1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_btree.h" 16 #include "xfs_ialloc.h" 17 #include "xfs_ialloc_btree.h" 18 #include "xfs_alloc.h" 19 #include "xfs_errortag.h" 20 #include "xfs_error.h" 21 #include "xfs_bmap.h" 22 #include "xfs_trans.h" 23 #include "xfs_buf_item.h" 24 #include "xfs_icreate_item.h" 25 #include "xfs_icache.h" 26 #include "xfs_trace.h" 27 #include "xfs_log.h" 28 #include "xfs_rmap.h" 29 #include "xfs_ag.h" 30 31 /* 32 * Lookup a record by ino in the btree given by cur. 33 */ 34 int /* error */ 35 xfs_inobt_lookup( 36 struct xfs_btree_cur *cur, /* btree cursor */ 37 xfs_agino_t ino, /* starting inode of chunk */ 38 xfs_lookup_t dir, /* <=, >=, == */ 39 int *stat) /* success/failure */ 40 { 41 cur->bc_rec.i.ir_startino = ino; 42 cur->bc_rec.i.ir_holemask = 0; 43 cur->bc_rec.i.ir_count = 0; 44 cur->bc_rec.i.ir_freecount = 0; 45 cur->bc_rec.i.ir_free = 0; 46 return xfs_btree_lookup(cur, dir, stat); 47 } 48 49 /* 50 * Update the record referred to by cur to the value given. 51 * This either works (return 0) or gets an EFSCORRUPTED error. 52 */ 53 STATIC int /* error */ 54 xfs_inobt_update( 55 struct xfs_btree_cur *cur, /* btree cursor */ 56 xfs_inobt_rec_incore_t *irec) /* btree record */ 57 { 58 union xfs_btree_rec rec; 59 60 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 61 if (xfs_has_sparseinodes(cur->bc_mp)) { 62 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); 63 rec.inobt.ir_u.sp.ir_count = irec->ir_count; 64 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; 65 } else { 66 /* ir_holemask/ir_count not supported on-disk */ 67 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); 68 } 69 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 70 return xfs_btree_update(cur, &rec); 71 } 72 73 /* Convert on-disk btree record to incore inobt record. */ 74 void 75 xfs_inobt_btrec_to_irec( 76 struct xfs_mount *mp, 77 const union xfs_btree_rec *rec, 78 struct xfs_inobt_rec_incore *irec) 79 { 80 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 81 if (xfs_has_sparseinodes(mp)) { 82 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); 83 irec->ir_count = rec->inobt.ir_u.sp.ir_count; 84 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; 85 } else { 86 /* 87 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded 88 * values for full inode chunks. 89 */ 90 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; 91 irec->ir_count = XFS_INODES_PER_CHUNK; 92 irec->ir_freecount = 93 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); 94 } 95 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 96 } 97 98 /* 99 * Get the data from the pointed-to record. 100 */ 101 int 102 xfs_inobt_get_rec( 103 struct xfs_btree_cur *cur, 104 struct xfs_inobt_rec_incore *irec, 105 int *stat) 106 { 107 struct xfs_mount *mp = cur->bc_mp; 108 xfs_agnumber_t agno = cur->bc_ag.pag->pag_agno; 109 union xfs_btree_rec *rec; 110 int error; 111 uint64_t realfree; 112 113 error = xfs_btree_get_rec(cur, &rec, stat); 114 if (error || *stat == 0) 115 return error; 116 117 xfs_inobt_btrec_to_irec(mp, rec, irec); 118 119 if (!xfs_verify_agino(mp, agno, irec->ir_startino)) 120 goto out_bad_rec; 121 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT || 122 irec->ir_count > XFS_INODES_PER_CHUNK) 123 goto out_bad_rec; 124 if (irec->ir_freecount > XFS_INODES_PER_CHUNK) 125 goto out_bad_rec; 126 127 /* if there are no holes, return the first available offset */ 128 if (!xfs_inobt_issparse(irec->ir_holemask)) 129 realfree = irec->ir_free; 130 else 131 realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec); 132 if (hweight64(realfree) != irec->ir_freecount) 133 goto out_bad_rec; 134 135 return 0; 136 137 out_bad_rec: 138 xfs_warn(mp, 139 "%s Inode BTree record corruption in AG %d detected!", 140 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno); 141 xfs_warn(mp, 142 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x", 143 irec->ir_startino, irec->ir_count, irec->ir_freecount, 144 irec->ir_free, irec->ir_holemask); 145 return -EFSCORRUPTED; 146 } 147 148 /* 149 * Insert a single inobt record. Cursor must already point to desired location. 150 */ 151 int 152 xfs_inobt_insert_rec( 153 struct xfs_btree_cur *cur, 154 uint16_t holemask, 155 uint8_t count, 156 int32_t freecount, 157 xfs_inofree_t free, 158 int *stat) 159 { 160 cur->bc_rec.i.ir_holemask = holemask; 161 cur->bc_rec.i.ir_count = count; 162 cur->bc_rec.i.ir_freecount = freecount; 163 cur->bc_rec.i.ir_free = free; 164 return xfs_btree_insert(cur, stat); 165 } 166 167 /* 168 * Insert records describing a newly allocated inode chunk into the inobt. 169 */ 170 STATIC int 171 xfs_inobt_insert( 172 struct xfs_mount *mp, 173 struct xfs_trans *tp, 174 struct xfs_buf *agbp, 175 struct xfs_perag *pag, 176 xfs_agino_t newino, 177 xfs_agino_t newlen, 178 xfs_btnum_t btnum) 179 { 180 struct xfs_btree_cur *cur; 181 xfs_agino_t thisino; 182 int i; 183 int error; 184 185 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum); 186 187 for (thisino = newino; 188 thisino < newino + newlen; 189 thisino += XFS_INODES_PER_CHUNK) { 190 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 191 if (error) { 192 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 193 return error; 194 } 195 ASSERT(i == 0); 196 197 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, 198 XFS_INODES_PER_CHUNK, 199 XFS_INODES_PER_CHUNK, 200 XFS_INOBT_ALL_FREE, &i); 201 if (error) { 202 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 203 return error; 204 } 205 ASSERT(i == 1); 206 } 207 208 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 209 210 return 0; 211 } 212 213 /* 214 * Verify that the number of free inodes in the AGI is correct. 215 */ 216 #ifdef DEBUG 217 static int 218 xfs_check_agi_freecount( 219 struct xfs_btree_cur *cur) 220 { 221 if (cur->bc_nlevels == 1) { 222 xfs_inobt_rec_incore_t rec; 223 int freecount = 0; 224 int error; 225 int i; 226 227 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 228 if (error) 229 return error; 230 231 do { 232 error = xfs_inobt_get_rec(cur, &rec, &i); 233 if (error) 234 return error; 235 236 if (i) { 237 freecount += rec.ir_freecount; 238 error = xfs_btree_increment(cur, 0, &i); 239 if (error) 240 return error; 241 } 242 } while (i == 1); 243 244 if (!xfs_is_shutdown(cur->bc_mp)) 245 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount); 246 } 247 return 0; 248 } 249 #else 250 #define xfs_check_agi_freecount(cur) 0 251 #endif 252 253 /* 254 * Initialise a new set of inodes. When called without a transaction context 255 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 256 * than logging them (which in a transaction context puts them into the AIL 257 * for writeback rather than the xfsbufd queue). 258 */ 259 int 260 xfs_ialloc_inode_init( 261 struct xfs_mount *mp, 262 struct xfs_trans *tp, 263 struct list_head *buffer_list, 264 int icount, 265 xfs_agnumber_t agno, 266 xfs_agblock_t agbno, 267 xfs_agblock_t length, 268 unsigned int gen) 269 { 270 struct xfs_buf *fbuf; 271 struct xfs_dinode *free; 272 int nbufs; 273 int version; 274 int i, j; 275 xfs_daddr_t d; 276 xfs_ino_t ino = 0; 277 int error; 278 279 /* 280 * Loop over the new block(s), filling in the inodes. For small block 281 * sizes, manipulate the inodes in buffers which are multiples of the 282 * blocks size. 283 */ 284 nbufs = length / M_IGEO(mp)->blocks_per_cluster; 285 286 /* 287 * Figure out what version number to use in the inodes we create. If 288 * the superblock version has caught up to the one that supports the new 289 * inode format, then use the new inode version. Otherwise use the old 290 * version so that old kernels will continue to be able to use the file 291 * system. 292 * 293 * For v3 inodes, we also need to write the inode number into the inode, 294 * so calculate the first inode number of the chunk here as 295 * XFS_AGB_TO_AGINO() only works within a filesystem block, not 296 * across multiple filesystem blocks (such as a cluster) and so cannot 297 * be used in the cluster buffer loop below. 298 * 299 * Further, because we are writing the inode directly into the buffer 300 * and calculating a CRC on the entire inode, we have ot log the entire 301 * inode so that the entire range the CRC covers is present in the log. 302 * That means for v3 inode we log the entire buffer rather than just the 303 * inode cores. 304 */ 305 if (xfs_has_v3inodes(mp)) { 306 version = 3; 307 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno)); 308 309 /* 310 * log the initialisation that is about to take place as an 311 * logical operation. This means the transaction does not 312 * need to log the physical changes to the inode buffers as log 313 * recovery will know what initialisation is actually needed. 314 * Hence we only need to log the buffers as "ordered" buffers so 315 * they track in the AIL as if they were physically logged. 316 */ 317 if (tp) 318 xfs_icreate_log(tp, agno, agbno, icount, 319 mp->m_sb.sb_inodesize, length, gen); 320 } else 321 version = 2; 322 323 for (j = 0; j < nbufs; j++) { 324 /* 325 * Get the block. 326 */ 327 d = XFS_AGB_TO_DADDR(mp, agno, agbno + 328 (j * M_IGEO(mp)->blocks_per_cluster)); 329 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 330 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster, 331 XBF_UNMAPPED, &fbuf); 332 if (error) 333 return error; 334 335 /* Initialize the inode buffers and log them appropriately. */ 336 fbuf->b_ops = &xfs_inode_buf_ops; 337 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 338 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) { 339 int ioffset = i << mp->m_sb.sb_inodelog; 340 341 free = xfs_make_iptr(mp, fbuf, i); 342 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 343 free->di_version = version; 344 free->di_gen = cpu_to_be32(gen); 345 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 346 347 if (version == 3) { 348 free->di_ino = cpu_to_be64(ino); 349 ino++; 350 uuid_copy(&free->di_uuid, 351 &mp->m_sb.sb_meta_uuid); 352 xfs_dinode_calc_crc(mp, free); 353 } else if (tp) { 354 /* just log the inode core */ 355 xfs_trans_log_buf(tp, fbuf, ioffset, 356 ioffset + XFS_DINODE_SIZE(mp) - 1); 357 } 358 } 359 360 if (tp) { 361 /* 362 * Mark the buffer as an inode allocation buffer so it 363 * sticks in AIL at the point of this allocation 364 * transaction. This ensures the they are on disk before 365 * the tail of the log can be moved past this 366 * transaction (i.e. by preventing relogging from moving 367 * it forward in the log). 368 */ 369 xfs_trans_inode_alloc_buf(tp, fbuf); 370 if (version == 3) { 371 /* 372 * Mark the buffer as ordered so that they are 373 * not physically logged in the transaction but 374 * still tracked in the AIL as part of the 375 * transaction and pin the log appropriately. 376 */ 377 xfs_trans_ordered_buf(tp, fbuf); 378 } 379 } else { 380 fbuf->b_flags |= XBF_DONE; 381 xfs_buf_delwri_queue(fbuf, buffer_list); 382 xfs_buf_relse(fbuf); 383 } 384 } 385 return 0; 386 } 387 388 /* 389 * Align startino and allocmask for a recently allocated sparse chunk such that 390 * they are fit for insertion (or merge) into the on-disk inode btrees. 