1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_inode.h" 28 #include "xfs_btree.h" 29 #include "xfs_ialloc.h" 30 #include "xfs_ialloc_btree.h" 31 #include "xfs_alloc.h" 32 #include "xfs_rtalloc.h" 33 #include "xfs_error.h" 34 #include "xfs_bmap.h" 35 #include "xfs_cksum.h" 36 #include "xfs_trans.h" 37 #include "xfs_buf_item.h" 38 #include "xfs_icreate_item.h" 39 #include "xfs_icache.h" 40 #include "xfs_trace.h" 41 42 43 /* 44 * Allocation group level functions. 45 */ 46 static inline int 47 xfs_ialloc_cluster_alignment( 48 struct xfs_mount *mp) 49 { 50 if (xfs_sb_version_hasalign(&mp->m_sb) && 51 mp->m_sb.sb_inoalignmt >= 52 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 53 return mp->m_sb.sb_inoalignmt; 54 return 1; 55 } 56 57 /* 58 * Lookup a record by ino in the btree given by cur. 59 */ 60 int /* error */ 61 xfs_inobt_lookup( 62 struct xfs_btree_cur *cur, /* btree cursor */ 63 xfs_agino_t ino, /* starting inode of chunk */ 64 xfs_lookup_t dir, /* <=, >=, == */ 65 int *stat) /* success/failure */ 66 { 67 cur->bc_rec.i.ir_startino = ino; 68 cur->bc_rec.i.ir_freecount = 0; 69 cur->bc_rec.i.ir_free = 0; 70 return xfs_btree_lookup(cur, dir, stat); 71 } 72 73 /* 74 * Update the record referred to by cur to the value given. 75 * This either works (return 0) or gets an EFSCORRUPTED error. 76 */ 77 STATIC int /* error */ 78 xfs_inobt_update( 79 struct xfs_btree_cur *cur, /* btree cursor */ 80 xfs_inobt_rec_incore_t *irec) /* btree record */ 81 { 82 union xfs_btree_rec rec; 83 84 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 85 rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount); 86 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 87 return xfs_btree_update(cur, &rec); 88 } 89 90 /* 91 * Get the data from the pointed-to record. 92 */ 93 int /* error */ 94 xfs_inobt_get_rec( 95 struct xfs_btree_cur *cur, /* btree cursor */ 96 xfs_inobt_rec_incore_t *irec, /* btree record */ 97 int *stat) /* output: success/failure */ 98 { 99 union xfs_btree_rec *rec; 100 int error; 101 102 error = xfs_btree_get_rec(cur, &rec, stat); 103 if (!error && *stat == 1) { 104 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 105 irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount); 106 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 107 } 108 return error; 109 } 110 111 /* 112 * Insert a single inobt record. Cursor must already point to desired location. 113 */ 114 STATIC int 115 xfs_inobt_insert_rec( 116 struct xfs_btree_cur *cur, 117 __int32_t freecount, 118 xfs_inofree_t free, 119 int *stat) 120 { 121 cur->bc_rec.i.ir_freecount = freecount; 122 cur->bc_rec.i.ir_free = free; 123 return xfs_btree_insert(cur, stat); 124 } 125 126 /* 127 * Insert records describing a newly allocated inode chunk into the inobt. 128 */ 129 STATIC int 130 xfs_inobt_insert( 131 struct xfs_mount *mp, 132 struct xfs_trans *tp, 133 struct xfs_buf *agbp, 134 xfs_agino_t newino, 135 xfs_agino_t newlen, 136 xfs_btnum_t btnum) 137 { 138 struct xfs_btree_cur *cur; 139 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 140 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 141 xfs_agino_t thisino; 142 int i; 143 int error; 144 145 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 146 147 for (thisino = newino; 148 thisino < newino + newlen; 149 thisino += XFS_INODES_PER_CHUNK) { 150 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 151 if (error) { 152 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 153 return error; 154 } 155 ASSERT(i == 0); 156 157 error = xfs_inobt_insert_rec(cur, XFS_INODES_PER_CHUNK, 158 XFS_INOBT_ALL_FREE, &i); 159 if (error) { 160 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 161 return error; 162 } 163 ASSERT(i == 1); 164 } 165 166 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 167 168 return 0; 169 } 170 171 /* 172 * Verify that the number of free inodes in the AGI is correct. 173 */ 174 #ifdef DEBUG 175 STATIC int 176 xfs_check_agi_freecount( 177 struct xfs_btree_cur *cur, 178 struct xfs_agi *agi) 179 { 180 if (cur->bc_nlevels == 1) { 181 xfs_inobt_rec_incore_t rec; 182 int freecount = 0; 183 int error; 184 int i; 185 186 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 187 if (error) 188 return error; 189 190 do { 191 error = xfs_inobt_get_rec(cur, &rec, &i); 192 if (error) 193 return error; 194 195 if (i) { 196 freecount += rec.ir_freecount; 197 error = xfs_btree_increment(cur, 0, &i); 198 if (error) 199 return error; 200 } 201 } while (i == 1); 202 203 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) 204 ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); 205 } 206 return 0; 207 } 208 #else 209 #define xfs_check_agi_freecount(cur, agi) 0 210 #endif 211 212 /* 213 * Initialise a new set of inodes. When called without a transaction context 214 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 215 * than logging them (which in a transaction context puts them into the AIL 216 * for writeback rather than the xfsbufd queue). 217 */ 218 int 219 xfs_ialloc_inode_init( 220 struct xfs_mount *mp, 221 struct xfs_trans *tp, 222 struct list_head *buffer_list, 223 xfs_agnumber_t agno, 224 xfs_agblock_t agbno, 225 xfs_agblock_t length, 226 unsigned int gen) 227 { 228 struct xfs_buf *fbuf; 229 struct xfs_dinode *free; 230 int nbufs, blks_per_cluster, inodes_per_cluster; 231 int version; 232 int i, j; 233 xfs_daddr_t d; 234 xfs_ino_t ino = 0; 235 236 /* 237 * Loop over the new block(s), filling in the inodes. For small block 238 * sizes, manipulate the inodes in buffers which are multiples of the 239 * blocks size. 240 */ 241 blks_per_cluster = xfs_icluster_size_fsb(mp); 242 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 243 nbufs = length / blks_per_cluster; 244 245 /* 246 * Figure out what version number to use in the inodes we create. If 247 * the superblock version has caught up to the one that supports the new 248 * inode format, then use the new inode version. Otherwise use the old 249 * version so that old kernels will continue to be able to use the file 250 * system. 251 * 252 * For v3 inodes, we also need to write the inode number into the inode, 253 * so calculate the first inode number of the chunk here as 254 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not 255 * across multiple filesystem blocks (such as a cluster) and so cannot 256 * be used in the cluster buffer loop below. 257 * 258 * Further, because we are writing the inode directly into the buffer 259 * and calculating a CRC on the entire inode, we have ot log the entire 260 * inode so that the entire range the CRC covers is present in the log. 261 * That means for v3 inode we log the entire buffer rather than just the 262 * inode cores. 263 */ 264 if (xfs_sb_version_hascrc(&mp->m_sb)) { 265 version = 3; 266 ino = XFS_AGINO_TO_INO(mp, agno, 267 XFS_OFFBNO_TO_AGINO(mp, agbno, 0)); 268 269 /* 270 * log the initialisation that is about to take place as an 271 * logical operation. This means the transaction does not 272 * need to log the physical changes to the inode buffers as log 273 * recovery will know what initialisation is actually needed. 274 * Hence we only need to log the buffers as "ordered" buffers so 275 * they track in the AIL as if they were physically logged. 276 */ 277 if (tp) 278 xfs_icreate_log(tp, agno, agbno, mp->m_ialloc_inos, 279 mp->m_sb.sb_inodesize, length, gen); 280 } else 281 version = 2; 282 283 for (j = 0; j < nbufs; j++) { 284 /* 285 * Get the block. 