_rec_incore	*srec)	/* src record */
450 {
451 	uint64_t			talloc;
452 	uint64_t			salloc;
453 
454 	/* records must cover the same inode range */
455 	if (trec->ir_startino != srec->ir_startino)
456 		return false;
457 
458 	/* both records must be sparse */
459 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
460 	    !xfs_inobt_issparse(srec->ir_holemask))
461 		return false;
462 
463 	/* both records must track some inodes */
464 	if (!trec->ir_count || !srec->ir_count)
465 		return false;
466 
467 	/* can't exceed capacity of a full record */
468 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
469 		return false;
470 
471 	/* verify there is no allocation overlap */
472 	talloc = xfs_inobt_irec_to_allocmask(trec);
473 	salloc = xfs_inobt_irec_to_allocmask(srec);
474 	if (talloc & salloc)
475 		return false;
476 
477 	return true;
478 }
479 
480 /*
481  * Merge the source inode record into the target. The caller must call
482  * __xfs_inobt_can_merge() to ensure the merge is valid.
483  */
484 STATIC void
485 __xfs_inobt_rec_merge(
486 	struct xfs_inobt_rec_incore	*trec,	/* target */
487 	struct xfs_inobt_rec_incore	*srec)	/* src */
488 {
489 	ASSERT(trec->ir_startino == srec->ir_startino);
490 
491 	/* combine the counts */
492 	trec->ir_count += srec->ir_count;
493 	trec->ir_freecount += srec->ir_freecount;
494 
495 	/*
496 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
497 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
498 	 */
499 	trec->ir_holemask &= srec->ir_holemask;
500 	trec->ir_free &= srec->ir_free;
501 }
502 
503 /*
504  * Insert a new sparse inode chunk into the associated inode btree. The inode
505  * record for the sparse chunk is pre-aligned to a startino that should match
506  * any pre-existing sparse inode record in the tree. This allows sparse chunks
507  * to fill over time.
508  *
509  * This function supports two modes of handling preexisting records depending on
510  * the merge flag. If merge is true, the provided record is merged with the
511  * existing record and updated in place. The merged record is returned in nrec.
512  * If merge is false, an existing record is replaced with the provided record.
513  * If no preexisting record exists, the provided record is always inserted.
514  *
515  * It is considered corruption if a merge is requested and not possible. Given
516  * the sparse inode alignment constraints, this should never happen.
517  */
518 STATIC int
519 xfs_inobt_insert_sprec(
520 	struct xfs_mount		*mp,
521 	struct xfs_trans		*tp,
522 	struct xfs_buf			*agbp,
523 	int				btnum,
524 	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
525 	bool				merge)	/* merge or replace */
526 {
527 	struct xfs_btree_cur		*cur;
528 	struct xfs_agi			*agi = agbp->b_addr;
529 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
530 	int				error;
531 	int				i;
532 	struct xfs_inobt_rec_incore	rec;
533 
534 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
535 
536 	/* the new record is pre-aligned so we know where to look */
537 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
538 	if (error)
539 		goto error;
540 	/* if nothing there, insert a new record and return */
541 	if (i == 0) {
542 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
543 					     nrec->ir_count, nrec->ir_freecount,
544 					     nrec->ir_free, &i);
545 		if (error)
546 			goto error;
547 		if (XFS_IS_CORRUPT(mp, i != 1)) {
548 			error = -EFSCORRUPTED;
549 			goto error;
550 		}
551 
552 		goto out;
553 	}
554 
555 	/*
556 	 * A record exists at this startino. Merge or replace the record
557 	 * depending on what we've been asked to do.
558 	 */
559 	if (merge) {
560 		error = xfs_inobt_get_rec(cur, &rec, &i);
561 		if (error)
562 			goto error;
563 		if (XFS_IS_CORRUPT(mp, i != 1)) {
564 			error = -EFSCORRUPTED;
565 			goto error;
566 		}
567 		if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
568 			error = -EFSCORRUPTED;
569 			goto error;
570 		}
571 
572 		/*
573 		 * This should never fail. If we have coexisting records that
574 		 * cannot merge, something is seriously wrong.
575 		 */
576 		if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
577 			error = -EFSCORRUPTED;
578 			goto error;
579 		}
580 
581 		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
582 					 rec.ir_holemask, nrec->ir_startino,
583 					 nrec->ir_holemask);
584 
585 		/* merge to nrec to output the updated record */
586 		__xfs_inobt_rec_merge(nrec, &rec);
587 
588 		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
589 					  nrec->ir_holemask);
590 
591 		error = xfs_inobt_rec_check_count(mp, nrec);
592 		if (error)
593 			goto error;
594 	}
595 
596 	error = xfs_inobt_update(cur, nrec);
597 	if (error)
598 		goto error;
599 
600 out:
601 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
602 	return 0;
603 error:
604 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
605 	return error;
606 }
607 
608 /*
609  * Allocate new inodes in the allocation group specified by agbp.
610  * Return 0 for success, else error code.
611  */
612 STATIC int
613 xfs_ialloc_ag_alloc(
614 	struct xfs_trans	*tp,
615 	struct xfs_buf		*agbp,
616 	int			*alloc)
617 {
618 	struct xfs_agi		*agi;
619 	struct xfs_alloc_arg	args;
620 	xfs_agnumber_t		agno;
621 	int			error;
622 	xfs_agino_t		newino;		/* new first inode's number */
623 	xfs_agino_t		newlen;		/* new number of inodes */
624 	int			isaligned = 0;	/* inode allocation at stripe */
625 						/* unit boundary */
626 	/* init. to full chunk */
627 	uint16_t		allocmask = (uint16_t) -1;
628 	struct xfs_inobt_rec_incore rec;
629 	struct xfs_perag	*pag;
630 	struct xfs_ino_geometry	*igeo = M_IGEO(tp->t_mountp);
631 	int			do_sparse = 0;
632 
633 	memset(&args, 0, sizeof(args));
634 	args.tp = tp;
635 	args.mp = tp->t_mountp;
636 	args.fsbno = NULLFSBLOCK;
637 	args.oinfo = XFS_RMAP_OINFO_INODES;
638 
639 #ifdef DEBUG
640 	/* randomly do sparse inode allocations */
641 	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
642 	    igeo->ialloc_min_blks < igeo->ialloc_blks)
643 		do_sparse = prandom_u32() & 1;
644 #endif
645 
646 	/*
647 	 * Locking will ensure that we don't have two callers in here
648 	 * at one time.
649 	 */
650 	newlen = igeo->ialloc_inos;
651 	if (igeo->maxicount &&
652 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
653 							igeo->maxicount)
654 		return -ENOSPC;
655 	args.minlen = args.maxlen = igeo->ialloc_blks;
656 	/*
657 	 * First try to allocate inodes contiguous with the last-allocated
658 	 * chunk of inodes.  If the filesystem is striped, this will fill
659 	 * an entire stripe unit with inodes.
660 	 */
661 	agi = agbp->b_addr;
662 	newino = be32_to_cpu(agi->agi_newino);
663 	agno = be32_to_cpu(agi->agi_seqno);
664 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
665 		     igeo->ialloc_blks;
666 	if (do_sparse)
667 		goto sparse_alloc;
668 	if (likely(newino != NULLAGINO &&
669 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
670 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
671 		args.type = XFS_ALLOCTYPE_THIS_BNO;
672 		args.prod = 1;
673 
674 		/*
675 		 * We need to take into account alignment here to ensure that
676 		 * we don't modify the free list if we fail to have an exact
677 		 * block. If we don't have an exact match, and every oher
678 		 * attempt allocation attempt fails, we'll end up cancelling
679 		 * a dirty transaction and shutting down.
680 		 *
681 		 * For an exact allocation, alignment must be 1,
682 		 * however we need to take cluster alignment into account when
683 		 * fixing up the freelist. Use the minalignslop field to
684 		 * indicate that extra blocks might be required for alignment,
685 		 * but not to use them in the actual exact allocation.
686 		 */
687 		args.alignment = 1;
688 		args.minalignslop = igeo->cluster_align - 1;
689 
690 		/* Allow space for the inode btree to split. */
691 		args.minleft = igeo->inobt_maxlevels - 1;
692 		if ((error = xfs_alloc_vextent(&args)))
693 			return error;
694 
695 		/*
696 		 * This request might have dirtied the transaction if the AG can
697 		 * satisfy the request, but the exact block was not available.
698 		 * If the allocation did fail, subsequent requests will relax
699 		 * the exact agbno requirement and increase the alignment
700 		 * instead. It is critical that the total size of the request
701 		 * (len + alignment + slop) does not increase from this point
702 		 * on, so reset minalignslop to ensure it is not included in
703 		 * subsequent requests.
704 		 */
705 		args.minalignslop = 0;
706 	}
707 
708 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
709 		/*
710 		 * Set the alignment for the allocation.
711 		 * If stripe alignment is turned on then align at stripe unit
712 		 * boundary.
713 		 * If the cluster size is smaller than a filesystem block
714 		 * then we're doing I/O for inodes in filesystem block size
715 		 * pieces, so don't need alignment anyway.
716 		 */
717 		isaligned = 0;
718 		if (igeo->ialloc_align) {
719 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
720 			args.alignment = args.mp->m_dalign;
721 			isaligned = 1;
722 		} else
723 			args.alignment = igeo->cluster_align;
724 		/*
725 		 * Need to figure out where to allocate the inode blocks.
726 		 * Ideally they should be spaced out through the a.g.
727 		 * For now, just allocate blocks up front.
728 		 */
729 		args.agbno = be32_to_cpu(agi->agi_root);
730 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
731 		/*
732 		 * Allocate a fixed-size extent of inodes.
733 		 */
734 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
735 		args.prod = 1;
736 		/*
737 		 * Allow space for the inode btree to split.
738 		 */
739 		args.minleft = igeo->inobt_maxlevels - 1;
740 		if ((error = xfs_alloc_vextent(&args)))
741 			return error;
742 	}
743 
744 	/*
745 	 * If stripe alignment is turned on, then try again with cluster
746 	 * alignment.