391 * 392 * Background: 393 * 394 * When enabled, sparse inode support increases the inode alignment from cluster 395 * size to inode chunk size. This means that the minimum range between two 396 * non-adjacent inode records in the inobt is large enough for a full inode 397 * record. This allows for cluster sized, cluster aligned block allocation 398 * without need to worry about whether the resulting inode record overlaps with 399 * another record in the tree. Without this basic rule, we would have to deal 400 * with the consequences of overlap by potentially undoing recent allocations in 401 * the inode allocation codepath. 402 * 403 * Because of this alignment rule (which is enforced on mount), there are two 404 * inobt possibilities for newly allocated sparse chunks. One is that the 405 * aligned inode record for the chunk covers a range of inodes not already 406 * covered in the inobt (i.e., it is safe to insert a new sparse record). The 407 * other is that a record already exists at the aligned startino that considers 408 * the newly allocated range as sparse. In the latter case, record content is 409 * merged in hope that sparse inode chunks fill to full chunks over time. 410 */ 411 STATIC void 412 xfs_align_sparse_ino( 413 struct xfs_mount *mp, 414 xfs_agino_t *startino, 415 uint16_t *allocmask) 416 { 417 xfs_agblock_t agbno; 418 xfs_agblock_t mod; 419 int offset; 420 421 agbno = XFS_AGINO_TO_AGBNO(mp, *startino); 422 mod = agbno % mp->m_sb.sb_inoalignmt; 423 if (!mod) 424 return; 425 426 /* calculate the inode offset and align startino */ 427 offset = XFS_AGB_TO_AGINO(mp, mod); 428 *startino -= offset; 429 430 /* 431 * Since startino has been aligned down, left shift allocmask such that 432 * it continues to represent the same physical inodes relative to the 433 * new startino. 434 */ 435 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; 436 } 437 438 /* 439 * Determine whether the source inode record can merge into the target. Both 440 * records must be sparse, the inode ranges must match and there must be no 441 * allocation overlap between the records. 442 */ 443 STATIC bool 444 __xfs_inobt_can_merge( 445 struct xfs_inobt_rec_incore *trec, /* tgt record */ 446 struct xfs_inobt_rec_incore *srec) /* src record */ 447 { 448 uint64_t talloc; 449 uint64_t salloc; 450 451 /* records must cover the same inode range */ 452 if (trec->ir_startino != srec->ir_startino) 453 return false; 454 455 /* both records must be sparse */ 456 if (!xfs_inobt_issparse(trec->ir_holemask) || 457 !xfs_inobt_issparse(srec->ir_holemask)) 458 return false; 459 460 /* both records must track some inodes */ 461 if (!trec->ir_count || !srec->ir_count) 462 return false; 463 464 /* can't exceed capacity of a full record */ 465 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) 466 return false; 467 468 /* verify there is no allocation overlap */ 469 talloc = xfs_inobt_irec_to_allocmask(trec); 470 salloc = xfs_inobt_irec_to_allocmask(srec); 471 if (talloc & salloc) 472 return false; 473 474 return true; 475 } 476 477 /* 478 * Merge the source inode record into the target. The caller must call 479 * __xfs_inobt_can_merge() to ensure the merge is valid. 480 */ 481 STATIC void 482 __xfs_inobt_rec_merge( 483 struct xfs_inobt_rec_incore *trec, /* target */ 484 struct xfs_inobt_rec_incore *srec) /* src */ 485 { 486 ASSERT(trec->ir_startino == srec->ir_startino); 487 488 /* combine the counts */ 489 trec->ir_count += srec->ir_count; 490 trec->ir_freecount += srec->ir_freecount; 491 492 /* 493 * Merge the holemask and free mask. For both fields, 0 bits refer to 494 * allocated inodes. We combine the allocated ranges with bitwise AND. 495 */ 496 trec->ir_holemask &= srec->ir_holemask; 497 trec->ir_free &= srec->ir_free; 498 } 499 500 /* 501 * Insert a new sparse inode chunk into the associated inode btree. The inode 502 * record for the sparse chunk is pre-aligned to a startino that should match 503 * any pre-existing sparse inode record in the tree. This allows sparse chunks 504 * to fill over time. 505 * 506 * This function supports two modes of handling preexisting records depending on 507 * the merge flag. If merge is true, the provided record is merged with the 508 * existing record and updated in place. The merged record is returned in nrec. 509 * If merge is false, an existing record is replaced with the provided record. 510 * If no preexisting record exists, the provided record is always inserted. 511 * 512 * It is considered corruption if a merge is requested and not possible. Given 513 * the sparse inode alignment constraints, this should never happen. 514 */ 515 STATIC int 516 xfs_inobt_insert_sprec( 517 struct xfs_mount *mp, 518 struct xfs_trans *tp, 519 struct xfs_buf *agbp, 520 struct xfs_perag *pag, 521 int btnum, 522 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ 523 bool merge) /* merge or replace */ 524 { 525 struct xfs_btree_cur *cur; 526 int error; 527 int i; 528 struct xfs_inobt_rec_incore rec; 529 530 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum); 531 532 /* the new record is pre-aligned so we know where to look */ 533 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); 534 if (error) 535 goto error; 536 /* if nothing there, insert a new record and return */ 537 if (i == 0) { 538 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, 539 nrec->ir_count, nrec->ir_freecount, 540 nrec->ir_free, &i); 541 if (error) 542 goto error; 543 if (XFS_IS_CORRUPT(mp, i != 1)) { 544 error = -EFSCORRUPTED; 545 goto error; 546 } 547 548 goto out; 549 } 550 551 /* 552 * A record exists at this startino. Merge or replace the record 553 * depending on what we've been asked to do. 554 */ 555 if (merge) { 556 error = xfs_inobt_get_rec(cur, &rec, &i); 557 if (error) 558 goto error; 559 if (XFS_IS_CORRUPT(mp, i != 1)) { 560 error = -EFSCORRUPTED; 561 goto error; 562 } 563 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) { 564 error = -EFSCORRUPTED; 565 goto error; 566 } 567 568 /* 569 * This should never fail. If we have coexisting records that 570 * cannot merge, something is seriously wrong. 571 */ 572 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) { 573 error = -EFSCORRUPTED; 574 goto error; 575 } 576 577 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino, 578 rec.ir_holemask, nrec->ir_startino, 579 nrec->ir_holemask); 580 581 /* merge to nrec to output the updated record */ 582 __xfs_inobt_rec_merge(nrec, &rec); 583 584 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino, 585 nrec->ir_holemask); 586 587 error = xfs_inobt_rec_check_count(mp, nrec); 588 if (error) 589 goto error; 590 } 591 592 error = xfs_inobt_update(cur, nrec); 593 if (error) 594 goto error; 595 596 out: 597 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 598 return 0; 599 error: 600 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 601 return error; 602 } 603 604 /* 605 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if 606 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so 607 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum 608 * inode count threshold, or the usual negative error code for other errors. 609 */ 610 STATIC int 611 xfs_ialloc_ag_alloc( 612 struct xfs_trans *tp, 613 struct xfs_buf *agbp, 614 struct xfs_perag *pag) 615 { 616 struct xfs_agi *agi; 617 struct xfs_alloc_arg args; 618 int error; 619 xfs_agino_t newino; /* new first inode's number */ 620 xfs_agino_t newlen; /* new number of inodes */ 621 int isaligned = 0; /* inode allocation at stripe */ 622 /* unit boundary */ 623 /* init. to full chunk */ 624 struct xfs_inobt_rec_incore rec; 625 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp); 626 uint16_t allocmask = (uint16_t) -1; 627 int do_sparse = 0; 628 629 memset(&args, 0, sizeof(args)); 630 args.tp = tp; 631 args.mp = tp->t_mountp; 632 args.fsbno = NULLFSBLOCK; 633 args.oinfo = XFS_RMAP_OINFO_INODES; 634 635 #ifdef DEBUG 636 /* randomly do sparse inode allocations */ 637 if (xfs_has_sparseinodes(tp->t_mountp) && 638 igeo->ialloc_min_blks < igeo->ialloc_blks) 639 do_sparse = prandom_u32() & 1; 640 #endif 641 642 /* 643 * Locking will ensure that we don't have two callers in here 644 * at one time. 645 */ 646 newlen = igeo->ialloc_inos; 647 if (igeo->maxicount && 648 percpu_counter_read_positive(&args.mp->m_icount) + newlen > 649 igeo->maxicount) 650 return -ENOSPC; 651 args.minlen = args.maxlen = igeo->ialloc_blks; 652 /* 653 * First try to allocate inodes contiguous with the last-allocated 654 * chunk of inodes. If the filesystem is striped, this will fill 655 * an entire stripe unit with inodes. 656 */ 657 agi = agbp->b_addr; 658 newino = be32_to_cpu(agi->agi_newino); 659 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 660 igeo->ialloc_blks; 661 if (do_sparse) 662 goto sparse_alloc; 663 if (likely(newino != NULLAGINO && 664 (args.agbno < be32_to_cpu(agi->agi_length)))) { 665 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno); 666 args.type = XFS_ALLOCTYPE_THIS_BNO; 667 args.prod = 1; 668 669 /* 670 * We need to take into account alignment here to ensure that 671 * we don't modify the free list if we fail to have an exact 672 * block. If we don't have an exact match, and every oher 673 * attempt allocation attempt fails, we'll end up cancelling 674 * a dirty transaction and shutting down. 675 * 676 * For an exact allocation, alignment must be 1, 677 * however we need to take cluster alignment into account when 678 * fixing up the freelist. Use the minalignslop field to 679 * indicate that extra blocks might be required for alignment, 680 * but not to use them in the actual exact allocation. 681 */ 682 args.alignment = 1; 683 args.minalignslop = igeo->cluster_align - 1; 684 685 /* Allow space for the inode btree to split. */ 686 args.minleft = igeo->inobt_maxlevels; 687 if ((error = xfs_alloc_vextent(&args))) 688 return error; 689 690 /* 691 * This request might have dirtied the transaction if the AG can 692 * satisfy the request, but the exact block was not available. 693 * If the allocation did fail, subsequent requests will relax 694 * the exact agbno requirement and increase the alignment 695 * instead. It is critical that the total size of the request 696 * (len + alignment + slop) does not increase from this point 697 * on, so reset minalignslop to ensure it is not included in 698 * subsequent requests. 699 */ 700 args.minalignslop = 0; 701 } 702 703 if (unlikely(args.fsbno == NULLFSBLOCK)) { 704 /* 705 * Set the alignment for the allocation. 706 * If stripe alignment is turned on then align at stripe unit 707 * boundary. 708 * If the cluster size is smaller than a filesystem block 709 * then we're doing I/O for inodes in filesystem block size 710 * pieces, so don't need alignment anyway. 711 */ 712 isaligned = 0; 713 if (igeo->ialloc_align) { 714 ASSERT(!xfs_has_noalign(args.mp)); 715 args.alignment = args.mp->m_dalign; 716 isaligned = 1; 717 } else 718 args.alignment = igeo->cluster_align; 719 /* 720 * Need to figure out where to allocate the inode blocks. 721 * Ideally they should be spaced out through the a.g. 722 * For now, just allocate blocks up front. 723 */ 724 args.agbno = be32_to_cpu(agi->agi_root); 725 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno); 726 /* 727 * Allocate a fixed-size extent of inodes. 