286 */ 287 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster)); 288 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 289 mp->m_bsize * blks_per_cluster, 290 XBF_UNMAPPED); 291 if (!fbuf) 292 return -ENOMEM; 293 294 /* Initialize the inode buffers and log them appropriately. */ 295 fbuf->b_ops = &xfs_inode_buf_ops; 296 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 297 for (i = 0; i < inodes_per_cluster; i++) { 298 int ioffset = i << mp->m_sb.sb_inodelog; 299 uint isize = xfs_dinode_size(version); 300 301 free = xfs_make_iptr(mp, fbuf, i); 302 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 303 free->di_version = version; 304 free->di_gen = cpu_to_be32(gen); 305 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 306 307 if (version == 3) { 308 free->di_ino = cpu_to_be64(ino); 309 ino++; 310 uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid); 311 xfs_dinode_calc_crc(mp, free); 312 } else if (tp) { 313 /* just log the inode core */ 314 xfs_trans_log_buf(tp, fbuf, ioffset, 315 ioffset + isize - 1); 316 } 317 } 318 319 if (tp) { 320 /* 321 * Mark the buffer as an inode allocation buffer so it 322 * sticks in AIL at the point of this allocation 323 * transaction. This ensures the they are on disk before 324 * the tail of the log can be moved past this 325 * transaction (i.e. by preventing relogging from moving 326 * it forward in the log). 327 */ 328 xfs_trans_inode_alloc_buf(tp, fbuf); 329 if (version == 3) { 330 /* 331 * Mark the buffer as ordered so that they are 332 * not physically logged in the transaction but 333 * still tracked in the AIL as part of the 334 * transaction and pin the log appropriately. 335 */ 336 xfs_trans_ordered_buf(tp, fbuf); 337 xfs_trans_log_buf(tp, fbuf, 0, 338 BBTOB(fbuf->b_length) - 1); 339 } 340 } else { 341 fbuf->b_flags |= XBF_DONE; 342 xfs_buf_delwri_queue(fbuf, buffer_list); 343 xfs_buf_relse(fbuf); 344 } 345 } 346 return 0; 347 } 348 349 /* 350 * Allocate new inodes in the allocation group specified by agbp. 351 * Return 0 for success, else error code. 352 */ 353 STATIC int /* error code or 0 */ 354 xfs_ialloc_ag_alloc( 355 xfs_trans_t *tp, /* transaction pointer */ 356 xfs_buf_t *agbp, /* alloc group buffer */ 357 int *alloc) 358 { 359 xfs_agi_t *agi; /* allocation group header */ 360 xfs_alloc_arg_t args; /* allocation argument structure */ 361 xfs_agnumber_t agno; 362 int error; 363 xfs_agino_t newino; /* new first inode's number */ 364 xfs_agino_t newlen; /* new number of inodes */ 365 int isaligned = 0; /* inode allocation at stripe unit */ 366 /* boundary */ 367 struct xfs_perag *pag; 368 369 memset(&args, 0, sizeof(args)); 370 args.tp = tp; 371 args.mp = tp->t_mountp; 372 373 /* 374 * Locking will ensure that we don't have two callers in here 375 * at one time. 376 */ 377 newlen = args.mp->m_ialloc_inos; 378 if (args.mp->m_maxicount && 379 percpu_counter_read_positive(&args.mp->m_icount) + newlen > 380 args.mp->m_maxicount) 381 return -ENOSPC; 382 args.minlen = args.maxlen = args.mp->m_ialloc_blks; 383 /* 384 * First try to allocate inodes contiguous with the last-allocated 385 * chunk of inodes. If the filesystem is striped, this will fill 386 * an entire stripe unit with inodes. 387 */ 388 agi = XFS_BUF_TO_AGI(agbp); 389 newino = be32_to_cpu(agi->agi_newino); 390 agno = be32_to_cpu(agi->agi_seqno); 391 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 392 args.mp->m_ialloc_blks; 393 if (likely(newino != NULLAGINO && 394 (args.agbno < be32_to_cpu(agi->agi_length)))) { 395 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 396 args.type = XFS_ALLOCTYPE_THIS_BNO; 397 args.prod = 1; 398 399 /* 400 * We need to take into account alignment here to ensure that 401 * we don't modify the free list if we fail to have an exact 402 * block. If we don't have an exact match, and every oher 403 * attempt allocation attempt fails, we'll end up cancelling 404 * a dirty transaction and shutting down. 405 * 406 * For an exact allocation, alignment must be 1, 407 * however we need to take cluster alignment into account when 408 * fixing up the freelist. Use the minalignslop field to 409 * indicate that extra blocks might be required for alignment, 410 * but not to use them in the actual exact allocation. 411 */ 412 args.alignment = 1; 413 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1; 414 415 /* Allow space for the inode btree to split. */ 416 args.minleft = args.mp->m_in_maxlevels - 1; 417 if ((error = xfs_alloc_vextent(&args))) 418 return error; 419 420 /* 421 * This request might have dirtied the transaction if the AG can 422 * satisfy the request, but the exact block was not available. 423 * If the allocation did fail, subsequent requests will relax 424 * the exact agbno requirement and increase the alignment 425 * instead. It is critical that the total size of the request 426 * (len + alignment + slop) does not increase from this point 427 * on, so reset minalignslop to ensure it is not included in 428 * subsequent requests. 429 */ 430 args.minalignslop = 0; 431 } else 432 args.fsbno = NULLFSBLOCK; 433 434 if (unlikely(args.fsbno == NULLFSBLOCK)) { 435 /* 436 * Set the alignment for the allocation. 437 * If stripe alignment is turned on then align at stripe unit 438 * boundary. 439 * If the cluster size is smaller than a filesystem block 440 * then we're doing I/O for inodes in filesystem block size 441 * pieces, so don't need alignment anyway. 442 */ 443 isaligned = 0; 444 if (args.mp->m_sinoalign) { 445 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); 446 args.alignment = args.mp->m_dalign; 447 isaligned = 1; 448 } else 449 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 450 /* 451 * Need to figure out where to allocate the inode blocks. 452 * Ideally they should be spaced out through the a.g. 453 * For now, just allocate blocks up front. 454 */ 455 args.agbno = be32_to_cpu(agi->agi_root); 456 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 457 /* 458 * Allocate a fixed-size extent of inodes. 459 */ 460 args.type = XFS_ALLOCTYPE_NEAR_BNO; 461 args.prod = 1; 462 /* 463 * Allow space for the inode btree to split. 464 */ 465 args.minleft = args.mp->m_in_maxlevels - 1; 466 if ((error = xfs_alloc_vextent(&args))) 467 return error; 468 } 469 470 /* 471 * If stripe alignment is turned on, then try again with cluster 472 * alignment. 473 */ 474 if (isaligned && args.fsbno == NULLFSBLOCK) { 475 args.type = XFS_ALLOCTYPE_NEAR_BNO; 476 args.agbno = be32_to_cpu(agi->agi_root); 477 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 478 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 479 if ((error = xfs_alloc_vextent(&args))) 480 return error; 481 } 482 483 if (args.fsbno == NULLFSBLOCK) { 484 *alloc = 0; 485 return 0; 486 } 487 ASSERT(args.len == args.minlen); 488 489 /* 490 * Stamp and write the inode buffers. 491 * 492 * Seed the new inode cluster with a random generation number. This 493 * prevents short-term reuse of generation numbers if a chunk is 494 * freed and then immediately reallocated. We use random numbers 495 * rather than a linear progression to prevent the next generation 496 * number from being easily guessable. 497 */ 498 error = xfs_ialloc_inode_init(args.mp, tp, NULL, agno, args.agbno, 499 args.len, prandom_u32()); 500 501 if (error) 502 return error; 503 /* 504 * Convert the results. 505 */ 506 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); 507 be32_add_cpu(&agi->agi_count, newlen); 508 be32_add_cpu(&agi->agi_freecount, newlen); 509 pag = xfs_perag_get(args.mp, agno); 510 pag->pagi_freecount += newlen; 511 xfs_perag_put(pag); 512 agi->agi_newino = cpu_to_be32(newino); 513 514 /* 515 * Insert records describing the new inode chunk into the btrees. 516 */ 517 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 518 XFS_BTNUM_INO); 519 if (error) 520 return error; 521 522 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 523 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 524 XFS_BTNUM_FINO); 525 if (error) 526 return error; 527 } 528 /* 529 * Log allocation group header fields 530 */ 531 xfs_ialloc_log_agi(tp, agbp, 532 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 533 /* 534 * Modify/log superblock values for inode count and inode free count. 535 */ 536 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 537 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 538 *alloc = 1; 539 return 0; 540 } 541 542 STATIC xfs_agnumber_t 543 xfs_ialloc_next_ag( 544 xfs_mount_t *mp) 545 { 546 xfs_agnumber_t agno; 547 548 spin_lock(&mp->m_agirotor_lock); 549 agno = mp->m_agirotor; 550 if (++mp->m_agirotor >= mp->m_maxagi) 551 mp->m_agirotor = 0; 552 spin_unlock(&mp->m_agirotor_lock); 553 554 return agno; 555 } 556 557 /* 558 * Select an allocation group to look for a free inode in, based on the parent 559 * inode and the mode. Return the allocation group buffer. 