747 	 */
748 	if (isaligned && args.fsbno == NULLFSBLOCK) {
749 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
750 		args.agbno = be32_to_cpu(agi->agi_root);
751 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
752 		args.alignment = igeo->cluster_align;
753 		if ((error = xfs_alloc_vextent(&args)))
754 			return error;
755 	}
756 
757 	/*
758 	 * Finally, try a sparse allocation if the filesystem supports it and
759 	 * the sparse allocation length is smaller than a full chunk.
760 	 */
761 	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
762 	    igeo->ialloc_min_blks < igeo->ialloc_blks &&
763 	    args.fsbno == NULLFSBLOCK) {
764 sparse_alloc:
765 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
766 		args.agbno = be32_to_cpu(agi->agi_root);
767 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
768 		args.alignment = args.mp->m_sb.sb_spino_align;
769 		args.prod = 1;
770 
771 		args.minlen = igeo->ialloc_min_blks;
772 		args.maxlen = args.minlen;
773 
774 		/*
775 		 * The inode record will be aligned to full chunk size. We must
776 		 * prevent sparse allocation from AG boundaries that result in
777 		 * invalid inode records, such as records that start at agbno 0
778 		 * or extend beyond the AG.
779 		 *
780 		 * Set min agbno to the first aligned, non-zero agbno and max to
781 		 * the last aligned agbno that is at least one full chunk from
782 		 * the end of the AG.
783 		 */
784 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
785 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
786 					    args.mp->m_sb.sb_inoalignmt) -
787 				 igeo->ialloc_blks;
788 
789 		error = xfs_alloc_vextent(&args);
790 		if (error)
791 			return error;
792 
793 		newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
794 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
795 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
796 	}
797 
798 	if (args.fsbno == NULLFSBLOCK) {
799 		*alloc = 0;
800 		return 0;
801 	}
802 	ASSERT(args.len == args.minlen);
803 
804 	/*
805 	 * Stamp and write the inode buffers.
806 	 *
807 	 * Seed the new inode cluster with a random generation number. This
808 	 * prevents short-term reuse of generation numbers if a chunk is
809 	 * freed and then immediately reallocated. We use random numbers
810 	 * rather than a linear progression to prevent the next generation
811 	 * number from being easily guessable.
812 	 */
813 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
814 			args.agbno, args.len, prandom_u32());
815 
816 	if (error)
817 		return error;
818 	/*
819 	 * Convert the results.
820 	 */
821 	newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
822 
823 	if (xfs_inobt_issparse(~allocmask)) {
824 		/*
825 		 * We've allocated a sparse chunk. Align the startino and mask.
826 		 */
827 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
828 
829 		rec.ir_startino = newino;
830 		rec.ir_holemask = ~allocmask;
831 		rec.ir_count = newlen;
832 		rec.ir_freecount = newlen;
833 		rec.ir_free = XFS_INOBT_ALL_FREE;
834 
835 		/*
836 		 * Insert the sparse record into the inobt and allow for a merge
837 		 * if necessary. If a merge does occur, rec is updated to the
838 		 * merged record.
839 		 */
840 		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
841 					       &rec, true);
842 		if (error == -EFSCORRUPTED) {
843 			xfs_alert(args.mp,
844 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
845 				  XFS_AGINO_TO_INO(args.mp, agno,
846 						   rec.ir_startino),
847 				  rec.ir_holemask, rec.ir_count);
848 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
849 		}
850 		if (error)
851 			return error;
852 
853 		/*
854 		 * We can't merge the part we've just allocated as for the inobt
855 		 * due to finobt semantics. The original record may or may not
856 		 * exist independent of whether physical inodes exist in this
857 		 * sparse chunk.
858 		 *
859 		 * We must update the finobt record based on the inobt record.
860 		 * rec contains the fully merged and up to date inobt record
861 		 * from the previous call. Set merge false to replace any
862 		 * existing record with this one.
863 		 */
864 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
865 			error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
866 						       XFS_BTNUM_FINO, &rec,
867 						       false);
868 			if (error)
869 				return error;
870 		}
871 	} else {
872 		/* full chunk - insert new records to both btrees */
873 		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
874 					 XFS_BTNUM_INO);
875 		if (error)
876 			return error;
877 
878 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
879 			error = xfs_inobt_insert(args.mp, tp, agbp, newino,
880 						 newlen, XFS_BTNUM_FINO);
881 			if (error)
882 				return error;
883 		}
884 	}
885 
886 	/*
887 	 * Update AGI counts and newino.
888 	 */
889 	be32_add_cpu(&agi->agi_count, newlen);
890 	be32_add_cpu(&agi->agi_freecount, newlen);
891 	pag = agbp->b_pag;
892 	pag->pagi_freecount += newlen;
893 	pag->pagi_count += newlen;
894 	agi->agi_newino = cpu_to_be32(newino);
895 
896 	/*
897 	 * Log allocation group header fields
898 	 */
899 	xfs_ialloc_log_agi(tp, agbp,
900 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
901 	/*
902 	 * Modify/log superblock values for inode count and inode free count.
903 	 */
904 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
905 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
906 	*alloc = 1;
907 	return 0;
908 }
909 
910 STATIC xfs_agnumber_t
911 xfs_ialloc_next_ag(
912 	xfs_mount_t	*mp)
913 {
914 	xfs_agnumber_t	agno;
915 
916 	spin_lock(&mp->m_agirotor_lock);
917 	agno = mp->m_agirotor;
918 	if (++mp->m_agirotor >= mp->m_maxagi)
919 		mp->m_agirotor = 0;
920 	spin_unlock(&mp->m_agirotor_lock);
921 
922 	return agno;
923 }
924 
925 /*
926  * Select an allocation group to look for a free inode in, based on the parent
927  * inode and the mode.  Return the allocation group buffer.
928  */
929 STATIC xfs_agnumber_t
930 xfs_ialloc_ag_select(
931 	xfs_trans_t	*tp,		/* transaction pointer */
932 	xfs_ino_t	parent,		/* parent directory inode number */
933 	umode_t		mode)		/* bits set to indicate file type */
934 {
935 	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
936 	xfs_agnumber_t	agno;		/* current ag number */
937 	int		flags;		/* alloc buffer locking flags */
938 	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
939 	xfs_extlen_t	longest = 0;	/* longest extent available */
940 	xfs_mount_t	*mp;		/* mount point structure */
941 	int		needspace;	/* file mode implies space allocated */
942 	xfs_perag_t	*pag;		/* per allocation group data */
943 	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
944 	int		error;
945 
946 	/*
947 	 * Files of these types need at least one block if length > 0
948 	 * (and they won't fit in the inode, but that's hard to figure out).
949 	 */
950 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
951 	mp = tp->t_mountp;
952 	agcount = mp->m_maxagi;
953 	if (S_ISDIR(mode))
954 		pagno = xfs_ialloc_next_ag(mp);
955 	else {
956 		pagno = XFS_INO_TO_AGNO(mp, parent);
957 		if (pagno >= agcount)
958 			pagno = 0;
959 	}
960 
961 	ASSERT(pagno < agcount);
962 
963 	/*
964 	 * Loop through allocation groups, looking for one with a little
965 	 * free space in it.  Note we don't look for free inodes, exactly.
966 	 * Instead, we include whether there is a need to allocate inodes
967 	 * to mean that blocks must be allocated for them,
968 	 * if none are currently free.
969 	 */
970 	agno = pagno;
971 	flags = XFS_ALLOC_FLAG_TRYLOCK;
972 	for (;;) {
973 		pag = xfs_perag_get(mp, agno);
974 		if (!pag->pagi_inodeok) {
975 			xfs_ialloc_next_ag(mp);
976 			goto nextag;
977 		}
978 
979 		if (!pag->pagi_init) {
980 			error = xfs_ialloc_pagi_init(mp, tp, agno);
981 			if (error)
982 				goto nextag;
983 		}
984 
985 		if (pag->pagi_freecount) {
986 			xfs_perag_put(pag);
987 			return agno;
988 		}
989 
990 		if (!pag->pagf_init) {
991 			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
992 			if (error)
993 				goto nextag;
994 		}
995 
996 		/*
997 		 * Check that there is enough free space for the file plus a
998 		 * chunk of inodes if we need to allocate some. If this is the
999 		 * first pass across the AGs, take into account the potential
1000 		 * space needed for alignment of inode chunks when checking the
1001 		 * longest contiguous free space in the AG - this prevents us
1002 		 * from getting ENOSPC because we have free space larger than
1003 		 * ialloc_blks but alignment constraints prevent us from using
1004 		 * it.
1005 		 *
1006 		 * If we can't find an AG with space for full alignment slack to
1007 		 * be taken into account, we must be near ENOSPC in all AGs.
1008 		 * Hence we don't include alignment for the second pass and so
1009 		 * if we fail allocation due to alignment issues then it is most
1010 		 * likely a real ENOSPC condition.
1011 		 */
1012 		ineed = M_IGEO(mp)->ialloc_min_blks;
1013 		if (flags && ineed > 1)
1014 			ineed += M_IGEO(mp)->cluster_align;
1015 		longest = pag->pagf_longest;
1016 		if (!longest)
1017 			longest = pag->pagf_flcount > 0;
1018 
1019 		if (pag->pagf_freeblks >= needspace + ineed &&
1020 		    longest >= ineed) {
1021 			xfs_perag_put(pag);
1022 			return agno;
1023 		}
1024 nextag:
1025 		xfs_perag_put(pag);
1026 		/*
1027 		 * No point in iterating over the rest, if we're shutting
1028 		 * down.
1029 		 */
1030 		if (XFS_FORCED_SHUTDOWN(mp))
1031 			return NULLAGNUMBER;
1032 		agno++;
1033 		if (agno >= agcount)
1034 			agno = 0;
1035 		if (agno == pagno) {
1036 			if (flags == 0)
1037 				return NULLAGNUMBER;
1038 			flags = 0;
1039 		}
1040 	}
1041 }
1042 
1043 /*
1044  * Try to retrieve the next record to the left/right from the current one.
