xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc.c (revision 52fb57e7)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_inode.h"
28 #include "xfs_btree.h"
29 #include "xfs_ialloc.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_alloc.h"
32 #include "xfs_rtalloc.h"
33 #include "xfs_error.h"
34 #include "xfs_bmap.h"
35 #include "xfs_cksum.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_icreate_item.h"
39 #include "xfs_icache.h"
40 #include "xfs_trace.h"
41 
42 
43 /*
44  * Allocation group level functions.
45  */
46 static inline int
47 xfs_ialloc_cluster_alignment(
48 	struct xfs_mount	*mp)
49 {
50 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
51 	    mp->m_sb.sb_inoalignmt >=
52 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
53 		return mp->m_sb.sb_inoalignmt;
54 	return 1;
55 }
56 
57 /*
58  * Lookup a record by ino in the btree given by cur.
59  */
60 int					/* error */
61 xfs_inobt_lookup(
62 	struct xfs_btree_cur	*cur,	/* btree cursor */
63 	xfs_agino_t		ino,	/* starting inode of chunk */
64 	xfs_lookup_t		dir,	/* <=, >=, == */
65 	int			*stat)	/* success/failure */
66 {
67 	cur->bc_rec.i.ir_startino = ino;
68 	cur->bc_rec.i.ir_freecount = 0;
69 	cur->bc_rec.i.ir_free = 0;
70 	return xfs_btree_lookup(cur, dir, stat);
71 }
72 
73 /*
74  * Update the record referred to by cur to the value given.
75  * This either works (return 0) or gets an EFSCORRUPTED error.
76  */
77 STATIC int				/* error */
78 xfs_inobt_update(
79 	struct xfs_btree_cur	*cur,	/* btree cursor */
80 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
81 {
82 	union xfs_btree_rec	rec;
83 
84 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
85 	rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount);
86 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
87 	return xfs_btree_update(cur, &rec);
88 }
89 
90 /*
91  * Get the data from the pointed-to record.
92  */
93 int					/* error */
94 xfs_inobt_get_rec(
95 	struct xfs_btree_cur	*cur,	/* btree cursor */
96 	xfs_inobt_rec_incore_t	*irec,	/* btree record */
97 	int			*stat)	/* output: success/failure */
98 {
99 	union xfs_btree_rec	*rec;
100 	int			error;
101 
102 	error = xfs_btree_get_rec(cur, &rec, stat);
103 	if (!error && *stat == 1) {
104 		irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
105 		irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount);
106 		irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
107 	}
108 	return error;
109 }
110 
111 /*
112  * Insert a single inobt record. Cursor must already point to desired location.
113  */
114 STATIC int
115 xfs_inobt_insert_rec(
116 	struct xfs_btree_cur	*cur,
117 	__int32_t		freecount,
118 	xfs_inofree_t		free,
119 	int			*stat)
120 {
121 	cur->bc_rec.i.ir_freecount = freecount;
122 	cur->bc_rec.i.ir_free = free;
123 	return xfs_btree_insert(cur, stat);
124 }
125 
126 /*
127  * Insert records describing a newly allocated inode chunk into the inobt.
128  */
129 STATIC int
130 xfs_inobt_insert(
131 	struct xfs_mount	*mp,
132 	struct xfs_trans	*tp,
133 	struct xfs_buf		*agbp,
134 	xfs_agino_t		newino,
135 	xfs_agino_t		newlen,
136 	xfs_btnum_t		btnum)
137 {
138 	struct xfs_btree_cur	*cur;
139 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
140 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
141 	xfs_agino_t		thisino;
142 	int			i;
143 	int			error;
144 
145 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
146 
147 	for (thisino = newino;
148 	     thisino < newino + newlen;
149 	     thisino += XFS_INODES_PER_CHUNK) {
150 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
151 		if (error) {
152 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
153 			return error;
154 		}
155 		ASSERT(i == 0);
156 
157 		error = xfs_inobt_insert_rec(cur, XFS_INODES_PER_CHUNK,
158 					     XFS_INOBT_ALL_FREE, &i);
159 		if (error) {
160 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
161 			return error;
162 		}
163 		ASSERT(i == 1);
164 	}
165 
166 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
167 
168 	return 0;
169 }
170 
171 /*
172  * Verify that the number of free inodes in the AGI is correct.
173  */
174 #ifdef DEBUG
175 STATIC int
176 xfs_check_agi_freecount(
177 	struct xfs_btree_cur	*cur,
178 	struct xfs_agi		*agi)
179 {
180 	if (cur->bc_nlevels == 1) {
181 		xfs_inobt_rec_incore_t rec;
182 		int		freecount = 0;
183 		int		error;
184 		int		i;
185 
186 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
187 		if (error)
188 			return error;
189 
190 		do {
191 			error = xfs_inobt_get_rec(cur, &rec, &i);
192 			if (error)
193 				return error;
194 
195 			if (i) {
196 				freecount += rec.ir_freecount;
197 				error = xfs_btree_increment(cur, 0, &i);
198 				if (error)
199 					return error;
200 			}
201 		} while (i == 1);
202 
203 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
204 			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
205 	}
206 	return 0;
207 }
208 #else
209 #define xfs_check_agi_freecount(cur, agi)	0
210 #endif
211 
212 /*
213  * Initialise a new set of inodes. When called without a transaction context
214  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
215  * than logging them (which in a transaction context puts them into the AIL
216  * for writeback rather than the xfsbufd queue).
217  */
218 int
219 xfs_ialloc_inode_init(
220 	struct xfs_mount	*mp,
221 	struct xfs_trans	*tp,
222 	struct list_head	*buffer_list,
223 	xfs_agnumber_t		agno,
224 	xfs_agblock_t		agbno,
225 	xfs_agblock_t		length,
226 	unsigned int		gen)
227 {
228 	struct xfs_buf		*fbuf;
229 	struct xfs_dinode	*free;
230 	int			nbufs, blks_per_cluster, inodes_per_cluster;
231 	int			version;
232 	int			i, j;
233 	xfs_daddr_t		d;
234 	xfs_ino_t		ino = 0;
235 
236 	/*
237 	 * Loop over the new block(s), filling in the inodes.  For small block
238 	 * sizes, manipulate the inodes in buffers  which are multiples of the
239 	 * blocks size.
240 	 */
241 	blks_per_cluster = xfs_icluster_size_fsb(mp);
242 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
243 	nbufs = length / blks_per_cluster;
244 
245 	/*
246 	 * Figure out what version number to use in the inodes we create.  If
247 	 * the superblock version has caught up to the one that supports the new
248 	 * inode format, then use the new inode version.  Otherwise use the old
249 	 * version so that old kernels will continue to be able to use the file
250 	 * system.
251 	 *
252 	 * For v3 inodes, we also need to write the inode number into the inode,
253 	 * so calculate the first inode number of the chunk here as
254 	 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
255 	 * across multiple filesystem blocks (such as a cluster) and so cannot
256 	 * be used in the cluster buffer loop below.
257 	 *
258 	 * Further, because we are writing the inode directly into the buffer
259 	 * and calculating a CRC on the entire inode, we have ot log the entire
260 	 * inode so that the entire range the CRC covers is present in the log.
261 	 * That means for v3 inode we log the entire buffer rather than just the
262 	 * inode cores.
263 	 */
264 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
265 		version = 3;
266 		ino = XFS_AGINO_TO_INO(mp, agno,
267 				       XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
268 
269 		/*
270 		 * log the initialisation that is about to take place as an
271 		 * logical operation. This means the transaction does not
272 		 * need to log the physical changes to the inode buffers as log
273 		 * recovery will know what initialisation is actually needed.
274 		 * Hence we only need to log the buffers as "ordered" buffers so
275 		 * they track in the AIL as if they were physically logged.
276 		 */
277 		if (tp)
278 			xfs_icreate_log(tp, agno, agbno, mp->m_ialloc_inos,
279 					mp->m_sb.sb_inodesize, length, gen);
280 	} else
281 		version = 2;
282 
283 	for (j = 0; j < nbufs; j++) {
284 		/*
285 		 * Get the block.