560 */ 561 STATIC xfs_agnumber_t 562 xfs_ialloc_ag_select( 563 xfs_trans_t *tp, /* transaction pointer */ 564 xfs_ino_t parent, /* parent directory inode number */ 565 umode_t mode, /* bits set to indicate file type */ 566 int okalloc) /* ok to allocate more space */ 567 { 568 xfs_agnumber_t agcount; /* number of ag's in the filesystem */ 569 xfs_agnumber_t agno; /* current ag number */ 570 int flags; /* alloc buffer locking flags */ 571 xfs_extlen_t ineed; /* blocks needed for inode allocation */ 572 xfs_extlen_t longest = 0; /* longest extent available */ 573 xfs_mount_t *mp; /* mount point structure */ 574 int needspace; /* file mode implies space allocated */ 575 xfs_perag_t *pag; /* per allocation group data */ 576 xfs_agnumber_t pagno; /* parent (starting) ag number */ 577 int error; 578 579 /* 580 * Files of these types need at least one block if length > 0 581 * (and they won't fit in the inode, but that's hard to figure out). 582 */ 583 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 584 mp = tp->t_mountp; 585 agcount = mp->m_maxagi; 586 if (S_ISDIR(mode)) 587 pagno = xfs_ialloc_next_ag(mp); 588 else { 589 pagno = XFS_INO_TO_AGNO(mp, parent); 590 if (pagno >= agcount) 591 pagno = 0; 592 } 593 594 ASSERT(pagno < agcount); 595 596 /* 597 * Loop through allocation groups, looking for one with a little 598 * free space in it. Note we don't look for free inodes, exactly. 599 * Instead, we include whether there is a need to allocate inodes 600 * to mean that blocks must be allocated for them, 601 * if none are currently free. 602 */ 603 agno = pagno; 604 flags = XFS_ALLOC_FLAG_TRYLOCK; 605 for (;;) { 606 pag = xfs_perag_get(mp, agno); 607 if (!pag->pagi_inodeok) { 608 xfs_ialloc_next_ag(mp); 609 goto nextag; 610 } 611 612 if (!pag->pagi_init) { 613 error = xfs_ialloc_pagi_init(mp, tp, agno); 614 if (error) 615 goto nextag; 616 } 617 618 if (pag->pagi_freecount) { 619 xfs_perag_put(pag); 620 return agno; 621 } 622 623 if (!okalloc) 624 goto nextag; 625 626 if (!pag->pagf_init) { 627 error = xfs_alloc_pagf_init(mp, tp, agno, flags); 628 if (error) 629 goto nextag; 630 } 631 632 /* 633 * Check that there is enough free space for the file plus a 634 * chunk of inodes if we need to allocate some. If this is the 635 * first pass across the AGs, take into account the potential 636 * space needed for alignment of inode chunks when checking the 637 * longest contiguous free space in the AG - this prevents us 638 * from getting ENOSPC because we have free space larger than 639 * m_ialloc_blks but alignment constraints prevent us from using 640 * it. 641 * 642 * If we can't find an AG with space for full alignment slack to 643 * be taken into account, we must be near ENOSPC in all AGs. 644 * Hence we don't include alignment for the second pass and so 645 * if we fail allocation due to alignment issues then it is most 646 * likely a real ENOSPC condition. 647 */ 648 ineed = mp->m_ialloc_blks; 649 if (flags && ineed > 1) 650 ineed += xfs_ialloc_cluster_alignment(mp); 651 longest = pag->pagf_longest; 652 if (!longest) 653 longest = pag->pagf_flcount > 0; 654 655 if (pag->pagf_freeblks >= needspace + ineed && 656 longest >= ineed) { 657 xfs_perag_put(pag); 658 return agno; 659 } 660 nextag: 661 xfs_perag_put(pag); 662 /* 663 * No point in iterating over the rest, if we're shutting 664 * down. 665 */ 666 if (XFS_FORCED_SHUTDOWN(mp)) 667 return NULLAGNUMBER; 668 agno++; 669 if (agno >= agcount) 670 agno = 0; 671 if (agno == pagno) { 672 if (flags == 0) 673 return NULLAGNUMBER; 674 flags = 0; 675 } 676 } 677 } 678 679 /* 680 * Try to retrieve the next record to the left/right from the current one. 681 */ 682 STATIC int 683 xfs_ialloc_next_rec( 684 struct xfs_btree_cur *cur, 685 xfs_inobt_rec_incore_t *rec, 686 int *done, 687 int left) 688 { 689 int error; 690 int i; 691 692 if (left) 693 error = xfs_btree_decrement(cur, 0, &i); 694 else 695 error = xfs_btree_increment(cur, 0, &i); 696 697 if (error) 698 return error; 699 *done = !i; 700 if (i) { 701 error = xfs_inobt_get_rec(cur, rec, &i); 702 if (error) 703 return error; 704 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 705 } 706 707 return 0; 708 } 709 710 STATIC int 711 xfs_ialloc_get_rec( 712 struct xfs_btree_cur *cur, 713 xfs_agino_t agino, 714 xfs_inobt_rec_incore_t *rec, 715 int *done) 716 { 717 int error; 718 int i; 719 720 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 721 if (error) 722 return error; 723 *done = !i; 724 if (i) { 725 error = xfs_inobt_get_rec(cur, rec, &i); 726 if (error) 727 return error; 728 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 729 } 730 731 return 0; 732 } 733 734 /* 735 * Allocate an inode using the inobt-only algorithm. 736 */ 737 STATIC int 738 xfs_dialloc_ag_inobt( 739 struct xfs_trans *tp, 740 struct xfs_buf *agbp, 741 xfs_ino_t parent, 742 xfs_ino_t *inop) 743 { 744 struct xfs_mount *mp = tp->t_mountp; 745 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 746 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 747 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 748 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 749 struct xfs_perag *pag; 750 struct xfs_btree_cur *cur, *tcur; 751 struct xfs_inobt_rec_incore rec, trec; 752 xfs_ino_t ino; 753 int error; 754 int offset; 755 int i, j; 756 757 pag = xfs_perag_get(mp, agno); 758 759 ASSERT(pag->pagi_init); 760 ASSERT(pag->pagi_inodeok); 761 ASSERT(pag->pagi_freecount > 0); 762 763 restart_pagno: 764 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 765 /* 766 * If pagino is 0 (this is the root inode allocation) use newino. 767 * This must work because we've just allocated some. 768 */ 769 if (!pagino) 770 pagino = be32_to_cpu(agi->agi_newino); 771 772 error = xfs_check_agi_freecount(cur, agi); 773 if (error) 774 goto error0; 775 776 /* 777 * If in the same AG as the parent, try to get near the parent. 778 */ 779 if (pagno == agno) { 780 int doneleft; /* done, to the left */ 781 int doneright; /* done, to the right */ 782 int searchdistance = 10; 783 784 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 785 if (error) 786 goto error0; 787 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 788 789 error = xfs_inobt_get_rec(cur, &rec, &j); 790 if (error) 791 goto error0; 792 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0); 793 794 if (rec.ir_freecount > 0) { 795 /* 796 * Found a free inode in the same chunk 797 * as the parent, done. 798 */ 799 goto alloc_inode; 800 } 801 802 803 /* 804 * In the same AG as parent, but parent's chunk is full. 805 */ 806 807 /* duplicate the cursor, search left & right simultaneously */ 808 error = xfs_btree_dup_cursor(cur, &tcur); 809 if (error) 810 goto error0; 811 812 /* 813 * Skip to last blocks looked up if same parent inode. 814 */ 815 if (pagino != NULLAGINO && 816 pag->pagl_pagino == pagino && 817 pag->pagl_leftrec != NULLAGINO && 818 pag->pagl_rightrec != NULLAGINO) { 819 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 820 &trec, &doneleft); 821 if (error) 822 goto error1; 823 824 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 825 &rec, &doneright); 826 if (error) 827 goto error1; 828 } else { 829 /* search left with tcur, back up 1 record */ 830 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 831 if (error) 832 goto error1; 833 834 /* search right with cur, go forward 1 record. */ 835 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 836 if (error) 837 goto error1; 838 } 839 840 /* 841 * Loop until we find an inode chunk with a free inode. 842 */ 843 while (!doneleft || !doneright) { 844 int useleft; /* using left inode chunk this time */ 845 846 if (!