xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc.c (revision 46fc58da)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_inode.h"
28 #include "xfs_btree.h"
29 #include "xfs_ialloc.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_alloc.h"
32 #include "xfs_rtalloc.h"
33 #include "xfs_error.h"
34 #include "xfs_bmap.h"
35 #include "xfs_cksum.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_icreate_item.h"
39 #include "xfs_icache.h"
40 #include "xfs_trace.h"
41 
42 
43 /*
44  * Allocation group level functions.
45  */
46 static inline int
47 xfs_ialloc_cluster_alignment(
48 	struct xfs_mount	*mp)
49 {
50 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
51 	    mp->m_sb.sb_inoalignmt >=
52 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
53 		return mp->m_sb.sb_inoalignmt;
54 	return 1;
55 }
56 
57 /*
58  * Lookup a record by ino in the btree given by cur.
59  */
60 int					/* error */
61 xfs_inobt_lookup(
62 	struct xfs_btree_cur	*cur,	/* btree cursor */
63 	xfs_agino_t		ino,	/* starting inode of chunk */
64 	xfs_lookup_t		dir,	/* <=, >=, == */
65 	int			*stat)	/* success/failure */
66 {
67 	cur->bc_rec.i.ir_startino = ino;
68 	cur->bc_rec.i.ir_holemask = 0;
69 	cur->bc_rec.i.ir_count = 0;
70 	cur->bc_rec.i.ir_freecount = 0;
71 	cur->bc_rec.i.ir_free = 0;
72 	return xfs_btree_lookup(cur, dir, stat);
73 }
74 
75 /*
76  * Update the record referred to by cur to the value given.
77  * This either works (return 0) or gets an EFSCORRUPTED error.
78  */
79 STATIC int				/* error */
80 xfs_inobt_update(
81 	struct xfs_btree_cur	*cur,	/* btree cursor */
82 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
83 {
84 	union xfs_btree_rec	rec;
85 
86 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
87 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
88 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
89 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
90 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
91 	} else {
92 		/* ir_holemask/ir_count not supported on-disk */
93 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
94 	}
95 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
96 	return xfs_btree_update(cur, &rec);
97 }
98 
99 /*
100  * Get the data from the pointed-to record.
101  */
102 int					/* error */
103 xfs_inobt_get_rec(
104 	struct xfs_btree_cur	*cur,	/* btree cursor */
105 	xfs_inobt_rec_incore_t	*irec,	/* btree record */
106 	int			*stat)	/* output: success/failure */
107 {
108 	union xfs_btree_rec	*rec;
109 	int			error;
110 
111 	error = xfs_btree_get_rec(cur, &rec, stat);
112 	if (error || *stat == 0)
113 		return error;
114 
115 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
116 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
117 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
118 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
119 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
120 	} else {
121 		/*
122 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
123 		 * values for full inode chunks.
124 		 */
125 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
126 		irec->ir_count = XFS_INODES_PER_CHUNK;
127 		irec->ir_freecount =
128 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
129 	}
130 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
131 
132 	return 0;
133 }
134 
135 /*
136  * Insert a single inobt record. Cursor must already point to desired location.
137  */
138 STATIC int
139 xfs_inobt_insert_rec(
140 	struct xfs_btree_cur	*cur,
141 	__uint16_t		holemask,
142 	__uint8_t		count,
143 	__int32_t		freecount,
144 	xfs_inofree_t		free,
145 	int			*stat)
146 {
147 	cur->bc_rec.i.ir_holemask = holemask;
148 	cur->bc_rec.i.ir_count = count;
149 	cur->bc_rec.i.ir_freecount = freecount;
150 	cur->bc_rec.i.ir_free = free;
151 	return xfs_btree_insert(cur, stat);
152 }
153 
154 /*
155  * Insert records describing a newly allocated inode chunk into the inobt.
156  */
157 STATIC int
158 xfs_inobt_insert(
159 	struct xfs_mount	*mp,
160 	struct xfs_trans	*tp,
161 	struct xfs_buf		*agbp,
162 	xfs_agino_t		newino,
163 	xfs_agino_t		newlen,
164 	xfs_btnum_t		btnum)
165 {
166 	struct xfs_btree_cur	*cur;
167 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
168 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
169 	xfs_agino_t		thisino;
170 	int			i;
171 	int			error;
172 
173 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
174 
175 	for (thisino = newino;
176 	     thisino < newino + newlen;
177 	     thisino += XFS_INODES_PER_CHUNK) {
178 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
179 		if (error) {
180 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
181 			return error;
182 		}
183 		ASSERT(i == 0);
184 
185 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
186 					     XFS_INODES_PER_CHUNK,
187 					     XFS_INODES_PER_CHUNK,
188 					     XFS_INOBT_ALL_FREE, &i);
189 		if (error) {
190 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
191 			return error;
192 		}
193 		ASSERT(i == 1);
194 	}
195 
196 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
197 
198 	return 0;
199 }
200 
201 /*
202  * Verify that the number of free inodes in the AGI is correct.
203  */
204 #ifdef DEBUG
205 STATIC int
206 xfs_check_agi_freecount(
207 	struct xfs_btree_cur	*cur,
208 	struct xfs_agi		*agi)
209 {
210 	if (cur->bc_nlevels == 1) {
211 		xfs_inobt_rec_incore_t rec;
212 		int		freecount = 0;
213 		int		error;
214 		int		i;
215 
216 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
217 		if (error)
218 			return error;
219 
220 		do {
221 			error = xfs_inobt_get_rec(cur, &rec, &i);
222 			if (error)
223 				return error;
224 
225 			if (i) {
226 				freecount += rec.ir_freecount;
227 				error = xfs_btree_increment(cur, 0, &i);
228 				if (error)
229 					return error;
230 			}
231 		} while (i == 1);
232 
233 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
234 			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
235 	}
236 	return 0;
237 }
238 #else
239 #define xfs_check_agi_freecount(cur, agi)	0
240 #endif
241 
242 /*
243  * Initialise a new set of inodes. When called without a transaction context
244  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
245  * than logging them (which in a transaction context puts them into the AIL
246  * for writeback rather than the xfsbufd queue).
247  */
248 int
249 xfs_ialloc_inode_init(
250 	struct xfs_mount	*mp,
251 	struct xfs_trans	*tp,
252 	struct list_head	*buffer_list,
253 	int			icount,
254 	xfs_agnumber_t		agno,
255 	xfs_agblock_t		agbno,
256 	xfs_agblock_t		length,
257 	unsigned int		gen)
258 {
259 	struct xfs_buf		*fbuf;
260 	struct xfs_dinode	*free;
261 	int			nbufs, blks_per_cluster, inodes_per_cluster;
262 	int			version;
263 	int			i, j;
264 	xfs_daddr_t		d;
265 	xfs_ino_t		ino = 0;
266 
267 	/*
268 	 * Loop over the new block(s), filling in the inodes.  For small block
269 	 * sizes, manipulate the inodes in buffers  which are multiples of the
270 	 * blocks size.
271 	 */
272 	blks_per_cluster = xfs_icluster_size_fsb(mp);
273 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
274 	nbufs = length / blks_per_cluster;
275 
276 	/*
277 	 * Figure out what version number to use in the inodes we create.  If
278 	 * the superblock version has caught up to the one that supports the new
279 	 * inode format, then use the new inode version.  Otherwise use the old
280 	 * version so that old kernels will continue to be able to use the file
281 	 * system.
282 	 *
283 	 * For v3 inodes, we also need to write the inode number into the inode,
284 	 * so calculate the first inode number of the chunk here as
285 	 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
286 	 * across multiple filesystem blocks (such as a cluster) and so cannot
287 	 * be used in the cluster buffer loop below.
288 	 *
289 	 * Further, because we are writing the inode directly into the buffer
290 	 * and calculating a CRC on the entire inode, we have ot log the entire
291 	 * inode so that the entire range the CRC covers is present in the log.
292 	 * That means for v3 inode we log the entire buffer rather than just the
293 	 * inode cores.
294 	 */
295 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
296 		version = 3;
297 		ino = XFS_AGINO_TO_INO(mp, agno,
298 				       XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
299 
300 		/*
301 		 * log the initialisation that is about to take place as an
302 		 * logical operation. This means the transaction does not
303 		 * need to log the physical changes to the inode buffers as log
304 		 * recovery will know what initialisation is actually needed.
305 		 * Hence we only need to log the buffers as "ordered" buffers so
306 		 * they track in the AIL as if they were physically logged.
307 		 */
308 		if (tp)
309 			xfs_icreate_log(tp, agno, agbno, icount,
310 					mp->m_sb.sb_inodesize, length, gen);
311 	} else
312 		version = 2;
313 
314 	for (j = 0; j < nbufs; j++) {
315 		/*
316 		 * Get the block.
317 		 */
318 		d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
319 		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
320 					 mp->m_bsize * blks_per_cluster,
321 					 XBF_UNMAPPED);
322 		if (!fbuf)
323 			return -ENOMEM;
324 
325 		/* Initialize the inode buffers and log them appropriately. */
326 		fbuf->b_ops = &xfs_inode_buf_ops;
327 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
328 		for (i = 0; i < inodes_per_cluster; i++) {
329 			int	ioffset = i << mp->m_sb.sb_inodelog;
330 			uint	isize = xfs_dinode_size(version);
331 
332 			free = xfs_make_iptr(mp, fbuf, i);
333 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
334 			free->di_version = version;
335 			free->di_gen = cpu_to_be32(gen);
336 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
337 
338 			if (version == 3) {
339 				free->di_ino = cpu_to_be64(ino);
340 				ino++;
341 				uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid);
342 				xfs_dinode_calc_crc(mp, free);
343 			} else if (tp) {
344 				/* just log the inode core */
345 				xfs_trans_log_buf(tp, fbuf, ioffset,
346 						  ioffset + isize - 1);
347 			}
348 		}
349 
350 		if (tp) {
351 			/*
352 			 * Mark the buffer as an inode allocation buffer so it
353 			 * sticks in AIL at the point of this allocation
354 			 * transaction. This ensures the they are on disk before
355 			 * the tail of the log can be moved past this
356 			 * transaction (i.e. by preventing relogging from moving
357 			 * it forward in the log).
358 			 */
359 			xfs_trans_inode_alloc_buf(tp, fbuf);
360 			if (version == 3) {
361 				/*
362 				 * Mark the buffer as ordered so that they are
363 				 * not physically logged in the transaction but
364 				 * still tracked in the AIL as part of the
365 				 * transaction and pin the log appropriately.