286 		 */
287 		d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
288 		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
289 					 mp->m_bsize * blks_per_cluster,
290 					 XBF_UNMAPPED);
291 		if (!fbuf)
292 			return -ENOMEM;
293 
294 		/* Initialize the inode buffers and log them appropriately. */
295 		fbuf->b_ops = &xfs_inode_buf_ops;
296 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
297 		for (i = 0; i < inodes_per_cluster; i++) {
298 			int	ioffset = i << mp->m_sb.sb_inodelog;
299 			uint	isize = xfs_dinode_size(version);
300 
301 			free = xfs_make_iptr(mp, fbuf, i);
302 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
303 			free->di_version = version;
304 			free->di_gen = cpu_to_be32(gen);
305 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
306 
307 			if (version == 3) {
308 				free->di_ino = cpu_to_be64(ino);
309 				ino++;
310 				uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid);
311 				xfs_dinode_calc_crc(mp, free);
312 			} else if (tp) {
313 				/* just log the inode core */
314 				xfs_trans_log_buf(tp, fbuf, ioffset,
315 						  ioffset + isize - 1);
316 			}
317 		}
318 
319 		if (tp) {
320 			/*
321 			 * Mark the buffer as an inode allocation buffer so it
322 			 * sticks in AIL at the point of this allocation
323 			 * transaction. This ensures the they are on disk before
324 			 * the tail of the log can be moved past this
325 			 * transaction (i.e. by preventing relogging from moving
326 			 * it forward in the log).
327 			 */
328 			xfs_trans_inode_alloc_buf(tp, fbuf);
329 			if (version == 3) {
330 				/*
331 				 * Mark the buffer as ordered so that they are
332 				 * not physically logged in the transaction but
333 				 * still tracked in the AIL as part of the
334 				 * transaction and pin the log appropriately.
335 				 */
336 				xfs_trans_ordered_buf(tp, fbuf);
337 				xfs_trans_log_buf(tp, fbuf, 0,
338 						  BBTOB(fbuf->b_length) - 1);
339 			}
340 		} else {
341 			fbuf->b_flags |= XBF_DONE;
342 			xfs_buf_delwri_queue(fbuf, buffer_list);
343 			xfs_buf_relse(fbuf);
344 		}
345 	}
346 	return 0;
347 }
348 
349 /*
350  * Allocate new inodes in the allocation group specified by agbp.
351  * Return 0 for success, else error code.
352  */
353 STATIC int				/* error code or 0 */
354 xfs_ialloc_ag_alloc(
355 	xfs_trans_t	*tp,		/* transaction pointer */
356 	xfs_buf_t	*agbp,		/* alloc group buffer */
357 	int		*alloc)
358 {
359 	xfs_agi_t	*agi;		/* allocation group header */
360 	xfs_alloc_arg_t	args;		/* allocation argument structure */
361 	xfs_agnumber_t	agno;
362 	int		error;
363 	xfs_agino_t	newino;		/* new first inode's number */
364 	xfs_agino_t	newlen;		/* new number of inodes */
365 	int		isaligned = 0;	/* inode allocation at stripe unit */
366 					/* boundary */
367 	struct xfs_perag *pag;
368 
369 	memset(&args, 0, sizeof(args));
370 	args.tp = tp;
371 	args.mp = tp->t_mountp;
372 
373 	/*
374 	 * Locking will ensure that we don't have two callers in here
375 	 * at one time.
376 	 */
377 	newlen = args.mp->m_ialloc_inos;
378 	if (args.mp->m_maxicount &&
379 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
380 							args.mp->m_maxicount)
381 		return -ENOSPC;
382 	args.minlen = args.maxlen = args.mp->m_ialloc_blks;
383 	/*
384 	 * First try to allocate inodes contiguous with the last-allocated
385 	 * chunk of inodes.  If the filesystem is striped, this will fill
386 	 * an entire stripe unit with inodes.
387 	 */
388 	agi = XFS_BUF_TO_AGI(agbp);
389 	newino = be32_to_cpu(agi->agi_newino);
390 	agno = be32_to_cpu(agi->agi_seqno);
391 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
392 		     args.mp->m_ialloc_blks;
393 	if (likely(newino != NULLAGINO &&
394 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
395 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
396 		args.type = XFS_ALLOCTYPE_THIS_BNO;
397 		args.prod = 1;
398 
399 		/*
400 		 * We need to take into account alignment here to ensure that
401 		 * we don't modify the free list if we fail to have an exact
402 		 * block. If we don't have an exact match, and every oher
403 		 * attempt allocation attempt fails, we'll end up cancelling
404 		 * a dirty transaction and shutting down.
405 		 *
406 		 * For an exact allocation, alignment must be 1,
407 		 * however we need to take cluster alignment into account when
408 		 * fixing up the freelist. Use the minalignslop field to
409 		 * indicate that extra blocks might be required for alignment,
410 		 * but not to use them in the actual exact allocation.
411 		 */
412 		args.alignment = 1;
413 		args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
414 
415 		/* Allow space for the inode btree to split. */
416 		args.minleft = args.mp->m_in_maxlevels - 1;
417 		if ((error = xfs_alloc_vextent(&args)))
418 			return error;
419 
420 		/*
421 		 * This request might have dirtied the transaction if the AG can
422 		 * satisfy the request, but the exact block was not available.
423 		 * If the allocation did fail, subsequent requests will relax
424 		 * the exact agbno requirement and increase the alignment
425 		 * instead. It is critical that the total size of the request
426 		 * (len + alignment + slop) does not increase from this point
427 		 * on, so reset minalignslop to ensure it is not included in
428 		 * subsequent requests.
429 		 */
430 		args.minalignslop = 0;
431 	} else
432 		args.fsbno = NULLFSBLOCK;
433 
434 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
435 		/*
436 		 * Set the alignment for the allocation.
437 		 * If stripe alignment is turned on then align at stripe unit
438 		 * boundary.
439 		 * If the cluster size is smaller than a filesystem block
440 		 * then we're doing I/O for inodes in filesystem block size
441 		 * pieces, so don't need alignment anyway.
442 		 */
443 		isaligned = 0;
444 		if (args.mp->m_sinoalign) {
445 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
446 			args.alignment = args.mp->m_dalign;
447 			isaligned = 1;
448 		} else
449 			args.alignment = xfs_ialloc_cluster_alignment(args.mp);
450 		/*
451 		 * Need to figure out where to allocate the inode blocks.
452 		 * Ideally they should be spaced out through the a.g.
453 		 * For now, just allocate blocks up front.
454 		 */
455 		args.agbno = be32_to_cpu(agi->agi_root);
456 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
457 		/*
458 		 * Allocate a fixed-size extent of inodes.
459 		 */
460 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
461 		args.prod = 1;
462 		/*
463 		 * Allow space for the inode btree to split.
464 		 */
465 		args.minleft = args.mp->m_in_maxlevels - 1;
466 		if ((error = xfs_alloc_vextent(&args)))
467 			return error;
468 	}
469 
470 	/*
471 	 * If stripe alignment is turned on, then try again with cluster
472 	 * alignment.
473 	 */
474 	if (isaligned && args.fsbno == NULLFSBLOCK) {
475 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
476 		args.agbno = be32_to_cpu(agi->agi_root);
477 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
478 		args.alignment = xfs_ialloc_cluster_alignment(args.mp);
479 		if ((error = xfs_alloc_vextent(&args)))
480 			return error;
481 	}
482 
483 	if (args.fsbno == NULLFSBLOCK) {
484 		*alloc = 0;
485 		return 0;
486 	}
487 	ASSERT(args.len == args.minlen);
488 
489 	/*
490 	 * Stamp and write the inode buffers.
491 	 *
492 	 * Seed the new inode cluster with a random generation number. This
493 	 * prevents short-term reuse of generation numbers if a chunk is
494 	 * freed and then immediately reallocated. We use random numbers
495 	 * rather than a linear progression to prevent the next generation
496 	 * number from being easily guessable.
497 	 */
498 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, agno, args.agbno,
499 			args.len, prandom_u32());
500 
501 	if (error)
502 		return error;
503 	/*
504 	 * Convert the results.
505 	 */
506 	newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
507 	be32_add_cpu(&agi->agi_count, newlen);
508 	be32_add_cpu(&agi->agi_freecount, newlen);
509 	pag = xfs_perag_get(args.mp, agno);
510 	pag->pagi_freecount += newlen;
511 	xfs_perag_put(pag);
512 	agi->agi_newino = cpu_to_be32(newino);
513 
514 	/*
515 	 * Insert records describing the new inode chunk into the btrees.
516 	 */
517 	error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
518 				 XFS_BTNUM_INO);
519 	if (error)
520 		return error;
521 
522 	if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
523 		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
524 					 XFS_BTNUM_FINO);
525 		if (error)
526 			return error;
527 	}
528 	/*
529 	 * Log allocation group header fields
530 	 */
531 	xfs_ialloc_log_agi(tp, agbp,
532 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
533 	/*
534 	 * Modify/log superblock values for inode count and inode free count.