728 */ 729 args.type = XFS_ALLOCTYPE_NEAR_BNO; 730 args.prod = 1; 731 /* 732 * Allow space for the inode btree to split. 733 */ 734 args.minleft = igeo->inobt_maxlevels; 735 if ((error = xfs_alloc_vextent(&args))) 736 return error; 737 } 738 739 /* 740 * If stripe alignment is turned on, then try again with cluster 741 * alignment. 742 */ 743 if (isaligned && args.fsbno == NULLFSBLOCK) { 744 args.type = XFS_ALLOCTYPE_NEAR_BNO; 745 args.agbno = be32_to_cpu(agi->agi_root); 746 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno); 747 args.alignment = igeo->cluster_align; 748 if ((error = xfs_alloc_vextent(&args))) 749 return error; 750 } 751 752 /* 753 * Finally, try a sparse allocation if the filesystem supports it and 754 * the sparse allocation length is smaller than a full chunk. 755 */ 756 if (xfs_has_sparseinodes(args.mp) && 757 igeo->ialloc_min_blks < igeo->ialloc_blks && 758 args.fsbno == NULLFSBLOCK) { 759 sparse_alloc: 760 args.type = XFS_ALLOCTYPE_NEAR_BNO; 761 args.agbno = be32_to_cpu(agi->agi_root); 762 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno); 763 args.alignment = args.mp->m_sb.sb_spino_align; 764 args.prod = 1; 765 766 args.minlen = igeo->ialloc_min_blks; 767 args.maxlen = args.minlen; 768 769 /* 770 * The inode record will be aligned to full chunk size. We must 771 * prevent sparse allocation from AG boundaries that result in 772 * invalid inode records, such as records that start at agbno 0 773 * or extend beyond the AG. 774 * 775 * Set min agbno to the first aligned, non-zero agbno and max to 776 * the last aligned agbno that is at least one full chunk from 777 * the end of the AG. 778 */ 779 args.min_agbno = args.mp->m_sb.sb_inoalignmt; 780 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, 781 args.mp->m_sb.sb_inoalignmt) - 782 igeo->ialloc_blks; 783 784 error = xfs_alloc_vextent(&args); 785 if (error) 786 return error; 787 788 newlen = XFS_AGB_TO_AGINO(args.mp, args.len); 789 ASSERT(newlen <= XFS_INODES_PER_CHUNK); 790 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; 791 } 792 793 if (args.fsbno == NULLFSBLOCK) 794 return -EAGAIN; 795 796 ASSERT(args.len == args.minlen); 797 798 /* 799 * Stamp and write the inode buffers. 800 * 801 * Seed the new inode cluster with a random generation number. This 802 * prevents short-term reuse of generation numbers if a chunk is 803 * freed and then immediately reallocated. We use random numbers 804 * rather than a linear progression to prevent the next generation 805 * number from being easily guessable. 806 */ 807 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno, 808 args.agbno, args.len, prandom_u32()); 809 810 if (error) 811 return error; 812 /* 813 * Convert the results. 814 */ 815 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno); 816 817 if (xfs_inobt_issparse(~allocmask)) { 818 /* 819 * We've allocated a sparse chunk. Align the startino and mask. 820 */ 821 xfs_align_sparse_ino(args.mp, &newino, &allocmask); 822 823 rec.ir_startino = newino; 824 rec.ir_holemask = ~allocmask; 825 rec.ir_count = newlen; 826 rec.ir_freecount = newlen; 827 rec.ir_free = XFS_INOBT_ALL_FREE; 828 829 /* 830 * Insert the sparse record into the inobt and allow for a merge 831 * if necessary. If a merge does occur, rec is updated to the 832 * merged record. 833 */ 834 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag, 835 XFS_BTNUM_INO, &rec, true); 836 if (error == -EFSCORRUPTED) { 837 xfs_alert(args.mp, 838 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", 839 XFS_AGINO_TO_INO(args.mp, pag->pag_agno, 840 rec.ir_startino), 841 rec.ir_holemask, rec.ir_count); 842 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); 843 } 844 if (error) 845 return error; 846 847 /* 848 * We can't merge the part we've just allocated as for the inobt 849 * due to finobt semantics. The original record may or may not 850 * exist independent of whether physical inodes exist in this 851 * sparse chunk. 852 * 853 * We must update the finobt record based on the inobt record. 854 * rec contains the fully merged and up to date inobt record 855 * from the previous call. Set merge false to replace any 856 * existing record with this one. 857 */ 858 if (xfs_has_finobt(args.mp)) { 859 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag, 860 XFS_BTNUM_FINO, &rec, false); 861 if (error) 862 return error; 863 } 864 } else { 865 /* full chunk - insert new records to both btrees */ 866 error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino, newlen, 867 XFS_BTNUM_INO); 868 if (error) 869 return error; 870 871 if (xfs_has_finobt(args.mp)) { 872 error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino, 873 newlen, XFS_BTNUM_FINO); 874 if (error) 875 return error; 876 } 877 } 878 879 /* 880 * Update AGI counts and newino. 881 */ 882 be32_add_cpu(&agi->agi_count, newlen); 883 be32_add_cpu(&agi->agi_freecount, newlen); 884 pag->pagi_freecount += newlen; 885 pag->pagi_count += newlen; 886 agi->agi_newino = cpu_to_be32(newino); 887 888 /* 889 * Log allocation group header fields 890 */ 891 xfs_ialloc_log_agi(tp, agbp, 892 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 893 /* 894 * Modify/log superblock values for inode count and inode free count. 895 */ 896 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 897 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 898 return 0; 899 } 900 901 /* 902 * Try to retrieve the next record to the left/right from the current one. 903 */ 904 STATIC int 905 xfs_ialloc_next_rec( 906 struct xfs_btree_cur *cur, 907 xfs_inobt_rec_incore_t *rec, 908 int *done, 909 int left) 910 { 911 int error; 912 int i; 913 914 if (left) 915 error = xfs_btree_decrement(cur, 0, &i); 916 else 917 error = xfs_btree_increment(cur, 0, &i); 918 919 if (error) 920 return error; 921 *done = !i; 922 if (i) { 923 error = xfs_inobt_get_rec(cur, rec, &i); 924 if (error) 925 return error; 926 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 927 return -EFSCORRUPTED; 928 } 929 930 return 0; 931 } 932 933 STATIC int 934 xfs_ialloc_get_rec( 935 struct xfs_btree_cur *cur, 936 xfs_agino_t agino, 937 xfs_inobt_rec_incore_t *rec, 938 int *done) 939 { 940 int error; 941 int i; 942 943 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 944 if (error) 945 return error; 946 *done = !i; 947 if (i) { 948 error = xfs_inobt_get_rec(cur, rec, &i); 949 if (error) 950 return error; 951 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 952 return -EFSCORRUPTED; 953 } 954 955 return 0; 956 } 957 958 /* 959 * Return the offset of the first free inode in the record. If the inode chunk 960 * is sparsely allocated, we convert the record holemask to inode granularity 961 * and mask off the unallocated regions from the inode free mask. 962 */ 963 STATIC int 964 xfs_inobt_first_free_inode( 965 struct xfs_inobt_rec_incore *rec) 966 { 967 xfs_inofree_t realfree; 968 969 /* if there are no holes, return the first available offset */ 970 if (!xfs_inobt_issparse(rec->ir_holemask)) 971 return xfs_lowbit64(rec->ir_free); 972 973 realfree = xfs_inobt_irec_to_allocmask(rec); 974 realfree &= rec->ir_free; 975 976 return xfs_lowbit64(realfree); 977 } 978 979 /* 980 * Allocate an inode using the inobt-only algorithm. 981 */ 982 STATIC int 983 xfs_dialloc_ag_inobt( 984 struct xfs_trans *tp, 985 struct xfs_buf *agbp, 986 struct xfs_perag *pag, 987 xfs_ino_t parent, 988 xfs_ino_t *inop) 989 { 990 struct xfs_mount *mp = tp->t_mountp; 991 struct xfs_agi *agi = agbp->b_addr; 992 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 993 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 994 struct xfs_btree_cur *cur, *tcur; 995 struct xfs_inobt_rec_incore rec, trec; 996 xfs_ino_t ino; 997 int error; 998 int offset; 999 int i, j; 1000 int searchdistance = 10; 1001 1002 ASSERT(pag->pagi_init); 1003 ASSERT(pag->pagi_inodeok); 1004 ASSERT(pag->pagi_freecount > 0); 1005 1006 restart_pagno: 1007 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO); 1008 /* 1009 * If pagino is 0 (this is the root inode allocation) use newino. 1010 * This must work because we've just allocated some. 1011 */ 1012 if (!pagino) 1013 pagino = be32_to_cpu(agi->agi_newino); 1014 1015 error = xfs_check_agi_freecount(cur); 1016 if (error) 1017 goto error0; 1018 1019 /* 1020 * If in the same AG as the parent, try to get near the parent. 1021 */ 1022 if (pagno == pag->pag_agno) { 1023 int doneleft; /* done, to the left */ 1024 int doneright; /* done, to the right */ 1025 1026 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 1027 if (error) 1028 goto error0; 1029 if (XFS_IS_CORRUPT(mp, i != 1)) { 1030 error = -EFSCORRUPTED; 1031 goto error0; 1032 } 1033 1034 error = xfs_inobt_get_rec(cur, &rec, &j); 1035 if (error) 1036 goto error0; 1037 if (XFS_IS_CORRUPT(mp, j != 1)) { 1038 error = -EFSCORRUPTED; 1039 goto error0; 1040 } 1041 1042 if (rec.ir_freecount > 0) { 1043 /* 1044 * Found a free inode in the same chunk 1045 * as the parent, done. 1046 */ 1047 goto alloc_inode; 1048 } 1049 1050 1051 /* 1052 * In the same AG as parent, but parent's chunk is full. 1053 */ 1054 1055 /* duplicate the cursor, search left & right simultaneously */ 1056 error = xfs_btree_dup_cursor(cur, &tcur); 1057 if (error) 1058 goto error0; 1059 1060 /* 1061 * Skip to last blocks looked up if same parent inode. 1062 */ 1063 if (pagino != NULLAGINO && 1064 pag->pagl_pagino == pagino && 1065 pag->pagl_leftrec != NULLAGINO && 1066 pag->pagl_rightrec != NULLAGINO) { 1067 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 1068 &trec, &doneleft); 1069 if (error) 1070 goto error1; 1071 1072 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 1073 &rec, &doneright); 1074 if (error) 1075 goto error1; 1076 } else { 1077 /* search left with tcur, back up 1 record */ 1078 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 1079 if (error) 1080 goto error1; 1081 1082 /* search right with cur, go forward 1 record. */ 1083 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 1084 if (error) 1085 goto error1; 1086 } 1087 1088 /* 1089 * Loop until we find an inode chunk with a free inode. 1090 */ 1091 while (--searchdistance > 0 && (!doneleft || !doneright)) { 1092 int useleft; /* using left inode chunk this time */ 1093 1094 /* figure out the closer block if both are valid. */ 1095 if (!doneleft && !doneright) { 1096 useleft = pagino - 1097 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 1098 rec.ir_startino - pagino; 1099 } else { 1100 useleft = !doneleft; 1101 } 1102 1103 /* free inodes to the left? */ 1104 if (useleft && trec.ir_freecount) { 1105 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1106 cur = tcur; 1107 1108 pag->pagl_leftrec = trec.ir_startino; 1109 pag->pagl_rightrec = rec.ir_startino; 1110 pag->pagl_pagino = pagino; 1111 rec = trec; 1112 goto alloc_inode; 1113 } 1114 1115 /* free inodes to the right? */ 1116 if (!useleft && rec.ir_freecount) { 1117 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1118 1119 pag->pagl_leftrec = trec.ir_startino; 1120 pag->pagl_rightrec = rec.ir_startino; 1121 pag->pagl_pagino = pagino; 1122 goto alloc_inode; 1123 } 1124 1125 /* get next record to check */ 1126 if (useleft) { 1127 error = xfs_ialloc_next_rec(tcur, &trec, 1128 &doneleft, 1); 1129 } else { 1130 error = xfs_ialloc_next_rec(cur, &rec, 1131 &doneright, 0); 1132 } 1133 if (error) 1134 goto error1; 1135 } 1136 1137 if (searchdistance <= 0) { 1138 /* 1139 * Not in range - save last search 1140 * location and allocate a new inode 1141 */ 1142 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1143 pag->pagl_leftrec = trec.ir_startino; 1144 pag->pagl_rightrec = rec.ir_startino; 1145 pag->pagl_pagino = pagino; 1146 1147 } else { 1148 /* 1149 * We've reached the end of the btree. because 1150 * we are only searching a small chunk of the 1151 * btree each search, there is obviously free 1152 * inodes closer to the parent inode than we 1153 * are now. restart the search again. 