366 				 */
367 				xfs_trans_ordered_buf(tp, fbuf);
368 				xfs_trans_log_buf(tp, fbuf, 0,
369 						  BBTOB(fbuf->b_length) - 1);
370 			}
371 		} else {
372 			fbuf->b_flags |= XBF_DONE;
373 			xfs_buf_delwri_queue(fbuf, buffer_list);
374 			xfs_buf_relse(fbuf);
375 		}
376 	}
377 	return 0;
378 }
379 
380 /*
381  * Align startino and allocmask for a recently allocated sparse chunk such that
382  * they are fit for insertion (or merge) into the on-disk inode btrees.
383  *
384  * Background:
385  *
386  * When enabled, sparse inode support increases the inode alignment from cluster
387  * size to inode chunk size. This means that the minimum range between two
388  * non-adjacent inode records in the inobt is large enough for a full inode
389  * record. This allows for cluster sized, cluster aligned block allocation
390  * without need to worry about whether the resulting inode record overlaps with
391  * another record in the tree. Without this basic rule, we would have to deal
392  * with the consequences of overlap by potentially undoing recent allocations in
393  * the inode allocation codepath.
394  *
395  * Because of this alignment rule (which is enforced on mount), there are two
396  * inobt possibilities for newly allocated sparse chunks. One is that the
397  * aligned inode record for the chunk covers a range of inodes not already
398  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
399  * other is that a record already exists at the aligned startino that considers
400  * the newly allocated range as sparse. In the latter case, record content is
401  * merged in hope that sparse inode chunks fill to full chunks over time.
402  */
403 STATIC void
404 xfs_align_sparse_ino(
405 	struct xfs_mount		*mp,
406 	xfs_agino_t			*startino,
407 	uint16_t			*allocmask)
408 {
409 	xfs_agblock_t			agbno;
410 	xfs_agblock_t			mod;
411 	int				offset;
412 
413 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
414 	mod = agbno % mp->m_sb.sb_inoalignmt;
415 	if (!mod)
416 		return;
417 
418 	/* calculate the inode offset and align startino */
419 	offset = mod << mp->m_sb.sb_inopblog;
420 	*startino -= offset;
421 
422 	/*
423 	 * Since startino has been aligned down, left shift allocmask such that
424 	 * it continues to represent the same physical inodes relative to the
425 	 * new startino.
426 	 */
427 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
428 }
429 
430 /*
431  * Determine whether the source inode record can merge into the target. Both
432  * records must be sparse, the inode ranges must match and there must be no
433  * allocation overlap between the records.
434  */
435 STATIC bool
436 __xfs_inobt_can_merge(
437 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
438 	struct xfs_inobt_rec_incore	*srec)	/* src record */
439 {
440 	uint64_t			talloc;
441 	uint64_t			salloc;
442 
443 	/* records must cover the same inode range */
444 	if (trec->ir_startino != srec->ir_startino)
445 		return false;
446 
447 	/* both records must be sparse */
448 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
449 	    !xfs_inobt_issparse(srec->ir_holemask))
450 		return false;
451 
452 	/* both records must track some inodes */
453 	if (!trec->ir_count || !srec->ir_count)
454 		return false;
455 
456 	/* can't exceed capacity of a full record */
457 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
458 		return false;
459 
460 	/* verify there is no allocation overlap */
461 	talloc = xfs_inobt_irec_to_allocmask(trec);
462 	salloc = xfs_inobt_irec_to_allocmask(srec);
463 	if (talloc & salloc)
464 		return false;
465 
466 	return true;
467 }
468 
469 /*
470  * Merge the source inode record into the target. The caller must call
471  * __xfs_inobt_can_merge() to ensure the merge is valid.
472  */
473 STATIC void
474 __xfs_inobt_rec_merge(
475 	struct xfs_inobt_rec_incore	*trec,	/* target */
476 	struct xfs_inobt_rec_incore	*srec)	/* src */
477 {
478 	ASSERT(trec->ir_startino == srec->ir_startino);
479 
480 	/* combine the counts */
481 	trec->ir_count += srec->ir_count;
482 	trec->ir_freecount += srec->ir_freecount;
483 
484 	/*
485 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
486 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
487 	 */
488 	trec->ir_holemask &= srec->ir_holemask;
489 	trec->ir_free &= srec->ir_free;
490 }
491 
492 /*
493  * Insert a new sparse inode chunk into the associated inode btree. The inode
494  * record for the sparse chunk is pre-aligned to a startino that should match
495  * any pre-existing sparse inode record in the tree. This allows sparse chunks
496  * to fill over time.
497  *
498  * This function supports two modes of handling preexisting records depending on
499  * the merge flag. If merge is true, the provided record is merged with the
500  * existing record and updated in place. The merged record is returned in nrec.
501  * If merge is false, an existing record is replaced with the provided record.
502  * If no preexisting record exists, the provided record is always inserted.
503  *
504  * It is considered corruption if a merge is requested and not possible. Given
505  * the sparse inode alignment constraints, this should never happen.
506  */
507 STATIC int
508 xfs_inobt_insert_sprec(
509 	struct xfs_mount		*mp,
510 	struct xfs_trans		*tp,
511 	struct xfs_buf			*agbp,
512 	int				btnum,
513 	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
514 	bool				merge)	/* merge or replace */
515 {
516 	struct xfs_btree_cur		*cur;
517 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
518 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
519 	int				error;
520 	int				i;
521 	struct xfs_inobt_rec_incore	rec;
522 
523 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
524 
525 	/* the new record is pre-aligned so we know where to look */
526 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
527 	if (error)
528 		goto error;
529 	/* if nothing there, insert a new record and return */
530 	if (i == 0) {
531 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
532 					     nrec->ir_count, nrec->ir_freecount,
533 					     nrec->ir_free, &i);
534 		if (error)
535 			goto error;
536 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
537 
538 		goto out;
539 	}
540 
541 	/*
542 	 * A record exists at this startino. Merge or replace the record
543 	 * depending on what we've been asked to do.
544 	 */
545 	if (merge) {
546 		error = xfs_inobt_get_rec(cur, &rec, &i);
547 		if (error)
548 			goto error;
549 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
550 		XFS_WANT_CORRUPTED_GOTO(mp,
551 					rec.ir_startino == nrec->ir_startino,
552 					error);
553 
554 		/*
555 		 * This should never fail. If we have coexisting records that
556 		 * cannot merge, something is seriously wrong.
557 		 */
558 		XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
559 					error);
560 
561 		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
562 					 rec.ir_holemask, nrec->ir_startino,
563 					 nrec->ir_holemask);
564 
565 		/* merge to nrec to output the updated record */
566 		__xfs_inobt_rec_merge(nrec, &rec);
567 
568 		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
569 					  nrec->ir_holemask);
570 
571 		error = xfs_inobt_rec_check_count(mp, nrec);
572 		if (error)
573 			goto error;
574 	}
575 
576 	error = xfs_inobt_update(cur, nrec);
577 	if (error)
578 		goto error;
579 
580 out:
581 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
582 	return 0;
583 error:
584 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
585 	return error;
586 }
587 
588 /*
589  * Allocate new inodes in the allocation group specified by agbp.
590  * Return 0 for success, else error code.
591  */
592 STATIC int				/* error code or 0 */
593 xfs_ialloc_ag_alloc(
594 	xfs_trans_t	*tp,		/* transaction pointer */
595 	xfs_buf_t	*agbp,		/* alloc group buffer */
596 	int		*alloc)
597 {
598 	xfs_agi_t	*agi;		/* allocation group header */
599 	xfs_alloc_arg_t	args;		/* allocation argument structure */
600 	xfs_agnumber_t	agno;
601 	int		error;
602 	xfs_agino_t	newino;		/* new first inode's number */
603 	xfs_agino_t	newlen;		/* new number of inodes */
604 	int		isaligned = 0;	/* inode allocation at stripe unit */
605 					/* boundary */
606 	uint16_t	allocmask = (uint16_t) -1; /* init. to full chunk */
607 	struct xfs_inobt_rec_incore rec;
608 	struct xfs_perag *pag;
609 	int		do_sparse = 0;
610 
611 	memset(&args, 0, sizeof(args));
612 	args.tp = tp;
613 	args.mp = tp->t_mountp;
614 	args.fsbno = NULLFSBLOCK;
615 
616 #ifdef DEBUG
617 	/* randomly do sparse inode allocations */
618 	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
619 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
620 		do_sparse = prandom_u32() & 1;
621 #endif
622 
623 	/*
624 	 * Locking will ensure that we don't have two callers in here
625 	 * at one time.
626 	 */
627 	newlen = args.mp->m_ialloc_inos;
628 	if (args.mp->m_maxicount &&
629 	    percpu_counter_read(&args.mp->m_icount) + newlen >
630 							args.mp->m_maxicount)
631 		return -ENOSPC;
632 	args.minlen = args.maxlen = args.mp->m_ialloc_blks;
633 	/*
634 	 * First try to allocate inodes contiguous with the last-allocated
635 	 * chunk of inodes.  If the filesystem is striped, this will fill
636 	 * an entire stripe unit with inodes.
637 	 */
638 	agi = XFS_BUF_TO_AGI(agbp);
639 	newino = be32_to_cpu(agi->agi_newino);
640 	agno = be32_to_cpu(agi->agi_seqno);
641 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
642 		     args.mp->m_ialloc_blks;
643 	if (do_sparse)
644 		goto sparse_alloc;
645 	if (likely(newino != NULLAGINO &&
646 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
647 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
648 		args.type = XFS_ALLOCTYPE_THIS_BNO;
649 		args.prod = 1;
650 
651 		/*
652 		 * We need to take into account alignment here to ensure that
653 		 * we don't modify the free list if we fail to have an exact
654 		 * block. If we don't have an exact match, and every oher
655 		 * attempt allocation attempt fails, we'll end up cancelling
656 		 * a dirty transaction and shutting down.
657 		 *
658 		 * For an exact allocation, alignment must be 1,
659 		 * however we need to take cluster alignment into account when
660 		 * fixing up the freelist. Use the minalignslop field to
661 		 * indicate that extra blocks might be required for alignment,
662 		 * but not to use them in the actual exact allocation.