1045  */
1046 STATIC int
1047 xfs_ialloc_next_rec(
1048 	struct xfs_btree_cur	*cur,
1049 	xfs_inobt_rec_incore_t	*rec,
1050 	int			*done,
1051 	int			left)
1052 {
1053 	int                     error;
1054 	int			i;
1055 
1056 	if (left)
1057 		error = xfs_btree_decrement(cur, 0, &i);
1058 	else
1059 		error = xfs_btree_increment(cur, 0, &i);
1060 
1061 	if (error)
1062 		return error;
1063 	*done = !i;
1064 	if (i) {
1065 		error = xfs_inobt_get_rec(cur, rec, &i);
1066 		if (error)
1067 			return error;
1068 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1069 			return -EFSCORRUPTED;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 STATIC int
1076 xfs_ialloc_get_rec(
1077 	struct xfs_btree_cur	*cur,
1078 	xfs_agino_t		agino,
1079 	xfs_inobt_rec_incore_t	*rec,
1080 	int			*done)
1081 {
1082 	int                     error;
1083 	int			i;
1084 
1085 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1086 	if (error)
1087 		return error;
1088 	*done = !i;
1089 	if (i) {
1090 		error = xfs_inobt_get_rec(cur, rec, &i);
1091 		if (error)
1092 			return error;
1093 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1094 			return -EFSCORRUPTED;
1095 	}
1096 
1097 	return 0;
1098 }
1099 
1100 /*
1101  * Return the offset of the first free inode in the record. If the inode chunk
1102  * is sparsely allocated, we convert the record holemask to inode granularity
1103  * and mask off the unallocated regions from the inode free mask.
1104  */
1105 STATIC int
1106 xfs_inobt_first_free_inode(
1107 	struct xfs_inobt_rec_incore	*rec)
1108 {
1109 	xfs_inofree_t			realfree;
1110 
1111 	/* if there are no holes, return the first available offset */
1112 	if (!xfs_inobt_issparse(rec->ir_holemask))
1113 		return xfs_lowbit64(rec->ir_free);
1114 
1115 	realfree = xfs_inobt_irec_to_allocmask(rec);
1116 	realfree &= rec->ir_free;
1117 
1118 	return xfs_lowbit64(realfree);
1119 }
1120 
1121 /*
1122  * Allocate an inode using the inobt-only algorithm.
1123  */
1124 STATIC int
1125 xfs_dialloc_ag_inobt(
1126 	struct xfs_trans	*tp,
1127 	struct xfs_buf		*agbp,
1128 	xfs_ino_t		parent,
1129 	xfs_ino_t		*inop)
1130 {
1131 	struct xfs_mount	*mp = tp->t_mountp;
1132 	struct xfs_agi		*agi = agbp->b_addr;
1133 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
1134 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1135 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1136 	struct xfs_perag	*pag = agbp->b_pag;
1137 	struct xfs_btree_cur	*cur, *tcur;
1138 	struct xfs_inobt_rec_incore rec, trec;
1139 	xfs_ino_t		ino;
1140 	int			error;
1141 	int			offset;
1142 	int			i, j;
1143 	int			searchdistance = 10;
1144 
1145 	ASSERT(pag->pagi_init);
1146 	ASSERT(pag->pagi_inodeok);
1147 	ASSERT(pag->pagi_freecount > 0);
1148 
1149  restart_pagno:
1150 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1151 	/*
1152 	 * If pagino is 0 (this is the root inode allocation) use newino.
1153 	 * This must work because we've just allocated some.
1154 	 */
1155 	if (!pagino)
1156 		pagino = be32_to_cpu(agi->agi_newino);
1157 
1158 	error = xfs_check_agi_freecount(cur, agi);
1159 	if (error)
1160 		goto error0;
1161 
1162 	/*
1163 	 * If in the same AG as the parent, try to get near the parent.
1164 	 */
1165 	if (pagno == agno) {
1166 		int		doneleft;	/* done, to the left */
1167 		int		doneright;	/* done, to the right */
1168 
1169 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1170 		if (error)
1171 			goto error0;
1172 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1173 			error = -EFSCORRUPTED;
1174 			goto error0;
1175 		}
1176 
1177 		error = xfs_inobt_get_rec(cur, &rec, &j);
1178 		if (error)
1179 			goto error0;
1180 		if (XFS_IS_CORRUPT(mp, j != 1)) {
1181 			error = -EFSCORRUPTED;
1182 			goto error0;
1183 		}
1184 
1185 		if (rec.ir_freecount > 0) {
1186 			/*
1187 			 * Found a free inode in the same chunk
1188 			 * as the parent, done.
1189 			 */
1190 			goto alloc_inode;
1191 		}
1192 
1193 
1194 		/*
1195 		 * In the same AG as parent, but parent's chunk is full.
1196 		 */
1197 
1198 		/* duplicate the cursor, search left & right simultaneously */
1199 		error = xfs_btree_dup_cursor(cur, &tcur);
1200 		if (error)
1201 			goto error0;
1202 
1203 		/*
1204 		 * Skip to last blocks looked up if same parent inode.
1205 		 */
1206 		if (pagino != NULLAGINO &&
1207 		    pag->pagl_pagino == pagino &&
1208 		    pag->pagl_leftrec != NULLAGINO &&
1209 		    pag->pagl_rightrec != NULLAGINO) {
1210 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1211 						   &trec, &doneleft);
1212 			if (error)
1213 				goto error1;
1214 
1215 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1216 						   &rec, &doneright);
1217 			if (error)
1218 				goto error1;
1219 		} else {
1220 			/* search left with tcur, back up 1 record */
1221 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1222 			if (error)
1223 				goto error1;
1224 
1225 			/* search right with cur, go forward 1 record. */
1226 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1227 			if (error)
1228 				goto error1;
1229 		}
1230 
1231 		/*
1232 		 * Loop until we find an inode chunk with a free inode.
1233 		 */
1234 		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1235 			int	useleft;  /* using left inode chunk this time */
1236 
1237 			/* figure out the closer block if both are valid. */
1238 			if (!doneleft && !doneright) {
1239 				useleft = pagino -
1240 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1241 				  rec.ir_startino - pagino;
1242 			} else {
1243 				useleft = !doneleft;
1244 			}
1245 
1246 			/* free inodes to the left? */
1247 			if (useleft && trec.ir_freecount) {
1248 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1249 				cur = tcur;
1250 
1251 				pag->pagl_leftrec = trec.ir_startino;
1252 				pag->pagl_rightrec = rec.ir_startino;
1253 				pag->pagl_pagino = pagino;
1254 				rec = trec;
1255 				goto alloc_inode;
1256 			}
1257 
1258 			/* free inodes to the right? */
1259 			if (!useleft && rec.ir_freecount) {
1260 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1261 
1262 				pag->pagl_leftrec = trec.ir_startino;
1263 				pag->pagl_rightrec = rec.ir_startino;
1264 				pag->pagl_pagino = pagino;
1265 				goto alloc_inode;
1266 			}
1267 
1268 			/* get next record to check */
1269 			if (useleft) {
1270 				error = xfs_ialloc_next_rec(tcur, &trec,
1271 								 &doneleft, 1);
1272 			} else {
1273 				error = xfs_ialloc_next_rec(cur, &rec,
1274 								 &doneright, 0);
1275 			}
1276 			if (error)
1277 				goto error1;
1278 		}
1279 
1280 		if (searchdistance <= 0) {
1281 			/*
1282 			 * Not in range - save last search
1283 			 * location and allocate a new inode
1284 			 */
1285 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1286 			pag->pagl_leftrec = trec.ir_startino;
1287 			pag->pagl_rightrec = rec.ir_startino;
1288 			pag->pagl_pagino = pagino;
1289 
1290 		} else {
1291 			/*
1292 			 * We've reached the end of the btree. because
1293 			 * we are only searching a small chunk of the
1294 			 * btree each search, there is obviously free
1295 			 * inodes closer to the parent inode than we
1296 			 * are now. restart the search again.
1297 			 */
1298 			pag->pagl_pagino = NULLAGINO;
1299 			pag->pagl_leftrec = NULLAGINO;
1300 			pag->pagl_rightrec = NULLAGINO;
1301 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1302 			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1303 			goto restart_pagno;
1304 		}
1305 	}
1306 
1307 	/*
1308 	 * In a different AG from the parent.
1309 	 * See if the most recently allocated block has any free.
1310 	 */
1311 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1312 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1313 					 XFS_LOOKUP_EQ, &i);
1314 		if (error)
1315 			goto error0;
1316 
1317 		if (i == 1) {
1318 			error = xfs_inobt_get_rec(cur, &rec, &j);
1319 			if (error)
1320 				goto error0;
1321 
1322 			if (j == 1 && rec.ir_freecount > 0) {
1323 				/*
1324 				 * The last chunk allocated in the group
1325 				 * still has a free inode.
1326 				 */
1327 				goto alloc_inode;
1328 			}
1329 		}
1330 	}
1331 
1332 	/*
1333 	 * None left in the last group, search the whole AG
1334 	 */
1335 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1336 	if (error)
1337 		goto error0;
1338 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1339 		error = -EFSCORRUPTED;
1340 		goto error0;
1341 	}
1342 
1343 	for (;;) {
1344 		error = xfs_inobt_get_rec(cur, &rec, &i);
1345 		if (error)
1346 			goto error0;
1347 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1348 			error = -EFSCORRUPTED;
1349 			goto error0;
1350 		}
1351 		if (rec.ir_freecount > 0)
1352 			break;
1353 		error = xfs_btree_increment(cur, 0, &i);
1354 		if (error)
1355 			goto error0;
1356 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1357 			error = -EFSCORRUPTED;
1358 			goto error0;
1359 		}
1360 	}
1361 
1362 alloc_inode:
1363 	offset = xfs_inobt_first_free_inode(&rec);
1364 	ASSERT(offset >= 0);
1365 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1366 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1367 				   XFS_INODES_PER_CHUNK) == 0);
1368 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1369 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1370 	rec.ir_freecount--;
1371 	error = xfs_inobt_update(cur, &rec);
1372 	if (error)
1373 		goto error0;
1374 	be32_add_cpu(&agi->agi_freecount, -1);
1375 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1376 	pag->pagi_freecount--;
1377 
1378 	error = xfs_check_agi_freecount(cur, agi);
1379 	if (error)
1380 		goto error0;
1381 
1382 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1383 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1384 	*inop = ino;
1385 	return 0;
1386 error1:
1387 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1388 error0:
1389 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1390 	return error;
1391 }
1392 
1393 /*
1394  * Use the free inode btree to allocate an inode based on distance from the
1395  * parent. Note that the provided cursor may be deleted and replaced.