1154 */ 1155 pag->pagl_pagino = NULLAGINO; 1156 pag->pagl_leftrec = NULLAGINO; 1157 pag->pagl_rightrec = NULLAGINO; 1158 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1159 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1160 goto restart_pagno; 1161 } 1162 } 1163 1164 /* 1165 * In a different AG from the parent. 1166 * See if the most recently allocated block has any free. 1167 */ 1168 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1169 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1170 XFS_LOOKUP_EQ, &i); 1171 if (error) 1172 goto error0; 1173 1174 if (i == 1) { 1175 error = xfs_inobt_get_rec(cur, &rec, &j); 1176 if (error) 1177 goto error0; 1178 1179 if (j == 1 && rec.ir_freecount > 0) { 1180 /* 1181 * The last chunk allocated in the group 1182 * still has a free inode. 1183 */ 1184 goto alloc_inode; 1185 } 1186 } 1187 } 1188 1189 /* 1190 * None left in the last group, search the whole AG 1191 */ 1192 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1193 if (error) 1194 goto error0; 1195 if (XFS_IS_CORRUPT(mp, i != 1)) { 1196 error = -EFSCORRUPTED; 1197 goto error0; 1198 } 1199 1200 for (;;) { 1201 error = xfs_inobt_get_rec(cur, &rec, &i); 1202 if (error) 1203 goto error0; 1204 if (XFS_IS_CORRUPT(mp, i != 1)) { 1205 error = -EFSCORRUPTED; 1206 goto error0; 1207 } 1208 if (rec.ir_freecount > 0) 1209 break; 1210 error = xfs_btree_increment(cur, 0, &i); 1211 if (error) 1212 goto error0; 1213 if (XFS_IS_CORRUPT(mp, i != 1)) { 1214 error = -EFSCORRUPTED; 1215 goto error0; 1216 } 1217 } 1218 1219 alloc_inode: 1220 offset = xfs_inobt_first_free_inode(&rec); 1221 ASSERT(offset >= 0); 1222 ASSERT(offset < XFS_INODES_PER_CHUNK); 1223 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1224 XFS_INODES_PER_CHUNK) == 0); 1225 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); 1226 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1227 rec.ir_freecount--; 1228 error = xfs_inobt_update(cur, &rec); 1229 if (error) 1230 goto error0; 1231 be32_add_cpu(&agi->agi_freecount, -1); 1232 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1233 pag->pagi_freecount--; 1234 1235 error = xfs_check_agi_freecount(cur); 1236 if (error) 1237 goto error0; 1238 1239 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1240 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1241 *inop = ino; 1242 return 0; 1243 error1: 1244 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 1245 error0: 1246 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1247 return error; 1248 } 1249 1250 /* 1251 * Use the free inode btree to allocate an inode based on distance from the 1252 * parent. Note that the provided cursor may be deleted and replaced. 1253 */ 1254 STATIC int 1255 xfs_dialloc_ag_finobt_near( 1256 xfs_agino_t pagino, 1257 struct xfs_btree_cur **ocur, 1258 struct xfs_inobt_rec_incore *rec) 1259 { 1260 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 1261 struct xfs_btree_cur *rcur; /* right search cursor */ 1262 struct xfs_inobt_rec_incore rrec; 1263 int error; 1264 int i, j; 1265 1266 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1267 if (error) 1268 return error; 1269 1270 if (i == 1) { 1271 error = xfs_inobt_get_rec(lcur, rec, &i); 1272 if (error) 1273 return error; 1274 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) 1275 return -EFSCORRUPTED; 1276 1277 /* 1278 * See if we've landed in the parent inode record. The finobt 1279 * only tracks chunks with at least one free inode, so record 1280 * existence is enough. 1281 */ 1282 if (pagino >= rec->ir_startino && 1283 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1284 return 0; 1285 } 1286 1287 error = xfs_btree_dup_cursor(lcur, &rcur); 1288 if (error) 1289 return error; 1290 1291 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1292 if (error) 1293 goto error_rcur; 1294 if (j == 1) { 1295 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1296 if (error) 1297 goto error_rcur; 1298 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) { 1299 error = -EFSCORRUPTED; 1300 goto error_rcur; 1301 } 1302 } 1303 1304 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) { 1305 error = -EFSCORRUPTED; 1306 goto error_rcur; 1307 } 1308 if (i == 1 && j == 1) { 1309 /* 1310 * Both the left and right records are valid. Choose the closer 1311 * inode chunk to the target. 1312 */ 1313 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1314 (rrec.ir_startino - pagino)) { 1315 *rec = rrec; 1316 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1317 *ocur = rcur; 1318 } else { 1319 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1320 } 1321 } else if (j == 1) { 1322 /* only the right record is valid */ 1323 *rec = rrec; 1324 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1325 *ocur = rcur; 1326 } else if (i == 1) { 1327 /* only the left record is valid */ 1328 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1329 } 1330 1331 return 0; 1332 1333 error_rcur: 1334 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1335 return error; 1336 } 1337 1338 /* 1339 * Use the free inode btree to find a free inode based on a newino hint. If 1340 * the hint is NULL, find the first free inode in the AG. 1341 */ 1342 STATIC int 1343 xfs_dialloc_ag_finobt_newino( 1344 struct xfs_agi *agi, 1345 struct xfs_btree_cur *cur, 1346 struct xfs_inobt_rec_incore *rec) 1347 { 1348 int error; 1349 int i; 1350 1351 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1352 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1353 XFS_LOOKUP_EQ, &i); 1354 if (error) 1355 return error; 1356 if (i == 1) { 1357 error = xfs_inobt_get_rec(cur, rec, &i); 1358 if (error) 1359 return error; 1360 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1361 return -EFSCORRUPTED; 1362 return 0; 1363 } 1364 } 1365 1366 /* 1367 * Find the first inode available in the AG. 1368 */ 1369 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1370 if (error) 1371 return error; 1372 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1373 return -EFSCORRUPTED; 1374 1375 error = xfs_inobt_get_rec(cur, rec, &i); 1376 if (error) 1377 return error; 1378 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1379 return -EFSCORRUPTED; 1380 1381 return 0; 1382 } 1383 1384 /* 1385 * Update the inobt based on a modification made to the finobt. Also ensure that 1386 * the records from both trees are equivalent post-modification. 1387 */ 1388 STATIC int 1389 xfs_dialloc_ag_update_inobt( 1390 struct xfs_btree_cur *cur, /* inobt cursor */ 1391 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1392 int offset) /* inode offset */ 1393 { 1394 struct xfs_inobt_rec_incore rec; 1395 int error; 1396 int i; 1397 1398 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1399 if (error) 1400 return error; 1401 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1402 return -EFSCORRUPTED; 1403 1404 error = xfs_inobt_get_rec(cur, &rec, &i); 1405 if (error) 1406 return error; 1407 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1408 return -EFSCORRUPTED; 1409 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1410 XFS_INODES_PER_CHUNK) == 0); 1411 1412 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1413 rec.ir_freecount--; 1414 1415 if (XFS_IS_CORRUPT(cur->bc_mp, 1416 rec.ir_free != frec->ir_free || 1417 rec.ir_freecount != frec->ir_freecount)) 1418 return -EFSCORRUPTED; 1419 1420 return xfs_inobt_update(cur, &rec); 1421 } 1422 1423 /* 1424 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1425 * back to the inobt search algorithm. 1426 * 1427 * The caller selected an AG for us, and made sure that free inodes are 1428 * available. 1429 */ 1430 static int 1431 xfs_dialloc_ag( 1432 struct xfs_trans *tp, 1433 struct xfs_buf *agbp, 1434 struct xfs_perag *pag, 1435 xfs_ino_t parent, 1436 xfs_ino_t *inop) 1437 { 1438 struct xfs_mount *mp = tp->t_mountp; 1439 struct xfs_agi *agi = agbp->b_addr; 1440 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1441 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1442 struct xfs_btree_cur *cur; /* finobt cursor */ 1443 struct xfs_btree_cur *icur; /* inobt cursor */ 1444 struct xfs_inobt_rec_incore rec; 1445 xfs_ino_t ino; 1446 int error; 1447 int offset; 1448 int i; 1449 1450 if (!xfs_has_finobt(mp)) 1451 return xfs_dialloc_ag_inobt(tp, agbp, pag, parent, inop); 1452 1453 /* 1454 * If pagino is 0 (this is the root inode allocation) use newino. 1455 * This must work because we've just allocated some. 1456 */ 1457 if (!pagino) 1458 pagino = be32_to_cpu(agi->agi_newino); 1459 1460 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO); 1461 1462 error = xfs_check_agi_freecount(cur); 1463 if (error) 1464 goto error_cur; 1465 1466 /* 1467 * The search algorithm depends on whether we're in the same AG as the 1468 * parent. If so, find the closest available inode to the parent. If 1469 * not, consider the agi hint or find the first free inode in the AG. 1470 */ 1471 if (pag->pag_agno == pagno) 1472 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1473 else 1474 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1475 if (error) 1476 goto error_cur; 1477 1478 offset = xfs_inobt_first_free_inode(&rec); 1479 ASSERT(offset >= 0); 1480 ASSERT(offset < XFS_INODES_PER_CHUNK); 1481 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1482 XFS_INODES_PER_CHUNK) == 0); 1483 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); 1484 1485 /* 1486 * Modify or remove the finobt record. 1487 */ 1488 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1489 rec.ir_freecount--; 1490 if (rec.ir_freecount) 1491 error = xfs_inobt_update(cur, &rec); 1492 else 1493 error = xfs_btree_delete(cur, &i); 1494 if (error) 1495 goto error_cur; 1496 1497 /* 1498 * The finobt has now been updated appropriately. We haven't updated the 1499 * agi and superblock yet, so we can create an inobt cursor and validate 1500 * the original freecount. If all is well, make the equivalent update to 1501 * the inobt using the finobt record and offset information. 1502 */ 1503 icur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO); 1504 1505 error = xfs_check_agi_freecount(icur); 1506 if (error) 1507 goto error_icur; 1508 1509 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1510 if (error) 1511 goto error_icur; 1512 1513 /* 1514 * Both trees have now been updated. We must update the perag and 1515 * superblock before we can check the freecount for each btree. 