663 		 */
664 		args.alignment = 1;
665 		args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
666 
667 		/* Allow space for the inode btree to split. */
668 		args.minleft = args.mp->m_in_maxlevels - 1;
669 		if ((error = xfs_alloc_vextent(&args)))
670 			return error;
671 
672 		/*
673 		 * This request might have dirtied the transaction if the AG can
674 		 * satisfy the request, but the exact block was not available.
675 		 * If the allocation did fail, subsequent requests will relax
676 		 * the exact agbno requirement and increase the alignment
677 		 * instead. It is critical that the total size of the request
678 		 * (len + alignment + slop) does not increase from this point
679 		 * on, so reset minalignslop to ensure it is not included in
680 		 * subsequent requests.
681 		 */
682 		args.minalignslop = 0;
683 	}
684 
685 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
686 		/*
687 		 * Set the alignment for the allocation.
688 		 * If stripe alignment is turned on then align at stripe unit
689 		 * boundary.
690 		 * If the cluster size is smaller than a filesystem block
691 		 * then we're doing I/O for inodes in filesystem block size
692 		 * pieces, so don't need alignment anyway.
693 		 */
694 		isaligned = 0;
695 		if (args.mp->m_sinoalign) {
696 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
697 			args.alignment = args.mp->m_dalign;
698 			isaligned = 1;
699 		} else
700 			args.alignment = xfs_ialloc_cluster_alignment(args.mp);
701 		/*
702 		 * Need to figure out where to allocate the inode blocks.
703 		 * Ideally they should be spaced out through the a.g.
704 		 * For now, just allocate blocks up front.
705 		 */
706 		args.agbno = be32_to_cpu(agi->agi_root);
707 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
708 		/*
709 		 * Allocate a fixed-size extent of inodes.
710 		 */
711 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
712 		args.prod = 1;
713 		/*
714 		 * Allow space for the inode btree to split.
715 		 */
716 		args.minleft = args.mp->m_in_maxlevels - 1;
717 		if ((error = xfs_alloc_vextent(&args)))
718 			return error;
719 	}
720 
721 	/*
722 	 * If stripe alignment is turned on, then try again with cluster
723 	 * alignment.
724 	 */
725 	if (isaligned && args.fsbno == NULLFSBLOCK) {
726 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
727 		args.agbno = be32_to_cpu(agi->agi_root);
728 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
729 		args.alignment = xfs_ialloc_cluster_alignment(args.mp);
730 		if ((error = xfs_alloc_vextent(&args)))
731 			return error;
732 	}
733 
734 	/*
735 	 * Finally, try a sparse allocation if the filesystem supports it and
736 	 * the sparse allocation length is smaller than a full chunk.
737 	 */
738 	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
739 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
740 	    args.fsbno == NULLFSBLOCK) {
741 sparse_alloc:
742 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
743 		args.agbno = be32_to_cpu(agi->agi_root);
744 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
745 		args.alignment = args.mp->m_sb.sb_spino_align;
746 		args.prod = 1;
747 
748 		args.minlen = args.mp->m_ialloc_min_blks;
749 		args.maxlen = args.minlen;
750 
751 		/*
752 		 * The inode record will be aligned to full chunk size. We must
753 		 * prevent sparse allocation from AG boundaries that result in
754 		 * invalid inode records, such as records that start at agbno 0
755 		 * or extend beyond the AG.
756 		 *
757 		 * Set min agbno to the first aligned, non-zero agbno and max to
758 		 * the last aligned agbno that is at least one full chunk from
759 		 * the end of the AG.
760 		 */
761 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
762 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
763 					    args.mp->m_sb.sb_inoalignmt) -
764 				 args.mp->m_ialloc_blks;
765 
766 		error = xfs_alloc_vextent(&args);
767 		if (error)
768 			return error;
769 
770 		newlen = args.len << args.mp->m_sb.sb_inopblog;
771 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
772 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
773 	}
774 
775 	if (args.fsbno == NULLFSBLOCK) {
776 		*alloc = 0;
777 		return 0;
778 	}
779 	ASSERT(args.len == args.minlen);
780 
781 	/*
782 	 * Stamp and write the inode buffers.
783 	 *
784 	 * Seed the new inode cluster with a random generation number. This
785 	 * prevents short-term reuse of generation numbers if a chunk is
786 	 * freed and then immediately reallocated. We use random numbers
787 	 * rather than a linear progression to prevent the next generation
788 	 * number from being easily guessable.
789 	 */
790 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
791 			args.agbno, args.len, prandom_u32());
792 
793 	if (error)
794 		return error;
795 	/*
796 	 * Convert the results.
797 	 */
798 	newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
799 
800 	if (xfs_inobt_issparse(~allocmask)) {
801 		/*
802 		 * We've allocated a sparse chunk. Align the startino and mask.
803 		 */
804 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
805 
806 		rec.ir_startino = newino;
807 		rec.ir_holemask = ~allocmask;
808 		rec.ir_count = newlen;
809 		rec.ir_freecount = newlen;
810 		rec.ir_free = XFS_INOBT_ALL_FREE;
811 
812 		/*
813 		 * Insert the sparse record into the inobt and allow for a merge
814 		 * if necessary. If a merge does occur, rec is updated to the
815 		 * merged record.
816 		 */
817 		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
818 					       &rec, true);
819 		if (error == -EFSCORRUPTED) {
820 			xfs_alert(args.mp,
821 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
822 				  XFS_AGINO_TO_INO(args.mp, agno,
823 						   rec.ir_startino),
824 				  rec.ir_holemask, rec.ir_count);
825 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
826 		}
827 		if (error)
828 			return error;
829 
830 		/*
831 		 * We can't merge the part we've just allocated as for the inobt
832 		 * due to finobt semantics. The original record may or may not
833 		 * exist independent of whether physical inodes exist in this
834 		 * sparse chunk.
835 		 *
836 		 * We must update the finobt record based on the inobt record.
837 		 * rec contains the fully merged and up to date inobt record
838 		 * from the previous call. Set merge false to replace any
839 		 * existing record with this one.
840 		 */
841 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
842 			error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
843 						       XFS_BTNUM_FINO, &rec,
844 						       false);
845 			if (error)
846 				return error;
847 		}
848 	} else {
849 		/* full chunk - insert new records to both btrees */
850 		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
851 					 XFS_BTNUM_INO);
852 		if (error)
853 			return error;
854 
855 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
856 			error = xfs_inobt_insert(args.mp, tp, agbp, newino,
857 						 newlen, XFS_BTNUM_FINO);
858 			if (error)
859 				return error;
860 		}
861 	}
862 
863 	/*
864 	 * Update AGI counts and newino.
865 	 */
866 	be32_add_cpu(&agi->agi_count, newlen);
867 	be32_add_cpu(&agi->agi_freecount, newlen);
868 	pag = xfs_perag_get(args.mp, agno);
869 	pag->pagi_freecount += newlen;
870 	xfs_perag_put(pag);
871 	agi->agi_newino = cpu_to_be32(newino);
872 
873 	/*
874 	 * Log allocation group header fields
875 	 */
876 	xfs_ialloc_log_agi(tp, agbp,
877 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
878 	/*
879 	 * Modify/log superblock values for inode count and inode free count.
880 	 */
881 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
882 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
883 	*alloc = 1;
884 	return 0;
885 }
886 
887 STATIC xfs_agnumber_t
888 xfs_ialloc_next_ag(
889 	xfs_mount_t	*mp)
890 {
891 	xfs_agnumber_t	agno;
892 
893 	spin_lock(&mp->m_agirotor_lock);
894 	agno = mp->m_agirotor;
895 	if (++mp->m_agirotor >= mp->m_maxagi)
896 		mp->m_agirotor = 0;
897 	spin_unlock(&mp->m_agirotor_lock);
898 
899 	return agno;
900 }
901 
902 /*
903  * Select an allocation group to look for a free inode in, based on the parent
904  * inode and the mode.  Return the allocation group buffer.
905  */
906 STATIC xfs_agnumber_t
907 xfs_ialloc_ag_select(
908 	xfs_trans_t	*tp,		/* transaction pointer */
909 	xfs_ino_t	parent,		/* parent directory inode number */
910 	umode_t		mode,		/* bits set to indicate file type */
911 	int		okalloc)	/* ok to allocate more space */
912 {
913 	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
914 	xfs_agnumber_t	agno;		/* current ag number */
915 	int		flags;		/* alloc buffer locking flags */
916 	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
917 	xfs_extlen_t	longest = 0;	/* longest extent available */
918 	xfs_mount_t	*mp;		/* mount point structure */
919 	int		needspace;	/* file mode implies space allocated */
920 	xfs_perag_t	*pag;		/* per allocation group data */
921 	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
922 	int		error;
923 
924 	/*
925 	 * Files of these types need at least one block if length > 0
926 	 * (and they won't fit in the inode, but that's hard to figure out).
927 	 */
928 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
929 	mp = tp->t_mountp;
930 	agcount = mp->m_maxagi;
931 	if (S_ISDIR(mode))
932 		pagno = xfs_ialloc_next_ag(mp);
933 	else {
934 		pagno = XFS_INO_TO_AGNO(mp, parent);
935 		if (pagno >= agcount)
936 			pagno = 0;
937 	}
938 
939 	ASSERT(pagno < agcount);
940 
941 	/*
942 	 * Loop through allocation groups, looking for one with a little
943 	 * free space in it.  Note we don't look for free inodes, exactly.
944 	 * Instead, we include whether there is a need to allocate inodes
945 	 * to mean that blocks must be allocated for them,
946 	 * if none are currently free.
947 	 */
948 	agno = pagno;
949 	flags = XFS_ALLOC_FLAG_TRYLOCK;
950 	for (;;) {
951 		pag = xfs_perag_get(mp, agno);
952 		if (!pag->pagi_inodeok) {
953 			xfs_ialloc_next_ag(mp);
954 			goto nextag;
955 		}
956 
957 		if (!pag->pagi_init) {
958 			error = xfs_ialloc_pagi_init(mp, tp, agno);
959 			if (error)
960 				goto nextag;
961 		}
962 
963 		if (pag->pagi_freecount) {
964 			xfs_perag_put(pag);
965 			return agno;
966 		}
967 
968 		if (!okalloc)
969 			goto nextag;
970 
971 		if (!pag->pagf_init) {
972 			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
973 			if (error)
974 				goto nextag;
975 		}
976 
977 		/*
978 		 * Check that there is enough free space for the file plus a
979 		 * chunk of inodes if we need to allocate some. If this is the
980 		 * first pass across the AGs, take into account the potential
981 		 * space needed for alignment of inode chunks when checking the
982 		 * longest contiguous free space in the AG - this prevents us
983 		 * from getting ENOSPC because we have free space larger than
984 		 * m_ialloc_blks but alignment constraints prevent us from using
985 		 * it.
