1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_inum.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_mount.h" 29 #include "xfs_inode.h" 30 #include "xfs_btree.h" 31 #include "xfs_ialloc.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_alloc.h" 34 #include "xfs_rtalloc.h" 35 #include "xfs_error.h" 36 #include "xfs_bmap.h" 37 #include "xfs_cksum.h" 38 #include "xfs_trans.h" 39 #include "xfs_buf_item.h" 40 #include "xfs_icreate_item.h" 41 #include "xfs_icache.h" 42 #include "xfs_dinode.h" 43 #include "xfs_trace.h" 44 45 46 /* 47 * Allocation group level functions. 48 */ 49 static inline int 50 xfs_ialloc_cluster_alignment( 51 xfs_alloc_arg_t *args) 52 { 53 if (xfs_sb_version_hasalign(&args->mp->m_sb) && 54 args->mp->m_sb.sb_inoalignmt >= 55 XFS_B_TO_FSBT(args->mp, args->mp->m_inode_cluster_size)) 56 return args->mp->m_sb.sb_inoalignmt; 57 return 1; 58 } 59 60 /* 61 * Lookup a record by ino in the btree given by cur. 62 */ 63 int /* error */ 64 xfs_inobt_lookup( 65 struct xfs_btree_cur *cur, /* btree cursor */ 66 xfs_agino_t ino, /* starting inode of chunk */ 67 xfs_lookup_t dir, /* <=, >=, == */ 68 int *stat) /* success/failure */ 69 { 70 cur->bc_rec.i.ir_startino = ino; 71 cur->bc_rec.i.ir_freecount = 0; 72 cur->bc_rec.i.ir_free = 0; 73 return xfs_btree_lookup(cur, dir, stat); 74 } 75 76 /* 77 * Update the record referred to by cur to the value given. 78 * This either works (return 0) or gets an EFSCORRUPTED error. 79 */ 80 STATIC int /* error */ 81 xfs_inobt_update( 82 struct xfs_btree_cur *cur, /* btree cursor */ 83 xfs_inobt_rec_incore_t *irec) /* btree record */ 84 { 85 union xfs_btree_rec rec; 86 87 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 88 rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount); 89 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 90 return xfs_btree_update(cur, &rec); 91 } 92 93 /* 94 * Get the data from the pointed-to record. 95 */ 96 int /* error */ 97 xfs_inobt_get_rec( 98 struct xfs_btree_cur *cur, /* btree cursor */ 99 xfs_inobt_rec_incore_t *irec, /* btree record */ 100 int *stat) /* output: success/failure */ 101 { 102 union xfs_btree_rec *rec; 103 int error; 104 105 error = xfs_btree_get_rec(cur, &rec, stat); 106 if (!error && *stat == 1) { 107 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 108 irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount); 109 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 110 } 111 return error; 112 } 113 114 /* 115 * Insert a single inobt record. Cursor must already point to desired location. 116 */ 117 STATIC int 118 xfs_inobt_insert_rec( 119 struct xfs_btree_cur *cur, 120 __int32_t freecount, 121 xfs_inofree_t free, 122 int *stat) 123 { 124 cur->bc_rec.i.ir_freecount = freecount; 125 cur->bc_rec.i.ir_free = free; 126 return xfs_btree_insert(cur, stat); 127 } 128 129 /* 130 * Insert records describing a newly allocated inode chunk into the inobt. 131 */ 132 STATIC int 133 xfs_inobt_insert( 134 struct xfs_mount *mp, 135 struct xfs_trans *tp, 136 struct xfs_buf *agbp, 137 xfs_agino_t newino, 138 xfs_agino_t newlen, 139 xfs_btnum_t btnum) 140 { 141 struct xfs_btree_cur *cur; 142 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 143 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 144 xfs_agino_t thisino; 145 int i; 146 int error; 147 148 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 149 150 for (thisino = newino; 151 thisino < newino + newlen; 152 thisino += XFS_INODES_PER_CHUNK) { 153 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 154 if (error) { 155 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 156 return error; 157 } 158 ASSERT(i == 0); 159 160 error = xfs_inobt_insert_rec(cur, XFS_INODES_PER_CHUNK, 161 XFS_INOBT_ALL_FREE, &i); 162 if (error) { 163 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 164 return error; 165 } 166 ASSERT(i == 1); 167 } 168 169 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 170 171 return 0; 172 } 173 174 /* 175 * Verify that the number of free inodes in the AGI is correct. 