1396  */
1397 STATIC int
1398 xfs_dialloc_ag_finobt_near(
1399 	xfs_agino_t			pagino,
1400 	struct xfs_btree_cur		**ocur,
1401 	struct xfs_inobt_rec_incore	*rec)
1402 {
1403 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1404 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1405 	struct xfs_inobt_rec_incore	rrec;
1406 	int				error;
1407 	int				i, j;
1408 
1409 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1410 	if (error)
1411 		return error;
1412 
1413 	if (i == 1) {
1414 		error = xfs_inobt_get_rec(lcur, rec, &i);
1415 		if (error)
1416 			return error;
1417 		if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1418 			return -EFSCORRUPTED;
1419 
1420 		/*
1421 		 * See if we've landed in the parent inode record. The finobt
1422 		 * only tracks chunks with at least one free inode, so record
1423 		 * existence is enough.
1424 		 */
1425 		if (pagino >= rec->ir_startino &&
1426 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1427 			return 0;
1428 	}
1429 
1430 	error = xfs_btree_dup_cursor(lcur, &rcur);
1431 	if (error)
1432 		return error;
1433 
1434 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1435 	if (error)
1436 		goto error_rcur;
1437 	if (j == 1) {
1438 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1439 		if (error)
1440 			goto error_rcur;
1441 		if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1442 			error = -EFSCORRUPTED;
1443 			goto error_rcur;
1444 		}
1445 	}
1446 
1447 	if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1448 		error = -EFSCORRUPTED;
1449 		goto error_rcur;
1450 	}
1451 	if (i == 1 && j == 1) {
1452 		/*
1453 		 * Both the left and right records are valid. Choose the closer
1454 		 * inode chunk to the target.
1455 		 */
1456 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1457 		    (rrec.ir_startino - pagino)) {
1458 			*rec = rrec;
1459 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1460 			*ocur = rcur;
1461 		} else {
1462 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1463 		}
1464 	} else if (j == 1) {
1465 		/* only the right record is valid */
1466 		*rec = rrec;
1467 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1468 		*ocur = rcur;
1469 	} else if (i == 1) {
1470 		/* only the left record is valid */
1471 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1472 	}
1473 
1474 	return 0;
1475 
1476 error_rcur:
1477 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1478 	return error;
1479 }
1480 
1481 /*
1482  * Use the free inode btree to find a free inode based on a newino hint. If
1483  * the hint is NULL, find the first free inode in the AG.
1484  */
1485 STATIC int
1486 xfs_dialloc_ag_finobt_newino(
1487 	struct xfs_agi			*agi,
1488 	struct xfs_btree_cur		*cur,
1489 	struct xfs_inobt_rec_incore	*rec)
1490 {
1491 	int error;
1492 	int i;
1493 
1494 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1495 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1496 					 XFS_LOOKUP_EQ, &i);
1497 		if (error)
1498 			return error;
1499 		if (i == 1) {
1500 			error = xfs_inobt_get_rec(cur, rec, &i);
1501 			if (error)
1502 				return error;
1503 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1504 				return -EFSCORRUPTED;
1505 			return 0;
1506 		}
1507 	}
1508 
1509 	/*
1510 	 * Find the first inode available in the AG.
1511 	 */
1512 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1513 	if (error)
1514 		return error;
1515 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1516 		return -EFSCORRUPTED;
1517 
1518 	error = xfs_inobt_get_rec(cur, rec, &i);
1519 	if (error)
1520 		return error;
1521 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1522 		return -EFSCORRUPTED;
1523 
1524 	return 0;
1525 }
1526 
1527 /*
1528  * Update the inobt based on a modification made to the finobt. Also ensure that
1529  * the records from both trees are equivalent post-modification.
1530  */
1531 STATIC int
1532 xfs_dialloc_ag_update_inobt(
1533 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1534 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1535 	int				offset) /* inode offset */
1536 {
1537 	struct xfs_inobt_rec_incore	rec;
1538 	int				error;
1539 	int				i;
1540 
1541 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1542 	if (error)
1543 		return error;
1544 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1545 		return -EFSCORRUPTED;
1546 
1547 	error = xfs_inobt_get_rec(cur, &rec, &i);
1548 	if (error)
1549 		return error;
1550 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1551 		return -EFSCORRUPTED;
1552 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1553 				   XFS_INODES_PER_CHUNK) == 0);
1554 
1555 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1556 	rec.ir_freecount--;
1557 
1558 	if (XFS_IS_CORRUPT(cur->bc_mp,
1559 			   rec.ir_free != frec->ir_free ||
1560 			   rec.ir_freecount != frec->ir_freecount))
1561 		return -EFSCORRUPTED;
1562 
1563 	return xfs_inobt_update(cur, &rec);
1564 }
1565 
1566 /*
1567  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1568  * back to the inobt search algorithm.
1569  *
1570  * The caller selected an AG for us, and made sure that free inodes are
1571  * available.
1572  */
1573 STATIC int
1574 xfs_dialloc_ag(
1575 	struct xfs_trans	*tp,
1576 	struct xfs_buf		*agbp,
1577 	xfs_ino_t		parent,
1578 	xfs_ino_t		*inop)
1579 {
1580 	struct xfs_mount		*mp = tp->t_mountp;
1581 	struct xfs_agi			*agi = agbp->b_addr;
1582 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1583 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1584 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1585 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1586 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1587 	struct xfs_inobt_rec_incore	rec;
1588 	xfs_ino_t			ino;
1589 	int				error;
1590 	int				offset;
1591 	int				i;
1592 
1593 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1594 		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1595 
1596 	/*
1597 	 * If pagino is 0 (this is the root inode allocation) use newino.
1598 	 * This must work because we've just allocated some.
1599 	 */
1600 	if (!pagino)
1601 		pagino = be32_to_cpu(agi->agi_newino);
1602 
1603 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1604 
1605 	error = xfs_check_agi_freecount(cur, agi);
1606 	if (error)
1607 		goto error_cur;
1608 
1609 	/*
1610 	 * The search algorithm depends on whether we're in the same AG as the
1611 	 * parent. If so, find the closest available inode to the parent. If
1612 	 * not, consider the agi hint or find the first free inode in the AG.
1613 	 */
1614 	if (agno == pagno)
1615 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1616 	else
1617 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1618 	if (error)
1619 		goto error_cur;
1620 
1621 	offset = xfs_inobt_first_free_inode(&rec);
1622 	ASSERT(offset >= 0);
1623 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1624 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1625 				   XFS_INODES_PER_CHUNK) == 0);
1626 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1627 
1628 	/*
1629 	 * Modify or remove the finobt record.
1630 	 */
1631 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1632 	rec.ir_freecount--;
1633 	if (rec.ir_freecount)
1634 		error = xfs_inobt_update(cur, &rec);
1635 	else
1636 		error = xfs_btree_delete(cur, &i);
1637 	if (error)
1638 		goto error_cur;
1639 
1640 	/*
1641 	 * The finobt has now been updated appropriately. We haven't updated the
1642 	 * agi and superblock yet, so we can create an inobt cursor and validate
1643 	 * the original freecount. If all is well, make the equivalent update to
1644 	 * the inobt using the finobt record and offset information.
1645 	 */
1646 	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1647 
1648 	error = xfs_check_agi_freecount(icur, agi);
1649 	if (error)
1650 		goto error_icur;
1651 
1652 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1653 	if (error)
1654 		goto error_icur;
1655 
1656 	/*
1657 	 * Both trees have now been updated. We must update the perag and
1658 	 * superblock before we can check the freecount for each btree.
1659 	 */
1660 	be32_add_cpu(&agi->agi_freecount, -1);
1661 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1662 	agbp->b_pag->pagi_freecount--;
1663 
1664 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1665 
1666 	error = xfs_check_agi_freecount(icur, agi);
1667 	if (error)
1668 		goto error_icur;
1669 	error = xfs_check_agi_freecount(cur, agi);
1670 	if (error)
1671 		goto error_icur;
1672 
1673 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1674 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1675 	*inop = ino;
1676 	return 0;
1677 
1678 error_icur:
1679 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1680 error_cur:
1681 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1682 	return error;
1683 }
1684 
1685 /*
1686  * Allocate an inode on disk.
1687  *
1688  * Mode is used to tell whether the new inode will need space, and whether it
1689  * is a directory.
1690  *
1691  * This function is designed to be called twice if it has to do an allocation
1692  * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1693  * If an inode is available without having to performn an allocation, an inode
1694  * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1695  * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1696  * The caller should then commit the current transaction, allocate a
1697  * new transaction, and call xfs_dialloc() again, passing in the previous value
1698  * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1699  * buffer is locked across the two calls, the second call is guaranteed to have
1700  * a free inode available.
1701  *
1702  * Once we successfully pick an inode its number is returned and the on-disk
1703  * data structures are updated.  The inode itself is not read in, since doing so
1704  * would break ordering constraints with xfs_reclaim.