986 		 *
987 		 * If we can't find an AG with space for full alignment slack to
988 		 * be taken into account, we must be near ENOSPC in all AGs.
989 		 * Hence we don't include alignment for the second pass and so
990 		 * if we fail allocation due to alignment issues then it is most
991 		 * likely a real ENOSPC condition.
992 		 */
993 		ineed = mp->m_ialloc_min_blks;
994 		if (flags && ineed > 1)
995 			ineed += xfs_ialloc_cluster_alignment(mp);
996 		longest = pag->pagf_longest;
997 		if (!longest)
998 			longest = pag->pagf_flcount > 0;
999 
1000 		if (pag->pagf_freeblks >= needspace + ineed &&
1001 		    longest >= ineed) {
1002 			xfs_perag_put(pag);
1003 			return agno;
1004 		}
1005 nextag:
1006 		xfs_perag_put(pag);
1007 		/*
1008 		 * No point in iterating over the rest, if we're shutting
1009 		 * down.
1010 		 */
1011 		if (XFS_FORCED_SHUTDOWN(mp))
1012 			return NULLAGNUMBER;
1013 		agno++;
1014 		if (agno >= agcount)
1015 			agno = 0;
1016 		if (agno == pagno) {
1017 			if (flags == 0)
1018 				return NULLAGNUMBER;
1019 			flags = 0;
1020 		}
1021 	}
1022 }
1023 
1024 /*
1025  * Try to retrieve the next record to the left/right from the current one.
1026  */
1027 STATIC int
1028 xfs_ialloc_next_rec(
1029 	struct xfs_btree_cur	*cur,
1030 	xfs_inobt_rec_incore_t	*rec,
1031 	int			*done,
1032 	int			left)
1033 {
1034 	int                     error;
1035 	int			i;
1036 
1037 	if (left)
1038 		error = xfs_btree_decrement(cur, 0, &i);
1039 	else
1040 		error = xfs_btree_increment(cur, 0, &i);
1041 
1042 	if (error)
1043 		return error;
1044 	*done = !i;
1045 	if (i) {
1046 		error = xfs_inobt_get_rec(cur, rec, &i);
1047 		if (error)
1048 			return error;
1049 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1050 	}
1051 
1052 	return 0;
1053 }
1054 
1055 STATIC int
1056 xfs_ialloc_get_rec(
1057 	struct xfs_btree_cur	*cur,
1058 	xfs_agino_t		agino,
1059 	xfs_inobt_rec_incore_t	*rec,
1060 	int			*done)
1061 {
1062 	int                     error;
1063 	int			i;
1064 
1065 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1066 	if (error)
1067 		return error;
1068 	*done = !i;
1069 	if (i) {
1070 		error = xfs_inobt_get_rec(cur, rec, &i);
1071 		if (error)
1072 			return error;
1073 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1074 	}
1075 
1076 	return 0;
1077 }
1078 
1079 /*
1080  * Return the offset of the first free inode in the record. If the inode chunk
1081  * is sparsely allocated, we convert the record holemask to inode granularity
1082  * and mask off the unallocated regions from the inode free mask.
1083  */
1084 STATIC int
1085 xfs_inobt_first_free_inode(
1086 	struct xfs_inobt_rec_incore	*rec)
1087 {
1088 	xfs_inofree_t			realfree;
1089 
1090 	/* if there are no holes, return the first available offset */
1091 	if (!xfs_inobt_issparse(rec->ir_holemask))
1092 		return xfs_lowbit64(rec->ir_free);
1093 
1094 	realfree = xfs_inobt_irec_to_allocmask(rec);
1095 	realfree &= rec->ir_free;
1096 
1097 	return xfs_lowbit64(realfree);
1098 }
1099 
1100 /*
1101  * Allocate an inode using the inobt-only algorithm.
1102  */
1103 STATIC int
1104 xfs_dialloc_ag_inobt(
1105 	struct xfs_trans	*tp,
1106 	struct xfs_buf		*agbp,
1107 	xfs_ino_t		parent,
1108 	xfs_ino_t		*inop)
1109 {
1110 	struct xfs_mount	*mp = tp->t_mountp;
1111 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
1112 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
1113 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1114 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1115 	struct xfs_perag	*pag;
1116 	struct xfs_btree_cur	*cur, *tcur;
1117 	struct xfs_inobt_rec_incore rec, trec;
1118 	xfs_ino_t		ino;
1119 	int			error;
1120 	int			offset;
1121 	int			i, j;
1122 
1123 	pag = xfs_perag_get(mp, agno);
1124 
1125 	ASSERT(pag->pagi_init);
1126 	ASSERT(pag->pagi_inodeok);
1127 	ASSERT(pag->pagi_freecount > 0);
1128 
1129  restart_pagno:
1130 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1131 	/*
1132 	 * If pagino is 0 (this is the root inode allocation) use newino.
1133 	 * This must work because we've just allocated some.
1134 	 */
1135 	if (!pagino)
1136 		pagino = be32_to_cpu(agi->agi_newino);
1137 
1138 	error = xfs_check_agi_freecount(cur, agi);
1139 	if (error)
1140 		goto error0;
1141 
1142 	/*
1143 	 * If in the same AG as the parent, try to get near the parent.
1144 	 */
1145 	if (pagno == agno) {
1146 		int		doneleft;	/* done, to the left */
1147 		int		doneright;	/* done, to the right */
1148 		int		searchdistance = 10;
1149 
1150 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1151 		if (error)
1152 			goto error0;
1153 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1154 
1155 		error = xfs_inobt_get_rec(cur, &rec, &j);
1156 		if (error)
1157 			goto error0;
1158 		XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1159 
1160 		if (rec.ir_freecount > 0) {
1161 			/*
1162 			 * Found a free inode in the same chunk
1163 			 * as the parent, done.
1164 			 */
1165 			goto alloc_inode;
1166 		}
1167 
1168 
1169 		/*
1170 		 * In the same AG as parent, but parent's chunk is full.
1171 		 */
1172 
1173 		/* duplicate the cursor, search left & right simultaneously */
1174 		error = xfs_btree_dup_cursor(cur, &tcur);
1175 		if (error)
1176 			goto error0;
1177 
1178 		/*
1179 		 * Skip to last blocks looked up if same parent inode.
1180 		 */
1181 		if (pagino != NULLAGINO &&
1182 		    pag->pagl_pagino == pagino &&
1183 		    pag->pagl_leftrec != NULLAGINO &&
1184 		    pag->pagl_rightrec != NULLAGINO) {
1185 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1186 						   &trec, &doneleft);
1187 			if (error)
1188 				goto error1;
1189 
1190 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1191 						   &rec, &doneright);
1192 			if (error)
1193 				goto error1;
1194 		} else {
1195 			/* search left with tcur, back up 1 record */
1196 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1197 			if (error)
1198 				goto error1;
1199 
1200 			/* search right with cur, go forward 1 record. */
1201 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1202 			if (error)
1203 				goto error1;
1204 		}
1205 
1206 		/*
1207 		 * Loop until we find an inode chunk with a free inode.
1208 		 */
1209 		while (!doneleft || !doneright) {
1210 			int	useleft;  /* using left inode chunk this time */
1211 
1212 			if (!--searchdistance) {
1213 				/*
1214 				 * Not in range - save last search
1215 				 * location and allocate a new inode
1216 				 */
1217 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1218 				pag->pagl_leftrec = trec.ir_startino;
1219 				pag->pagl_rightrec = rec.ir_startino;
1220 				pag->pagl_pagino = pagino;
1221 				goto newino;
1222 			}
1223 
1224 			/* figure out the closer block if both are valid. */
1225 			if (!doneleft && !doneright) {
1226 				useleft = pagino -
1227 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1228 				  rec.ir_startino - pagino;
1229 			} else {
1230 				useleft = !doneleft;
1231 			}
1232 
1233 			/* free inodes to the left? */
1234 			if (useleft && trec.ir_freecount) {
1235 				rec = trec;
1236 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1237 				cur = tcur;
1238 
1239 				pag->pagl_leftrec = trec.ir_startino;
1240 				pag->pagl_rightrec = rec.ir_startino;
1241 				pag->pagl_pagino = pagino;
1242 				goto alloc_inode;
1243 			}
1244 
1245 			/* free inodes to the right? */
1246 			if (!useleft && rec.ir_freecount) {
1247 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1248 
1249 				pag->pagl_leftrec = trec.ir_startino;
1250 				pag->pagl_rightrec = rec.ir_startino;
1251 				pag->pagl_pagino = pagino;
1252 				goto alloc_inode;
1253 			}
1254 
1255 			/* get next record to check */
1256 			if (useleft) {
1257 				error = xfs_ialloc_next_rec(tcur, &trec,
1258 								 &doneleft, 1);
1259 			} else {
1260 				error = xfs_ialloc_next_rec(cur, &rec,
1261 								 &doneright, 0);
1262 			}
1263 			if (error)
1264 				goto error1;
1265 		}
1266 
1267 		/*
1268 		 * We've reached the end of the btree. because
1269 		 * we are only searching a small chunk of the
1270 		 * btree each search, there is obviously free
1271 		 * inodes closer to the parent inode than we
1272 		 * are now. restart the search again.
1273 		 */
1274 		pag->pagl_pagino = NULLAGINO;
1275 		pag->pagl_leftrec = NULLAGINO;
1276 		pag->pagl_rightrec = NULLAGINO;
1277 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1278 		xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1279 		goto restart_pagno;
1280 	}
1281 
1282 	/*
1283 	 * In a different AG from the parent.
1284 	 * See if the most recently allocated block has any free.
1285 	 */
1286 newino:
1287 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1288 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1289 					 XFS_LOOKUP_EQ, &i);
1290 		if (error)
1291 			goto error0;
1292 
1293 		if (i == 1) {
1294 			error = xfs_inobt_get_rec(cur, &rec, &j);
1295 			if (error)
1296 				goto error0;
1297 
1298 			if (j == 1 && rec.ir_freecount > 0) {
1299 				/*
1300 				 * The last chunk allocated in the group
1301 				 * still has a free inode.