176 */ 177 #ifdef DEBUG 178 STATIC int 179 xfs_check_agi_freecount( 180 struct xfs_btree_cur *cur, 181 struct xfs_agi *agi) 182 { 183 if (cur->bc_nlevels == 1) { 184 xfs_inobt_rec_incore_t rec; 185 int freecount = 0; 186 int error; 187 int i; 188 189 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 190 if (error) 191 return error; 192 193 do { 194 error = xfs_inobt_get_rec(cur, &rec, &i); 195 if (error) 196 return error; 197 198 if (i) { 199 freecount += rec.ir_freecount; 200 error = xfs_btree_increment(cur, 0, &i); 201 if (error) 202 return error; 203 } 204 } while (i == 1); 205 206 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) 207 ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); 208 } 209 return 0; 210 } 211 #else 212 #define xfs_check_agi_freecount(cur, agi) 0 213 #endif 214 215 /* 216 * Initialise a new set of inodes. When called without a transaction context 217 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 218 * than logging them (which in a transaction context puts them into the AIL 219 * for writeback rather than the xfsbufd queue). 220 */ 221 int 222 xfs_ialloc_inode_init( 223 struct xfs_mount *mp, 224 struct xfs_trans *tp, 225 struct list_head *buffer_list, 226 xfs_agnumber_t agno, 227 xfs_agblock_t agbno, 228 xfs_agblock_t length, 229 unsigned int gen) 230 { 231 struct xfs_buf *fbuf; 232 struct xfs_dinode *free; 233 int nbufs, blks_per_cluster, inodes_per_cluster; 234 int version; 235 int i, j; 236 xfs_daddr_t d; 237 xfs_ino_t ino = 0; 238 239 /* 240 * Loop over the new block(s), filling in the inodes. For small block 241 * sizes, manipulate the inodes in buffers which are multiples of the 242 * blocks size. 243 */ 244 blks_per_cluster = xfs_icluster_size_fsb(mp); 245 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 246 nbufs = length / blks_per_cluster; 247 248 /* 249 * Figure out what version number to use in the inodes we create. If 250 * the superblock version has caught up to the one that supports the new 251 * inode format, then use the new inode version. Otherwise use the old 252 * version so that old kernels will continue to be able to use the file 253 * system. 254 * 255 * For v3 inodes, we also need to write the inode number into the inode, 256 * so calculate the first inode number of the chunk here as 257 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not 258 * across multiple filesystem blocks (such as a cluster) and so cannot 259 * be used in the cluster buffer loop below. 260 * 261 * Further, because we are writing the inode directly into the buffer 262 * and calculating a CRC on the entire inode, we have ot log the entire 263 * inode so that the entire range the CRC covers is present in the log. 264 * That means for v3 inode we log the entire buffer rather than just the 265 * inode cores. 266 */ 267 if (xfs_sb_version_hascrc(&mp->m_sb)) { 268 version = 3; 269 ino = XFS_AGINO_TO_INO(mp, agno, 270 XFS_OFFBNO_TO_AGINO(mp, agbno, 0)); 271 272 /* 273 * log the initialisation that is about to take place as an 274 * logical operation. This means the transaction does not 275 * need to log the physical changes to the inode buffers as log 276 * recovery will know what initialisation is actually needed. 277 * Hence we only need to log the buffers as "ordered" buffers so 278 * they track in the AIL as if they were physically logged. 279 */ 280 if (tp) 281 xfs_icreate_log(tp, agno, agbno, mp->m_ialloc_inos, 282 mp->m_sb.sb_inodesize, length, gen); 283 } else 284 version = 2; 285 286 for (j = 0; j < nbufs; j++) { 287 /* 288 * Get the block. 289 */ 290 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster)); 291 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 292 mp->m_bsize * blks_per_cluster, 293 XBF_UNMAPPED); 294 if (!fbuf) 295 return -ENOMEM; 296 297 /* Initialize the inode buffers and log them appropriately. */ 298 fbuf->b_ops = &xfs_inode_buf_ops; 299 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 300 for (i = 0; i < inodes_per_cluster; i++) { 301 int ioffset = i << mp->m_sb.sb_inodelog; 302 uint isize = xfs_dinode_size(version); 303 304 free = xfs_make_iptr(mp, fbuf, i); 305 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 306 free->di_version = version; 307 free->di_gen = cpu_to_be32(gen); 308 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 309 310 if (version == 3) { 311 free->di_ino = cpu_to_be64(ino); 312 ino++; 313 uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid); 314 xfs_dinode_calc_crc(mp, free); 315 } else if (tp) { 316 /* just log the inode core */ 317 xfs_trans_log_buf(tp, fbuf, ioffset, 318 ioffset + isize - 1); 319 } 320 } 321 322 if (tp) { 323 /* 324 * Mark the buffer as an inode allocation buffer so it 325 * sticks in AIL at the point of this allocation 326 * transaction. This ensures the they are on disk before 327 * the tail of the log can be moved past this 328 * transaction (i.e. by preventing relogging from moving 329 * it forward in the log). 