535 	 */
536 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
537 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
538 	*alloc = 1;
539 	return 0;
540 }
541 
542 STATIC xfs_agnumber_t
543 xfs_ialloc_next_ag(
544 	xfs_mount_t	*mp)
545 {
546 	xfs_agnumber_t	agno;
547 
548 	spin_lock(&mp->m_agirotor_lock);
549 	agno = mp->m_agirotor;
550 	if (++mp->m_agirotor >= mp->m_maxagi)
551 		mp->m_agirotor = 0;
552 	spin_unlock(&mp->m_agirotor_lock);
553 
554 	return agno;
555 }
556 
557 /*
558  * Select an allocation group to look for a free inode in, based on the parent
559  * inode and the mode.  Return the allocation group buffer.
560  */
561 STATIC xfs_agnumber_t
562 xfs_ialloc_ag_select(
563 	xfs_trans_t	*tp,		/* transaction pointer */
564 	xfs_ino_t	parent,		/* parent directory inode number */
565 	umode_t		mode,		/* bits set to indicate file type */
566 	int		okalloc)	/* ok to allocate more space */
567 {
568 	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
569 	xfs_agnumber_t	agno;		/* current ag number */
570 	int		flags;		/* alloc buffer locking flags */
571 	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
572 	xfs_extlen_t	longest = 0;	/* longest extent available */
573 	xfs_mount_t	*mp;		/* mount point structure */
574 	int		needspace;	/* file mode implies space allocated */
575 	xfs_perag_t	*pag;		/* per allocation group data */
576 	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
577 	int		error;
578 
579 	/*
580 	 * Files of these types need at least one block if length > 0
581 	 * (and they won't fit in the inode, but that's hard to figure out).
582 	 */
583 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
584 	mp = tp->t_mountp;
585 	agcount = mp->m_maxagi;
586 	if (S_ISDIR(mode))
587 		pagno = xfs_ialloc_next_ag(mp);
588 	else {
589 		pagno = XFS_INO_TO_AGNO(mp, parent);
590 		if (pagno >= agcount)
591 			pagno = 0;
592 	}
593 
594 	ASSERT(pagno < agcount);
595 
596 	/*
597 	 * Loop through allocation groups, looking for one with a little
598 	 * free space in it.  Note we don't look for free inodes, exactly.
599 	 * Instead, we include whether there is a need to allocate inodes
600 	 * to mean that blocks must be allocated for them,
601 	 * if none are currently free.
602 	 */
603 	agno = pagno;
604 	flags = XFS_ALLOC_FLAG_TRYLOCK;
605 	for (;;) {
606 		pag = xfs_perag_get(mp, agno);
607 		if (!pag->pagi_inodeok) {
608 			xfs_ialloc_next_ag(mp);
609 			goto nextag;
610 		}
611 
612 		if (!pag->pagi_init) {
613 			error = xfs_ialloc_pagi_init(mp, tp, agno);
614 			if (error)
615 				goto nextag;
616 		}
617 
618 		if (pag->pagi_freecount) {
619 			xfs_perag_put(pag);
620 			return agno;
621 		}
622 
623 		if (!okalloc)
624 			goto nextag;
625 
626 		if (!pag->pagf_init) {
627 			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
628 			if (error)
629 				goto nextag;
630 		}
631 
632 		/*
633 		 * Check that there is enough free space for the file plus a
634 		 * chunk of inodes if we need to allocate some. If this is the
635 		 * first pass across the AGs, take into account the potential
636 		 * space needed for alignment of inode chunks when checking the
637 		 * longest contiguous free space in the AG - this prevents us
638 		 * from getting ENOSPC because we have free space larger than
639 		 * m_ialloc_blks but alignment constraints prevent us from using
640 		 * it.
641 		 *
642 		 * If we can't find an AG with space for full alignment slack to
643 		 * be taken into account, we must be near ENOSPC in all AGs.
644 		 * Hence we don't include alignment for the second pass and so
645 		 * if we fail allocation due to alignment issues then it is most
646 		 * likely a real ENOSPC condition.
647 		 */
648 		ineed = mp->m_ialloc_blks;
649 		if (flags && ineed > 1)
650 			ineed += xfs_ialloc_cluster_alignment(mp);
651 		longest = pag->pagf_longest;
652 		if (!longest)
653 			longest = pag->pagf_flcount > 0;
654 
655 		if (pag->pagf_freeblks >= needspace + ineed &&
656 		    longest >= ineed) {
657 			xfs_perag_put(pag);
658 			return agno;
659 		}
660 nextag:
661 		xfs_perag_put(pag);
662 		/*
663 		 * No point in iterating over the rest, if we're shutting
664 		 * down.
665 		 */
666 		if (XFS_FORCED_SHUTDOWN(mp))
667 			return NULLAGNUMBER;
668 		agno++;
669 		if (agno >= agcount)
670 			agno = 0;
671 		if (agno == pagno) {
672 			if (flags == 0)
673 				return NULLAGNUMBER;
674 			flags = 0;
675 		}
676 	}
677 }
678 
679 /*
680  * Try to retrieve the next record to the left/right from the current one.
681  */
682 STATIC int
683 xfs_ialloc_next_rec(
684 	struct xfs_btree_cur	*cur,
685 	xfs_inobt_rec_incore_t	*rec,
686 	int			*done,
687 	int			left)
688 {
689 	int                     error;
690 	int			i;
691 
692 	if (left)
693 		error = xfs_btree_decrement(cur, 0, &i);
694 	else
695 		error = xfs_btree_increment(cur, 0, &i);
696 
697 	if (error)
698 		return error;
699 	*done = !i;
700 	if (i) {
701 		error = xfs_inobt_get_rec(cur, rec, &i);
702 		if (error)
703 			return error;
704 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
705 	}
706 
707 	return 0;
708 }
709 
710 STATIC int
711 xfs_ialloc_get_rec(
712 	struct xfs_btree_cur	*cur,
713 	xfs_agino_t		agino,
714 	xfs_inobt_rec_incore_t	*rec,
715 	int			*done)
716 {
717 	int                     error;
718 	int			i;
719 
720 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
721 	if (error)
722 		return error;
723 	*done = !i;
724 	if (i) {
725 		error = xfs_inobt_get_rec(cur, rec, &i);
726 		if (error)
727 			return error;
728 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
729 	}
730 
731 	return 0;
732 }
733 
734 /*
735  * Allocate an inode using the inobt-only algorithm.
736  */
737 STATIC int
738 xfs_dialloc_ag_inobt(
739 	struct xfs_trans	*tp,
740 	struct xfs_buf		*agbp,
741 	xfs_ino_t		parent,
742 	xfs_ino_t		*inop)
743 {
744 	struct xfs_mount	*mp = tp->t_mountp;
745 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
746 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
747 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
748 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
749 	struct xfs_perag	*pag;
750 	struct xfs_btree_cur	*cur, *tcur;
751 	struct xfs_inobt_rec_incore rec, trec;
752 	xfs_ino_t		ino;
753 	int			error;
754 	int			offset;
755 	int			i, j;
756 
757 	pag = xfs_perag_get(mp, agno);
758 
759 	ASSERT(pag->pagi_init);
760 	ASSERT(pag->pagi_inodeok);
761 	ASSERT(pag->pagi_freecount > 0);
762 
763  restart_pagno:
764 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
765 	/*
766 	 * If pagino is 0 (this is the root inode allocation) use newino.
767 	 * This must work because we've just allocated some.
768 	 */
769 	if (!pagino)
770 		pagino = be32_to_cpu(agi->agi_newino);
771 
772 	error = xfs_check_agi_freecount(cur, agi);
773 	if (error)
774 		goto error0;
775 
776 	/*
777 	 * If in the same AG as the parent, try to get near the parent.
778 	 */
779 	if (pagno == agno) {
780 		int		doneleft;	/* done, to the left */
781 		int		doneright;	/* done, to the right */
782 		int		searchdistance = 10;
783 
784 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
785 		if (error)
786 			goto error0;
787 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
788 
789 		error = xfs_inobt_get_rec(cur, &rec, &j);
790 		if (error)
791 			goto error0;
792 		XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
793 
794 		if (rec.ir_freecount > 0) {
795 			/*
796 			 * Found a free inode in the same chunk
797 			 * as the parent, done.
798 			 */
799 			goto alloc_inode;
800 		}
801 
802 
803 		/*
804 		 * In the same AG as parent, but parent's chunk is full.
805 		 */
806 
807 		/* duplicate the cursor, search left & right simultaneously */
808 		error = xfs_btree_dup_cursor(cur, &tcur);
809 		if (error)
810 			goto error0;
811 
812 		/*
813 		 * Skip to last blocks looked up if same parent inode.