1302 				 */
1303 				goto alloc_inode;
1304 			}
1305 		}
1306 	}
1307 
1308 	/*
1309 	 * None left in the last group, search the whole AG
1310 	 */
1311 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1312 	if (error)
1313 		goto error0;
1314 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1315 
1316 	for (;;) {
1317 		error = xfs_inobt_get_rec(cur, &rec, &i);
1318 		if (error)
1319 			goto error0;
1320 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1321 		if (rec.ir_freecount > 0)
1322 			break;
1323 		error = xfs_btree_increment(cur, 0, &i);
1324 		if (error)
1325 			goto error0;
1326 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1327 	}
1328 
1329 alloc_inode:
1330 	offset = xfs_inobt_first_free_inode(&rec);
1331 	ASSERT(offset >= 0);
1332 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1333 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1334 				   XFS_INODES_PER_CHUNK) == 0);
1335 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1336 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1337 	rec.ir_freecount--;
1338 	error = xfs_inobt_update(cur, &rec);
1339 	if (error)
1340 		goto error0;
1341 	be32_add_cpu(&agi->agi_freecount, -1);
1342 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1343 	pag->pagi_freecount--;
1344 
1345 	error = xfs_check_agi_freecount(cur, agi);
1346 	if (error)
1347 		goto error0;
1348 
1349 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1350 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1351 	xfs_perag_put(pag);
1352 	*inop = ino;
1353 	return 0;
1354 error1:
1355 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1356 error0:
1357 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1358 	xfs_perag_put(pag);
1359 	return error;
1360 }
1361 
1362 /*
1363  * Use the free inode btree to allocate an inode based on distance from the
1364  * parent. Note that the provided cursor may be deleted and replaced.
1365  */
1366 STATIC int
1367 xfs_dialloc_ag_finobt_near(
1368 	xfs_agino_t			pagino,
1369 	struct xfs_btree_cur		**ocur,
1370 	struct xfs_inobt_rec_incore	*rec)
1371 {
1372 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1373 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1374 	struct xfs_inobt_rec_incore	rrec;
1375 	int				error;
1376 	int				i, j;
1377 
1378 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1379 	if (error)
1380 		return error;
1381 
1382 	if (i == 1) {
1383 		error = xfs_inobt_get_rec(lcur, rec, &i);
1384 		if (error)
1385 			return error;
1386 		XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1387 
1388 		/*
1389 		 * See if we've landed in the parent inode record. The finobt
1390 		 * only tracks chunks with at least one free inode, so record
1391 		 * existence is enough.
1392 		 */
1393 		if (pagino >= rec->ir_startino &&
1394 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1395 			return 0;
1396 	}
1397 
1398 	error = xfs_btree_dup_cursor(lcur, &rcur);
1399 	if (error)
1400 		return error;
1401 
1402 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1403 	if (error)
1404 		goto error_rcur;
1405 	if (j == 1) {
1406 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1407 		if (error)
1408 			goto error_rcur;
1409 		XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1410 	}
1411 
1412 	XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1413 	if (i == 1 && j == 1) {
1414 		/*
1415 		 * Both the left and right records are valid. Choose the closer
1416 		 * inode chunk to the target.
1417 		 */
1418 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1419 		    (rrec.ir_startino - pagino)) {
1420 			*rec = rrec;
1421 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1422 			*ocur = rcur;
1423 		} else {
1424 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1425 		}
1426 	} else if (j == 1) {
1427 		/* only the right record is valid */
1428 		*rec = rrec;
1429 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1430 		*ocur = rcur;
1431 	} else if (i == 1) {
1432 		/* only the left record is valid */
1433 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1434 	}
1435 
1436 	return 0;
1437 
1438 error_rcur:
1439 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1440 	return error;
1441 }
1442 
1443 /*
1444  * Use the free inode btree to find a free inode based on a newino hint. If
1445  * the hint is NULL, find the first free inode in the AG.
1446  */
1447 STATIC int
1448 xfs_dialloc_ag_finobt_newino(
1449 	struct xfs_agi			*agi,
1450 	struct xfs_btree_cur		*cur,
1451 	struct xfs_inobt_rec_incore	*rec)
1452 {
1453 	int error;
1454 	int i;
1455 
1456 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1457 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1458 					 XFS_LOOKUP_EQ, &i);
1459 		if (error)
1460 			return error;
1461 		if (i == 1) {
1462 			error = xfs_inobt_get_rec(cur, rec, &i);
1463 			if (error)
1464 				return error;
1465 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1466 			return 0;
1467 		}
1468 	}
1469 
1470 	/*
1471 	 * Find the first inode available in the AG.
1472 	 */
1473 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1474 	if (error)
1475 		return error;
1476 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1477 
1478 	error = xfs_inobt_get_rec(cur, rec, &i);
1479 	if (error)
1480 		return error;
1481 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1482 
1483 	return 0;
1484 }
1485 
1486 /*
1487  * Update the inobt based on a modification made to the finobt. Also ensure that
1488  * the records from both trees are equivalent post-modification.
1489  */
1490 STATIC int
1491 xfs_dialloc_ag_update_inobt(
1492 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1493 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1494 	int				offset) /* inode offset */
1495 {
1496 	struct xfs_inobt_rec_incore	rec;
1497 	int				error;
1498 	int				i;
1499 
1500 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1501 	if (error)
1502 		return error;
1503 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1504 
1505 	error = xfs_inobt_get_rec(cur, &rec, &i);
1506 	if (error)
1507 		return error;
1508 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1509 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1510 				   XFS_INODES_PER_CHUNK) == 0);
1511 
1512 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1513 	rec.ir_freecount--;
1514 
1515 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1516 				  (rec.ir_freecount == frec->ir_freecount));
1517 
1518 	return xfs_inobt_update(cur, &rec);
1519 }
1520 
1521 /*
1522  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1523  * back to the inobt search algorithm.
1524  *
1525  * The caller selected an AG for us, and made sure that free inodes are
1526  * available.
1527  */
1528 STATIC int
1529 xfs_dialloc_ag(
1530 	struct xfs_trans	*tp,
1531 	struct xfs_buf		*agbp,
1532 	xfs_ino_t		parent,
1533 	xfs_ino_t		*inop)
1534 {
1535 	struct xfs_mount		*mp = tp->t_mountp;
1536 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1537 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1538 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1539 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1540 	struct xfs_perag		*pag;
1541 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1542 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1543 	struct xfs_inobt_rec_incore	rec;
1544 	xfs_ino_t			ino;
1545 	int				error;
1546 	int				offset;
1547 	int				i;
1548 
1549 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1550 		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1551 
1552 	pag = xfs_perag_get(mp, agno);
1553 
1554 	/*
1555 	 * If pagino is 0 (this is the root inode allocation) use newino.
1556 	 * This must work because we've just allocated some.
1557 	 */
1558 	if (!pagino)
1559 		pagino = be32_to_cpu(agi->agi_newino);
1560 
1561 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1562 
1563 	error = xfs_check_agi_freecount(cur, agi);
1564 	if (error)
1565 		goto error_cur;
1566 
1567 	/*
1568 	 * The search algorithm depends on whether we're in the same AG as the
1569 	 * parent. If so, find the closest available inode to the parent. If
1570 	 * not, consider the agi hint or find the first free inode in the AG.
1571 	 */
1572 	if (agno == pagno)
1573 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1574 	else
1575 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1576 	if (error)
1577 		goto error_cur;
1578 
1579 	offset = xfs_inobt_first_free_inode(&rec);
1580 	ASSERT(offset >= 0);
1581 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1582 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1583 				   XFS_INODES_PER_CHUNK) == 0);
1584 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1585 
1586 	/*
1587 	 * Modify or remove the finobt record.
1588 	 */
1589 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1590 	rec.ir_freecount--;
1591 	if (rec.ir_freecount)
1592 		error = xfs_inobt_update(cur, &rec);
1593 	else
1594 		error = xfs_btree_delete(cur, &i);
1595 	if (error)
1596 		goto error_cur;
1597 
1598 	/*
1599 	 * The finobt has now been updated appropriately. We haven't updated the
1600 	 * agi and superblock yet, so we can create an inobt cursor and validate
1601 	 * the original freecount. If all is well, make the equivalent update to
1602 	 * the inobt using the finobt record and offset information.
1603 	 */
1604 	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1605 
1606 	error = xfs_check_agi_freecount(icur, agi);
1607 	if (error)
1608 		goto error_icur;
1609 
1610 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1611 	if (error)
1612 		goto error_icur;
1613 
1614 	/*
1615 	 * Both trees have now been updated. We must update the perag and
1616 	 * superblock before we can check the freecount for each btree.
1617 	 */
1618 	be32_add_cpu(&agi->agi_freecount, -1);
1619 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1620 	pag->pagi_freecount--;
1621 
1622 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1623 
1624 	error = xfs_check_agi_freecount(icur, agi);
1625 	if (error)
1626 		goto error_icur;
1627 	error = xfs_check_agi_freecount(cur, agi);
1628 	if (error)
1629 		goto error_icur;
1630 
1631 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1632 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1633 	xfs_perag_put(pag);
1634 	*inop = ino;
1635 	return 0;
1636 
1637 error_icur:
1638 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1639 error_cur:
1640 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1641 	xfs_perag_put(pag);
1642 	return error;
1643 }
1644 
1645 /*
1646  * Allocate an inode on disk.
1647  *
1648  * Mode is used to tell whether the new inode will need space, and whether it
1649  * is a directory.
1650  *
1651  * This function is designed to be called twice if it has to do an allocation
1652  * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1653  * If an inode is available without having to performn an allocation, an inode
1654  * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1655  * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1656  * The caller should then commit the current transaction, allocate a
1657  * new transaction, and call xfs_dialloc() again, passing in the previous value
1658  * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1659  * buffer is locked across the two calls, the second call is guaranteed to have
1660  * a free inode available.
1661  *
1662  * Once we successfully pick an inode its number is returned and the on-disk
1663  * data structures are updated.  The inode itself is not read in, since doing so
1664  * would break ordering constraints with xfs_reclaim.