--searchdistance) { 847 /* 848 * Not in range - save last search 849 * location and allocate a new inode 850 */ 851 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 852 pag->pagl_leftrec = trec.ir_startino; 853 pag->pagl_rightrec = rec.ir_startino; 854 pag->pagl_pagino = pagino; 855 goto newino; 856 } 857 858 /* figure out the closer block if both are valid. */ 859 if (!doneleft && !doneright) { 860 useleft = pagino - 861 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 862 rec.ir_startino - pagino; 863 } else { 864 useleft = !doneleft; 865 } 866 867 /* free inodes to the left? */ 868 if (useleft && trec.ir_freecount) { 869 rec = trec; 870 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 871 cur = tcur; 872 873 pag->pagl_leftrec = trec.ir_startino; 874 pag->pagl_rightrec = rec.ir_startino; 875 pag->pagl_pagino = pagino; 876 goto alloc_inode; 877 } 878 879 /* free inodes to the right? */ 880 if (!useleft && rec.ir_freecount) { 881 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 882 883 pag->pagl_leftrec = trec.ir_startino; 884 pag->pagl_rightrec = rec.ir_startino; 885 pag->pagl_pagino = pagino; 886 goto alloc_inode; 887 } 888 889 /* get next record to check */ 890 if (useleft) { 891 error = xfs_ialloc_next_rec(tcur, &trec, 892 &doneleft, 1); 893 } else { 894 error = xfs_ialloc_next_rec(cur, &rec, 895 &doneright, 0); 896 } 897 if (error) 898 goto error1; 899 } 900 901 /* 902 * We've reached the end of the btree. because 903 * we are only searching a small chunk of the 904 * btree each search, there is obviously free 905 * inodes closer to the parent inode than we 906 * are now. restart the search again. 907 */ 908 pag->pagl_pagino = NULLAGINO; 909 pag->pagl_leftrec = NULLAGINO; 910 pag->pagl_rightrec = NULLAGINO; 911 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 912 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 913 goto restart_pagno; 914 } 915 916 /* 917 * In a different AG from the parent. 918 * See if the most recently allocated block has any free. 919 */ 920 newino: 921 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 922 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 923 XFS_LOOKUP_EQ, &i); 924 if (error) 925 goto error0; 926 927 if (i == 1) { 928 error = xfs_inobt_get_rec(cur, &rec, &j); 929 if (error) 930 goto error0; 931 932 if (j == 1 && rec.ir_freecount > 0) { 933 /* 934 * The last chunk allocated in the group 935 * still has a free inode. 936 */ 937 goto alloc_inode; 938 } 939 } 940 } 941 942 /* 943 * None left in the last group, search the whole AG 944 */ 945 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 946 if (error) 947 goto error0; 948 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 949 950 for (;;) { 951 error = xfs_inobt_get_rec(cur, &rec, &i); 952 if (error) 953 goto error0; 954 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 955 if (rec.ir_freecount > 0) 956 break; 957 error = xfs_btree_increment(cur, 0, &i); 958 if (error) 959 goto error0; 960 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 961 } 962 963 alloc_inode: 964 offset = xfs_lowbit64(rec.ir_free); 965 ASSERT(offset >= 0); 966 ASSERT(offset < XFS_INODES_PER_CHUNK); 967 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 968 XFS_INODES_PER_CHUNK) == 0); 969 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 970 rec.ir_free &= ~XFS_INOBT_MASK(offset); 971 rec.ir_freecount--; 972 error = xfs_inobt_update(cur, &rec); 973 if (error) 974 goto error0; 975 be32_add_cpu(&agi->agi_freecount, -1); 976 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 977 pag->pagi_freecount--; 978 979 error = xfs_check_agi_freecount(cur, agi); 980 if (error) 981 goto error0; 982 983 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 984 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 985 xfs_perag_put(pag); 986 *inop = ino; 987 return 0; 988 error1: 989 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 990 error0: 991 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 992 xfs_perag_put(pag); 993 return error; 994 } 995 996 /* 997 * Use the free inode btree to allocate an inode based on distance from the 998 * parent. Note that the provided cursor may be deleted and replaced. 999 */ 1000 STATIC int 1001 xfs_dialloc_ag_finobt_near( 1002 xfs_agino_t pagino, 1003 struct xfs_btree_cur **ocur, 1004 struct xfs_inobt_rec_incore *rec) 1005 { 1006 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 1007 struct xfs_btree_cur *rcur; /* right search cursor */ 1008 struct xfs_inobt_rec_incore rrec; 1009 int error; 1010 int i, j; 1011 1012 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1013 if (error) 1014 return error; 1015 1016 if (i == 1) { 1017 error = xfs_inobt_get_rec(lcur, rec, &i); 1018 if (error) 1019 return error; 1020 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1); 1021 1022 /* 1023 * See if we've landed in the parent inode record. The finobt 1024 * only tracks chunks with at least one free inode, so record 1025 * existence is enough. 1026 */ 1027 if (pagino >= rec->ir_startino && 1028 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1029 return 0; 1030 } 1031 1032 error = xfs_btree_dup_cursor(lcur, &rcur); 1033 if (error) 1034 return error; 1035 1036 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1037 if (error) 1038 goto error_rcur; 1039 if (j == 1) { 1040 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1041 if (error) 1042 goto error_rcur; 1043 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur); 1044 } 1045 1046 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur); 1047 if (i == 1 && j == 1) { 1048 /* 1049 * Both the left and right records are valid. Choose the closer 1050 * inode chunk to the target. 1051 */ 1052 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1053 (rrec.ir_startino - pagino)) { 1054 *rec = rrec; 1055 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1056 *ocur = rcur; 1057 } else { 1058 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1059 } 1060 } else if (j == 1) { 1061 /* only the right record is valid */ 1062 *rec = rrec; 1063 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1064 *ocur = rcur; 1065 } else if (i == 1) { 1066 /* only the left record is valid */ 1067 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1068 } 1069 1070 return 0; 1071 1072 error_rcur: 1073 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1074 return error; 1075 } 1076 1077 /* 1078 * Use the free inode btree to find a free inode based on a newino hint. If 1079 * the hint is NULL, find the first free inode in the AG. 1080 */ 1081 STATIC int 1082 xfs_dialloc_ag_finobt_newino( 1083 struct xfs_agi *agi, 1084 struct xfs_btree_cur *cur, 1085 struct xfs_inobt_rec_incore *rec) 1086 { 1087 int error; 1088 int i; 1089 1090 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1091 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1092 XFS_LOOKUP_EQ, &i); 1093 if (error) 1094 return error; 1095 if (i == 1) { 1096 error = xfs_inobt_get_rec(cur, rec, &i); 1097 if (error) 1098 return error; 1099 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1100 return 0; 1101 } 1102 } 1103 1104 /* 1105 * Find the first inode available in the AG. 1106 */ 1107 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1108 if (error) 1109 return error; 1110 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1111 1112 error = xfs_inobt_get_rec(cur, rec, &i); 1113 if (error) 1114 return error; 1115 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1116 1117 return 0; 1118 } 1119 1120 /* 1121 * Update the inobt based on a modification made to the finobt. Also ensure that 1122 * the records from both trees are equivalent post-modification. 1123 */ 1124 STATIC int 1125 xfs_dialloc_ag_update_inobt( 1126 struct xfs_btree_cur *cur, /* inobt cursor */ 1127 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1128 int offset) /* inode offset */ 1129 { 1130 struct xfs_inobt_rec_incore rec; 1131 int error; 1132 int i; 1133 1134 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1135 if (error) 1136 return error; 1137 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1138 1139 error = xfs_inobt_get_rec(cur, &rec, &i); 1140 if (error) 1141 return error; 1142 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1143 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1144 XFS_INODES_PER_CHUNK) == 0); 1145 1146 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1147 rec.ir_freecount--; 1148 1149 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) && 1150 (rec.ir_freecount == frec->ir_freecount)); 1151 1152 return xfs_inobt_update(cur, &rec); 1153 } 1154 1155 /* 1156 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1157 * back to the inobt search algorithm. 