1705  */
1706 int
1707 xfs_dialloc(
1708 	struct xfs_trans	*tp,
1709 	xfs_ino_t		parent,
1710 	umode_t			mode,
1711 	struct xfs_buf		**IO_agbp,
1712 	xfs_ino_t		*inop)
1713 {
1714 	struct xfs_mount	*mp = tp->t_mountp;
1715 	struct xfs_buf		*agbp;
1716 	xfs_agnumber_t		agno;
1717 	int			error;
1718 	int			ialloced;
1719 	int			noroom = 0;
1720 	xfs_agnumber_t		start_agno;
1721 	struct xfs_perag	*pag;
1722 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1723 	int			okalloc = 1;
1724 
1725 	if (*IO_agbp) {
1726 		/*
1727 		 * If the caller passes in a pointer to the AGI buffer,
1728 		 * continue where we left off before.  In this case, we
1729 		 * know that the allocation group has free inodes.
1730 		 */
1731 		agbp = *IO_agbp;
1732 		goto out_alloc;
1733 	}
1734 
1735 	/*
1736 	 * We do not have an agbp, so select an initial allocation
1737 	 * group for inode allocation.
1738 	 */
1739 	start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1740 	if (start_agno == NULLAGNUMBER) {
1741 		*inop = NULLFSINO;
1742 		return 0;
1743 	}
1744 
1745 	/*
1746 	 * If we have already hit the ceiling of inode blocks then clear
1747 	 * okalloc so we scan all available agi structures for a free
1748 	 * inode.
1749 	 *
1750 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1751 	 * which will sacrifice the preciseness but improve the performance.
1752 	 */
1753 	if (igeo->maxicount &&
1754 	    percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1755 							> igeo->maxicount) {
1756 		noroom = 1;
1757 		okalloc = 0;
1758 	}
1759 
1760 	/*
1761 	 * Loop until we find an allocation group that either has free inodes
1762 	 * or in which we can allocate some inodes.  Iterate through the
1763 	 * allocation groups upward, wrapping at the end.
1764 	 */
1765 	agno = start_agno;
1766 	for (;;) {
1767 		pag = xfs_perag_get(mp, agno);
1768 		if (!pag->pagi_inodeok) {
1769 			xfs_ialloc_next_ag(mp);
1770 			goto nextag;
1771 		}
1772 
1773 		if (!pag->pagi_init) {
1774 			error = xfs_ialloc_pagi_init(mp, tp, agno);
1775 			if (error)
1776 				goto out_error;
1777 		}
1778 
1779 		/*
1780 		 * Do a first racy fast path check if this AG is usable.
1781 		 */
1782 		if (!pag->pagi_freecount && !okalloc)
1783 			goto nextag;
1784 
1785 		/*
1786 		 * Then read in the AGI buffer and recheck with the AGI buffer
1787 		 * lock held.
1788 		 */
1789 		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1790 		if (error)
1791 			goto out_error;
1792 
1793 		if (pag->pagi_freecount) {
1794 			xfs_perag_put(pag);
1795 			goto out_alloc;
1796 		}
1797 
1798 		if (!okalloc)
1799 			goto nextag_relse_buffer;
1800 
1801 
1802 		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1803 		if (error) {
1804 			xfs_trans_brelse(tp, agbp);
1805 
1806 			if (error != -ENOSPC)
1807 				goto out_error;
1808 
1809 			xfs_perag_put(pag);
1810 			*inop = NULLFSINO;
1811 			return 0;
1812 		}
1813 
1814 		if (ialloced) {
1815 			/*
1816 			 * We successfully allocated some inodes, return
1817 			 * the current context to the caller so that it
1818 			 * can commit the current transaction and call
1819 			 * us again where we left off.
1820 			 */
1821 			ASSERT(pag->pagi_freecount > 0);
1822 			xfs_perag_put(pag);
1823 
1824 			*IO_agbp = agbp;
1825 			*inop = NULLFSINO;
1826 			return 0;
1827 		}
1828 
1829 nextag_relse_buffer:
1830 		xfs_trans_brelse(tp, agbp);
1831 nextag:
1832 		xfs_perag_put(pag);
1833 		if (++agno == mp->m_sb.sb_agcount)
1834 			agno = 0;
1835 		if (agno == start_agno) {
1836 			*inop = NULLFSINO;
1837 			return noroom ? -ENOSPC : 0;
1838 		}
1839 	}
1840 
1841 out_alloc:
1842 	*IO_agbp = NULL;
1843 	return xfs_dialloc_ag(tp, agbp, parent, inop);
1844 out_error:
1845 	xfs_perag_put(pag);
1846 	return error;
1847 }
1848 
1849 /*
1850  * Free the blocks of an inode chunk. We must consider that the inode chunk
1851  * might be sparse and only free the regions that are allocated as part of the
1852  * chunk.
1853  */
1854 STATIC void
1855 xfs_difree_inode_chunk(
1856 	struct xfs_trans		*tp,
1857 	xfs_agnumber_t			agno,
1858 	struct xfs_inobt_rec_incore	*rec)
1859 {
1860 	struct xfs_mount		*mp = tp->t_mountp;
1861 	xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp,
1862 							rec->ir_startino);
1863 	int				startidx, endidx;
1864 	int				nextbit;
1865 	xfs_agblock_t			agbno;
1866 	int				contigblk;
1867 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1868 
1869 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1870 		/* not sparse, calculate extent info directly */
1871 		xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1872 				  M_IGEO(mp)->ialloc_blks,
1873 				  &XFS_RMAP_OINFO_INODES);
1874 		return;
1875 	}
1876 
1877 	/* holemask is only 16-bits (fits in an unsigned long) */
1878 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1879 	holemask[0] = rec->ir_holemask;
1880 
1881 	/*
1882 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1883 	 * holemask and convert the start/end index of each range to an extent.
1884 	 * We start with the start and end index both pointing at the first 0 in
1885 	 * the mask.
1886 	 */
1887 	startidx = endidx = find_first_zero_bit(holemask,
1888 						XFS_INOBT_HOLEMASK_BITS);
1889 	nextbit = startidx + 1;
1890 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1891 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1892 					     nextbit);
1893 		/*
1894 		 * If the next zero bit is contiguous, update the end index of
1895 		 * the current range and continue.
1896 		 */
1897 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1898 		    nextbit == endidx + 1) {
1899 			endidx = nextbit;
1900 			goto next;
1901 		}
1902 
1903 		/*
1904 		 * nextbit is not contiguous with the current end index. Convert
1905 		 * the current start/end to an extent and add it to the free
1906 		 * list.
1907 		 */
1908 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1909 				  mp->m_sb.sb_inopblock;
1910 		contigblk = ((endidx - startidx + 1) *
1911 			     XFS_INODES_PER_HOLEMASK_BIT) /
1912 			    mp->m_sb.sb_inopblock;
1913 
1914 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1915 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1916 		xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1917 				  contigblk, &XFS_RMAP_OINFO_INODES);
1918 
1919 		/* reset range to current bit and carry on... */
1920 		startidx = endidx = nextbit;
1921 
1922 next:
1923 		nextbit++;
1924 	}
1925 }
1926 
1927 STATIC int
1928 xfs_difree_inobt(
1929 	struct xfs_mount		*mp,
1930 	struct xfs_trans		*tp,
1931 	struct xfs_buf			*agbp,
1932 	xfs_agino_t			agino,
1933 	struct xfs_icluster		*xic,
1934 	struct xfs_inobt_rec_incore	*orec)
1935 {
1936 	struct xfs_agi			*agi = agbp->b_addr;
1937 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1938 	struct xfs_btree_cur		*cur;
1939 	struct xfs_inobt_rec_incore	rec;
1940 	int				ilen;
1941 	int				error;
1942 	int				i;
1943 	int				off;
1944 
1945 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1946 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1947 
1948 	/*
1949 	 * Initialize the cursor.
1950 	 */
1951 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1952 
1953 	error = xfs_check_agi_freecount(cur, agi);
1954 	if (error)
1955 		goto error0;
1956 
1957 	/*
1958 	 * Look for the entry describing this inode.
1959 	 */
1960 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1961 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1962 			__func__, error);
1963 		goto error0;
1964 	}
1965 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1966 		error = -EFSCORRUPTED;
1967 		goto error0;
1968 	}
1969 	error = xfs_inobt_get_rec(cur, &rec, &i);
1970 	if (error) {
1971 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1972 			__func__, error);
1973 		goto error0;
1974 	}
1975 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1976 		error = -EFSCORRUPTED;
1977 		goto error0;
1978 	}
1979 	/*
1980 	 * Get the offset in the inode chunk.
1981 	 */
1982 	off = agino - rec.ir_startino;
1983 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1984 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1985 	/*
1986 	 * Mark the inode free & increment the count.
1987 	 */
1988 	rec.ir_free |= XFS_INOBT_MASK(off);
1989 	rec.ir_freecount++;
1990 
1991 	/*
1992 	 * When an inode chunk is free, it becomes eligible for removal. Don't
1993 	 * remove the chunk if the block size is large enough for multiple inode
1994 	 * chunks (that might not be free).
1995 	 */
1996 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1997 	    rec.ir_free == XFS_INOBT_ALL_FREE &&
1998 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1999 		struct xfs_perag	*pag = agbp->b_pag;
2000 
2001 		xic->deleted = true;
2002 		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
2003 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2004 
2005 		/*
2006 		 * Remove the inode cluster from the AGI B+Tree, adjust the
2007 		 * AGI and Superblock inode counts, and mark the disk space
2008 		 * to be freed when the transaction is committed.
2009 		 */
2010 		ilen = rec.ir_freecount;
2011 		be32_add_cpu(&agi->agi_count, -ilen);
2012 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2013 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2014 		pag->pagi_freecount -= ilen - 1;
2015 		pag->pagi_count -= ilen;
2016 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2017 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2018 
2019 		if ((error = xfs_btree_delete(cur, &i))) {
2020 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2021 				__func__, error);
2022 			goto error0;
2023 		}
2024 
2025 		xfs_difree_inode_chunk(tp, agno, &rec);
2026 	} else {
2027 		xic->deleted = false;
2028 
2029 		error = xfs_inobt_update(cur, &rec);
2030 		if (error) {
2031 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2032 				__func__, error);
2033 			goto error0;
2034 		}
2035 
2036 		/*
2037 		 * Change the inode free counts and log the ag/sb changes.