1665  */
1666 int
1667 xfs_dialloc(
1668 	struct xfs_trans	*tp,
1669 	xfs_ino_t		parent,
1670 	umode_t			mode,
1671 	int			okalloc,
1672 	struct xfs_buf		**IO_agbp,
1673 	xfs_ino_t		*inop)
1674 {
1675 	struct xfs_mount	*mp = tp->t_mountp;
1676 	struct xfs_buf		*agbp;
1677 	xfs_agnumber_t		agno;
1678 	int			error;
1679 	int			ialloced;
1680 	int			noroom = 0;
1681 	xfs_agnumber_t		start_agno;
1682 	struct xfs_perag	*pag;
1683 
1684 	if (*IO_agbp) {
1685 		/*
1686 		 * If the caller passes in a pointer to the AGI buffer,
1687 		 * continue where we left off before.  In this case, we
1688 		 * know that the allocation group has free inodes.
1689 		 */
1690 		agbp = *IO_agbp;
1691 		goto out_alloc;
1692 	}
1693 
1694 	/*
1695 	 * We do not have an agbp, so select an initial allocation
1696 	 * group for inode allocation.
1697 	 */
1698 	start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1699 	if (start_agno == NULLAGNUMBER) {
1700 		*inop = NULLFSINO;
1701 		return 0;
1702 	}
1703 
1704 	/*
1705 	 * If we have already hit the ceiling of inode blocks then clear
1706 	 * okalloc so we scan all available agi structures for a free
1707 	 * inode.
1708 	 */
1709 	if (mp->m_maxicount &&
1710 	    percpu_counter_read(&mp->m_icount) + mp->m_ialloc_inos >
1711 							mp->m_maxicount) {
1712 		noroom = 1;
1713 		okalloc = 0;
1714 	}
1715 
1716 	/*
1717 	 * Loop until we find an allocation group that either has free inodes
1718 	 * or in which we can allocate some inodes.  Iterate through the
1719 	 * allocation groups upward, wrapping at the end.
1720 	 */
1721 	agno = start_agno;
1722 	for (;;) {
1723 		pag = xfs_perag_get(mp, agno);
1724 		if (!pag->pagi_inodeok) {
1725 			xfs_ialloc_next_ag(mp);
1726 			goto nextag;
1727 		}
1728 
1729 		if (!pag->pagi_init) {
1730 			error = xfs_ialloc_pagi_init(mp, tp, agno);
1731 			if (error)
1732 				goto out_error;
1733 		}
1734 
1735 		/*
1736 		 * Do a first racy fast path check if this AG is usable.
1737 		 */
1738 		if (!pag->pagi_freecount && !okalloc)
1739 			goto nextag;
1740 
1741 		/*
1742 		 * Then read in the AGI buffer and recheck with the AGI buffer
1743 		 * lock held.
1744 		 */
1745 		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1746 		if (error)
1747 			goto out_error;
1748 
1749 		if (pag->pagi_freecount) {
1750 			xfs_perag_put(pag);
1751 			goto out_alloc;
1752 		}
1753 
1754 		if (!okalloc)
1755 			goto nextag_relse_buffer;
1756 
1757 
1758 		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1759 		if (error) {
1760 			xfs_trans_brelse(tp, agbp);
1761 
1762 			if (error != -ENOSPC)
1763 				goto out_error;
1764 
1765 			xfs_perag_put(pag);
1766 			*inop = NULLFSINO;
1767 			return 0;
1768 		}
1769 
1770 		if (ialloced) {
1771 			/*
1772 			 * We successfully allocated some inodes, return
1773 			 * the current context to the caller so that it
1774 			 * can commit the current transaction and call
1775 			 * us again where we left off.
1776 			 */
1777 			ASSERT(pag->pagi_freecount > 0);
1778 			xfs_perag_put(pag);
1779 
1780 			*IO_agbp = agbp;
1781 			*inop = NULLFSINO;
1782 			return 0;
1783 		}
1784 
1785 nextag_relse_buffer:
1786 		xfs_trans_brelse(tp, agbp);
1787 nextag:
1788 		xfs_perag_put(pag);
1789 		if (++agno == mp->m_sb.sb_agcount)
1790 			agno = 0;
1791 		if (agno == start_agno) {
1792 			*inop = NULLFSINO;
1793 			return noroom ? -ENOSPC : 0;
1794 		}
1795 	}
1796 
1797 out_alloc:
1798 	*IO_agbp = NULL;
1799 	return xfs_dialloc_ag(tp, agbp, parent, inop);
1800 out_error:
1801 	xfs_perag_put(pag);
1802 	return error;
1803 }
1804 
1805 /*
1806  * Free the blocks of an inode chunk. We must consider that the inode chunk
1807  * might be sparse and only free the regions that are allocated as part of the
1808  * chunk.
1809  */
1810 STATIC void
1811 xfs_difree_inode_chunk(
1812 	struct xfs_mount		*mp,
1813 	xfs_agnumber_t			agno,
1814 	struct xfs_inobt_rec_incore	*rec,
1815 	struct xfs_bmap_free		*flist)
1816 {
1817 	xfs_agblock_t	sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1818 	int		startidx, endidx;
1819 	int		nextbit;
1820 	xfs_agblock_t	agbno;
1821 	int		contigblk;
1822 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1823 
1824 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1825 		/* not sparse, calculate extent info directly */
1826 		xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
1827 				  XFS_AGINO_TO_AGBNO(mp, rec->ir_startino)),
1828 				  mp->m_ialloc_blks, flist, mp);
1829 		return;
1830 	}
1831 
1832 	/* holemask is only 16-bits (fits in an unsigned long) */
1833 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1834 	holemask[0] = rec->ir_holemask;
1835 
1836 	/*
1837 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1838 	 * holemask and convert the start/end index of each range to an extent.
1839 	 * We start with the start and end index both pointing at the first 0 in
1840 	 * the mask.
1841 	 */
1842 	startidx = endidx = find_first_zero_bit(holemask,
1843 						XFS_INOBT_HOLEMASK_BITS);
1844 	nextbit = startidx + 1;
1845 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1846 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1847 					     nextbit);
1848 		/*
1849 		 * If the next zero bit is contiguous, update the end index of
1850 		 * the current range and continue.
1851 		 */
1852 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1853 		    nextbit == endidx + 1) {
1854 			endidx = nextbit;
1855 			goto next;
1856 		}
1857 
1858 		/*
1859 		 * nextbit is not contiguous with the current end index. Convert
1860 		 * the current start/end to an extent and add it to the free
1861 		 * list.
1862 		 */
1863 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1864 				  mp->m_sb.sb_inopblock;
1865 		contigblk = ((endidx - startidx + 1) *
1866 			     XFS_INODES_PER_HOLEMASK_BIT) /
1867 			    mp->m_sb.sb_inopblock;
1868 
1869 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1870 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1871 		xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1872 				  flist, mp);
1873 
1874 		/* reset range to current bit and carry on... */
1875 		startidx = endidx = nextbit;
1876 
1877 next:
1878 		nextbit++;
1879 	}
1880 }
1881 
1882 STATIC int
1883 xfs_difree_inobt(
1884 	struct xfs_mount		*mp,
1885 	struct xfs_trans		*tp,
1886 	struct xfs_buf			*agbp,
1887 	xfs_agino_t			agino,
1888 	struct xfs_bmap_free		*flist,
1889 	struct xfs_icluster		*xic,
1890 	struct xfs_inobt_rec_incore	*orec)
1891 {
1892 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1893 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1894 	struct xfs_perag		*pag;
1895 	struct xfs_btree_cur		*cur;
1896 	struct xfs_inobt_rec_incore	rec;
1897 	int				ilen;
1898 	int				error;
1899 	int				i;
1900 	int				off;
1901 
1902 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1903 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1904 
1905 	/*
1906 	 * Initialize the cursor.
1907 	 */
1908 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1909 
1910 	error = xfs_check_agi_freecount(cur, agi);
1911 	if (error)
1912 		goto error0;
1913 
1914 	/*
1915 	 * Look for the entry describing this inode.
1916 	 */
1917 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1918 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1919 			__func__, error);
1920 		goto error0;
1921 	}
1922 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1923 	error = xfs_inobt_get_rec(cur, &rec, &i);
1924 	if (error) {
1925 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1926 			__func__, error);
1927 		goto error0;
1928 	}
1929 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1930 	/*
1931 	 * Get the offset in the inode chunk.
1932 	 */
1933 	off = agino - rec.ir_startino;
1934 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1935 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1936 	/*
1937 	 * Mark the inode free & increment the count.
1938 	 */
1939 	rec.ir_free |= XFS_INOBT_MASK(off);
1940 	rec.ir_freecount++;
1941 
1942 	/*
1943 	 * When an inode chunk is free, it becomes eligible for removal. Don't
1944 	 * remove the chunk if the block size is large enough for multiple inode
1945 	 * chunks (that might not be free).
1946 	 */
1947 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1948 	    rec.ir_free == XFS_INOBT_ALL_FREE &&
1949 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1950 		xic->deleted = 1;
1951 		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1952 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1953 
1954 		/*
1955 		 * Remove the inode cluster from the AGI B+Tree, adjust the
1956 		 * AGI and Superblock inode counts, and mark the disk space
1957 		 * to be freed when the transaction is committed.
1958 		 */
1959 		ilen = rec.ir_freecount;
1960 		be32_add_cpu(&agi->agi_count, -ilen);
1961 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1962 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1963 		pag = xfs_perag_get(mp, agno);
1964 		pag->pagi_freecount -= ilen - 1;
1965 		xfs_perag_put(pag);
1966 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1967 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1968 
1969 		if ((error = xfs_btree_delete(cur, &i))) {
1970 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1971 				__func__, error);
1972 			goto error0;
1973 		}
1974 
1975 		xfs_difree_inode_chunk(mp, agno, &rec, flist);
1976 	} else {
1977 		xic->deleted = 0;
1978 
1979 		error = xfs_inobt_update(cur, &rec);
1980 		if (error) {
1981 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1982 				__func__, error);
1983 			goto error0;
1984 		}
1985 
1986 		/*
1987 		 * Change the inode free counts and log the ag/sb changes.
1988 		 */
1989 		be32_add_cpu(&agi->agi_freecount, 1);
1990 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1991 		pag = xfs_perag_get(mp, agno);
1992 		pag->pagi_freecount++;
1993 		xfs_perag_put(pag);
1994 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1995 	}
1996 
1997 	error = xfs_check_agi_freecount(cur, agi);
1998 	if (error)
1999 		goto error0;
2000 
2001 	*orec = rec;
2002 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2003 	return 0;
2004 
2005 error0:
2006 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2007 	return error;
2008 }
2009 
2010 /*
2011  * Free an inode in the free inode btree.