1516 */ 1517 be32_add_cpu(&agi->agi_freecount, -1); 1518 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1519 pag->pagi_freecount--; 1520 1521 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1522 1523 error = xfs_check_agi_freecount(icur); 1524 if (error) 1525 goto error_icur; 1526 error = xfs_check_agi_freecount(cur); 1527 if (error) 1528 goto error_icur; 1529 1530 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1531 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1532 *inop = ino; 1533 return 0; 1534 1535 error_icur: 1536 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1537 error_cur: 1538 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1539 return error; 1540 } 1541 1542 static int 1543 xfs_dialloc_roll( 1544 struct xfs_trans **tpp, 1545 struct xfs_buf *agibp) 1546 { 1547 struct xfs_trans *tp = *tpp; 1548 struct xfs_dquot_acct *dqinfo; 1549 int error; 1550 1551 /* 1552 * Hold to on to the agibp across the commit so no other allocation can 1553 * come in and take the free inodes we just allocated for our caller. 1554 */ 1555 xfs_trans_bhold(tp, agibp); 1556 1557 /* 1558 * We want the quota changes to be associated with the next transaction, 1559 * NOT this one. So, detach the dqinfo from this and attach it to the 1560 * next transaction. 1561 */ 1562 dqinfo = tp->t_dqinfo; 1563 tp->t_dqinfo = NULL; 1564 1565 error = xfs_trans_roll(&tp); 1566 1567 /* Re-attach the quota info that we detached from prev trx. */ 1568 tp->t_dqinfo = dqinfo; 1569 1570 /* 1571 * Join the buffer even on commit error so that the buffer is released 1572 * when the caller cancels the transaction and doesn't have to handle 1573 * this error case specially. 1574 */ 1575 xfs_trans_bjoin(tp, agibp); 1576 *tpp = tp; 1577 return error; 1578 } 1579 1580 static xfs_agnumber_t 1581 xfs_ialloc_next_ag( 1582 xfs_mount_t *mp) 1583 { 1584 xfs_agnumber_t agno; 1585 1586 spin_lock(&mp->m_agirotor_lock); 1587 agno = mp->m_agirotor; 1588 if (++mp->m_agirotor >= mp->m_maxagi) 1589 mp->m_agirotor = 0; 1590 spin_unlock(&mp->m_agirotor_lock); 1591 1592 return agno; 1593 } 1594 1595 static bool 1596 xfs_dialloc_good_ag( 1597 struct xfs_trans *tp, 1598 struct xfs_perag *pag, 1599 umode_t mode, 1600 int flags, 1601 bool ok_alloc) 1602 { 1603 struct xfs_mount *mp = tp->t_mountp; 1604 xfs_extlen_t ineed; 1605 xfs_extlen_t longest = 0; 1606 int needspace; 1607 int error; 1608 1609 if (!pag->pagi_inodeok) 1610 return false; 1611 1612 if (!pag->pagi_init) { 1613 error = xfs_ialloc_pagi_init(mp, tp, pag->pag_agno); 1614 if (error) 1615 return false; 1616 } 1617 1618 if (pag->pagi_freecount) 1619 return true; 1620 if (!ok_alloc) 1621 return false; 1622 1623 if (!pag->pagf_init) { 1624 error = xfs_alloc_pagf_init(mp, tp, pag->pag_agno, flags); 1625 if (error) 1626 return false; 1627 } 1628 1629 /* 1630 * Check that there is enough free space for the file plus a chunk of 1631 * inodes if we need to allocate some. If this is the first pass across 1632 * the AGs, take into account the potential space needed for alignment 1633 * of inode chunks when checking the longest contiguous free space in 1634 * the AG - this prevents us from getting ENOSPC because we have free 1635 * space larger than ialloc_blks but alignment constraints prevent us 1636 * from using it. 1637 * 1638 * If we can't find an AG with space for full alignment slack to be 1639 * taken into account, we must be near ENOSPC in all AGs. Hence we 1640 * don't include alignment for the second pass and so if we fail 1641 * allocation due to alignment issues then it is most likely a real 1642 * ENOSPC condition. 1643 * 1644 * XXX(dgc): this calculation is now bogus thanks to the per-ag 1645 * reservations that xfs_alloc_fix_freelist() now does via 1646 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will 1647 * be more than large enough for the check below to succeed, but 1648 * xfs_alloc_space_available() will fail because of the non-zero 1649 * metadata reservation and hence we won't actually be able to allocate 1650 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC 1651 * because of this. 1652 */ 1653 ineed = M_IGEO(mp)->ialloc_min_blks; 1654 if (flags && ineed > 1) 1655 ineed += M_IGEO(mp)->cluster_align; 1656 longest = pag->pagf_longest; 1657 if (!longest) 1658 longest = pag->pagf_flcount > 0; 1659 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 1660 1661 if (pag->pagf_freeblks < needspace + ineed || longest < ineed) 1662 return false; 1663 return true; 1664 } 1665 1666 static int 1667 xfs_dialloc_try_ag( 1668 struct xfs_trans **tpp, 1669 struct xfs_perag *pag, 1670 xfs_ino_t parent, 1671 xfs_ino_t *new_ino, 1672 bool ok_alloc) 1673 { 1674 struct xfs_buf *agbp; 1675 xfs_ino_t ino; 1676 int error; 1677 1678 /* 1679 * Then read in the AGI buffer and recheck with the AGI buffer 1680 * lock held. 1681 */ 1682 error = xfs_ialloc_read_agi(pag->pag_mount, *tpp, pag->pag_agno, &agbp); 1683 if (error) 1684 return error; 1685 1686 if (!pag->pagi_freecount) { 1687 if (!ok_alloc) { 1688 error = -EAGAIN; 1689 goto out_release; 1690 } 1691 1692 error = xfs_ialloc_ag_alloc(*tpp, agbp, pag); 1693 if (error < 0) 1694 goto out_release; 1695 1696 /* 1697 * We successfully allocated space for an inode cluster in this 1698 * AG. Roll the transaction so that we can allocate one of the 1699 * new inodes. 1700 */ 1701 ASSERT(pag->pagi_freecount > 0); 1702 error = xfs_dialloc_roll(tpp, agbp); 1703 if (error) 1704 goto out_release; 1705 } 1706 1707 /* Allocate an inode in the found AG */ 1708 error = xfs_dialloc_ag(*tpp, agbp, pag, parent, &ino); 1709 if (!error) 1710 *new_ino = ino; 1711 return error; 1712 1713 out_release: 1714 xfs_trans_brelse(*tpp, agbp); 1715 return error; 1716 } 1717 1718 /* 1719 * Allocate an on-disk inode. 1720 * 1721 * Mode is used to tell whether the new inode is a directory and hence where to 1722 * locate it. The on-disk inode that is allocated will be returned in @new_ino 1723 * on success, otherwise an error will be set to indicate the failure (e.g. 1724 * -ENOSPC). 1725 */ 1726 int 1727 xfs_dialloc( 1728 struct xfs_trans **tpp, 1729 xfs_ino_t parent, 1730 umode_t mode, 1731 xfs_ino_t *new_ino) 1732 { 1733 struct xfs_mount *mp = (*tpp)->t_mountp; 1734 xfs_agnumber_t agno; 1735 int error = 0; 1736 xfs_agnumber_t start_agno; 1737 struct xfs_perag *pag; 1738 struct xfs_ino_geometry *igeo = M_IGEO(mp); 1739 bool ok_alloc = true; 1740 int flags; 1741 xfs_ino_t ino; 1742 1743 /* 1744 * Directories, symlinks, and regular files frequently allocate at least 1745 * one block, so factor that potential expansion when we examine whether 1746 * an AG has enough space for file creation. 1747 */ 1748 if (S_ISDIR(mode)) 1749 start_agno = xfs_ialloc_next_ag(mp); 1750 else { 1751 start_agno = XFS_INO_TO_AGNO(mp, parent); 1752 if (start_agno >= mp->m_maxagi) 1753 start_agno = 0; 1754 } 1755 1756 /* 1757 * If we have already hit the ceiling of inode blocks then clear 1758 * ok_alloc so we scan all available agi structures for a free 1759 * inode. 1760 * 1761 * Read rough value of mp->m_icount by percpu_counter_read_positive, 1762 * which will sacrifice the preciseness but improve the performance. 1763 */ 1764 if (igeo->maxicount && 1765 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos 1766 > igeo->maxicount) { 1767 ok_alloc = false; 1768 } 1769 1770 /* 1771 * Loop until we find an allocation group that either has free inodes 1772 * or in which we can allocate some inodes. Iterate through the 1773 * allocation groups upward, wrapping at the end. 1774 */ 1775 agno = start_agno; 1776 flags = XFS_ALLOC_FLAG_TRYLOCK; 1777 for (;;) { 1778 pag = xfs_perag_get(mp, agno); 1779 if (xfs_dialloc_good_ag(*tpp, pag, mode, flags, ok_alloc)) { 1780 error = xfs_dialloc_try_ag(tpp, pag, parent, 1781 &ino, ok_alloc); 1782 if (error != -EAGAIN) 1783 break; 1784 } 1785 1786 if (xfs_is_shutdown(mp)) { 1787 error = -EFSCORRUPTED; 1788 break; 1789 } 1790 if (++agno == mp->m_maxagi) 1791 agno = 0; 1792 if (agno == start_agno) { 1793 if (!flags) { 1794 error = -ENOSPC; 1795 break; 1796 } 1797 flags = 0; 1798 } 1799 xfs_perag_put(pag); 1800 } 1801 1802 if (!error) 1803 *new_ino = ino; 1804 xfs_perag_put(pag); 1805 return error; 1806 } 1807 1808 /* 1809 * Free the blocks of an inode chunk. We must consider that the inode chunk 1810 * might be sparse and only free the regions that are allocated as part of the 1811 * chunk. 1812 */ 1813 STATIC void 1814 xfs_difree_inode_chunk( 1815 struct xfs_trans *tp, 1816 xfs_agnumber_t agno, 1817 struct xfs_inobt_rec_incore *rec) 1818 { 1819 struct xfs_mount *mp = tp->t_mountp; 1820 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, 1821 rec->ir_startino); 1822 int startidx, endidx; 1823 int nextbit; 1824 xfs_agblock_t agbno; 1825 int contigblk; 1826 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); 1827 1828 if (!xfs_inobt_issparse(rec->ir_holemask)) { 1829 /* not sparse, calculate extent info directly */ 1830 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno), 1831 M_IGEO(mp)->ialloc_blks, 1832 &XFS_RMAP_OINFO_INODES); 1833 return; 1834 } 1835 1836 /* holemask is only 16-bits (fits in an unsigned long) */ 1837 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); 1838 holemask[0] = rec->ir_holemask; 1839 1840 /* 1841 * Find contiguous ranges of zeroes (i.e., allocated regions) in the 1842 * holemask and convert the start/end index of each range to an extent. 1843 * We start with the start and end index both pointing at the first 0 in 1844 * the mask. 1845 */ 1846 startidx = endidx = find_first_zero_bit(holemask, 1847 XFS_INOBT_HOLEMASK_BITS); 1848 nextbit = startidx + 1; 1849 while (startidx < XFS_INOBT_HOLEMASK_BITS) { 1850 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, 1851 nextbit); 1852 /* 1853 * If the next zero bit is contiguous, update the end index of 1854 * the current range and continue. 1855 */ 1856 if (nextbit != XFS_INOBT_HOLEMASK_BITS && 1857 nextbit == endidx + 1) { 1858 endidx = nextbit; 1859 goto next; 1860 } 1861 1862 /* 1863 * nextbit is not contiguous with the current end index. Convert 1864 * the current start/end to an extent and add it to the free 1865 * list. 1866 */ 1867 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / 1868 mp->m_sb.sb_inopblock; 1869 contigblk = ((endidx - startidx + 1) * 1870 XFS_INODES_PER_HOLEMASK_BIT) / 1871 mp->m_sb.sb_inopblock; 1872 1873 ASSERT(agbno % mp->m_sb.sb_spino_align == 0); 1874 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); 1875 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno), 1876 contigblk, &XFS_RMAP_OINFO_INODES); 1877 1878 /* reset range to current bit and carry on... */ 1879 startidx = endidx = nextbit; 1880 1881 next: 1882 nextbit++; 1883 } 1884 } 1885 1886 STATIC int 1887 xfs_difree_inobt( 1888 struct xfs_mount *mp, 1889 struct xfs_trans *tp, 1890 struct xfs_buf *agbp, 1891 struct xfs_perag *pag, 1892 xfs_agino_t agino, 1893 struct xfs_icluster *xic, 1894 struct xfs_inobt_rec_incore *orec) 1895 { 1896 struct xfs_agi *agi = agbp->b_addr; 1897 struct xfs_btree_cur *cur; 1898 struct xfs_inobt_rec_incore rec; 1899 int ilen; 1900 int error; 1901 int i; 1902 int off; 1903 1904 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1905 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 1906 1907 /* 1908 * Initialize the cursor. 