1158 * 1159 * The caller selected an AG for us, and made sure that free inodes are 1160 * available. 1161 */ 1162 STATIC int 1163 xfs_dialloc_ag( 1164 struct xfs_trans *tp, 1165 struct xfs_buf *agbp, 1166 xfs_ino_t parent, 1167 xfs_ino_t *inop) 1168 { 1169 struct xfs_mount *mp = tp->t_mountp; 1170 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1171 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1172 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1173 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1174 struct xfs_perag *pag; 1175 struct xfs_btree_cur *cur; /* finobt cursor */ 1176 struct xfs_btree_cur *icur; /* inobt cursor */ 1177 struct xfs_inobt_rec_incore rec; 1178 xfs_ino_t ino; 1179 int error; 1180 int offset; 1181 int i; 1182 1183 if (!xfs_sb_version_hasfinobt(&mp->m_sb)) 1184 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); 1185 1186 pag = xfs_perag_get(mp, agno); 1187 1188 /* 1189 * If pagino is 0 (this is the root inode allocation) use newino. 1190 * This must work because we've just allocated some. 1191 */ 1192 if (!pagino) 1193 pagino = be32_to_cpu(agi->agi_newino); 1194 1195 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1196 1197 error = xfs_check_agi_freecount(cur, agi); 1198 if (error) 1199 goto error_cur; 1200 1201 /* 1202 * The search algorithm depends on whether we're in the same AG as the 1203 * parent. If so, find the closest available inode to the parent. If 1204 * not, consider the agi hint or find the first free inode in the AG. 1205 */ 1206 if (agno == pagno) 1207 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1208 else 1209 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1210 if (error) 1211 goto error_cur; 1212 1213 offset = xfs_lowbit64(rec.ir_free); 1214 ASSERT(offset >= 0); 1215 ASSERT(offset < XFS_INODES_PER_CHUNK); 1216 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1217 XFS_INODES_PER_CHUNK) == 0); 1218 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1219 1220 /* 1221 * Modify or remove the finobt record. 1222 */ 1223 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1224 rec.ir_freecount--; 1225 if (rec.ir_freecount) 1226 error = xfs_inobt_update(cur, &rec); 1227 else 1228 error = xfs_btree_delete(cur, &i); 1229 if (error) 1230 goto error_cur; 1231 1232 /* 1233 * The finobt has now been updated appropriately. We haven't updated the 1234 * agi and superblock yet, so we can create an inobt cursor and validate 1235 * the original freecount. If all is well, make the equivalent update to 1236 * the inobt using the finobt record and offset information. 1237 */ 1238 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1239 1240 error = xfs_check_agi_freecount(icur, agi); 1241 if (error) 1242 goto error_icur; 1243 1244 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1245 if (error) 1246 goto error_icur; 1247 1248 /* 1249 * Both trees have now been updated. We must update the perag and 1250 * superblock before we can check the freecount for each btree. 1251 */ 1252 be32_add_cpu(&agi->agi_freecount, -1); 1253 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1254 pag->pagi_freecount--; 1255 1256 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1257 1258 error = xfs_check_agi_freecount(icur, agi); 1259 if (error) 1260 goto error_icur; 1261 error = xfs_check_agi_freecount(cur, agi); 1262 if (error) 1263 goto error_icur; 1264 1265 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1266 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1267 xfs_perag_put(pag); 1268 *inop = ino; 1269 return 0; 1270 1271 error_icur: 1272 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1273 error_cur: 1274 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1275 xfs_perag_put(pag); 1276 return error; 1277 } 1278 1279 /* 1280 * Allocate an inode on disk. 1281 * 1282 * Mode is used to tell whether the new inode will need space, and whether it 1283 * is a directory. 1284 * 1285 * This function is designed to be called twice if it has to do an allocation 1286 * to make more free inodes. On the first call, *IO_agbp should be set to NULL. 1287 * If an inode is available without having to performn an allocation, an inode 1288 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation 1289 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. 1290 * The caller should then commit the current transaction, allocate a 1291 * new transaction, and call xfs_dialloc() again, passing in the previous value 1292 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI 1293 * buffer is locked across the two calls, the second call is guaranteed to have 1294 * a free inode available. 1295 * 1296 * Once we successfully pick an inode its number is returned and the on-disk 1297 * data structures are updated. The inode itself is not read in, since doing so 1298 * would break ordering constraints with xfs_reclaim. 1299 */ 1300 int 1301 xfs_dialloc( 1302 struct xfs_trans *tp, 1303 xfs_ino_t parent, 1304 umode_t mode, 1305 int okalloc, 1306 struct xfs_buf **IO_agbp, 1307 xfs_ino_t *inop) 1308 { 1309 struct xfs_mount *mp = tp->t_mountp; 1310 struct xfs_buf *agbp; 1311 xfs_agnumber_t agno; 1312 int error; 1313 int ialloced; 1314 int noroom = 0; 1315 xfs_agnumber_t start_agno; 1316 struct xfs_perag *pag; 1317 1318 if (*IO_agbp) { 1319 /* 1320 * If the caller passes in a pointer to the AGI buffer, 1321 * continue where we left off before. In this case, we 1322 * know that the allocation group has free inodes. 1323 */ 1324 agbp = *IO_agbp; 1325 goto out_alloc; 1326 } 1327 1328 /* 1329 * We do not have an agbp, so select an initial allocation 1330 * group for inode allocation. 1331 */ 1332 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc); 1333 if (start_agno == NULLAGNUMBER) { 1334 *inop = NULLFSINO; 1335 return 0; 1336 } 1337 1338 /* 1339 * If we have already hit the ceiling of inode blocks then clear 1340 * okalloc so we scan all available agi structures for a free 1341 * inode. 1342 * 1343 * Read rough value of mp->m_icount by percpu_counter_read_positive, 1344 * which will sacrifice the preciseness but improve the performance. 1345 */ 1346 if (mp->m_maxicount && 1347 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos 1348 > mp->m_maxicount) { 1349 noroom = 1; 1350 okalloc = 0; 1351 } 1352 1353 /* 1354 * Loop until we find an allocation group that either has free inodes 1355 * or in which we can allocate some inodes. Iterate through the 1356 * allocation groups upward, wrapping at the end. 1357 */ 1358 agno = start_agno; 1359 for (;;) { 1360 pag = xfs_perag_get(mp, agno); 1361 if (!pag->pagi_inodeok) { 1362 xfs_ialloc_next_ag(mp); 1363 goto nextag; 1364 } 1365 1366 if (!pag->pagi_init) { 1367 error = xfs_ialloc_pagi_init(mp, tp, agno); 1368 if (error) 1369 goto out_error; 1370 } 1371 1372 /* 1373 * Do a first racy fast path check if this AG is usable. 