814 		 */
815 		if (pagino != NULLAGINO &&
816 		    pag->pagl_pagino == pagino &&
817 		    pag->pagl_leftrec != NULLAGINO &&
818 		    pag->pagl_rightrec != NULLAGINO) {
819 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
820 						   &trec, &doneleft);
821 			if (error)
822 				goto error1;
823 
824 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
825 						   &rec, &doneright);
826 			if (error)
827 				goto error1;
828 		} else {
829 			/* search left with tcur, back up 1 record */
830 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
831 			if (error)
832 				goto error1;
833 
834 			/* search right with cur, go forward 1 record. */
835 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
836 			if (error)
837 				goto error1;
838 		}
839 
840 		/*
841 		 * Loop until we find an inode chunk with a free inode.
842 		 */
843 		while (!doneleft || !doneright) {
844 			int	useleft;  /* using left inode chunk this time */
845 
846 			if (!--searchdistance) {
847 				/*
848 				 * Not in range - save last search
849 				 * location and allocate a new inode
850 				 */
851 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
852 				pag->pagl_leftrec = trec.ir_startino;
853 				pag->pagl_rightrec = rec.ir_startino;
854 				pag->pagl_pagino = pagino;
855 				goto newino;
856 			}
857 
858 			/* figure out the closer block if both are valid. */
859 			if (!doneleft && !doneright) {
860 				useleft = pagino -
861 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
862 				  rec.ir_startino - pagino;
863 			} else {
864 				useleft = !doneleft;
865 			}
866 
867 			/* free inodes to the left? */
868 			if (useleft && trec.ir_freecount) {
869 				rec = trec;
870 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
871 				cur = tcur;
872 
873 				pag->pagl_leftrec = trec.ir_startino;
874 				pag->pagl_rightrec = rec.ir_startino;
875 				pag->pagl_pagino = pagino;
876 				goto alloc_inode;
877 			}
878 
879 			/* free inodes to the right? */
880 			if (!useleft && rec.ir_freecount) {
881 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
882 
883 				pag->pagl_leftrec = trec.ir_startino;
884 				pag->pagl_rightrec = rec.ir_startino;
885 				pag->pagl_pagino = pagino;
886 				goto alloc_inode;
887 			}
888 
889 			/* get next record to check */
890 			if (useleft) {
891 				error = xfs_ialloc_next_rec(tcur, &trec,
892 								 &doneleft, 1);
893 			} else {
894 				error = xfs_ialloc_next_rec(cur, &rec,
895 								 &doneright, 0);
896 			}
897 			if (error)
898 				goto error1;
899 		}
900 
901 		/*
902 		 * We've reached the end of the btree. because
903 		 * we are only searching a small chunk of the
904 		 * btree each search, there is obviously free
905 		 * inodes closer to the parent inode than we
906 		 * are now. restart the search again.
907 		 */
908 		pag->pagl_pagino = NULLAGINO;
909 		pag->pagl_leftrec = NULLAGINO;
910 		pag->pagl_rightrec = NULLAGINO;
911 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
912 		xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
913 		goto restart_pagno;
914 	}
915 
916 	/*
917 	 * In a different AG from the parent.
918 	 * See if the most recently allocated block has any free.
919 	 */
920 newino:
921 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
922 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
923 					 XFS_LOOKUP_EQ, &i);
924 		if (error)
925 			goto error0;
926 
927 		if (i == 1) {
928 			error = xfs_inobt_get_rec(cur, &rec, &j);
929 			if (error)
930 				goto error0;
931 
932 			if (j == 1 && rec.ir_freecount > 0) {
933 				/*
934 				 * The last chunk allocated in the group
935 				 * still has a free inode.
936 				 */
937 				goto alloc_inode;
938 			}
939 		}
940 	}
941 
942 	/*
943 	 * None left in the last group, search the whole AG
944 	 */
945 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
946 	if (error)
947 		goto error0;
948 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
949 
950 	for (;;) {
951 		error = xfs_inobt_get_rec(cur, &rec, &i);
952 		if (error)
953 			goto error0;
954 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
955 		if (rec.ir_freecount > 0)
956 			break;
957 		error = xfs_btree_increment(cur, 0, &i);
958 		if (error)
959 			goto error0;
960 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
961 	}
962 
963 alloc_inode:
964 	offset = xfs_lowbit64(rec.ir_free);
965 	ASSERT(offset >= 0);
966 	ASSERT(offset < XFS_INODES_PER_CHUNK);
967 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
968 				   XFS_INODES_PER_CHUNK) == 0);
969 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
970 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
971 	rec.ir_freecount--;
972 	error = xfs_inobt_update(cur, &rec);
973 	if (error)
974 		goto error0;
975 	be32_add_cpu(&agi->agi_freecount, -1);
976 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
977 	pag->pagi_freecount--;
978 
979 	error = xfs_check_agi_freecount(cur, agi);
980 	if (error)
981 		goto error0;
982 
983 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
984 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
985 	xfs_perag_put(pag);
986 	*inop = ino;
987 	return 0;
988 error1:
989 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
990 error0:
991 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
992 	xfs_perag_put(pag);
993 	return error;
994 }
995 
996 /*
997  * Use the free inode btree to allocate an inode based on distance from the
998  * parent. Note that the provided cursor may be deleted and replaced.
999  */
1000 STATIC int
1001 xfs_dialloc_ag_finobt_near(
1002 	xfs_agino_t			pagino,
1003 	struct xfs_btree_cur		**ocur,
1004 	struct xfs_inobt_rec_incore	*rec)
1005 {
1006 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1007 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1008 	struct xfs_inobt_rec_incore	rrec;
1009 	int				error;
1010 	int				i, j;
1011 
1012 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1013 	if (error)
1014 		return error;
1015 
1016 	if (i == 1) {
1017 		error = xfs_inobt_get_rec(lcur, rec, &i);
1018 		if (error)
1019 			return error;
1020 		XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1021 
1022 		/*
1023 		 * See if we've landed in the parent inode record. The finobt
1024 		 * only tracks chunks with at least one free inode, so record
1025 		 * existence is enough.
1026 		 */
1027 		if (pagino >= rec->ir_startino &&
1028 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1029 			return 0;
1030 	}
1031 
1032 	error = xfs_btree_dup_cursor(lcur, &rcur);
1033 	if (error)
1034 		return error;
1035 
1036 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1037 	if (error)
1038 		goto error_rcur;
1039 	if (j == 1) {
1040 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1041 		if (error)
1042 			goto error_rcur;
1043 		XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1044 	}
1045 
1046 	XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1047 	if (i == 1 && j == 1) {
1048 		/*
1049 		 * Both the left and right records are valid. Choose the closer
1050 		 * inode chunk to the target.
1051 		 */
1052 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1053 		    (rrec.ir_startino - pagino)) {
1054 			*rec = rrec;
1055 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1056 			*ocur = rcur;
1057 		} else {
1058 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1059 		}
1060 	} else if (j == 1) {
1061 		/* only the right record is valid */
1062 		*rec = rrec;
1063 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1064 		*ocur = rcur;
1065 	} else if (i == 1) {
1066 		/* only the left record is valid */
1067 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1068 	}
1069 
1070 	return 0;
1071 
1072 error_rcur:
1073 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1074 	return error;
1075 }
1076 
1077 /*
1078  * Use the free inode btree to find a free inode based on a newino hint. If
1079  * the hint is NULL, find the first free inode in the AG.
1080  */
1081 STATIC int
1082 xfs_dialloc_ag_finobt_newino(
1083 	struct xfs_agi			*agi,
1084 	struct xfs_btree_cur		*cur,
1085 	struct xfs_inobt_rec_incore	*rec)
1086 {
1087 	int error;
1088 	int i;
1089 
1090 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1091 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1092 					 XFS_LOOKUP_EQ, &i);
1093 		if (error)
1094 			return error;
1095 		if (i == 1) {
1096 			error = xfs_inobt_get_rec(cur, rec, &i);
1097 			if (error)
1098 				return error;
1099 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1100 			return 0;
1101 		}
1102 	}
1103 
1104 	/*
1105 	 * Find the first inode available in the AG.
1106 	 */
1107 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1108 	if (error)
1109 		return error;
1110 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1111 
1112 	error = xfs_inobt_get_rec(cur, rec, &i);
1113 	if (error)
1114 		return error;
1115 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1116 
1117 	return 0;
1118 }
1119 
1120 /*
1121  * Update the inobt based on a modification made to the finobt. Also ensure that
1122  * the records from both trees are equivalent post-modification.