1909 */ 1910 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO); 1911 1912 error = xfs_check_agi_freecount(cur); 1913 if (error) 1914 goto error0; 1915 1916 /* 1917 * Look for the entry describing this inode. 1918 */ 1919 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 1920 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 1921 __func__, error); 1922 goto error0; 1923 } 1924 if (XFS_IS_CORRUPT(mp, i != 1)) { 1925 error = -EFSCORRUPTED; 1926 goto error0; 1927 } 1928 error = xfs_inobt_get_rec(cur, &rec, &i); 1929 if (error) { 1930 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 1931 __func__, error); 1932 goto error0; 1933 } 1934 if (XFS_IS_CORRUPT(mp, i != 1)) { 1935 error = -EFSCORRUPTED; 1936 goto error0; 1937 } 1938 /* 1939 * Get the offset in the inode chunk. 1940 */ 1941 off = agino - rec.ir_startino; 1942 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 1943 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 1944 /* 1945 * Mark the inode free & increment the count. 1946 */ 1947 rec.ir_free |= XFS_INOBT_MASK(off); 1948 rec.ir_freecount++; 1949 1950 /* 1951 * When an inode chunk is free, it becomes eligible for removal. Don't 1952 * remove the chunk if the block size is large enough for multiple inode 1953 * chunks (that might not be free). 1954 */ 1955 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && 1956 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 1957 struct xfs_perag *pag = agbp->b_pag; 1958 1959 xic->deleted = true; 1960 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, 1961 rec.ir_startino); 1962 xic->alloc = xfs_inobt_irec_to_allocmask(&rec); 1963 1964 /* 1965 * Remove the inode cluster from the AGI B+Tree, adjust the 1966 * AGI and Superblock inode counts, and mark the disk space 1967 * to be freed when the transaction is committed. 1968 */ 1969 ilen = rec.ir_freecount; 1970 be32_add_cpu(&agi->agi_count, -ilen); 1971 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 1972 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 1973 pag->pagi_freecount -= ilen - 1; 1974 pag->pagi_count -= ilen; 1975 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 1976 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 1977 1978 if ((error = xfs_btree_delete(cur, &i))) { 1979 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 1980 __func__, error); 1981 goto error0; 1982 } 1983 1984 xfs_difree_inode_chunk(tp, pag->pag_agno, &rec); 1985 } else { 1986 xic->deleted = false; 1987 1988 error = xfs_inobt_update(cur, &rec); 1989 if (error) { 1990 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 1991 __func__, error); 1992 goto error0; 1993 } 1994 1995 /* 1996 * Change the inode free counts and log the ag/sb changes. 1997 */ 1998 be32_add_cpu(&agi->agi_freecount, 1); 1999 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 2000 pag->pagi_freecount++; 2001 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 2002 } 2003 2004 error = xfs_check_agi_freecount(cur); 2005 if (error) 2006 goto error0; 2007 2008 *orec = rec; 2009 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2010 return 0; 2011 2012 error0: 2013 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2014 return error; 2015 } 2016 2017 /* 2018 * Free an inode in the free inode btree. 2019 */ 2020 STATIC int 2021 xfs_difree_finobt( 2022 struct xfs_mount *mp, 2023 struct xfs_trans *tp, 2024 struct xfs_buf *agbp, 2025 struct xfs_perag *pag, 2026 xfs_agino_t agino, 2027 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 2028 { 2029 struct xfs_btree_cur *cur; 2030 struct xfs_inobt_rec_incore rec; 2031 int offset = agino - ibtrec->ir_startino; 2032 int error; 2033 int i; 2034 2035 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO); 2036 2037 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 2038 if (error) 2039 goto error; 2040 if (i == 0) { 2041 /* 2042 * If the record does not exist in the finobt, we must have just 2043 * freed an inode in a previously fully allocated chunk. If not, 2044 * something is out of sync. 2045 */ 2046 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) { 2047 error = -EFSCORRUPTED; 2048 goto error; 2049 } 2050 2051 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, 2052 ibtrec->ir_count, 2053 ibtrec->ir_freecount, 2054 ibtrec->ir_free, &i); 2055 if (error) 2056 goto error; 2057 ASSERT(i == 1); 2058 2059 goto out; 2060 } 2061 2062 /* 2063 * Read and update the existing record. We could just copy the ibtrec 2064 * across here, but that would defeat the purpose of having redundant 2065 * metadata. By making the modifications independently, we can catch 2066 * corruptions that we wouldn't see if we just copied from one record 2067 * to another. 2068 */ 2069 error = xfs_inobt_get_rec(cur, &rec, &i); 2070 if (error) 2071 goto error; 2072 if (XFS_IS_CORRUPT(mp, i != 1)) { 2073 error = -EFSCORRUPTED; 2074 goto error; 2075 } 2076 2077 rec.ir_free |= XFS_INOBT_MASK(offset); 2078 rec.ir_freecount++; 2079 2080 if (XFS_IS_CORRUPT(mp, 2081 rec.ir_free != ibtrec->ir_free || 2082 rec.ir_freecount != ibtrec->ir_freecount)) { 2083 error = -EFSCORRUPTED; 2084 goto error; 2085 } 2086 2087 /* 2088 * The content of inobt records should always match between the inobt 2089 * and finobt. The lifecycle of records in the finobt is different from 2090 * the inobt in that the finobt only tracks records with at least one 2091 * free inode. Hence, if all of the inodes are free and we aren't 2092 * keeping inode chunks permanently on disk, remove the record. 2093 * Otherwise, update the record with the new information. 2094 * 2095 * Note that we currently can't free chunks when the block size is large 2096 * enough for multiple chunks. Leave the finobt record to remain in sync 2097 * with the inobt. 2098 */ 2099 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && 2100 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 2101 error = xfs_btree_delete(cur, &i); 2102 if (error) 2103 goto error; 2104 ASSERT(i == 1); 2105 } else { 2106 error = xfs_inobt_update(cur, &rec); 2107 if (error) 2108 goto error; 2109 } 2110 2111 out: 2112 error = xfs_check_agi_freecount(cur); 2113 if (error) 2114 goto error; 2115 2116 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2117 return 0; 2118 2119 error: 2120 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2121 return error; 2122 } 2123 2124 /* 2125 * Free disk inode. Carefully avoids touching the incore inode, all 2126 * manipulations incore are the caller's responsibility. 2127 * The on-disk inode is not changed by this operation, only the 2128 * btree (free inode mask) is changed. 2129 */ 2130 int 2131 xfs_difree( 2132 struct xfs_trans *tp, 2133 struct xfs_perag *pag, 2134 xfs_ino_t inode, 2135 struct xfs_icluster *xic) 2136 { 2137 /* REFERENCED */ 2138 xfs_agblock_t agbno; /* block number containing inode */ 2139 struct xfs_buf *agbp; /* buffer for allocation group header */ 2140 xfs_agino_t agino; /* allocation group inode number */ 2141 int error; /* error return value */ 2142 struct xfs_mount *mp = tp->t_mountp; 2143 struct xfs_inobt_rec_incore rec;/* btree record */ 2144 2145 /* 2146 * Break up inode number into its components. 2147 */ 2148 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) { 2149 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).", 2150 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno); 2151 ASSERT(0); 2152 return -EINVAL; 2153 } 2154 agino = XFS_INO_TO_AGINO(mp, inode); 2155 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { 2156 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 2157 __func__, (unsigned long long)inode, 2158 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); 2159 ASSERT(0); 2160 return -EINVAL; 2161 } 2162 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2163 if (agbno >= mp->m_sb.sb_agblocks) { 2164 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 2165 __func__, agbno, mp->m_sb.sb_agblocks); 2166 ASSERT(0); 2167 return -EINVAL; 2168 } 2169 /* 2170 * Get the allocation group header. 2171 */ 2172 error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp); 2173 if (error) { 2174 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 2175 __func__, error); 2176 return error; 2177 } 2178 2179 /* 2180 * Fix up the inode allocation btree. 2181 */ 2182 error = xfs_difree_inobt(mp, tp, agbp, pag, agino, xic, &rec); 2183 if (error) 2184 goto error0; 2185 2186 /* 2187 * Fix up the free inode btree. 2188 */ 2189 if (xfs_has_finobt(mp)) { 2190 error = xfs_difree_finobt(mp, tp, agbp, pag, agino, &rec); 2191 if (error) 2192 goto error0; 2193 } 2194 2195 return 0; 2196 2197 error0: 2198 return error; 2199 } 2200 2201 STATIC int 2202 xfs_imap_lookup( 2203 struct xfs_mount *mp, 2204 struct xfs_trans *tp, 2205 struct xfs_perag *pag, 2206 xfs_agino_t agino, 2207 xfs_agblock_t agbno, 2208 xfs_agblock_t *chunk_agbno, 2209 xfs_agblock_t *offset_agbno, 2210 int flags) 2211 { 2212 struct xfs_inobt_rec_incore rec; 2213 struct xfs_btree_cur *cur; 2214 struct xfs_buf *agbp; 2215 int error; 2216 int i; 2217 2218 error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp); 2219 if (error) { 2220 xfs_alert(mp, 2221 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 2222 __func__, error, pag->pag_agno); 2223 return error; 2224 } 2225 2226 /* 2227 * Lookup the inode record for the given agino. If the record cannot be 2228 * found, then it's an invalid inode number and we should abort. Once 2229 * we have a record, we need to ensure it contains the inode number 2230 * we are looking up. 2231 */ 2232 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO); 2233 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 2234 if (!error) { 2235 if (i) 2236 error = xfs_inobt_get_rec(cur, &rec, &i); 2237 if (!error && i == 0) 2238 error = -EINVAL; 2239 } 2240 2241 xfs_trans_brelse(tp, agbp); 2242 xfs_btree_del_cursor(cur, error); 2243 if (error) 2244 return error; 2245 2246 /* check that the returned record contains the required inode */ 2247 if (rec.ir_startino > agino || 2248 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino) 2249 return -EINVAL; 2250 2251 /* for untrusted inodes check it is allocated first */ 2252 if ((flags & XFS_IGET_UNTRUSTED) && 2253 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 2254 return -EINVAL; 2255 2256 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 2257 *offset_agbno = agbno - *chunk_agbno; 2258 return 0; 2259 } 2260 2261 /* 2262 * Return the location of the inode in imap, for mapping it into a buffer. 2263 */ 2264 int 2265 xfs_imap( 2266 struct xfs_mount *mp, /* file system mount structure */ 2267 struct xfs_trans *tp, /* transaction pointer */ 2268 xfs_ino_t ino, /* inode to locate */ 2269 struct xfs_imap *imap, /* location map structure */ 2270 uint flags) /* flags for inode btree lookup */ 2271 { 2272 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 2273 xfs_agino_t agino; /* inode number within alloc group */ 2274 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 2275 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 2276 int error; /* error code */ 2277 int offset; /* index of inode in its buffer */ 2278 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 2279 struct xfs_perag *pag; 2280 2281 ASSERT(ino != NULLFSINO); 2282 2283 /* 2284 * Split up the inode number into its parts. 