1374 */ 1375 if (!pag->pagi_freecount && !okalloc) 1376 goto nextag; 1377 1378 /* 1379 * Then read in the AGI buffer and recheck with the AGI buffer 1380 * lock held. 1381 */ 1382 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1383 if (error) 1384 goto out_error; 1385 1386 if (pag->pagi_freecount) { 1387 xfs_perag_put(pag); 1388 goto out_alloc; 1389 } 1390 1391 if (!okalloc) 1392 goto nextag_relse_buffer; 1393 1394 1395 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); 1396 if (error) { 1397 xfs_trans_brelse(tp, agbp); 1398 1399 if (error != -ENOSPC) 1400 goto out_error; 1401 1402 xfs_perag_put(pag); 1403 *inop = NULLFSINO; 1404 return 0; 1405 } 1406 1407 if (ialloced) { 1408 /* 1409 * We successfully allocated some inodes, return 1410 * the current context to the caller so that it 1411 * can commit the current transaction and call 1412 * us again where we left off. 1413 */ 1414 ASSERT(pag->pagi_freecount > 0); 1415 xfs_perag_put(pag); 1416 1417 *IO_agbp = agbp; 1418 *inop = NULLFSINO; 1419 return 0; 1420 } 1421 1422 nextag_relse_buffer: 1423 xfs_trans_brelse(tp, agbp); 1424 nextag: 1425 xfs_perag_put(pag); 1426 if (++agno == mp->m_sb.sb_agcount) 1427 agno = 0; 1428 if (agno == start_agno) { 1429 *inop = NULLFSINO; 1430 return noroom ? -ENOSPC : 0; 1431 } 1432 } 1433 1434 out_alloc: 1435 *IO_agbp = NULL; 1436 return xfs_dialloc_ag(tp, agbp, parent, inop); 1437 out_error: 1438 xfs_perag_put(pag); 1439 return error; 1440 } 1441 1442 STATIC int 1443 xfs_difree_inobt( 1444 struct xfs_mount *mp, 1445 struct xfs_trans *tp, 1446 struct xfs_buf *agbp, 1447 xfs_agino_t agino, 1448 struct xfs_bmap_free *flist, 1449 int *deleted, 1450 xfs_ino_t *first_ino, 1451 struct xfs_inobt_rec_incore *orec) 1452 { 1453 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1454 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1455 struct xfs_perag *pag; 1456 struct xfs_btree_cur *cur; 1457 struct xfs_inobt_rec_incore rec; 1458 int ilen; 1459 int error; 1460 int i; 1461 int off; 1462 1463 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1464 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 1465 1466 /* 1467 * Initialize the cursor. 1468 */ 1469 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1470 1471 error = xfs_check_agi_freecount(cur, agi); 1472 if (error) 1473 goto error0; 1474 1475 /* 1476 * Look for the entry describing this inode. 1477 */ 1478 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 1479 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 1480 __func__, error); 1481 goto error0; 1482 } 1483 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1484 error = xfs_inobt_get_rec(cur, &rec, &i); 1485 if (error) { 1486 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 1487 __func__, error); 1488 goto error0; 1489 } 1490 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1491 /* 1492 * Get the offset in the inode chunk. 1493 */ 1494 off = agino - rec.ir_startino; 1495 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 1496 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 1497 /* 1498 * Mark the inode free & increment the count. 1499 */ 1500 rec.ir_free |= XFS_INOBT_MASK(off); 1501 rec.ir_freecount++; 1502 1503 /* 1504 * When an inode cluster is free, it becomes eligible for removal 1505 */ 1506 if (!(mp->m_flags & XFS_MOUNT_IKEEP) && 1507 (rec.ir_freecount == mp->m_ialloc_inos)) { 1508 1509 *deleted = 1; 1510 *first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); 1511 1512 /* 1513 * Remove the inode cluster from the AGI B+Tree, adjust the 1514 * AGI and Superblock inode counts, and mark the disk space 1515 * to be freed when the transaction is committed. 1516 */ 1517 ilen = mp->m_ialloc_inos; 1518 be32_add_cpu(&agi->agi_count, -ilen); 1519 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 1520 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 1521 pag = xfs_perag_get(mp, agno); 1522 pag->pagi_freecount -= ilen - 1; 1523 xfs_perag_put(pag); 1524 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 1525 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 1526 1527 if ((error = xfs_btree_delete(cur, &i))) { 1528 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 1529 __func__, error); 1530 goto error0; 1531 } 1532 1533 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, 1534 XFS_AGINO_TO_AGBNO(mp, rec.ir_startino)), 1535 mp->m_ialloc_blks, flist, mp); 1536 } else { 1537 *deleted = 0; 1538 1539 error = xfs_inobt_update(cur, &rec); 1540 if (error) { 1541 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 1542 __func__, error); 1543 goto error0; 1544 } 1545 1546 /* 1547 * Change the inode free counts and log the ag/sb changes. 1548 */ 1549 be32_add_cpu(&agi->agi_freecount, 1); 1550 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1551 pag = xfs_perag_get(mp, agno); 1552 pag->pagi_freecount++; 1553 xfs_perag_put(pag); 1554 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 1555 } 1556 1557 error = xfs_check_agi_freecount(cur, agi); 1558 if (error) 1559 goto error0; 1560 1561 *orec = rec; 1562 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1563 return 0; 1564 1565 error0: 1566 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1567 return error; 1568 } 1569 1570 /* 1571 * Free an inode in the free inode btree. 1572 */ 1573 STATIC int 1574 xfs_difree_finobt( 1575 struct xfs_mount *mp, 1576 struct xfs_trans *tp, 1577 struct xfs_buf *agbp, 1578 xfs_agino_t agino, 1579 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 1580 { 1581 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1582 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1583 struct xfs_btree_cur *cur; 1584 struct xfs_inobt_rec_incore rec; 1585 int offset = agino - ibtrec->ir_startino; 1586 int error; 1587 int i; 1588 1589 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1590 1591 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 1592 if (error) 1593 goto error; 1594 if (i == 0) { 1595 /* 1596 * If the record does not exist in the finobt, we must have just 1597 * freed an inode in a previously fully allocated chunk. If not, 1598 * something is out of sync. 1599 */ 1600 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error); 1601 1602 error = xfs_inobt_insert_rec(cur, ibtrec->ir_freecount, 1603 ibtrec->ir_free, &i); 1604 if (error) 1605 goto error; 1606 ASSERT(i == 1); 1607 1608 goto out; 1609 } 1610 1611 /* 1612 * Read and update the existing record. We could just copy the ibtrec 1613 * across here, but that would defeat the purpose of having redundant 1614 * metadata. By making the modifications independently, we can catch 1615 * corruptions that we wouldn't see if we just copied from one record 1616 * to another. 1617 */ 1618 error = xfs_inobt_get_rec(cur, &rec, &i); 1619 if (error) 1620 goto error; 1621 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 1622 1623 rec.ir_free |= XFS_INOBT_MASK(offset); 1624 rec.ir_freecount++; 1625 1626 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) && 1627 (rec.ir_freecount == ibtrec->ir_freecount), 1628 error); 1629 1630 /* 1631 * The content of inobt records should always match between the inobt 1632 * and finobt. The lifecycle of records in the finobt is different from 1633 * the inobt in that the finobt only tracks records with at least one 1634 * free inode. Hence, if all of the inodes are free and we aren't 1635 * keeping inode chunks permanently on disk, remove the record. 1636 * Otherwise, update the record with the new information. 1637 */ 1638 if (rec.ir_freecount == mp->m_ialloc_inos && 1639 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 1640 error = xfs_btree_delete(cur, &i); 1641 if (error) 1642 goto error; 1643 ASSERT(i == 1); 1644 } else { 1645 error = xfs_inobt_update(cur, &rec); 1646 if (error) 1647 goto error; 1648 } 1649 1650 out: 1651 error = xfs_check_agi_freecount(cur, agi); 1652 if (error) 1653 goto error; 1654 1655 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1656 return 0; 1657 1658 error: 1659 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1660 return error; 1661 } 1662 1663 /* 1664 * Free disk inode. Carefully avoids touching the incore inode, all 1665 * manipulations incore are the caller's responsibility. 1666 * The on-disk inode is not changed by this operation, only the 1667 * btree (free inode mask) is changed. 1668 */ 1669 int 1670 xfs_difree( 1671 struct xfs_trans *tp, /* transaction pointer */ 1672 xfs_ino_t inode, /* inode to be freed */ 1673 struct xfs_bmap_free *flist, /* extents to free */ 1674 int *deleted,/* set if inode cluster was deleted */ 1675 xfs_ino_t *first_ino)/* first inode in deleted cluster */ 1676 { 1677 /* REFERENCED */ 1678 xfs_agblock_t agbno; /* block number containing inode */ 1679 struct xfs_buf *agbp; /* buffer for allocation group header */ 1680 xfs_agino_t agino; /* allocation group inode number */ 1681 xfs_agnumber_t agno; /* allocation group number */ 1682 int error; /* error return value */ 1683 struct xfs_mount *mp; /* mount structure for filesystem */ 1684 struct xfs_inobt_rec_incore rec;/* btree record */ 1685 1686 mp = tp->t_mountp; 1687 1688 /* 1689 * Break up inode number into its components. 