2038 		 */
2039 		be32_add_cpu(&agi->agi_freecount, 1);
2040 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2041 		agbp->b_pag->pagi_freecount++;
2042 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2043 	}
2044 
2045 	error = xfs_check_agi_freecount(cur, agi);
2046 	if (error)
2047 		goto error0;
2048 
2049 	*orec = rec;
2050 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2051 	return 0;
2052 
2053 error0:
2054 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2055 	return error;
2056 }
2057 
2058 /*
2059  * Free an inode in the free inode btree.
2060  */
2061 STATIC int
2062 xfs_difree_finobt(
2063 	struct xfs_mount		*mp,
2064 	struct xfs_trans		*tp,
2065 	struct xfs_buf			*agbp,
2066 	xfs_agino_t			agino,
2067 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2068 {
2069 	struct xfs_agi			*agi = agbp->b_addr;
2070 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
2071 	struct xfs_btree_cur		*cur;
2072 	struct xfs_inobt_rec_incore	rec;
2073 	int				offset = agino - ibtrec->ir_startino;
2074 	int				error;
2075 	int				i;
2076 
2077 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2078 
2079 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2080 	if (error)
2081 		goto error;
2082 	if (i == 0) {
2083 		/*
2084 		 * If the record does not exist in the finobt, we must have just
2085 		 * freed an inode in a previously fully allocated chunk. If not,
2086 		 * something is out of sync.
2087 		 */
2088 		if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2089 			error = -EFSCORRUPTED;
2090 			goto error;
2091 		}
2092 
2093 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2094 					     ibtrec->ir_count,
2095 					     ibtrec->ir_freecount,
2096 					     ibtrec->ir_free, &i);
2097 		if (error)
2098 			goto error;
2099 		ASSERT(i == 1);
2100 
2101 		goto out;
2102 	}
2103 
2104 	/*
2105 	 * Read and update the existing record. We could just copy the ibtrec
2106 	 * across here, but that would defeat the purpose of having redundant
2107 	 * metadata. By making the modifications independently, we can catch
2108 	 * corruptions that we wouldn't see if we just copied from one record
2109 	 * to another.
2110 	 */
2111 	error = xfs_inobt_get_rec(cur, &rec, &i);
2112 	if (error)
2113 		goto error;
2114 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2115 		error = -EFSCORRUPTED;
2116 		goto error;
2117 	}
2118 
2119 	rec.ir_free |= XFS_INOBT_MASK(offset);
2120 	rec.ir_freecount++;
2121 
2122 	if (XFS_IS_CORRUPT(mp,
2123 			   rec.ir_free != ibtrec->ir_free ||
2124 			   rec.ir_freecount != ibtrec->ir_freecount)) {
2125 		error = -EFSCORRUPTED;
2126 		goto error;
2127 	}
2128 
2129 	/*
2130 	 * The content of inobt records should always match between the inobt
2131 	 * and finobt. The lifecycle of records in the finobt is different from
2132 	 * the inobt in that the finobt only tracks records with at least one
2133 	 * free inode. Hence, if all of the inodes are free and we aren't
2134 	 * keeping inode chunks permanently on disk, remove the record.
2135 	 * Otherwise, update the record with the new information.
2136 	 *
2137 	 * Note that we currently can't free chunks when the block size is large
2138 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2139 	 * with the inobt.
2140 	 */
2141 	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2142 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2143 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2144 		error = xfs_btree_delete(cur, &i);
2145 		if (error)
2146 			goto error;
2147 		ASSERT(i == 1);
2148 	} else {
2149 		error = xfs_inobt_update(cur, &rec);
2150 		if (error)
2151 			goto error;
2152 	}
2153 
2154 out:
2155 	error = xfs_check_agi_freecount(cur, agi);
2156 	if (error)
2157 		goto error;
2158 
2159 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2160 	return 0;
2161 
2162 error:
2163 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2164 	return error;
2165 }
2166 
2167 /*
2168  * Free disk inode.  Carefully avoids touching the incore inode, all
2169  * manipulations incore are the caller's responsibility.
2170  * The on-disk inode is not changed by this operation, only the
2171  * btree (free inode mask) is changed.
2172  */
2173 int
2174 xfs_difree(
2175 	struct xfs_trans	*tp,		/* transaction pointer */
2176 	xfs_ino_t		inode,		/* inode to be freed */
2177 	struct xfs_icluster	*xic)	/* cluster info if deleted */
2178 {
2179 	/* REFERENCED */
2180 	xfs_agblock_t		agbno;	/* block number containing inode */
2181 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2182 	xfs_agino_t		agino;	/* allocation group inode number */
2183 	xfs_agnumber_t		agno;	/* allocation group number */
2184 	int			error;	/* error return value */
2185 	struct xfs_mount	*mp;	/* mount structure for filesystem */
2186 	struct xfs_inobt_rec_incore rec;/* btree record */
2187 
2188 	mp = tp->t_mountp;
2189 
2190 	/*
2191 	 * Break up inode number into its components.
2192 	 */
2193 	agno = XFS_INO_TO_AGNO(mp, inode);
2194 	if (agno >= mp->m_sb.sb_agcount)  {
2195 		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2196 			__func__, agno, mp->m_sb.sb_agcount);
2197 		ASSERT(0);
2198 		return -EINVAL;
2199 	}
2200 	agino = XFS_INO_TO_AGINO(mp, inode);
2201 	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2202 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2203 			__func__, (unsigned long long)inode,
2204 			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2205 		ASSERT(0);
2206 		return -EINVAL;
2207 	}
2208 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2209 	if (agbno >= mp->m_sb.sb_agblocks)  {
2210 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2211 			__func__, agbno, mp->m_sb.sb_agblocks);
2212 		ASSERT(0);
2213 		return -EINVAL;
2214 	}
2215 	/*
2216 	 * Get the allocation group header.
2217 	 */
2218 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2219 	if (error) {
2220 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2221 			__func__, error);
2222 		return error;
2223 	}
2224 
2225 	/*
2226 	 * Fix up the inode allocation btree.
2227 	 */
2228 	error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec);
2229 	if (error)
2230 		goto error0;
2231 
2232 	/*
2233 	 * Fix up the free inode btree.
2234 	 */
2235 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2236 		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2237 		if (error)
2238 			goto error0;
2239 	}
2240 
2241 	return 0;
2242 
2243 error0:
2244 	return error;
2245 }
2246 
2247 STATIC int
2248 xfs_imap_lookup(
2249 	struct xfs_mount	*mp,
2250 	struct xfs_trans	*tp,
2251 	xfs_agnumber_t		agno,
2252 	xfs_agino_t		agino,
2253 	xfs_agblock_t		agbno,
2254 	xfs_agblock_t		*chunk_agbno,
2255 	xfs_agblock_t		*offset_agbno,
2256 	int			flags)
2257 {
2258 	struct xfs_inobt_rec_incore rec;
2259 	struct xfs_btree_cur	*cur;
2260 	struct xfs_buf		*agbp;
2261 	int			error;
2262 	int			i;
2263 
2264 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2265 	if (error) {
2266 		xfs_alert(mp,
2267 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2268 			__func__, error, agno);
2269 		return error;
2270 	}
2271 
2272 	/*
2273 	 * Lookup the inode record for the given agino. If the record cannot be
2274 	 * found, then it's an invalid inode number and we should abort. Once
2275 	 * we have a record, we need to ensure it contains the inode number
2276 	 * we are looking up.
2277 	 */
2278 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2279 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2280 	if (!error) {
2281 		if (i)
2282 			error = xfs_inobt_get_rec(cur, &rec, &i);
2283 		if (!error && i == 0)
2284 			error = -EINVAL;
2285 	}
2286 
2287 	xfs_trans_brelse(tp, agbp);
2288 	xfs_btree_del_cursor(cur, error);
2289 	if (error)
2290 		return error;
2291 
2292 	/* check that the returned record contains the required inode */
2293 	if (rec.ir_startino > agino ||
2294 	    rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2295 		return -EINVAL;
2296 
2297 	/* for untrusted inodes check it is allocated first */
2298 	if ((flags & XFS_IGET_UNTRUSTED) &&
2299 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2300 		return -EINVAL;
2301 
2302 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2303 	*offset_agbno = agbno - *chunk_agbno;
2304 	return 0;
2305 }
2306 
2307 /*
2308  * Return the location of the inode in imap, for mapping it into a buffer.
2309  */
2310 int
2311 xfs_imap(
2312 	xfs_mount_t	 *mp,	/* file system mount structure */
2313 	xfs_trans_t	 *tp,	/* transaction pointer */
2314 	xfs_ino_t	ino,	/* inode to locate */
2315 	struct xfs_imap	*imap,	/* location map structure */
2316 	uint		flags)	/* flags for inode btree lookup */
2317 {
2318 	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
2319 	xfs_agino_t	agino;	/* inode number within alloc group */
2320 	xfs_agnumber_t	agno;	/* allocation group number */
2321 	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
2322 	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
2323 	int		error;	/* error code */
2324 	int		offset;	/* index of inode in its buffer */
2325 	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
2326 
2327 	ASSERT(ino != NULLFSINO);
2328 
2329 	/*
2330 	 * Split up the inode number into its parts.
2331 	 */
2332 	agno = XFS_INO_TO_AGNO(mp, ino);
2333 	agino = XFS_INO_TO_AGINO(mp, ino);
2334 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2335 	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2336 	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2337 #ifdef DEBUG
2338 		/*
2339 		 * Don't output diagnostic information for untrusted inodes
2340 		 * as they can be invalid without implying corruption.