2012  */
2013 STATIC int
2014 xfs_difree_finobt(
2015 	struct xfs_mount		*mp,
2016 	struct xfs_trans		*tp,
2017 	struct xfs_buf			*agbp,
2018 	xfs_agino_t			agino,
2019 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2020 {
2021 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
2022 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
2023 	struct xfs_btree_cur		*cur;
2024 	struct xfs_inobt_rec_incore	rec;
2025 	int				offset = agino - ibtrec->ir_startino;
2026 	int				error;
2027 	int				i;
2028 
2029 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2030 
2031 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2032 	if (error)
2033 		goto error;
2034 	if (i == 0) {
2035 		/*
2036 		 * If the record does not exist in the finobt, we must have just
2037 		 * freed an inode in a previously fully allocated chunk. If not,
2038 		 * something is out of sync.
2039 		 */
2040 		XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2041 
2042 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2043 					     ibtrec->ir_count,
2044 					     ibtrec->ir_freecount,
2045 					     ibtrec->ir_free, &i);
2046 		if (error)
2047 			goto error;
2048 		ASSERT(i == 1);
2049 
2050 		goto out;
2051 	}
2052 
2053 	/*
2054 	 * Read and update the existing record. We could just copy the ibtrec
2055 	 * across here, but that would defeat the purpose of having redundant
2056 	 * metadata. By making the modifications independently, we can catch
2057 	 * corruptions that we wouldn't see if we just copied from one record
2058 	 * to another.
2059 	 */
2060 	error = xfs_inobt_get_rec(cur, &rec, &i);
2061 	if (error)
2062 		goto error;
2063 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2064 
2065 	rec.ir_free |= XFS_INOBT_MASK(offset);
2066 	rec.ir_freecount++;
2067 
2068 	XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2069 				(rec.ir_freecount == ibtrec->ir_freecount),
2070 				error);
2071 
2072 	/*
2073 	 * The content of inobt records should always match between the inobt
2074 	 * and finobt. The lifecycle of records in the finobt is different from
2075 	 * the inobt in that the finobt only tracks records with at least one
2076 	 * free inode. Hence, if all of the inodes are free and we aren't
2077 	 * keeping inode chunks permanently on disk, remove the record.
2078 	 * Otherwise, update the record with the new information.
2079 	 *
2080 	 * Note that we currently can't free chunks when the block size is large
2081 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2082 	 * with the inobt.
2083 	 */
2084 	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2085 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2086 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2087 		error = xfs_btree_delete(cur, &i);
2088 		if (error)
2089 			goto error;
2090 		ASSERT(i == 1);
2091 	} else {
2092 		error = xfs_inobt_update(cur, &rec);
2093 		if (error)
2094 			goto error;
2095 	}
2096 
2097 out:
2098 	error = xfs_check_agi_freecount(cur, agi);
2099 	if (error)
2100 		goto error;
2101 
2102 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2103 	return 0;
2104 
2105 error:
2106 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2107 	return error;
2108 }
2109 
2110 /*
2111  * Free disk inode.  Carefully avoids touching the incore inode, all
2112  * manipulations incore are the caller's responsibility.
2113  * The on-disk inode is not changed by this operation, only the
2114  * btree (free inode mask) is changed.
2115  */
2116 int
2117 xfs_difree(
2118 	struct xfs_trans	*tp,		/* transaction pointer */
2119 	xfs_ino_t		inode,		/* inode to be freed */
2120 	struct xfs_bmap_free	*flist,		/* extents to free */
2121 	struct xfs_icluster	*xic)	/* cluster info if deleted */
2122 {
2123 	/* REFERENCED */
2124 	xfs_agblock_t		agbno;	/* block number containing inode */
2125 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2126 	xfs_agino_t		agino;	/* allocation group inode number */
2127 	xfs_agnumber_t		agno;	/* allocation group number */
2128 	int			error;	/* error return value */
2129 	struct xfs_mount	*mp;	/* mount structure for filesystem */
2130 	struct xfs_inobt_rec_incore rec;/* btree record */
2131 
2132 	mp = tp->t_mountp;
2133 
2134 	/*
2135 	 * Break up inode number into its components.
2136 	 */
2137 	agno = XFS_INO_TO_AGNO(mp, inode);
2138 	if (agno >= mp->m_sb.sb_agcount)  {
2139 		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2140 			__func__, agno, mp->m_sb.sb_agcount);
2141 		ASSERT(0);
2142 		return -EINVAL;
2143 	}
2144 	agino = XFS_INO_TO_AGINO(mp, inode);
2145 	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2146 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2147 			__func__, (unsigned long long)inode,
2148 			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2149 		ASSERT(0);
2150 		return -EINVAL;
2151 	}
2152 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2153 	if (agbno >= mp->m_sb.sb_agblocks)  {
2154 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2155 			__func__, agbno, mp->m_sb.sb_agblocks);
2156 		ASSERT(0);
2157 		return -EINVAL;
2158 	}
2159 	/*
2160 	 * Get the allocation group header.
2161 	 */
2162 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2163 	if (error) {
2164 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2165 			__func__, error);
2166 		return error;
2167 	}
2168 
2169 	/*
2170 	 * Fix up the inode allocation btree.
2171 	 */
2172 	error = xfs_difree_inobt(mp, tp, agbp, agino, flist, xic, &rec);
2173 	if (error)
2174 		goto error0;
2175 
2176 	/*
2177 	 * Fix up the free inode btree.
2178 	 */
2179 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2180 		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2181 		if (error)
2182 			goto error0;
2183 	}
2184 
2185 	return 0;
2186 
2187 error0:
2188 	return error;
2189 }
2190 
2191 STATIC int
2192 xfs_imap_lookup(
2193 	struct xfs_mount	*mp,
2194 	struct xfs_trans	*tp,
2195 	xfs_agnumber_t		agno,
2196 	xfs_agino_t		agino,
2197 	xfs_agblock_t		agbno,
2198 	xfs_agblock_t		*chunk_agbno,
2199 	xfs_agblock_t		*offset_agbno,
2200 	int			flags)
2201 {
2202 	struct xfs_inobt_rec_incore rec;
2203 	struct xfs_btree_cur	*cur;
2204 	struct xfs_buf		*agbp;
2205 	int			error;
2206 	int			i;
2207 
2208 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2209 	if (error) {
2210 		xfs_alert(mp,
2211 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2212 			__func__, error, agno);
2213 		return error;
2214 	}
2215 
2216 	/*
2217 	 * Lookup the inode record for the given agino. If the record cannot be
2218 	 * found, then it's an invalid inode number and we should abort. Once
2219 	 * we have a record, we need to ensure it contains the inode number
2220 	 * we are looking up.
2221 	 */
2222 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2223 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2224 	if (!error) {
2225 		if (i)
2226 			error = xfs_inobt_get_rec(cur, &rec, &i);
2227 		if (!error && i == 0)
2228 			error = -EINVAL;
2229 	}
2230 
2231 	xfs_trans_brelse(tp, agbp);
2232 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2233 	if (error)
2234 		return error;
2235 
2236 	/* check that the returned record contains the required inode */
2237 	if (rec.ir_startino > agino ||
2238 	    rec.ir_startino + mp->m_ialloc_inos <= agino)
2239 		return -EINVAL;
2240 
2241 	/* for untrusted inodes check it is allocated first */
2242 	if ((flags & XFS_IGET_UNTRUSTED) &&
2243 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2244 		return -EINVAL;
2245 
2246 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2247 	*offset_agbno = agbno - *chunk_agbno;
2248 	return 0;
2249 }
2250 
2251 /*
2252  * Return the location of the inode in imap, for mapping it into a buffer.
2253  */
2254 int
2255 xfs_imap(
2256 	xfs_mount_t	 *mp,	/* file system mount structure */
2257 	xfs_trans_t	 *tp,	/* transaction pointer */
2258 	xfs_ino_t	ino,	/* inode to locate */
2259 	struct xfs_imap	*imap,	/* location map structure */
2260 	uint		flags)	/* flags for inode btree lookup */
2261 {
2262 	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
2263 	xfs_agino_t	agino;	/* inode number within alloc group */
2264 	xfs_agnumber_t	agno;	/* allocation group number */
2265 	int		blks_per_cluster; /* num blocks per inode cluster */
2266 	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
2267 	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
2268 	int		error;	/* error code */
2269 	int		offset;	/* index of inode in its buffer */
2270 	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
2271 
2272 	ASSERT(ino != NULLFSINO);
2273 
2274 	/*
2275 	 * Split up the inode number into its parts.
2276 	 */
2277 	agno = XFS_INO_TO_AGNO(mp, ino);
2278 	agino = XFS_INO_TO_AGINO(mp, ino);
2279 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2280 	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2281 	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2282 #ifdef DEBUG
2283 		/*
2284 		 * Don't output diagnostic information for untrusted inodes
2285 		 * as they can be invalid without implying corruption.
2286 		 */
2287 		if (flags & XFS_IGET_UNTRUSTED)
2288 			return -EINVAL;
2289 		if (agno >= mp->m_sb.sb_agcount) {
2290 			xfs_alert(mp,
2291 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2292 				__func__, agno, mp->m_sb.sb_agcount);
2293 		}
2294 		if (agbno >= mp->m_sb.sb_agblocks) {
2295 			xfs_alert(mp,
2296 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2297 				__func__, (unsigned long long)agbno,
2298 				(unsigned long)mp->m_sb.sb_agblocks);
2299 		}
2300 		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2301 			xfs_alert(mp,
2302 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2303 				__func__, ino,
2304 				XFS_AGINO_TO_INO(mp, agno, agino));
2305 		}
2306 		xfs_stack_trace();
2307 #endif /* DEBUG */
2308 		return -EINVAL;
2309 	}
2310 
2311 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2312 
2313 	/*
2314 	 * For bulkstat and handle lookups, we have an untrusted inode number
2315 	 * that we have to verify is valid. We cannot do this just by reading
2316 	 * the inode buffer as it may have been unlinked and removed leaving
2317 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2318 	 * in all cases where an untrusted inode number is passed.
2319 	 */
2320 	if (flags & XFS_IGET_UNTRUSTED) {
2321 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2322 					&chunk_agbno, &offset_agbno, flags);
2323 		if (error)
2324 			return error;
2325 		goto out_map;
2326 	}
2327 
2328 	/*
2329 	 * If the inode cluster size is the same as the blocksize or
2330 	 * smaller we get to the buffer by simple arithmetics.