2285 */ 2286 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 2287 agino = XFS_INO_TO_AGINO(mp, ino); 2288 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2289 if (!pag || agbno >= mp->m_sb.sb_agblocks || 2290 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { 2291 error = -EINVAL; 2292 #ifdef DEBUG 2293 /* 2294 * Don't output diagnostic information for untrusted inodes 2295 * as they can be invalid without implying corruption. 2296 */ 2297 if (flags & XFS_IGET_UNTRUSTED) 2298 goto out_drop; 2299 if (!pag) { 2300 xfs_alert(mp, 2301 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", 2302 __func__, XFS_INO_TO_AGNO(mp, ino), 2303 mp->m_sb.sb_agcount); 2304 } 2305 if (agbno >= mp->m_sb.sb_agblocks) { 2306 xfs_alert(mp, 2307 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 2308 __func__, (unsigned long long)agbno, 2309 (unsigned long)mp->m_sb.sb_agblocks); 2310 } 2311 if (pag && ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { 2312 xfs_alert(mp, 2313 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 2314 __func__, ino, 2315 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); 2316 } 2317 xfs_stack_trace(); 2318 #endif /* DEBUG */ 2319 goto out_drop; 2320 } 2321 2322 /* 2323 * For bulkstat and handle lookups, we have an untrusted inode number 2324 * that we have to verify is valid. We cannot do this just by reading 2325 * the inode buffer as it may have been unlinked and removed leaving 2326 * inodes in stale state on disk. Hence we have to do a btree lookup 2327 * in all cases where an untrusted inode number is passed. 2328 */ 2329 if (flags & XFS_IGET_UNTRUSTED) { 2330 error = xfs_imap_lookup(mp, tp, pag, agino, agbno, 2331 &chunk_agbno, &offset_agbno, flags); 2332 if (error) 2333 goto out_drop; 2334 goto out_map; 2335 } 2336 2337 /* 2338 * If the inode cluster size is the same as the blocksize or 2339 * smaller we get to the buffer by simple arithmetics. 2340 */ 2341 if (M_IGEO(mp)->blocks_per_cluster == 1) { 2342 offset = XFS_INO_TO_OFFSET(mp, ino); 2343 ASSERT(offset < mp->m_sb.sb_inopblock); 2344 2345 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno); 2346 imap->im_len = XFS_FSB_TO_BB(mp, 1); 2347 imap->im_boffset = (unsigned short)(offset << 2348 mp->m_sb.sb_inodelog); 2349 error = 0; 2350 goto out_drop; 2351 } 2352 2353 /* 2354 * If the inode chunks are aligned then use simple maths to 2355 * find the location. Otherwise we have to do a btree 2356 * lookup to find the location. 2357 */ 2358 if (M_IGEO(mp)->inoalign_mask) { 2359 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask; 2360 chunk_agbno = agbno - offset_agbno; 2361 } else { 2362 error = xfs_imap_lookup(mp, tp, pag, agino, agbno, 2363 &chunk_agbno, &offset_agbno, flags); 2364 if (error) 2365 goto out_drop; 2366 } 2367 2368 out_map: 2369 ASSERT(agbno >= chunk_agbno); 2370 cluster_agbno = chunk_agbno + 2371 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) * 2372 M_IGEO(mp)->blocks_per_cluster); 2373 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 2374 XFS_INO_TO_OFFSET(mp, ino); 2375 2376 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno); 2377 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster); 2378 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); 2379 2380 /* 2381 * If the inode number maps to a block outside the bounds 2382 * of the file system then return NULL rather than calling 2383 * read_buf and panicing when we get an error from the 2384 * driver. 2385 */ 2386 if ((imap->im_blkno + imap->im_len) > 2387 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 2388 xfs_alert(mp, 2389 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 2390 __func__, (unsigned long long) imap->im_blkno, 2391 (unsigned long long) imap->im_len, 2392 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 2393 error = -EINVAL; 2394 goto out_drop; 2395 } 2396 error = 0; 2397 out_drop: 2398 if (pag) 2399 xfs_perag_put(pag); 2400 return error; 2401 } 2402 2403 /* 2404 * Log specified fields for the ag hdr (inode section). The growth of the agi 2405 * structure over time requires that we interpret the buffer as two logical 2406 * regions delineated by the end of the unlinked list. This is due to the size 2407 * of the hash table and its location in the middle of the agi. 2408 * 2409 * For example, a request to log a field before agi_unlinked and a field after 2410 * agi_unlinked could cause us to log the entire hash table and use an excessive 2411 * amount of log space. To avoid this behavior, log the region up through 2412 * agi_unlinked in one call and the region after agi_unlinked through the end of 2413 * the structure in another. 2414 */ 2415 void 2416 xfs_ialloc_log_agi( 2417 xfs_trans_t *tp, /* transaction pointer */ 2418 struct xfs_buf *bp, /* allocation group header buffer */ 2419 int fields) /* bitmask of fields to log */ 2420 { 2421 int first; /* first byte number */ 2422 int last; /* last byte number */ 2423 static const short offsets[] = { /* field starting offsets */ 2424 /* keep in sync with bit definitions */ 2425 offsetof(xfs_agi_t, agi_magicnum), 2426 offsetof(xfs_agi_t, agi_versionnum), 2427 offsetof(xfs_agi_t, agi_seqno), 2428 offsetof(xfs_agi_t, agi_length), 2429 offsetof(xfs_agi_t, agi_count), 2430 offsetof(xfs_agi_t, agi_root), 2431 offsetof(xfs_agi_t, agi_level), 2432 offsetof(xfs_agi_t, agi_freecount), 2433 offsetof(xfs_agi_t, agi_newino), 2434 offsetof(xfs_agi_t, agi_dirino), 2435 offsetof(xfs_agi_t, agi_unlinked), 2436 offsetof(xfs_agi_t, agi_free_root), 2437 offsetof(xfs_agi_t, agi_free_level), 2438 offsetof(xfs_agi_t, agi_iblocks), 2439 sizeof(xfs_agi_t) 2440 }; 2441 #ifdef DEBUG 2442 struct xfs_agi *agi = bp->b_addr; 2443 2444 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2445 #endif 2446 2447 /* 2448 * Compute byte offsets for the first and last fields in the first 2449 * region and log the agi buffer. This only logs up through 2450 * agi_unlinked. 2451 */ 2452 if (fields & XFS_AGI_ALL_BITS_R1) { 2453 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2454 &first, &last); 2455 xfs_trans_log_buf(tp, bp, first, last); 2456 } 2457 2458 /* 2459 * Mask off the bits in the first region and calculate the first and 2460 * last field offsets for any bits in the second region. 2461 */ 2462 fields &= ~XFS_AGI_ALL_BITS_R1; 2463 if (fields) { 2464 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2465 &first, &last); 2466 xfs_trans_log_buf(tp, bp, first, last); 2467 } 2468 } 2469 2470 static xfs_failaddr_t 2471 xfs_agi_verify( 2472 struct xfs_buf *bp) 2473 { 2474 struct xfs_mount *mp = bp->b_mount; 2475 struct xfs_agi *agi = bp->b_addr; 2476 int i; 2477 2478 if (xfs_has_crc(mp)) { 2479 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) 2480 return __this_address; 2481 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn))) 2482 return __this_address; 2483 } 2484 2485 /* 2486 * Validate the magic number of the agi block. 2487 */ 2488 if (!xfs_verify_magic(bp, agi->agi_magicnum)) 2489 return __this_address; 2490 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2491 return __this_address; 2492 2493 if (be32_to_cpu(agi->agi_level) < 1 || 2494 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels) 2495 return __this_address; 2496 2497 if (xfs_has_finobt(mp) && 2498 (be32_to_cpu(agi->agi_free_level) < 1 || 2499 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels)) 2500 return __this_address; 2501 2502 /* 2503 * during growfs operations, the perag is not fully initialised, 2504 * so we can't use it for any useful checking. growfs ensures we can't 2505 * use it by using uncached buffers that don't have the perag attached 2506 * so we can detect and avoid this problem. 2507 */ 2508 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) 2509 return __this_address; 2510 2511 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { 2512 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO)) 2513 continue; 2514 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i]))) 2515 return __this_address; 2516 } 2517 2518 return NULL; 2519 } 2520 2521 static void 2522 xfs_agi_read_verify( 2523 struct xfs_buf *bp) 2524 { 2525 struct xfs_mount *mp = bp->b_mount; 2526 xfs_failaddr_t fa; 2527 2528 if (xfs_has_crc(mp) && 2529 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2530 xfs_verifier_error(bp, -EFSBADCRC, __this_address); 2531 else { 2532 fa = xfs_agi_verify(bp); 2533 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI)) 2534 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 2535 } 2536 } 2537 2538 static void 2539 xfs_agi_write_verify( 2540 struct xfs_buf *bp) 2541 { 2542 struct xfs_mount *mp = bp->b_mount; 2543 struct xfs_buf_log_item *bip = bp->b_log_item; 2544 struct xfs_agi *agi = bp->b_addr; 2545 xfs_failaddr_t fa; 2546 2547 fa = xfs_agi_verify(bp); 2548 if (fa) { 2549 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 2550 return; 2551 } 2552 2553 if (!xfs_has_crc(mp)) 2554 return; 2555 2556 if (bip) 2557 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2558 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2559 } 2560 2561 const struct xfs_buf_ops xfs_agi_buf_ops = { 2562 .name = "xfs_agi", 2563 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) }, 2564 .verify_read = xfs_agi_read_verify, 2565 .verify_write = xfs_agi_write_verify, 2566 .verify_struct = xfs_agi_verify, 2567 }; 2568 2569 /* 2570 * Read in the allocation group header (inode allocation section) 2571 */ 2572 int 2573 xfs_read_agi( 2574 struct xfs_mount *mp, /* file system mount structure */ 2575 struct xfs_trans *tp, /* transaction pointer */ 2576 xfs_agnumber_t agno, /* allocation group number */ 2577 struct xfs_buf **bpp) /* allocation group hdr buf */ 2578 { 2579 int error; 2580 2581 trace_xfs_read_agi(mp, agno); 2582 2583 ASSERT(agno != NULLAGNUMBER); 2584 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2585 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 2586 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); 2587 if (error) 2588 return error; 2589 if (tp) 2590 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF); 2591 2592 xfs_buf_set_ref(*bpp, XFS_AGI_REF); 2593 return 0; 2594 } 2595 2596 int 2597 xfs_ialloc_read_agi( 2598 struct xfs_mount *mp, /* file system mount structure */ 2599 struct xfs_trans *tp, /* transaction pointer */ 2600 xfs_agnumber_t agno, /* allocation group number */ 2601 struct xfs_buf **bpp) /* allocation group hdr buf */ 2602 { 2603 struct xfs_agi *agi; /* allocation group header */ 2604 struct xfs_perag *pag; /* per allocation group data */ 2605 int error; 2606 2607 trace_xfs_ialloc_read_agi(mp, agno); 2608 2609 error = xfs_read_agi(mp, tp, agno, bpp); 2610 if (error) 2611 return error; 2612 2613 agi = (*bpp)->b_addr; 2614 pag = (*bpp)->b_pag; 2615 if (!pag->pagi_init) { 2616 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2617 pag->pagi_count = be32_to_cpu(agi->agi_count); 2618 pag->pagi_init = 1; 2619 } 2620 2621 /* 2622 * It's possible for these to be out of sync if 2623 * we are in the middle of a forced shutdown. 