1690 */ 1691 agno = XFS_INO_TO_AGNO(mp, inode); 1692 if (agno >= mp->m_sb.sb_agcount) { 1693 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", 1694 __func__, agno, mp->m_sb.sb_agcount); 1695 ASSERT(0); 1696 return -EINVAL; 1697 } 1698 agino = XFS_INO_TO_AGINO(mp, inode); 1699 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { 1700 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 1701 __func__, (unsigned long long)inode, 1702 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); 1703 ASSERT(0); 1704 return -EINVAL; 1705 } 1706 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 1707 if (agbno >= mp->m_sb.sb_agblocks) { 1708 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 1709 __func__, agbno, mp->m_sb.sb_agblocks); 1710 ASSERT(0); 1711 return -EINVAL; 1712 } 1713 /* 1714 * Get the allocation group header. 1715 */ 1716 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1717 if (error) { 1718 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 1719 __func__, error); 1720 return error; 1721 } 1722 1723 /* 1724 * Fix up the inode allocation btree. 1725 */ 1726 error = xfs_difree_inobt(mp, tp, agbp, agino, flist, deleted, first_ino, 1727 &rec); 1728 if (error) 1729 goto error0; 1730 1731 /* 1732 * Fix up the free inode btree. 1733 */ 1734 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 1735 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); 1736 if (error) 1737 goto error0; 1738 } 1739 1740 return 0; 1741 1742 error0: 1743 return error; 1744 } 1745 1746 STATIC int 1747 xfs_imap_lookup( 1748 struct xfs_mount *mp, 1749 struct xfs_trans *tp, 1750 xfs_agnumber_t agno, 1751 xfs_agino_t agino, 1752 xfs_agblock_t agbno, 1753 xfs_agblock_t *chunk_agbno, 1754 xfs_agblock_t *offset_agbno, 1755 int flags) 1756 { 1757 struct xfs_inobt_rec_incore rec; 1758 struct xfs_btree_cur *cur; 1759 struct xfs_buf *agbp; 1760 int error; 1761 int i; 1762 1763 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1764 if (error) { 1765 xfs_alert(mp, 1766 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 1767 __func__, error, agno); 1768 return error; 1769 } 1770 1771 /* 1772 * Lookup the inode record for the given agino. If the record cannot be 1773 * found, then it's an invalid inode number and we should abort. Once 1774 * we have a record, we need to ensure it contains the inode number 1775 * we are looking up. 1776 */ 1777 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1778 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 1779 if (!error) { 1780 if (i) 1781 error = xfs_inobt_get_rec(cur, &rec, &i); 1782 if (!error && i == 0) 1783 error = -EINVAL; 1784 } 1785 1786 xfs_trans_brelse(tp, agbp); 1787 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1788 if (error) 1789 return error; 1790 1791 /* check that the returned record contains the required inode */ 1792 if (rec.ir_startino > agino || 1793 rec.ir_startino + mp->m_ialloc_inos <= agino) 1794 return -EINVAL; 1795 1796 /* for untrusted inodes check it is allocated first */ 1797 if ((flags & XFS_IGET_UNTRUSTED) && 1798 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 1799 return -EINVAL; 1800 1801 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 1802 *offset_agbno = agbno - *chunk_agbno; 1803 return 0; 1804 } 1805 1806 /* 1807 * Return the location of the inode in imap, for mapping it into a buffer. 1808 */ 1809 int 1810 xfs_imap( 1811 xfs_mount_t *mp, /* file system mount structure */ 1812 xfs_trans_t *tp, /* transaction pointer */ 1813 xfs_ino_t ino, /* inode to locate */ 1814 struct xfs_imap *imap, /* location map structure */ 1815 uint flags) /* flags for inode btree lookup */ 1816 { 1817 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 1818 xfs_agino_t agino; /* inode number within alloc group */ 1819 xfs_agnumber_t agno; /* allocation group number */ 1820 int blks_per_cluster; /* num blocks per inode cluster */ 1821 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 1822 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 1823 int error; /* error code */ 1824 int offset; /* index of inode in its buffer */ 1825 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 1826 1827 ASSERT(ino != NULLFSINO); 1828 1829 /* 1830 * Split up the inode number into its parts. 1831 */ 1832 agno = XFS_INO_TO_AGNO(mp, ino); 1833 agino = XFS_INO_TO_AGINO(mp, ino); 1834 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 1835 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || 1836 ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 1837 #ifdef DEBUG 1838 /* 1839 * Don't output diagnostic information for untrusted inodes 1840 * as they can be invalid without implying corruption. 1841 */ 1842 if (flags & XFS_IGET_UNTRUSTED) 1843 return -EINVAL; 1844 if (agno >= mp->m_sb.sb_agcount) { 1845 xfs_alert(mp, 1846 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", 1847 __func__, agno, mp->m_sb.sb_agcount); 1848 } 1849 if (agbno >= mp->m_sb.sb_agblocks) { 1850 xfs_alert(mp, 1851 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 1852 __func__, (unsigned long long)agbno, 1853 (unsigned long)mp->m_sb.sb_agblocks); 1854 } 1855 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 1856 xfs_alert(mp, 1857 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 1858 __func__, ino, 1859 XFS_AGINO_TO_INO(mp, agno, agino)); 1860 } 1861 xfs_stack_trace(); 1862 #endif /* DEBUG */ 1863 return -EINVAL; 1864 } 1865 1866 blks_per_cluster = xfs_icluster_size_fsb(mp); 1867 1868 /* 1869 * For bulkstat and handle lookups, we have an untrusted inode number 1870 * that we have to verify is valid. We cannot do this just by reading 1871 * the inode buffer as it may have been unlinked and removed leaving 1872 * inodes in stale state on disk. Hence we have to do a btree lookup 1873 * in all cases where an untrusted inode number is passed. 1874 */ 1875 if (flags & XFS_IGET_UNTRUSTED) { 1876 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 1877 &chunk_agbno, &offset_agbno, flags); 1878 if (error) 1879 return error; 1880 goto out_map; 1881 } 1882 1883 /* 1884 * If the inode cluster size is the same as the blocksize or 1885 * smaller we get to the buffer by simple arithmetics. 1886 */ 1887 if (blks_per_cluster == 1) { 1888 offset = XFS_INO_TO_OFFSET(mp, ino); 1889 ASSERT(offset < mp->m_sb.sb_inopblock); 1890 1891 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); 1892 imap->im_len = XFS_FSB_TO_BB(mp, 1); 1893 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog); 1894 return 0; 1895 } 1896 1897 /* 1898 * If the inode chunks are aligned then use simple maths to 1899 * find the location. Otherwise we have to do a btree 1900 * lookup to find the location. 1901 */ 1902 if (mp->m_inoalign_mask) { 1903 offset_agbno = agbno & mp->m_inoalign_mask; 1904 chunk_agbno = agbno - offset_agbno; 1905 } else { 1906 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 1907 &chunk_agbno, &offset_agbno, flags); 1908 if (error) 1909 return error; 1910 } 1911 1912 out_map: 1913 ASSERT(agbno >= chunk_agbno); 1914 cluster_agbno = chunk_agbno + 1915 ((offset_agbno / blks_per_cluster) * blks_per_cluster); 1916 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 1917 XFS_INO_TO_OFFSET(mp, ino); 1918 1919 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); 1920 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster); 1921 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog); 1922 1923 /* 1924 * If the inode number maps to a block outside the bounds 1925 * of the file system then return NULL rather than calling 1926 * read_buf and panicing when we get an error from the 1927 * driver. 1928 */ 1929 if ((imap->im_blkno + imap->im_len) > 1930 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 1931 xfs_alert(mp, 1932 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 1933 __func__, (unsigned long long) imap->im_blkno, 1934 (unsigned long long) imap->im_len, 1935 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 1936 return -EINVAL; 1937 } 1938 return 0; 1939 } 1940 1941 /* 1942 * Compute and fill in value of m_in_maxlevels. 