1123  */
1124 STATIC int
1125 xfs_dialloc_ag_update_inobt(
1126 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1127 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1128 	int				offset) /* inode offset */
1129 {
1130 	struct xfs_inobt_rec_incore	rec;
1131 	int				error;
1132 	int				i;
1133 
1134 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1135 	if (error)
1136 		return error;
1137 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1138 
1139 	error = xfs_inobt_get_rec(cur, &rec, &i);
1140 	if (error)
1141 		return error;
1142 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1143 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1144 				   XFS_INODES_PER_CHUNK) == 0);
1145 
1146 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1147 	rec.ir_freecount--;
1148 
1149 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1150 				  (rec.ir_freecount == frec->ir_freecount));
1151 
1152 	return xfs_inobt_update(cur, &rec);
1153 }
1154 
1155 /*
1156  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1157  * back to the inobt search algorithm.
1158  *
1159  * The caller selected an AG for us, and made sure that free inodes are
1160  * available.
1161  */
1162 STATIC int
1163 xfs_dialloc_ag(
1164 	struct xfs_trans	*tp,
1165 	struct xfs_buf		*agbp,
1166 	xfs_ino_t		parent,
1167 	xfs_ino_t		*inop)
1168 {
1169 	struct xfs_mount		*mp = tp->t_mountp;
1170 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1171 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1172 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1173 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1174 	struct xfs_perag		*pag;
1175 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1176 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1177 	struct xfs_inobt_rec_incore	rec;
1178 	xfs_ino_t			ino;
1179 	int				error;
1180 	int				offset;
1181 	int				i;
1182 
1183 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1184 		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1185 
1186 	pag = xfs_perag_get(mp, agno);
1187 
1188 	/*
1189 	 * If pagino is 0 (this is the root inode allocation) use newino.
1190 	 * This must work because we've just allocated some.
1191 	 */
1192 	if (!pagino)
1193 		pagino = be32_to_cpu(agi->agi_newino);
1194 
1195 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1196 
1197 	error = xfs_check_agi_freecount(cur, agi);
1198 	if (error)
1199 		goto error_cur;
1200 
1201 	/*
1202 	 * The search algorithm depends on whether we're in the same AG as the
1203 	 * parent. If so, find the closest available inode to the parent. If
1204 	 * not, consider the agi hint or find the first free inode in the AG.
1205 	 */
1206 	if (agno == pagno)
1207 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1208 	else
1209 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1210 	if (error)
1211 		goto error_cur;
1212 
1213 	offset = xfs_lowbit64(rec.ir_free);
1214 	ASSERT(offset >= 0);
1215 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1216 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1217 				   XFS_INODES_PER_CHUNK) == 0);
1218 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1219 
1220 	/*
1221 	 * Modify or remove the finobt record.
1222 	 */
1223 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1224 	rec.ir_freecount--;
1225 	if (rec.ir_freecount)
1226 		error = xfs_inobt_update(cur, &rec);
1227 	else
1228 		error = xfs_btree_delete(cur, &i);
1229 	if (error)
1230 		goto error_cur;
1231 
1232 	/*
1233 	 * The finobt has now been updated appropriately. We haven't updated the
1234 	 * agi and superblock yet, so we can create an inobt cursor and validate
1235 	 * the original freecount. If all is well, make the equivalent update to
1236 	 * the inobt using the finobt record and offset information.
1237 	 */
1238 	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1239 
1240 	error = xfs_check_agi_freecount(icur, agi);
1241 	if (error)
1242 		goto error_icur;
1243 
1244 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1245 	if (error)
1246 		goto error_icur;
1247 
1248 	/*
1249 	 * Both trees have now been updated. We must update the perag and
1250 	 * superblock before we can check the freecount for each btree.
1251 	 */
1252 	be32_add_cpu(&agi->agi_freecount, -1);
1253 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1254 	pag->pagi_freecount--;
1255 
1256 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1257 
1258 	error = xfs_check_agi_freecount(icur, agi);
1259 	if (error)
1260 		goto error_icur;
1261 	error = xfs_check_agi_freecount(cur, agi);
1262 	if (error)
1263 		goto error_icur;
1264 
1265 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1266 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1267 	xfs_perag_put(pag);
1268 	*inop = ino;
1269 	return 0;
1270 
1271 error_icur:
1272 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1273 error_cur:
1274 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1275 	xfs_perag_put(pag);
1276 	return error;
1277 }
1278 
1279 /*
1280  * Allocate an inode on disk.
1281  *
1282  * Mode is used to tell whether the new inode will need space, and whether it
1283  * is a directory.
1284  *
1285  * This function is designed to be called twice if it has to do an allocation
1286  * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1287  * If an inode is available without having to performn an allocation, an inode
1288  * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1289  * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1290  * The caller should then commit the current transaction, allocate a
1291  * new transaction, and call xfs_dialloc() again, passing in the previous value
1292  * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1293  * buffer is locked across the two calls, the second call is guaranteed to have
1294  * a free inode available.
1295  *
1296  * Once we successfully pick an inode its number is returned and the on-disk
1297  * data structures are updated.  The inode itself is not read in, since doing so
1298  * would break ordering constraints with xfs_reclaim.
1299  */
1300 int
1301 xfs_dialloc(
1302 	struct xfs_trans	*tp,
1303 	xfs_ino_t		parent,
1304 	umode_t			mode,
1305 	int			okalloc,
1306 	struct xfs_buf		**IO_agbp,
1307 	xfs_ino_t		*inop)
1308 {
1309 	struct xfs_mount	*mp = tp->t_mountp;
1310 	struct xfs_buf		*agbp;
1311 	xfs_agnumber_t		agno;
1312 	int			error;
1313 	int			ialloced;
1314 	int			noroom = 0;
1315 	xfs_agnumber_t		start_agno;
1316 	struct xfs_perag	*pag;
1317 
1318 	if (*IO_agbp) {
1319 		/*
1320 		 * If the caller passes in a pointer to the AGI buffer,
1321 		 * continue where we left off before.  In this case, we
1322 		 * know that the allocation group has free inodes.
1323 		 */
1324 		agbp = *IO_agbp;
1325 		goto out_alloc;
1326 	}
1327 
1328 	/*
1329 	 * We do not have an agbp, so select an initial allocation
1330 	 * group for inode allocation.
1331 	 */
1332 	start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1333 	if (start_agno == NULLAGNUMBER) {
1334 		*inop = NULLFSINO;
1335 		return 0;
1336 	}
1337 
1338 	/*
1339 	 * If we have already hit the ceiling of inode blocks then clear
1340 	 * okalloc so we scan all available agi structures for a free
1341 	 * inode.
1342 	 *
1343 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1344 	 * which will sacrifice the preciseness but improve the performance.
1345 	 */
1346 	if (mp->m_maxicount &&
1347 	    percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1348 							> mp->m_maxicount) {
1349 		noroom = 1;
1350 		okalloc = 0;
1351 	}
1352 
1353 	/*
1354 	 * Loop until we find an allocation group that either has free inodes
1355 	 * or in which we can allocate some inodes.  Iterate through the
1356 	 * allocation groups upward, wrapping at the end.
1357 	 */
1358 	agno = start_agno;
1359 	for (;;) {
1360 		pag = xfs_perag_get(mp, agno);
1361 		if (!pag->pagi_inodeok) {
1362 			xfs_ialloc_next_ag(mp);
1363 			goto nextag;
1364 		}
1365 
1366 		if (!pag->pagi_init) {
1367 			error = xfs_ialloc_pagi_init(mp, tp, agno);
1368 			if (error)
1369 				goto out_error;
1370 		}
1371 
1372 		/*
1373 		 * Do a first racy fast path check if this AG is usable.
1374 		 */
1375 		if (!pag->pagi_freecount && !okalloc)
1376 			goto nextag;
1377 
1378 		/*
1379 		 * Then read in the AGI buffer and recheck with the AGI buffer
1380 		 * lock held.
1381 		 */
1382 		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1383 		if (error)
1384 			goto out_error;
1385 
1386 		if (pag->pagi_freecount) {
1387 			xfs_perag_put(pag);
1388 			goto out_alloc;
1389 		}
1390 
1391 		if (!okalloc)
1392 			goto nextag_relse_buffer;
1393 
1394 
1395 		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1396 		if (error) {
1397 			xfs_trans_brelse(tp, agbp);
1398 
1399 			if (error != -ENOSPC)
1400 				goto out_error;
1401 
1402 			xfs_perag_put(pag);
1403 			*inop = NULLFSINO;
1404 			return 0;
1405 		}
1406 
1407 		if (ialloced) {
1408 			/*
1409 			 * We successfully allocated some inodes, return
1410 			 * the current context to the caller so that it
1411 			 * can commit the current transaction and call
1412 			 * us again where we left off.