330 */ 331 xfs_trans_inode_alloc_buf(tp, fbuf); 332 if (version == 3) { 333 /* 334 * Mark the buffer as ordered so that they are 335 * not physically logged in the transaction but 336 * still tracked in the AIL as part of the 337 * transaction and pin the log appropriately. 338 */ 339 xfs_trans_ordered_buf(tp, fbuf); 340 xfs_trans_log_buf(tp, fbuf, 0, 341 BBTOB(fbuf->b_length) - 1); 342 } 343 } else { 344 fbuf->b_flags |= XBF_DONE; 345 xfs_buf_delwri_queue(fbuf, buffer_list); 346 xfs_buf_relse(fbuf); 347 } 348 } 349 return 0; 350 } 351 352 /* 353 * Allocate new inodes in the allocation group specified by agbp. 354 * Return 0 for success, else error code. 355 */ 356 STATIC int /* error code or 0 */ 357 xfs_ialloc_ag_alloc( 358 xfs_trans_t *tp, /* transaction pointer */ 359 xfs_buf_t *agbp, /* alloc group buffer */ 360 int *alloc) 361 { 362 xfs_agi_t *agi; /* allocation group header */ 363 xfs_alloc_arg_t args; /* allocation argument structure */ 364 xfs_agnumber_t agno; 365 int error; 366 xfs_agino_t newino; /* new first inode's number */ 367 xfs_agino_t newlen; /* new number of inodes */ 368 int isaligned = 0; /* inode allocation at stripe unit */ 369 /* boundary */ 370 struct xfs_perag *pag; 371 372 memset(&args, 0, sizeof(args)); 373 args.tp = tp; 374 args.mp = tp->t_mountp; 375 376 /* 377 * Locking will ensure that we don't have two callers in here 378 * at one time. 379 */ 380 newlen = args.mp->m_ialloc_inos; 381 if (args.mp->m_maxicount && 382 args.mp->m_sb.sb_icount + newlen > args.mp->m_maxicount) 383 return -ENOSPC; 384 args.minlen = args.maxlen = args.mp->m_ialloc_blks; 385 /* 386 * First try to allocate inodes contiguous with the last-allocated 387 * chunk of inodes. If the filesystem is striped, this will fill 388 * an entire stripe unit with inodes. 389 */ 390 agi = XFS_BUF_TO_AGI(agbp); 391 newino = be32_to_cpu(agi->agi_newino); 392 agno = be32_to_cpu(agi->agi_seqno); 393 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 394 args.mp->m_ialloc_blks; 395 if (likely(newino != NULLAGINO && 396 (args.agbno < be32_to_cpu(agi->agi_length)))) { 397 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 398 args.type = XFS_ALLOCTYPE_THIS_BNO; 399 args.prod = 1; 400 401 /* 402 * We need to take into account alignment here to ensure that 403 * we don't modify the free list if we fail to have an exact 404 * block. If we don't have an exact match, and every oher 405 * attempt allocation attempt fails, we'll end up cancelling 406 * a dirty transaction and shutting down. 407 * 408 * For an exact allocation, alignment must be 1, 409 * however we need to take cluster alignment into account when 410 * fixing up the freelist. Use the minalignslop field to 411 * indicate that extra blocks might be required for alignment, 412 * but not to use them in the actual exact allocation. 413 */ 414 args.alignment = 1; 415 args.minalignslop = xfs_ialloc_cluster_alignment(&args) - 1; 416 417 /* Allow space for the inode btree to split. */ 418 args.minleft = args.mp->m_in_maxlevels - 1; 419 if ((error = xfs_alloc_vextent(&args))) 420 return error; 421 422 /* 423 * This request might have dirtied the transaction if the AG can 424 * satisfy the request, but the exact block was not available. 425 * If the allocation did fail, subsequent requests will relax 426 * the exact agbno requirement and increase the alignment 427 * instead. It is critical that the total size of the request 428 * (len + alignment + slop) does not increase from this point 429 * on, so reset minalignslop to ensure it is not included in 430 * subsequent requests. 431 */ 432 args.minalignslop = 0; 433 } else 434 args.fsbno = NULLFSBLOCK; 435 436 if (unlikely(args.fsbno == NULLFSBLOCK)) { 437 /* 438 * Set the alignment for the allocation. 