2341 		 */
2342 		if (flags & XFS_IGET_UNTRUSTED)
2343 			return -EINVAL;
2344 		if (agno >= mp->m_sb.sb_agcount) {
2345 			xfs_alert(mp,
2346 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2347 				__func__, agno, mp->m_sb.sb_agcount);
2348 		}
2349 		if (agbno >= mp->m_sb.sb_agblocks) {
2350 			xfs_alert(mp,
2351 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2352 				__func__, (unsigned long long)agbno,
2353 				(unsigned long)mp->m_sb.sb_agblocks);
2354 		}
2355 		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2356 			xfs_alert(mp,
2357 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2358 				__func__, ino,
2359 				XFS_AGINO_TO_INO(mp, agno, agino));
2360 		}
2361 		xfs_stack_trace();
2362 #endif /* DEBUG */
2363 		return -EINVAL;
2364 	}
2365 
2366 	/*
2367 	 * For bulkstat and handle lookups, we have an untrusted inode number
2368 	 * that we have to verify is valid. We cannot do this just by reading
2369 	 * the inode buffer as it may have been unlinked and removed leaving
2370 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2371 	 * in all cases where an untrusted inode number is passed.
2372 	 */
2373 	if (flags & XFS_IGET_UNTRUSTED) {
2374 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2375 					&chunk_agbno, &offset_agbno, flags);
2376 		if (error)
2377 			return error;
2378 		goto out_map;
2379 	}
2380 
2381 	/*
2382 	 * If the inode cluster size is the same as the blocksize or
2383 	 * smaller we get to the buffer by simple arithmetics.
2384 	 */
2385 	if (M_IGEO(mp)->blocks_per_cluster == 1) {
2386 		offset = XFS_INO_TO_OFFSET(mp, ino);
2387 		ASSERT(offset < mp->m_sb.sb_inopblock);
2388 
2389 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2390 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2391 		imap->im_boffset = (unsigned short)(offset <<
2392 							mp->m_sb.sb_inodelog);
2393 		return 0;
2394 	}
2395 
2396 	/*
2397 	 * If the inode chunks are aligned then use simple maths to
2398 	 * find the location. Otherwise we have to do a btree
2399 	 * lookup to find the location.
2400 	 */
2401 	if (M_IGEO(mp)->inoalign_mask) {
2402 		offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2403 		chunk_agbno = agbno - offset_agbno;
2404 	} else {
2405 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2406 					&chunk_agbno, &offset_agbno, flags);
2407 		if (error)
2408 			return error;
2409 	}
2410 
2411 out_map:
2412 	ASSERT(agbno >= chunk_agbno);
2413 	cluster_agbno = chunk_agbno +
2414 		((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2415 		 M_IGEO(mp)->blocks_per_cluster);
2416 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2417 		XFS_INO_TO_OFFSET(mp, ino);
2418 
2419 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2420 	imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2421 	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2422 
2423 	/*
2424 	 * If the inode number maps to a block outside the bounds
2425 	 * of the file system then return NULL rather than calling
2426 	 * read_buf and panicing when we get an error from the
2427 	 * driver.
2428 	 */
2429 	if ((imap->im_blkno + imap->im_len) >
2430 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2431 		xfs_alert(mp,
2432 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2433 			__func__, (unsigned long long) imap->im_blkno,
2434 			(unsigned long long) imap->im_len,
2435 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2436 		return -EINVAL;
2437 	}
2438 	return 0;
2439 }
2440 
2441 /*
2442  * Log specified fields for the ag hdr (inode section). The growth of the agi
2443  * structure over time requires that we interpret the buffer as two logical
2444  * regions delineated by the end of the unlinked list. This is due to the size
2445  * of the hash table and its location in the middle of the agi.
2446  *
2447  * For example, a request to log a field before agi_unlinked and a field after
2448  * agi_unlinked could cause us to log the entire hash table and use an excessive
2449  * amount of log space. To avoid this behavior, log the region up through
2450  * agi_unlinked in one call and the region after agi_unlinked through the end of
2451  * the structure in another.
2452  */
2453 void
2454 xfs_ialloc_log_agi(
2455 	xfs_trans_t	*tp,		/* transaction pointer */
2456 	xfs_buf_t	*bp,		/* allocation group header buffer */
2457 	int		fields)		/* bitmask of fields to log */
2458 {
2459 	int			first;		/* first byte number */
2460 	int			last;		/* last byte number */
2461 	static const short	offsets[] = {	/* field starting offsets */
2462 					/* keep in sync with bit definitions */
2463 		offsetof(xfs_agi_t, agi_magicnum),
2464 		offsetof(xfs_agi_t, agi_versionnum),
2465 		offsetof(xfs_agi_t, agi_seqno),
2466 		offsetof(xfs_agi_t, agi_length),
2467 		offsetof(xfs_agi_t, agi_count),
2468 		offsetof(xfs_agi_t, agi_root),
2469 		offsetof(xfs_agi_t, agi_level),
2470 		offsetof(xfs_agi_t, agi_freecount),
2471 		offsetof(xfs_agi_t, agi_newino),
2472 		offsetof(xfs_agi_t, agi_dirino),
2473 		offsetof(xfs_agi_t, agi_unlinked),
2474 		offsetof(xfs_agi_t, agi_free_root),
2475 		offsetof(xfs_agi_t, agi_free_level),
2476 		sizeof(xfs_agi_t)
2477 	};
2478 #ifdef DEBUG
2479 	struct xfs_agi		*agi = bp->b_addr;
2480 
2481 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2482 #endif
2483 
2484 	/*
2485 	 * Compute byte offsets for the first and last fields in the first
2486 	 * region and log the agi buffer. This only logs up through
2487 	 * agi_unlinked.
2488 	 */
2489 	if (fields & XFS_AGI_ALL_BITS_R1) {
2490 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2491 				  &first, &last);
2492 		xfs_trans_log_buf(tp, bp, first, last);
2493 	}
2494 
2495 	/*
2496 	 * Mask off the bits in the first region and calculate the first and
2497 	 * last field offsets for any bits in the second region.
2498 	 */
2499 	fields &= ~XFS_AGI_ALL_BITS_R1;
2500 	if (fields) {
2501 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2502 				  &first, &last);
2503 		xfs_trans_log_buf(tp, bp, first, last);
2504 	}
2505 }
2506 
2507 static xfs_failaddr_t
2508 xfs_agi_verify(
2509 	struct xfs_buf	*bp)
2510 {
2511 	struct xfs_mount *mp = bp->b_mount;
2512 	struct xfs_agi	*agi = bp->b_addr;
2513 	int		i;
2514 
2515 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2516 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2517 			return __this_address;
2518 		if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2519 			return __this_address;
2520 	}
2521 
2522 	/*
2523 	 * Validate the magic number of the agi block.
2524 	 */
2525 	if (!xfs_verify_magic(bp, agi->agi_magicnum))
2526 		return __this_address;
2527 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2528 		return __this_address;
2529 
2530 	if (be32_to_cpu(agi->agi_level) < 1 ||
2531 	    be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2532 		return __this_address;
2533 
2534 	if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2535 	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2536 	     be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2537 		return __this_address;
2538 
2539 	/*
2540 	 * during growfs operations, the perag is not fully initialised,
2541 	 * so we can't use it for any useful checking. growfs ensures we can't
2542 	 * use it by using uncached buffers that don't have the perag attached
2543 	 * so we can detect and avoid this problem.
2544 	 */
2545 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2546 		return __this_address;
2547 
2548 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2549 		if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2550 			continue;
2551 		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2552 			return __this_address;
2553 	}
2554 
2555 	return NULL;
2556 }
2557 
2558 static void
2559 xfs_agi_read_verify(
2560 	struct xfs_buf	*bp)
2561 {
2562 	struct xfs_mount *mp = bp->b_mount;
2563 	xfs_failaddr_t	fa;
2564 
2565 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2566 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2567 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2568 	else {
2569 		fa = xfs_agi_verify(bp);
2570 		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2571 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2572 	}
2573 }
2574 
2575 static void
2576 xfs_agi_write_verify(
2577 	struct xfs_buf	*bp)
2578 {
2579 	struct xfs_mount	*mp = bp->b_mount;
2580 	struct xfs_buf_log_item	*bip = bp->b_log_item;
2581 	struct xfs_agi		*agi = bp->b_addr;
2582 	xfs_failaddr_t		fa;
2583 
2584 	fa = xfs_agi_verify(bp);
2585 	if (fa) {
2586 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2587 		return;
2588 	}
2589 
2590 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2591 		return;
2592 
2593 	if (bip)
2594 		agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2595 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2596 }
2597 
2598 const struct xfs_buf_ops xfs_agi_buf_ops = {
2599 	.name = "xfs_agi",
2600 	.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2601 	.verify_read = xfs_agi_read_verify,
2602 	.verify_write = xfs_agi_write_verify,
2603 	.verify_struct = xfs_agi_verify,
2604 };
2605 
2606 /*
2607  * Read in the allocation group header (inode allocation section)
2608  */
2609 int
2610 xfs_read_agi(
2611 	struct xfs_mount	*mp,	/* file system mount structure */
2612 	struct xfs_trans	*tp,	/* transaction pointer */
2613 	xfs_agnumber_t		agno,	/* allocation group number */
2614 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2615 {
2616 	int			error;
2617 
2618 	trace_xfs_read_agi(mp, agno);
2619 
2620 	ASSERT(agno != NULLAGNUMBER);
2621 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2622 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2623 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2624 	if (error)
2625 		return error;
2626 	if (tp)
2627 		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2628 
2629 	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2630 	return 0;
2631 }
2632 
2633 int
2634 xfs_ialloc_read_agi(
2635 	struct xfs_mount	*mp,	/* file system mount structure */
2636 	struct xfs_trans	*tp,	/* transaction pointer */
2637 	xfs_agnumber_t		agno,	/* allocation group number */
2638 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2639 {
2640 	struct xfs_agi		*agi;	/* allocation group header */
2641 	struct xfs_perag	*pag;	/* per allocation group data */
2642 	int			error;
2643 
2644 	trace_xfs_ialloc_read_agi(mp, agno);
2645 
2646 	error = xfs_read_agi(mp, tp, agno, bpp);
2647 	if (error)
2648 		return error;
2649 
2650 	agi = (*bpp)->b_addr;
2651 	pag = (*bpp)->b_pag;
2652 	if (!pag->pagi_init) {
2653 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2654 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2655 		pag->pagi_init = 1;
2656 	}
2657 
2658 	/*
2659 	 * It's possible for these to be out of sync if
2660 	 * we are in the middle of a forced shutdown.