1413 			 */
1414 			ASSERT(pag->pagi_freecount > 0);
1415 			xfs_perag_put(pag);
1416 
1417 			*IO_agbp = agbp;
1418 			*inop = NULLFSINO;
1419 			return 0;
1420 		}
1421 
1422 nextag_relse_buffer:
1423 		xfs_trans_brelse(tp, agbp);
1424 nextag:
1425 		xfs_perag_put(pag);
1426 		if (++agno == mp->m_sb.sb_agcount)
1427 			agno = 0;
1428 		if (agno == start_agno) {
1429 			*inop = NULLFSINO;
1430 			return noroom ? -ENOSPC : 0;
1431 		}
1432 	}
1433 
1434 out_alloc:
1435 	*IO_agbp = NULL;
1436 	return xfs_dialloc_ag(tp, agbp, parent, inop);
1437 out_error:
1438 	xfs_perag_put(pag);
1439 	return error;
1440 }
1441 
1442 STATIC int
1443 xfs_difree_inobt(
1444 	struct xfs_mount		*mp,
1445 	struct xfs_trans		*tp,
1446 	struct xfs_buf			*agbp,
1447 	xfs_agino_t			agino,
1448 	struct xfs_bmap_free		*flist,
1449 	int				*deleted,
1450 	xfs_ino_t			*first_ino,
1451 	struct xfs_inobt_rec_incore	*orec)
1452 {
1453 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1454 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1455 	struct xfs_perag		*pag;
1456 	struct xfs_btree_cur		*cur;
1457 	struct xfs_inobt_rec_incore	rec;
1458 	int				ilen;
1459 	int				error;
1460 	int				i;
1461 	int				off;
1462 
1463 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1464 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1465 
1466 	/*
1467 	 * Initialize the cursor.
1468 	 */
1469 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1470 
1471 	error = xfs_check_agi_freecount(cur, agi);
1472 	if (error)
1473 		goto error0;
1474 
1475 	/*
1476 	 * Look for the entry describing this inode.
1477 	 */
1478 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1479 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1480 			__func__, error);
1481 		goto error0;
1482 	}
1483 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1484 	error = xfs_inobt_get_rec(cur, &rec, &i);
1485 	if (error) {
1486 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1487 			__func__, error);
1488 		goto error0;
1489 	}
1490 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1491 	/*
1492 	 * Get the offset in the inode chunk.
1493 	 */
1494 	off = agino - rec.ir_startino;
1495 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1496 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1497 	/*
1498 	 * Mark the inode free & increment the count.
1499 	 */
1500 	rec.ir_free |= XFS_INOBT_MASK(off);
1501 	rec.ir_freecount++;
1502 
1503 	/*
1504 	 * When an inode cluster is free, it becomes eligible for removal
1505 	 */
1506 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1507 	    (rec.ir_freecount == mp->m_ialloc_inos)) {
1508 
1509 		*deleted = 1;
1510 		*first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1511 
1512 		/*
1513 		 * Remove the inode cluster from the AGI B+Tree, adjust the
1514 		 * AGI and Superblock inode counts, and mark the disk space
1515 		 * to be freed when the transaction is committed.
1516 		 */
1517 		ilen = mp->m_ialloc_inos;
1518 		be32_add_cpu(&agi->agi_count, -ilen);
1519 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1520 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1521 		pag = xfs_perag_get(mp, agno);
1522 		pag->pagi_freecount -= ilen - 1;
1523 		xfs_perag_put(pag);
1524 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1525 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1526 
1527 		if ((error = xfs_btree_delete(cur, &i))) {
1528 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1529 				__func__, error);
1530 			goto error0;
1531 		}
1532 
1533 		xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
1534 				  XFS_AGINO_TO_AGBNO(mp, rec.ir_startino)),
1535 				  mp->m_ialloc_blks, flist, mp);
1536 	} else {
1537 		*deleted = 0;
1538 
1539 		error = xfs_inobt_update(cur, &rec);
1540 		if (error) {
1541 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1542 				__func__, error);
1543 			goto error0;
1544 		}
1545 
1546 		/*
1547 		 * Change the inode free counts and log the ag/sb changes.
1548 		 */
1549 		be32_add_cpu(&agi->agi_freecount, 1);
1550 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1551 		pag = xfs_perag_get(mp, agno);
1552 		pag->pagi_freecount++;
1553 		xfs_perag_put(pag);
1554 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1555 	}
1556 
1557 	error = xfs_check_agi_freecount(cur, agi);
1558 	if (error)
1559 		goto error0;
1560 
1561 	*orec = rec;
1562 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1563 	return 0;
1564 
1565 error0:
1566 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1567 	return error;
1568 }
1569 
1570 /*
1571  * Free an inode in the free inode btree.
1572  */
1573 STATIC int
1574 xfs_difree_finobt(
1575 	struct xfs_mount		*mp,
1576 	struct xfs_trans		*tp,
1577 	struct xfs_buf			*agbp,
1578 	xfs_agino_t			agino,
1579 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
1580 {
1581 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1582 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1583 	struct xfs_btree_cur		*cur;
1584 	struct xfs_inobt_rec_incore	rec;
1585 	int				offset = agino - ibtrec->ir_startino;
1586 	int				error;
1587 	int				i;
1588 
1589 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1590 
1591 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
1592 	if (error)
1593 		goto error;
1594 	if (i == 0) {
1595 		/*
1596 		 * If the record does not exist in the finobt, we must have just
1597 		 * freed an inode in a previously fully allocated chunk. If not,
1598 		 * something is out of sync.
1599 		 */
1600 		XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
1601 
1602 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_freecount,
1603 					     ibtrec->ir_free, &i);
1604 		if (error)
1605 			goto error;
1606 		ASSERT(i == 1);
1607 
1608 		goto out;
1609 	}
1610 
1611 	/*
1612 	 * Read and update the existing record. We could just copy the ibtrec
1613 	 * across here, but that would defeat the purpose of having redundant
1614 	 * metadata. By making the modifications independently, we can catch
1615 	 * corruptions that we wouldn't see if we just copied from one record
1616 	 * to another.
1617 	 */
1618 	error = xfs_inobt_get_rec(cur, &rec, &i);
1619 	if (error)
1620 		goto error;
1621 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
1622 
1623 	rec.ir_free |= XFS_INOBT_MASK(offset);
1624 	rec.ir_freecount++;
1625 
1626 	XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
1627 				(rec.ir_freecount == ibtrec->ir_freecount),
1628 				error);
1629 
1630 	/*
1631 	 * The content of inobt records should always match between the inobt
1632 	 * and finobt. The lifecycle of records in the finobt is different from
1633 	 * the inobt in that the finobt only tracks records with at least one
1634 	 * free inode. Hence, if all of the inodes are free and we aren't
1635 	 * keeping inode chunks permanently on disk, remove the record.
1636 	 * Otherwise, update the record with the new information.
1637 	 */
1638 	if (rec.ir_freecount == mp->m_ialloc_inos &&
1639 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
1640 		error = xfs_btree_delete(cur, &i);
1641 		if (error)
1642 			goto error;
1643 		ASSERT(i == 1);
1644 	} else {
1645 		error = xfs_inobt_update(cur, &rec);
1646 		if (error)
1647 			goto error;
1648 	}
1649 
1650 out:
1651 	error = xfs_check_agi_freecount(cur, agi);
1652 	if (error)
1653 		goto error;
1654 
1655 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1656 	return 0;
1657 
1658 error:
1659 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1660 	return error;
1661 }
1662 
1663 /*
1664  * Free disk inode.  Carefully avoids touching the incore inode, all
1665  * manipulations incore are the caller's responsibility.
1666  * The on-disk inode is not changed by this operation, only the
1667  * btree (free inode mask) is changed.
1668  */
1669 int
1670 xfs_difree(
1671 	struct xfs_trans	*tp,		/* transaction pointer */
1672 	xfs_ino_t		inode,		/* inode to be freed */
1673 	struct xfs_bmap_free	*flist,		/* extents to free */
1674 	int			*deleted,/* set if inode cluster was deleted */
1675 	xfs_ino_t		*first_ino)/* first inode in deleted cluster */
1676 {
1677 	/* REFERENCED */
1678 	xfs_agblock_t		agbno;	/* block number containing inode */
1679 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
1680 	xfs_agino_t		agino;	/* allocation group inode number */
1681 	xfs_agnumber_t		agno;	/* allocation group number */
1682 	int			error;	/* error return value */
1683 	struct xfs_mount	*mp;	/* mount structure for filesystem */
1684 	struct xfs_inobt_rec_incore rec;/* btree record */
1685 
1686 	mp = tp->t_mountp;
1687 
1688 	/*
1689 	 * Break up inode number into its components.