2624 */ 2625 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2626 xfs_is_shutdown(mp)); 2627 return 0; 2628 } 2629 2630 /* 2631 * Read in the agi to initialise the per-ag data in the mount structure 2632 */ 2633 int 2634 xfs_ialloc_pagi_init( 2635 xfs_mount_t *mp, /* file system mount structure */ 2636 xfs_trans_t *tp, /* transaction pointer */ 2637 xfs_agnumber_t agno) /* allocation group number */ 2638 { 2639 struct xfs_buf *bp = NULL; 2640 int error; 2641 2642 error = xfs_ialloc_read_agi(mp, tp, agno, &bp); 2643 if (error) 2644 return error; 2645 if (bp) 2646 xfs_trans_brelse(tp, bp); 2647 return 0; 2648 } 2649 2650 /* Is there an inode record covering a given range of inode numbers? */ 2651 int 2652 xfs_ialloc_has_inode_record( 2653 struct xfs_btree_cur *cur, 2654 xfs_agino_t low, 2655 xfs_agino_t high, 2656 bool *exists) 2657 { 2658 struct xfs_inobt_rec_incore irec; 2659 xfs_agino_t agino; 2660 uint16_t holemask; 2661 int has_record; 2662 int i; 2663 int error; 2664 2665 *exists = false; 2666 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record); 2667 while (error == 0 && has_record) { 2668 error = xfs_inobt_get_rec(cur, &irec, &has_record); 2669 if (error || irec.ir_startino > high) 2670 break; 2671 2672 agino = irec.ir_startino; 2673 holemask = irec.ir_holemask; 2674 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1, 2675 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) { 2676 if (holemask & 1) 2677 continue; 2678 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low && 2679 agino <= high) { 2680 *exists = true; 2681 return 0; 2682 } 2683 } 2684 2685 error = xfs_btree_increment(cur, 0, &has_record); 2686 } 2687 return error; 2688 } 2689 2690 /* Is there an inode record covering a given extent? */ 2691 int 2692 xfs_ialloc_has_inodes_at_extent( 2693 struct xfs_btree_cur *cur, 2694 xfs_agblock_t bno, 2695 xfs_extlen_t len, 2696 bool *exists) 2697 { 2698 xfs_agino_t low; 2699 xfs_agino_t high; 2700 2701 low = XFS_AGB_TO_AGINO(cur->bc_mp, bno); 2702 high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1; 2703 2704 return xfs_ialloc_has_inode_record(cur, low, high, exists); 2705 } 2706 2707 struct xfs_ialloc_count_inodes { 2708 xfs_agino_t count; 2709 xfs_agino_t freecount; 2710 }; 2711 2712 /* Record inode counts across all inobt records. */ 2713 STATIC int 2714 xfs_ialloc_count_inodes_rec( 2715 struct xfs_btree_cur *cur, 2716 const union xfs_btree_rec *rec, 2717 void *priv) 2718 { 2719 struct xfs_inobt_rec_incore irec; 2720 struct xfs_ialloc_count_inodes *ci = priv; 2721 2722 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec); 2723 ci->count += irec.ir_count; 2724 ci->freecount += irec.ir_freecount; 2725 2726 return 0; 2727 } 2728 2729 /* Count allocated and free inodes under an inobt. */ 2730 int 2731 xfs_ialloc_count_inodes( 2732 struct xfs_btree_cur *cur, 2733 xfs_agino_t *count, 2734 xfs_agino_t *freecount) 2735 { 2736 struct xfs_ialloc_count_inodes ci = {0}; 2737 int error; 2738 2739 ASSERT(cur->bc_btnum == XFS_BTNUM_INO); 2740 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci); 2741 if (error) 2742 return error; 2743 2744 *count = ci.count; 2745 *freecount = ci.freecount; 2746 return 0; 2747 } 2748 2749 /* 2750 * Initialize inode-related geometry information. 2751 * 2752 * Compute the inode btree min and max levels and set maxicount. 2753 * 2754 * Set the inode cluster size. This may still be overridden by the file 2755 * system block size if it is larger than the chosen cluster size. 2756 * 2757 * For v5 filesystems, scale the cluster size with the inode size to keep a 2758 * constant ratio of inode per cluster buffer, but only if mkfs has set the 2759 * inode alignment value appropriately for larger cluster sizes. 2760 * 2761 * Then compute the inode cluster alignment information. 2762 */ 2763 void 2764 xfs_ialloc_setup_geometry( 2765 struct xfs_mount *mp) 2766 { 2767 struct xfs_sb *sbp = &mp->m_sb; 2768 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2769 uint64_t icount; 2770 uint inodes; 2771 2772 igeo->new_diflags2 = 0; 2773 if (xfs_has_bigtime(mp)) 2774 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME; 2775 2776 /* Compute inode btree geometry. */ 2777 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 2778 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 2779 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 2780 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2; 2781 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2; 2782 2783 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK, 2784 sbp->sb_inopblock); 2785 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog; 2786 2787 if (sbp->sb_spino_align) 2788 igeo->ialloc_min_blks = sbp->sb_spino_align; 2789 else 2790 igeo->ialloc_min_blks = igeo->ialloc_blks; 2791 2792 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */ 2793 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; 2794 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr, 2795 inodes); 2796 2797 /* 2798 * Set the maximum inode count for this filesystem, being careful not 2799 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular 2800 * users should never get here due to failing sb verification, but 2801 * certain users (xfs_db) need to be usable even with corrupt metadata. 2802 */ 2803 if (sbp->sb_imax_pct && igeo->ialloc_blks) { 2804 /* 2805 * Make sure the maximum inode count is a multiple 2806 * of the units we allocate inodes in. 2807 */ 2808 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 2809 do_div(icount, 100); 2810 do_div(icount, igeo->ialloc_blks); 2811 igeo->maxicount = XFS_FSB_TO_INO(mp, 2812 icount * igeo->ialloc_blks); 2813 } else { 2814 igeo->maxicount = 0; 2815 } 2816 2817 /* 2818 * Compute the desired size of an inode cluster buffer size, which 2819 * starts at 8K and (on v5 filesystems) scales up with larger inode 2820 * sizes. 2821 * 2822 * Preserve the desired inode cluster size because the sparse inodes 2823 * feature uses that desired size (not the actual size) to compute the 2824 * sparse inode alignment. The mount code validates this value, so we 2825 * cannot change the behavior. 2826 */ 2827 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE; 2828 if (xfs_has_v3inodes(mp)) { 2829 int new_size = igeo->inode_cluster_size_raw; 2830 2831 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 2832 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 2833 igeo->inode_cluster_size_raw = new_size; 2834 } 2835 2836 /* Calculate inode cluster ratios. */ 2837 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize) 2838 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp, 2839 igeo->inode_cluster_size_raw); 2840 else 2841 igeo->blocks_per_cluster = 1; 2842 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster); 2843 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster); 2844 2845 /* Calculate inode cluster alignment. */ 2846 if (xfs_has_align(mp) && 2847 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster) 2848 igeo->cluster_align = mp->m_sb.sb_inoalignmt; 2849 else 2850 igeo->cluster_align = 1; 2851 igeo->inoalign_mask = igeo->cluster_align - 1; 2852 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align); 2853 2854 /* 2855 * If we are using stripe alignment, check whether 2856 * the stripe unit is a multiple of the inode alignment 2857 */ 2858 if (mp->m_dalign && igeo->inoalign_mask && 2859 !(mp->m_dalign & igeo->inoalign_mask)) 2860 igeo->ialloc_align = mp->m_dalign; 2861 else 2862 igeo->ialloc_align = 0; 2863 } 2864 2865 /* Compute the location of the root directory inode that is laid out by mkfs. */ 2866 xfs_ino_t 2867 xfs_ialloc_calc_rootino( 2868 struct xfs_mount *mp, 2869 int sunit) 2870 { 2871 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2872 xfs_agblock_t first_bno; 2873 2874 /* 2875 * Pre-calculate the geometry of AG 0. We know what it looks like 2876 * because libxfs knows how to create allocation groups now. 2877 * 2878 * first_bno is the first block in which mkfs could possibly have 2879 * allocated the root directory inode, once we factor in the metadata 2880 * that mkfs formats before it. Namely, the four AG headers... 2881 */ 2882 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize); 2883 2884 /* ...the two free space btree roots... */ 2885 first_bno += 2; 2886 2887 /* ...the inode btree root... */ 2888 first_bno += 1; 2889 2890 /* ...the initial AGFL... */ 2891 first_bno += xfs_alloc_min_freelist(mp, NULL); 2892 2893 /* ...the free inode btree root... */ 2894 if (xfs_has_finobt(mp)) 2895 first_bno++; 2896 2897 /* ...the reverse mapping btree root... */ 2898 if (xfs_has_rmapbt(mp)) 2899 first_bno++; 2900 2901 /* ...the reference count btree... */ 2902 if (xfs_has_reflink(mp)) 2903 first_bno++; 2904 2905 /* 2906 * ...and the log, if it is allocated in the first allocation group. 2907 * 2908 * This can happen with filesystems that only have a single 2909 * allocation group, or very odd geometries created by old mkfs 2910 * versions on very small filesystems. 2911 */ 2912 if (mp->m_sb.sb_logstart && 2913 XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0) 2914 first_bno += mp->m_sb.sb_logblocks; 2915 2916 /* 2917 * Now round first_bno up to whatever allocation alignment is given 2918 * by the filesystem or was passed in. 2919 */ 2920 if (xfs_has_dalign(mp) && igeo->ialloc_align > 0) 2921 first_bno = roundup(first_bno, sunit); 2922 else if (xfs_has_align(mp) && 2923 mp->m_sb.sb_inoalignmt > 1) 2924 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt); 2925 2926 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno)); 2927 } 2928 2929 /* 2930 * Ensure there are not sparse inode clusters that cross the new EOAG. 2931 * 2932 * This is a no-op for non-spinode filesystems since clusters are always fully 2933 * allocated and checking the bnobt suffices. However, a spinode filesystem 2934 * could have a record where the upper inodes are free blocks. If those blocks 2935 * were removed from the filesystem, the inode record would extend beyond EOAG, 2936 * which will be flagged as corruption. 2937 */ 2938 int 2939 xfs_ialloc_check_shrink( 2940 struct xfs_trans *tp, 2941 xfs_agnumber_t agno, 2942 struct xfs_buf *agibp, 2943 xfs_agblock_t new_length) 2944 { 2945 struct xfs_inobt_rec_incore rec; 2946 struct xfs_btree_cur *cur; 2947 struct xfs_mount *mp = tp->t_mountp; 2948 struct xfs_perag *pag; 2949 xfs_agino_t agino = XFS_AGB_TO_AGINO(mp, new_length); 2950 int has; 2951 int error; 2952 2953 if (!xfs_has_sparseinodes(mp)) 2954 return 0; 2955 2956 pag = xfs_perag_get(mp, agno); 2957 cur = xfs_inobt_init_cursor(mp, tp, agibp, pag, XFS_BTNUM_INO); 2958 2959 /* Look up the inobt record that would correspond to the new EOFS. */ 2960 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has); 2961 if (error || !has) 2962 goto out; 2963 2964 error = xfs_inobt_get_rec(cur, &rec, &has); 2965 if (error) 2966 goto out; 2967 2968 if (!has) { 2969 error = -EFSCORRUPTED; 2970 goto out; 2971 } 2972 2973 /* If the record covers inodes that would be beyond EOFS, bail out. */ 2974 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) { 2975 error = -ENOSPC; 2976 goto out; 2977 } 2978 out: 2979 xfs_btree_del_cursor(cur, error); 2980 xfs_perag_put(pag); 2981 return error; 2982 } 2983