1943 */ 1944 void 1945 xfs_ialloc_compute_maxlevels( 1946 xfs_mount_t *mp) /* file system mount structure */ 1947 { 1948 int level; 1949 uint maxblocks; 1950 uint maxleafents; 1951 int minleafrecs; 1952 int minnoderecs; 1953 1954 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >> 1955 XFS_INODES_PER_CHUNK_LOG; 1956 minleafrecs = mp->m_alloc_mnr[0]; 1957 minnoderecs = mp->m_alloc_mnr[1]; 1958 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs; 1959 for (level = 1; maxblocks > 1; level++) 1960 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs; 1961 mp->m_in_maxlevels = level; 1962 } 1963 1964 /* 1965 * Log specified fields for the ag hdr (inode section). The growth of the agi 1966 * structure over time requires that we interpret the buffer as two logical 1967 * regions delineated by the end of the unlinked list. This is due to the size 1968 * of the hash table and its location in the middle of the agi. 1969 * 1970 * For example, a request to log a field before agi_unlinked and a field after 1971 * agi_unlinked could cause us to log the entire hash table and use an excessive 1972 * amount of log space. To avoid this behavior, log the region up through 1973 * agi_unlinked in one call and the region after agi_unlinked through the end of 1974 * the structure in another. 1975 */ 1976 void 1977 xfs_ialloc_log_agi( 1978 xfs_trans_t *tp, /* transaction pointer */ 1979 xfs_buf_t *bp, /* allocation group header buffer */ 1980 int fields) /* bitmask of fields to log */ 1981 { 1982 int first; /* first byte number */ 1983 int last; /* last byte number */ 1984 static const short offsets[] = { /* field starting offsets */ 1985 /* keep in sync with bit definitions */ 1986 offsetof(xfs_agi_t, agi_magicnum), 1987 offsetof(xfs_agi_t, agi_versionnum), 1988 offsetof(xfs_agi_t, agi_seqno), 1989 offsetof(xfs_agi_t, agi_length), 1990 offsetof(xfs_agi_t, agi_count), 1991 offsetof(xfs_agi_t, agi_root), 1992 offsetof(xfs_agi_t, agi_level), 1993 offsetof(xfs_agi_t, agi_freecount), 1994 offsetof(xfs_agi_t, agi_newino), 1995 offsetof(xfs_agi_t, agi_dirino), 1996 offsetof(xfs_agi_t, agi_unlinked), 1997 offsetof(xfs_agi_t, agi_free_root), 1998 offsetof(xfs_agi_t, agi_free_level), 1999 sizeof(xfs_agi_t) 2000 }; 2001 #ifdef DEBUG 2002 xfs_agi_t *agi; /* allocation group header */ 2003 2004 agi = XFS_BUF_TO_AGI(bp); 2005 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2006 #endif 2007 2008 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF); 2009 2010 /* 2011 * Compute byte offsets for the first and last fields in the first 2012 * region and log the agi buffer. This only logs up through 2013 * agi_unlinked. 2014 */ 2015 if (fields & XFS_AGI_ALL_BITS_R1) { 2016 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2017 &first, &last); 2018 xfs_trans_log_buf(tp, bp, first, last); 2019 } 2020 2021 /* 2022 * Mask off the bits in the first region and calculate the first and 2023 * last field offsets for any bits in the second region. 2024 */ 2025 fields &= ~XFS_AGI_ALL_BITS_R1; 2026 if (fields) { 2027 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2028 &first, &last); 2029 xfs_trans_log_buf(tp, bp, first, last); 2030 } 2031 } 2032 2033 #ifdef DEBUG 2034 STATIC void 2035 xfs_check_agi_unlinked( 2036 struct xfs_agi *agi) 2037 { 2038 int i; 2039 2040 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) 2041 ASSERT(agi->agi_unlinked[i]); 2042 } 2043 #else 2044 #define xfs_check_agi_unlinked(agi) 2045 #endif 2046 2047 static bool 2048 xfs_agi_verify( 2049 struct xfs_buf *bp) 2050 { 2051 struct xfs_mount *mp = bp->b_target->bt_mount; 2052 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); 2053 2054 if (xfs_sb_version_hascrc(&mp->m_sb) && 2055 !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid)) 2056 return false; 2057 /* 2058 * Validate the magic number of the agi block. 2059 */ 2060 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC)) 2061 return false; 2062 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2063 return false; 2064 2065 if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS) 2066 return false; 2067 /* 2068 * during growfs operations, the perag is not fully initialised, 2069 * so we can't use it for any useful checking. growfs ensures we can't 2070 * use it by using uncached buffers that don't have the perag attached 2071 * so we can detect and avoid this problem. 2072 */ 2073 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) 2074 return false; 2075 2076 xfs_check_agi_unlinked(agi); 2077 return true; 2078 } 2079 2080 static void 2081 xfs_agi_read_verify( 2082 struct xfs_buf *bp) 2083 { 2084 struct xfs_mount *mp = bp->b_target->bt_mount; 2085 2086 if (xfs_sb_version_hascrc(&mp->m_sb) && 2087 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2088 xfs_buf_ioerror(bp, -EFSBADCRC); 2089 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp, 2090 XFS_ERRTAG_IALLOC_READ_AGI, 2091 XFS_RANDOM_IALLOC_READ_AGI)) 2092 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2093 2094 if (bp->b_error) 2095 xfs_verifier_error(bp); 2096 } 2097 2098 static void 2099 xfs_agi_write_verify( 2100 struct xfs_buf *bp) 2101 { 2102 struct xfs_mount *mp = bp->b_target->bt_mount; 2103 struct xfs_buf_log_item *bip = bp->b_fspriv; 2104 2105 if (!xfs_agi_verify(bp)) { 2106 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2107 xfs_verifier_error(bp); 2108 return; 2109 } 2110 2111 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2112 return; 2113 2114 if (bip) 2115 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2116 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2117 } 2118 2119 const struct xfs_buf_ops xfs_agi_buf_ops = { 2120 .verify_read = xfs_agi_read_verify, 2121 .verify_write = xfs_agi_write_verify, 2122 }; 2123 2124 /* 2125 * Read in the allocation group header (inode allocation section) 2126 */ 2127 int 2128 xfs_read_agi( 2129 struct xfs_mount *mp, /* file system mount structure */ 2130 struct xfs_trans *tp, /* transaction pointer */ 2131 xfs_agnumber_t agno, /* allocation group number */ 2132 struct xfs_buf **bpp) /* allocation group hdr buf */ 2133 { 2134 int error; 2135 2136 trace_xfs_read_agi(mp, agno); 2137 2138 ASSERT(agno != NULLAGNUMBER); 2139 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2140 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 2141 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); 2142 if (error) 2143 return error; 2144 2145 xfs_buf_set_ref(*bpp, XFS_AGI_REF); 2146 return 0; 2147 } 2148 2149 int 2150 xfs_ialloc_read_agi( 2151 struct xfs_mount *mp, /* file system mount structure */ 2152 struct xfs_trans *tp, /* transaction pointer */ 2153 xfs_agnumber_t agno, /* allocation group number */ 2154 struct xfs_buf **bpp) /* allocation group hdr buf */ 2155 { 2156 struct xfs_agi *agi; /* allocation group header */ 2157 struct xfs_perag *pag; /* per allocation group data */ 2158 int error; 2159 2160 trace_xfs_ialloc_read_agi(mp, agno); 2161 2162 error = xfs_read_agi(mp, tp, agno, bpp); 2163 if (error) 2164 return error; 2165 2166 agi = XFS_BUF_TO_AGI(*bpp); 2167 pag = xfs_perag_get(mp, agno); 2168 if (!pag->pagi_init) { 2169 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2170 pag->pagi_count = be32_to_cpu(agi->agi_count); 2171 pag->pagi_init = 1; 2172 } 2173 2174 /* 2175 * It's possible for these to be out of sync if 2176 * we are in the middle of a forced shutdown. 2177 */ 2178 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2179 XFS_FORCED_SHUTDOWN(mp)); 2180 xfs_perag_put(pag); 2181 return 0; 2182 } 2183 2184 /* 2185 * Read in the agi to initialise the per-ag data in the mount structure 2186 */ 2187 int 2188 xfs_ialloc_pagi_init( 2189 xfs_mount_t *mp, /* file system mount structure */ 2190 xfs_trans_t *tp, /* transaction pointer */ 2191 xfs_agnumber_t agno) /* allocation group number */ 2192 { 2193 xfs_buf_t *bp = NULL; 2194 int error; 2195 2196 error = xfs_ialloc_read_agi(mp, tp, agno, &bp); 2197 if (error) 2198 return error; 2199 if (bp) 2200 xfs_trans_brelse(tp, bp); 2201 return 0; 2202 } 2203