1690 	 */
1691 	agno = XFS_INO_TO_AGNO(mp, inode);
1692 	if (agno >= mp->m_sb.sb_agcount)  {
1693 		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
1694 			__func__, agno, mp->m_sb.sb_agcount);
1695 		ASSERT(0);
1696 		return -EINVAL;
1697 	}
1698 	agino = XFS_INO_TO_AGINO(mp, inode);
1699 	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
1700 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
1701 			__func__, (unsigned long long)inode,
1702 			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
1703 		ASSERT(0);
1704 		return -EINVAL;
1705 	}
1706 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1707 	if (agbno >= mp->m_sb.sb_agblocks)  {
1708 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
1709 			__func__, agbno, mp->m_sb.sb_agblocks);
1710 		ASSERT(0);
1711 		return -EINVAL;
1712 	}
1713 	/*
1714 	 * Get the allocation group header.
1715 	 */
1716 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1717 	if (error) {
1718 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
1719 			__func__, error);
1720 		return error;
1721 	}
1722 
1723 	/*
1724 	 * Fix up the inode allocation btree.
1725 	 */
1726 	error = xfs_difree_inobt(mp, tp, agbp, agino, flist, deleted, first_ino,
1727 				 &rec);
1728 	if (error)
1729 		goto error0;
1730 
1731 	/*
1732 	 * Fix up the free inode btree.
1733 	 */
1734 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
1735 		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
1736 		if (error)
1737 			goto error0;
1738 	}
1739 
1740 	return 0;
1741 
1742 error0:
1743 	return error;
1744 }
1745 
1746 STATIC int
1747 xfs_imap_lookup(
1748 	struct xfs_mount	*mp,
1749 	struct xfs_trans	*tp,
1750 	xfs_agnumber_t		agno,
1751 	xfs_agino_t		agino,
1752 	xfs_agblock_t		agbno,
1753 	xfs_agblock_t		*chunk_agbno,
1754 	xfs_agblock_t		*offset_agbno,
1755 	int			flags)
1756 {
1757 	struct xfs_inobt_rec_incore rec;
1758 	struct xfs_btree_cur	*cur;
1759 	struct xfs_buf		*agbp;
1760 	int			error;
1761 	int			i;
1762 
1763 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1764 	if (error) {
1765 		xfs_alert(mp,
1766 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
1767 			__func__, error, agno);
1768 		return error;
1769 	}
1770 
1771 	/*
1772 	 * Lookup the inode record for the given agino. If the record cannot be
1773 	 * found, then it's an invalid inode number and we should abort. Once
1774 	 * we have a record, we need to ensure it contains the inode number
1775 	 * we are looking up.
1776 	 */
1777 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1778 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
1779 	if (!error) {
1780 		if (i)
1781 			error = xfs_inobt_get_rec(cur, &rec, &i);
1782 		if (!error && i == 0)
1783 			error = -EINVAL;
1784 	}
1785 
1786 	xfs_trans_brelse(tp, agbp);
1787 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1788 	if (error)
1789 		return error;
1790 
1791 	/* check that the returned record contains the required inode */
1792 	if (rec.ir_startino > agino ||
1793 	    rec.ir_startino + mp->m_ialloc_inos <= agino)
1794 		return -EINVAL;
1795 
1796 	/* for untrusted inodes check it is allocated first */
1797 	if ((flags & XFS_IGET_UNTRUSTED) &&
1798 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
1799 		return -EINVAL;
1800 
1801 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
1802 	*offset_agbno = agbno - *chunk_agbno;
1803 	return 0;
1804 }
1805 
1806 /*
1807  * Return the location of the inode in imap, for mapping it into a buffer.
1808  */
1809 int
1810 xfs_imap(
1811 	xfs_mount_t	 *mp,	/* file system mount structure */
1812 	xfs_trans_t	 *tp,	/* transaction pointer */
1813 	xfs_ino_t	ino,	/* inode to locate */
1814 	struct xfs_imap	*imap,	/* location map structure */
1815 	uint		flags)	/* flags for inode btree lookup */
1816 {
1817 	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
1818 	xfs_agino_t	agino;	/* inode number within alloc group */
1819 	xfs_agnumber_t	agno;	/* allocation group number */
1820 	int		blks_per_cluster; /* num blocks per inode cluster */
1821 	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
1822 	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
1823 	int		error;	/* error code */
1824 	int		offset;	/* index of inode in its buffer */
1825 	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
1826 
1827 	ASSERT(ino != NULLFSINO);
1828 
1829 	/*
1830 	 * Split up the inode number into its parts.
1831 	 */
1832 	agno = XFS_INO_TO_AGNO(mp, ino);
1833 	agino = XFS_INO_TO_AGINO(mp, ino);
1834 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1835 	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
1836 	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1837 #ifdef DEBUG
1838 		/*
1839 		 * Don't output diagnostic information for untrusted inodes
1840 		 * as they can be invalid without implying corruption.
1841 		 */
1842 		if (flags & XFS_IGET_UNTRUSTED)
1843 			return -EINVAL;
1844 		if (agno >= mp->m_sb.sb_agcount) {
1845 			xfs_alert(mp,
1846 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
1847 				__func__, agno, mp->m_sb.sb_agcount);
1848 		}
1849 		if (agbno >= mp->m_sb.sb_agblocks) {
1850 			xfs_alert(mp,
1851 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
1852 				__func__, (unsigned long long)agbno,
1853 				(unsigned long)mp->m_sb.sb_agblocks);
1854 		}
1855 		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1856 			xfs_alert(mp,
1857 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
1858 				__func__, ino,
1859 				XFS_AGINO_TO_INO(mp, agno, agino));
1860 		}
1861 		xfs_stack_trace();
1862 #endif /* DEBUG */
1863 		return -EINVAL;
1864 	}
1865 
1866 	blks_per_cluster = xfs_icluster_size_fsb(mp);
1867 
1868 	/*
1869 	 * For bulkstat and handle lookups, we have an untrusted inode number
1870 	 * that we have to verify is valid. We cannot do this just by reading
1871 	 * the inode buffer as it may have been unlinked and removed leaving
1872 	 * inodes in stale state on disk. Hence we have to do a btree lookup
1873 	 * in all cases where an untrusted inode number is passed.
1874 	 */
1875 	if (flags & XFS_IGET_UNTRUSTED) {
1876 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1877 					&chunk_agbno, &offset_agbno, flags);
1878 		if (error)
1879 			return error;
1880 		goto out_map;
1881 	}
1882 
1883 	/*
1884 	 * If the inode cluster size is the same as the blocksize or
1885 	 * smaller we get to the buffer by simple arithmetics.
1886 	 */
1887 	if (blks_per_cluster == 1) {
1888 		offset = XFS_INO_TO_OFFSET(mp, ino);
1889 		ASSERT(offset < mp->m_sb.sb_inopblock);
1890 
1891 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
1892 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
1893 		imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1894 		return 0;
1895 	}
1896 
1897 	/*
1898 	 * If the inode chunks are aligned then use simple maths to
1899 	 * find the location. Otherwise we have to do a btree
1900 	 * lookup to find the location.
1901 	 */
1902 	if (mp->m_inoalign_mask) {
1903 		offset_agbno = agbno & mp->m_inoalign_mask;
1904 		chunk_agbno = agbno - offset_agbno;
1905 	} else {
1906 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1907 					&chunk_agbno, &offset_agbno, flags);
1908 		if (error)
1909 			return error;
1910 	}
1911 
1912 out_map:
1913 	ASSERT(agbno >= chunk_agbno);
1914 	cluster_agbno = chunk_agbno +
1915 		((offset_agbno / blks_per_cluster) * blks_per_cluster);
1916 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
1917 		XFS_INO_TO_OFFSET(mp, ino);
1918 
1919 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
1920 	imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
1921 	imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1922 
1923 	/*
1924 	 * If the inode number maps to a block outside the bounds
1925 	 * of the file system then return NULL rather than calling
1926 	 * read_buf and panicing when we get an error from the
1927 	 * driver.
1928 	 */
1929 	if ((imap->im_blkno + imap->im_len) >
1930 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
1931 		xfs_alert(mp,
1932 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
1933 			__func__, (unsigned long long) imap->im_blkno,
1934 			(unsigned long long) imap->im_len,
1935 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
1936 		return -EINVAL;
1937 	}
1938 	return 0;
1939 }
1940 
1941 /*
1942  * Compute and fill in value of m_in_maxlevels.