2661 	 */
2662 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2663 		XFS_FORCED_SHUTDOWN(mp));
2664 	return 0;
2665 }
2666 
2667 /*
2668  * Read in the agi to initialise the per-ag data in the mount structure
2669  */
2670 int
2671 xfs_ialloc_pagi_init(
2672 	xfs_mount_t	*mp,		/* file system mount structure */
2673 	xfs_trans_t	*tp,		/* transaction pointer */
2674 	xfs_agnumber_t	agno)		/* allocation group number */
2675 {
2676 	xfs_buf_t	*bp = NULL;
2677 	int		error;
2678 
2679 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2680 	if (error)
2681 		return error;
2682 	if (bp)
2683 		xfs_trans_brelse(tp, bp);
2684 	return 0;
2685 }
2686 
2687 /* Is there an inode record covering a given range of inode numbers? */
2688 int
2689 xfs_ialloc_has_inode_record(
2690 	struct xfs_btree_cur	*cur,
2691 	xfs_agino_t		low,
2692 	xfs_agino_t		high,
2693 	bool			*exists)
2694 {
2695 	struct xfs_inobt_rec_incore	irec;
2696 	xfs_agino_t		agino;
2697 	uint16_t		holemask;
2698 	int			has_record;
2699 	int			i;
2700 	int			error;
2701 
2702 	*exists = false;
2703 	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2704 	while (error == 0 && has_record) {
2705 		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2706 		if (error || irec.ir_startino > high)
2707 			break;
2708 
2709 		agino = irec.ir_startino;
2710 		holemask = irec.ir_holemask;
2711 		for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2712 				i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2713 			if (holemask & 1)
2714 				continue;
2715 			if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2716 					agino <= high) {
2717 				*exists = true;
2718 				return 0;
2719 			}
2720 		}
2721 
2722 		error = xfs_btree_increment(cur, 0, &has_record);
2723 	}
2724 	return error;
2725 }
2726 
2727 /* Is there an inode record covering a given extent? */
2728 int
2729 xfs_ialloc_has_inodes_at_extent(
2730 	struct xfs_btree_cur	*cur,
2731 	xfs_agblock_t		bno,
2732 	xfs_extlen_t		len,
2733 	bool			*exists)
2734 {
2735 	xfs_agino_t		low;
2736 	xfs_agino_t		high;
2737 
2738 	low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2739 	high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2740 
2741 	return xfs_ialloc_has_inode_record(cur, low, high, exists);
2742 }
2743 
2744 struct xfs_ialloc_count_inodes {
2745 	xfs_agino_t			count;
2746 	xfs_agino_t			freecount;
2747 };
2748 
2749 /* Record inode counts across all inobt records. */
2750 STATIC int
2751 xfs_ialloc_count_inodes_rec(
2752 	struct xfs_btree_cur		*cur,
2753 	union xfs_btree_rec		*rec,
2754 	void				*priv)
2755 {
2756 	struct xfs_inobt_rec_incore	irec;
2757 	struct xfs_ialloc_count_inodes	*ci = priv;
2758 
2759 	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2760 	ci->count += irec.ir_count;
2761 	ci->freecount += irec.ir_freecount;
2762 
2763 	return 0;
2764 }
2765 
2766 /* Count allocated and free inodes under an inobt. */
2767 int
2768 xfs_ialloc_count_inodes(
2769 	struct xfs_btree_cur		*cur,
2770 	xfs_agino_t			*count,
2771 	xfs_agino_t			*freecount)
2772 {
2773 	struct xfs_ialloc_count_inodes	ci = {0};
2774 	int				error;
2775 
2776 	ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2777 	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2778 	if (error)
2779 		return error;
2780 
2781 	*count = ci.count;
2782 	*freecount = ci.freecount;
2783 	return 0;
2784 }
2785 
2786 /*
2787  * Initialize inode-related geometry information.
2788  *
2789  * Compute the inode btree min and max levels and set maxicount.
2790  *
2791  * Set the inode cluster size.  This may still be overridden by the file
2792  * system block size if it is larger than the chosen cluster size.
2793  *
2794  * For v5 filesystems, scale the cluster size with the inode size to keep a
2795  * constant ratio of inode per cluster buffer, but only if mkfs has set the
2796  * inode alignment value appropriately for larger cluster sizes.
2797  *
2798  * Then compute the inode cluster alignment information.
2799  */
2800 void
2801 xfs_ialloc_setup_geometry(
2802 	struct xfs_mount	*mp)
2803 {
2804 	struct xfs_sb		*sbp = &mp->m_sb;
2805 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2806 	uint64_t		icount;
2807 	uint			inodes;
2808 
2809 	/* Compute inode btree geometry. */
2810 	igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2811 	igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2812 	igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2813 	igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2814 	igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2815 
2816 	igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2817 			sbp->sb_inopblock);
2818 	igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2819 
2820 	if (sbp->sb_spino_align)
2821 		igeo->ialloc_min_blks = sbp->sb_spino_align;
2822 	else
2823 		igeo->ialloc_min_blks = igeo->ialloc_blks;
2824 
2825 	/* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2826 	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2827 	igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2828 			inodes);
2829 
2830 	/*
2831 	 * Set the maximum inode count for this filesystem, being careful not
2832 	 * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2833 	 * users should never get here due to failing sb verification, but
2834 	 * certain users (xfs_db) need to be usable even with corrupt metadata.
2835 	 */
2836 	if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2837 		/*
2838 		 * Make sure the maximum inode count is a multiple
2839 		 * of the units we allocate inodes in.
2840 		 */
2841 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2842 		do_div(icount, 100);
2843 		do_div(icount, igeo->ialloc_blks);
2844 		igeo->maxicount = XFS_FSB_TO_INO(mp,
2845 				icount * igeo->ialloc_blks);
2846 	} else {
2847 		igeo->maxicount = 0;
2848 	}
2849 
2850 	/*
2851 	 * Compute the desired size of an inode cluster buffer size, which
2852 	 * starts at 8K and (on v5 filesystems) scales up with larger inode
2853 	 * sizes.
2854 	 *
2855 	 * Preserve the desired inode cluster size because the sparse inodes
2856 	 * feature uses that desired size (not the actual size) to compute the
2857 	 * sparse inode alignment.  The mount code validates this value, so we
2858 	 * cannot change the behavior.
2859 	 */
2860 	igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2861 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
2862 		int	new_size = igeo->inode_cluster_size_raw;
2863 
2864 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2865 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2866 			igeo->inode_cluster_size_raw = new_size;
2867 	}
2868 
2869 	/* Calculate inode cluster ratios. */
2870 	if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2871 		igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2872 				igeo->inode_cluster_size_raw);
2873 	else
2874 		igeo->blocks_per_cluster = 1;
2875 	igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2876 	igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2877 
2878 	/* Calculate inode cluster alignment. */
2879 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
2880 	    mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2881 		igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2882 	else
2883 		igeo->cluster_align = 1;
2884 	igeo->inoalign_mask = igeo->cluster_align - 1;
2885 	igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2886 
2887 	/*
2888 	 * If we are using stripe alignment, check whether
2889 	 * the stripe unit is a multiple of the inode alignment
2890 	 */
2891 	if (mp->m_dalign && igeo->inoalign_mask &&
2892 	    !(mp->m_dalign & igeo->inoalign_mask))
2893 		igeo->ialloc_align = mp->m_dalign;
2894 	else
2895 		igeo->ialloc_align = 0;
2896 }
2897 
2898 /* Compute the location of the root directory inode that is laid out by mkfs. */
2899 xfs_ino_t
2900 xfs_ialloc_calc_rootino(
2901 	struct xfs_mount	*mp,
2902 	int			sunit)
2903 {
2904 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2905 	xfs_agblock_t		first_bno;
2906 
2907 	/*
2908 	 * Pre-calculate the geometry of AG 0.  We know what it looks like
2909 	 * because libxfs knows how to create allocation groups now.
2910 	 *
2911 	 * first_bno is the first block in which mkfs could possibly have
2912 	 * allocated the root directory inode, once we factor in the metadata
2913 	 * that mkfs formats before it.  Namely, the four AG headers...
2914 	 */
2915 	first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2916 
2917 	/* ...the two free space btree roots... */
2918 	first_bno += 2;
2919 
2920 	/* ...the inode btree root... */
2921 	first_bno += 1;
2922 
2923 	/* ...the initial AGFL... */
2924 	first_bno += xfs_alloc_min_freelist(mp, NULL);
2925 
2926 	/* ...the free inode btree root... */
2927 	if (xfs_sb_version_hasfinobt(&mp->m_sb))
2928 		first_bno++;
2929 
2930 	/* ...the reverse mapping btree root... */
2931 	if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2932 		first_bno++;
2933 
2934 	/* ...the reference count btree... */
2935 	if (xfs_sb_version_hasreflink(&mp->m_sb))
2936 		first_bno++;
2937 
2938 	/*
2939 	 * ...and the log, if it is allocated in the first allocation group.
2940 	 *
2941 	 * This can happen with filesystems that only have a single
2942 	 * allocation group, or very odd geometries created by old mkfs
2943 	 * versions on very small filesystems.
2944 	 */
2945 	if (mp->m_sb.sb_logstart &&
2946 	    XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0)
2947 		 first_bno += mp->m_sb.sb_logblocks;
2948 
2949 	/*
2950 	 * Now round first_bno up to whatever allocation alignment is given
2951 	 * by the filesystem or was passed in.
2952 	 */
2953 	if (xfs_sb_version_hasdalign(&mp->m_sb) && igeo->ialloc_align > 0)
2954 		first_bno = roundup(first_bno, sunit);
2955 	else if (xfs_sb_version_hasalign(&mp->m_sb) &&
2956 			mp->m_sb.sb_inoalignmt > 1)
2957 		first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2958 
2959 	return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2960 }
2961