2331 	 */
2332 	if (blks_per_cluster == 1) {
2333 		offset = XFS_INO_TO_OFFSET(mp, ino);
2334 		ASSERT(offset < mp->m_sb.sb_inopblock);
2335 
2336 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2337 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2338 		imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2339 		return 0;
2340 	}
2341 
2342 	/*
2343 	 * If the inode chunks are aligned then use simple maths to
2344 	 * find the location. Otherwise we have to do a btree
2345 	 * lookup to find the location.
2346 	 */
2347 	if (mp->m_inoalign_mask) {
2348 		offset_agbno = agbno & mp->m_inoalign_mask;
2349 		chunk_agbno = agbno - offset_agbno;
2350 	} else {
2351 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2352 					&chunk_agbno, &offset_agbno, flags);
2353 		if (error)
2354 			return error;
2355 	}
2356 
2357 out_map:
2358 	ASSERT(agbno >= chunk_agbno);
2359 	cluster_agbno = chunk_agbno +
2360 		((offset_agbno / blks_per_cluster) * blks_per_cluster);
2361 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2362 		XFS_INO_TO_OFFSET(mp, ino);
2363 
2364 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2365 	imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2366 	imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2367 
2368 	/*
2369 	 * If the inode number maps to a block outside the bounds
2370 	 * of the file system then return NULL rather than calling
2371 	 * read_buf and panicing when we get an error from the
2372 	 * driver.
2373 	 */
2374 	if ((imap->im_blkno + imap->im_len) >
2375 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2376 		xfs_alert(mp,
2377 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2378 			__func__, (unsigned long long) imap->im_blkno,
2379 			(unsigned long long) imap->im_len,
2380 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2381 		return -EINVAL;
2382 	}
2383 	return 0;
2384 }
2385 
2386 /*
2387  * Compute and fill in value of m_in_maxlevels.
2388  */
2389 void
2390 xfs_ialloc_compute_maxlevels(
2391 	xfs_mount_t	*mp)		/* file system mount structure */
2392 {
2393 	int		level;
2394 	uint		maxblocks;
2395 	uint		maxleafents;
2396 	int		minleafrecs;
2397 	int		minnoderecs;
2398 
2399 	maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
2400 		XFS_INODES_PER_CHUNK_LOG;
2401 	minleafrecs = mp->m_alloc_mnr[0];
2402 	minnoderecs = mp->m_alloc_mnr[1];
2403 	maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
2404 	for (level = 1; maxblocks > 1; level++)
2405 		maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
2406 	mp->m_in_maxlevels = level;
2407 }
2408 
2409 /*
2410  * Log specified fields for the ag hdr (inode section). The growth of the agi
2411  * structure over time requires that we interpret the buffer as two logical
2412  * regions delineated by the end of the unlinked list. This is due to the size
2413  * of the hash table and its location in the middle of the agi.
2414  *
2415  * For example, a request to log a field before agi_unlinked and a field after
2416  * agi_unlinked could cause us to log the entire hash table and use an excessive
2417  * amount of log space. To avoid this behavior, log the region up through
2418  * agi_unlinked in one call and the region after agi_unlinked through the end of
2419  * the structure in another.
2420  */
2421 void
2422 xfs_ialloc_log_agi(
2423 	xfs_trans_t	*tp,		/* transaction pointer */
2424 	xfs_buf_t	*bp,		/* allocation group header buffer */
2425 	int		fields)		/* bitmask of fields to log */
2426 {
2427 	int			first;		/* first byte number */
2428 	int			last;		/* last byte number */
2429 	static const short	offsets[] = {	/* field starting offsets */
2430 					/* keep in sync with bit definitions */
2431 		offsetof(xfs_agi_t, agi_magicnum),
2432 		offsetof(xfs_agi_t, agi_versionnum),
2433 		offsetof(xfs_agi_t, agi_seqno),
2434 		offsetof(xfs_agi_t, agi_length),
2435 		offsetof(xfs_agi_t, agi_count),
2436 		offsetof(xfs_agi_t, agi_root),
2437 		offsetof(xfs_agi_t, agi_level),
2438 		offsetof(xfs_agi_t, agi_freecount),
2439 		offsetof(xfs_agi_t, agi_newino),
2440 		offsetof(xfs_agi_t, agi_dirino),
2441 		offsetof(xfs_agi_t, agi_unlinked),
2442 		offsetof(xfs_agi_t, agi_free_root),
2443 		offsetof(xfs_agi_t, agi_free_level),
2444 		sizeof(xfs_agi_t)
2445 	};
2446 #ifdef DEBUG
2447 	xfs_agi_t		*agi;	/* allocation group header */
2448 
2449 	agi = XFS_BUF_TO_AGI(bp);
2450 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2451 #endif
2452 
2453 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2454 
2455 	/*
2456 	 * Compute byte offsets for the first and last fields in the first
2457 	 * region and log the agi buffer. This only logs up through
2458 	 * agi_unlinked.
2459 	 */
2460 	if (fields & XFS_AGI_ALL_BITS_R1) {
2461 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2462 				  &first, &last);
2463 		xfs_trans_log_buf(tp, bp, first, last);
2464 	}
2465 
2466 	/*
2467 	 * Mask off the bits in the first region and calculate the first and
2468 	 * last field offsets for any bits in the second region.
2469 	 */
2470 	fields &= ~XFS_AGI_ALL_BITS_R1;
2471 	if (fields) {
2472 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2473 				  &first, &last);
2474 		xfs_trans_log_buf(tp, bp, first, last);
2475 	}
2476 }
2477 
2478 #ifdef DEBUG
2479 STATIC void
2480 xfs_check_agi_unlinked(
2481 	struct xfs_agi		*agi)
2482 {
2483 	int			i;
2484 
2485 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2486 		ASSERT(agi->agi_unlinked[i]);
2487 }
2488 #else
2489 #define xfs_check_agi_unlinked(agi)
2490 #endif
2491 
2492 static bool
2493 xfs_agi_verify(
2494 	struct xfs_buf	*bp)
2495 {
2496 	struct xfs_mount *mp = bp->b_target->bt_mount;
2497 	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp);
2498 
2499 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2500 	    !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid))
2501 			return false;
2502 	/*
2503 	 * Validate the magic number of the agi block.
2504 	 */
2505 	if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2506 		return false;
2507 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2508 		return false;
2509 
2510 	if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2511 		return false;
2512 	/*
2513 	 * during growfs operations, the perag is not fully initialised,
2514 	 * so we can't use it for any useful checking. growfs ensures we can't
2515 	 * use it by using uncached buffers that don't have the perag attached
2516 	 * so we can detect and avoid this problem.
2517 	 */
2518 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2519 		return false;
2520 
2521 	xfs_check_agi_unlinked(agi);
2522 	return true;
2523 }
2524 
2525 static void
2526 xfs_agi_read_verify(
2527 	struct xfs_buf	*bp)
2528 {
2529 	struct xfs_mount *mp = bp->b_target->bt_mount;
2530 
2531 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2532 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2533 		xfs_buf_ioerror(bp, -EFSBADCRC);
2534 	else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2535 				XFS_ERRTAG_IALLOC_READ_AGI,
2536 				XFS_RANDOM_IALLOC_READ_AGI))
2537 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2538 
2539 	if (bp->b_error)
2540 		xfs_verifier_error(bp);
2541 }
2542 
2543 static void
2544 xfs_agi_write_verify(
2545 	struct xfs_buf	*bp)
2546 {
2547 	struct xfs_mount *mp = bp->b_target->bt_mount;
2548 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
2549 
2550 	if (!xfs_agi_verify(bp)) {
2551 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2552 		xfs_verifier_error(bp);
2553 		return;
2554 	}
2555 
2556 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2557 		return;
2558 
2559 	if (bip)
2560 		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2561 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2562 }
2563 
2564 const struct xfs_buf_ops xfs_agi_buf_ops = {
2565 	.verify_read = xfs_agi_read_verify,
2566 	.verify_write = xfs_agi_write_verify,
2567 };
2568 
2569 /*
2570  * Read in the allocation group header (inode allocation section)
2571  */
2572 int
2573 xfs_read_agi(
2574 	struct xfs_mount	*mp,	/* file system mount structure */
2575 	struct xfs_trans	*tp,	/* transaction pointer */
2576 	xfs_agnumber_t		agno,	/* allocation group number */
2577 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2578 {
2579 	int			error;
2580 
2581 	trace_xfs_read_agi(mp, agno);
2582 
2583 	ASSERT(agno != NULLAGNUMBER);
2584 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2585 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2586 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2587 	if (error)
2588 		return error;
2589 
2590 	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2591 	return 0;
2592 }
2593 
2594 int
2595 xfs_ialloc_read_agi(
2596 	struct xfs_mount	*mp,	/* file system mount structure */
2597 	struct xfs_trans	*tp,	/* transaction pointer */
2598 	xfs_agnumber_t		agno,	/* allocation group number */
2599 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2600 {
2601 	struct xfs_agi		*agi;	/* allocation group header */
2602 	struct xfs_perag	*pag;	/* per allocation group data */
2603 	int			error;
2604 
2605 	trace_xfs_ialloc_read_agi(mp, agno);
2606 
2607 	error = xfs_read_agi(mp, tp, agno, bpp);
2608 	if (error)
2609 		return error;
2610 
2611 	agi = XFS_BUF_TO_AGI(*bpp);
2612 	pag = xfs_perag_get(mp, agno);
2613 	if (!pag->pagi_init) {
2614 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2615 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2616 		pag->pagi_init = 1;
2617 	}
2618 
2619 	/*
2620 	 * It's possible for these to be out of sync if
2621 	 * we are in the middle of a forced shutdown.
2622 	 */
2623 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2624 		XFS_FORCED_SHUTDOWN(mp));
2625 	xfs_perag_put(pag);
2626 	return 0;
2627 }
2628 
2629 /*
2630  * Read in the agi to initialise the per-ag data in the mount structure
2631  */
2632 int
2633 xfs_ialloc_pagi_init(
2634 	xfs_mount_t	*mp,		/* file system mount structure */
2635 	xfs_trans_t	*tp,		/* transaction pointer */
2636 	xfs_agnumber_t	agno)		/* allocation group number */
2637 {
2638 	xfs_buf_t	*bp = NULL;
2639 	int		error;
2640 
2641 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2642 	if (error)
2643 		return error;
2644 	if (bp)
2645 		xfs_trans_brelse(tp, bp);
2646 	return 0;
2647 }
2648