1943  */
1944 void
1945 xfs_ialloc_compute_maxlevels(
1946 	xfs_mount_t	*mp)		/* file system mount structure */
1947 {
1948 	int		level;
1949 	uint		maxblocks;
1950 	uint		maxleafents;
1951 	int		minleafrecs;
1952 	int		minnoderecs;
1953 
1954 	maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
1955 		XFS_INODES_PER_CHUNK_LOG;
1956 	minleafrecs = mp->m_alloc_mnr[0];
1957 	minnoderecs = mp->m_alloc_mnr[1];
1958 	maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
1959 	for (level = 1; maxblocks > 1; level++)
1960 		maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
1961 	mp->m_in_maxlevels = level;
1962 }
1963 
1964 /*
1965  * Log specified fields for the ag hdr (inode section). The growth of the agi
1966  * structure over time requires that we interpret the buffer as two logical
1967  * regions delineated by the end of the unlinked list. This is due to the size
1968  * of the hash table and its location in the middle of the agi.
1969  *
1970  * For example, a request to log a field before agi_unlinked and a field after
1971  * agi_unlinked could cause us to log the entire hash table and use an excessive
1972  * amount of log space. To avoid this behavior, log the region up through
1973  * agi_unlinked in one call and the region after agi_unlinked through the end of
1974  * the structure in another.
1975  */
1976 void
1977 xfs_ialloc_log_agi(
1978 	xfs_trans_t	*tp,		/* transaction pointer */
1979 	xfs_buf_t	*bp,		/* allocation group header buffer */
1980 	int		fields)		/* bitmask of fields to log */
1981 {
1982 	int			first;		/* first byte number */
1983 	int			last;		/* last byte number */
1984 	static const short	offsets[] = {	/* field starting offsets */
1985 					/* keep in sync with bit definitions */
1986 		offsetof(xfs_agi_t, agi_magicnum),
1987 		offsetof(xfs_agi_t, agi_versionnum),
1988 		offsetof(xfs_agi_t, agi_seqno),
1989 		offsetof(xfs_agi_t, agi_length),
1990 		offsetof(xfs_agi_t, agi_count),
1991 		offsetof(xfs_agi_t, agi_root),
1992 		offsetof(xfs_agi_t, agi_level),
1993 		offsetof(xfs_agi_t, agi_freecount),
1994 		offsetof(xfs_agi_t, agi_newino),
1995 		offsetof(xfs_agi_t, agi_dirino),
1996 		offsetof(xfs_agi_t, agi_unlinked),
1997 		offsetof(xfs_agi_t, agi_free_root),
1998 		offsetof(xfs_agi_t, agi_free_level),
1999 		sizeof(xfs_agi_t)
2000 	};
2001 #ifdef DEBUG
2002 	xfs_agi_t		*agi;	/* allocation group header */
2003 
2004 	agi = XFS_BUF_TO_AGI(bp);
2005 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2006 #endif
2007 
2008 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2009 
2010 	/*
2011 	 * Compute byte offsets for the first and last fields in the first
2012 	 * region and log the agi buffer. This only logs up through
2013 	 * agi_unlinked.
2014 	 */
2015 	if (fields & XFS_AGI_ALL_BITS_R1) {
2016 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2017 				  &first, &last);
2018 		xfs_trans_log_buf(tp, bp, first, last);
2019 	}
2020 
2021 	/*
2022 	 * Mask off the bits in the first region and calculate the first and
2023 	 * last field offsets for any bits in the second region.
2024 	 */
2025 	fields &= ~XFS_AGI_ALL_BITS_R1;
2026 	if (fields) {
2027 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2028 				  &first, &last);
2029 		xfs_trans_log_buf(tp, bp, first, last);
2030 	}
2031 }
2032 
2033 #ifdef DEBUG
2034 STATIC void
2035 xfs_check_agi_unlinked(
2036 	struct xfs_agi		*agi)
2037 {
2038 	int			i;
2039 
2040 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2041 		ASSERT(agi->agi_unlinked[i]);
2042 }
2043 #else
2044 #define xfs_check_agi_unlinked(agi)
2045 #endif
2046 
2047 static bool
2048 xfs_agi_verify(
2049 	struct xfs_buf	*bp)
2050 {
2051 	struct xfs_mount *mp = bp->b_target->bt_mount;
2052 	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp);
2053 
2054 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2055 	    !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid))
2056 			return false;
2057 	/*
2058 	 * Validate the magic number of the agi block.
2059 	 */
2060 	if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2061 		return false;
2062 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2063 		return false;
2064 
2065 	if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2066 		return false;
2067 	/*
2068 	 * during growfs operations, the perag is not fully initialised,
2069 	 * so we can't use it for any useful checking. growfs ensures we can't
2070 	 * use it by using uncached buffers that don't have the perag attached
2071 	 * so we can detect and avoid this problem.
2072 	 */
2073 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2074 		return false;
2075 
2076 	xfs_check_agi_unlinked(agi);
2077 	return true;
2078 }
2079 
2080 static void
2081 xfs_agi_read_verify(
2082 	struct xfs_buf	*bp)
2083 {
2084 	struct xfs_mount *mp = bp->b_target->bt_mount;
2085 
2086 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2087 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2088 		xfs_buf_ioerror(bp, -EFSBADCRC);
2089 	else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2090 				XFS_ERRTAG_IALLOC_READ_AGI,
2091 				XFS_RANDOM_IALLOC_READ_AGI))
2092 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2093 
2094 	if (bp->b_error)
2095 		xfs_verifier_error(bp);
2096 }
2097 
2098 static void
2099 xfs_agi_write_verify(
2100 	struct xfs_buf	*bp)
2101 {
2102 	struct xfs_mount *mp = bp->b_target->bt_mount;
2103 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
2104 
2105 	if (!xfs_agi_verify(bp)) {
2106 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2107 		xfs_verifier_error(bp);
2108 		return;
2109 	}
2110 
2111 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2112 		return;
2113 
2114 	if (bip)
2115 		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2116 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2117 }
2118 
2119 const struct xfs_buf_ops xfs_agi_buf_ops = {
2120 	.verify_read = xfs_agi_read_verify,
2121 	.verify_write = xfs_agi_write_verify,
2122 };
2123 
2124 /*
2125  * Read in the allocation group header (inode allocation section)
2126  */
2127 int
2128 xfs_read_agi(
2129 	struct xfs_mount	*mp,	/* file system mount structure */
2130 	struct xfs_trans	*tp,	/* transaction pointer */
2131 	xfs_agnumber_t		agno,	/* allocation group number */
2132 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2133 {
2134 	int			error;
2135 
2136 	trace_xfs_read_agi(mp, agno);
2137 
2138 	ASSERT(agno != NULLAGNUMBER);
2139 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2140 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2141 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2142 	if (error)
2143 		return error;
2144 
2145 	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2146 	return 0;
2147 }
2148 
2149 int
2150 xfs_ialloc_read_agi(
2151 	struct xfs_mount	*mp,	/* file system mount structure */
2152 	struct xfs_trans	*tp,	/* transaction pointer */
2153 	xfs_agnumber_t		agno,	/* allocation group number */
2154 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2155 {
2156 	struct xfs_agi		*agi;	/* allocation group header */
2157 	struct xfs_perag	*pag;	/* per allocation group data */
2158 	int			error;
2159 
2160 	trace_xfs_ialloc_read_agi(mp, agno);
2161 
2162 	error = xfs_read_agi(mp, tp, agno, bpp);
2163 	if (error)
2164 		return error;
2165 
2166 	agi = XFS_BUF_TO_AGI(*bpp);
2167 	pag = xfs_perag_get(mp, agno);
2168 	if (!pag->pagi_init) {
2169 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2170 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2171 		pag->pagi_init = 1;
2172 	}
2173 
2174 	/*
2175 	 * It's possible for these to be out of sync if
2176 	 * we are in the middle of a forced shutdown.
2177 	 */
2178 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2179 		XFS_FORCED_SHUTDOWN(mp));
2180 	xfs_perag_put(pag);
2181 	return 0;
2182 }
2183 
2184 /*
2185  * Read in the agi to initialise the per-ag data in the mount structure
2186  */
2187 int
2188 xfs_ialloc_pagi_init(
2189 	xfs_mount_t	*mp,		/* file system mount structure */
2190 	xfs_trans_t	*tp,		/* transaction pointer */
2191 	xfs_agnumber_t	agno)		/* allocation group number */
2192 {
2193 	xfs_buf_t	*bp = NULL;
2194 	int		error;
2195 
2196 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2197 	if (error)
2198 		return error;
2199 	if (bp)
2200 		xfs_trans_brelse(tp, bp);
2201 	return 0;
2202 }
2203