439 * If stripe alignment is turned on then align at stripe unit 440 * boundary. 441 * If the cluster size is smaller than a filesystem block 442 * then we're doing I/O for inodes in filesystem block size 443 * pieces, so don't need alignment anyway. 444 */ 445 isaligned = 0; 446 if (args.mp->m_sinoalign) { 447 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); 448 args.alignment = args.mp->m_dalign; 449 isaligned = 1; 450 } else 451 args.alignment = xfs_ialloc_cluster_alignment(&args); 452 /* 453 * Need to figure out where to allocate the inode blocks. 454 * Ideally they should be spaced out through the a.g. 455 * For now, just allocate blocks up front. 456 */ 457 args.agbno = be32_to_cpu(agi->agi_root); 458 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 459 /* 460 * Allocate a fixed-size extent of inodes. 461 */ 462 args.type = XFS_ALLOCTYPE_NEAR_BNO; 463 args.prod = 1; 464 /* 465 * Allow space for the inode btree to split. 466 */ 467 args.minleft = args.mp->m_in_maxlevels - 1; 468 if ((error = xfs_alloc_vextent(&args))) 469 return error; 470 } 471 472 /* 473 * If stripe alignment is turned on, then try again with cluster 474 * alignment. 475 */ 476 if (isaligned && args.fsbno == NULLFSBLOCK) { 477 args.type = XFS_ALLOCTYPE_NEAR_BNO; 478 args.agbno = be32_to_cpu(agi->agi_root); 479 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 480 args.alignment = xfs_ialloc_cluster_alignment(&args); 481 if ((error = xfs_alloc_vextent(&args))) 482 return error; 483 } 484 485 if (args.fsbno == NULLFSBLOCK) { 486 *alloc = 0; 487 return 0; 488 } 489 ASSERT(args.len == args.minlen); 490 491 /* 492 * Stamp and write the inode buffers. 493 * 494 * Seed the new inode cluster with a random generation number. This 495 * prevents short-term reuse of generation numbers if a chunk is 496 * freed and then immediately reallocated. We use random numbers 497 * rather than a linear progression to prevent the next generation 498 * number from being easily guessable. 499 */ 500 error = xfs_ialloc_inode_init(args.mp, tp, NULL, agno, args.agbno, 501 args.len, prandom_u32()); 502 503 if (error) 504 return error; 505 /* 506 * Convert the results. 507 */ 508 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); 509 be32_add_cpu(&agi->agi_count, newlen); 510 be32_add_cpu(&agi->agi_freecount, newlen); 511 pag = xfs_perag_get(args.mp, agno); 512 pag->pagi_freecount += newlen; 513 xfs_perag_put(pag); 514 agi->agi_newino = cpu_to_be32(newino); 515 516 /* 517 * Insert records describing the new inode chunk into the btrees. 518 */ 519 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 520 XFS_BTNUM_INO); 521 if (error) 522 return error; 523 524 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 525 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 526 XFS_BTNUM_FINO); 527 if (error) 528 return error; 529 } 530 /* 531 * Log allocation group header fields 532 */ 533 xfs_ialloc_log_agi(tp, agbp, 534 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 535 /* 536 * Modify/log superblock values for inode count and inode free count. 537 */ 538 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 539 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 540 *alloc = 1; 541 return 0; 542 } 543 544 STATIC xfs_agnumber_t 545 xfs_ialloc_next_ag( 546 xfs_mount_t *mp) 547 { 548 xfs_agnumber_t agno; 549 550 spin_lock(&mp->m_agirotor_lock); 551 agno = mp->m_agirotor; 552 if (++mp->m_agirotor >= mp->m_maxagi) 553 mp->m_agirotor = 0; 554 spin_unlock(&mp->m_agirotor_lock); 555 556 return agno; 557 } 558 559 /* 560 * Select an allocation group to look for a free inode in, based on the parent 561 * inode and the mode. Return the allocation group buffer. 562 */ 563 STATIC xfs_agnumber_t 564 xfs_ialloc_ag_select( 565 xfs_trans_t *tp, /* transaction pointer */ 566 xfs_ino_t parent, /* parent directory inode number */ 567 umode_t mode, /* bits set to indicate file type */ 568 int okalloc) /* ok to allocate more space */ 569 { 570 xfs_agnumber_t agcount; /* number of ag's in the filesystem */ 571 xfs_agnumber_t agno; /* current ag number */ 572 int flags; /* alloc buffer locking flags */ 573 xfs_extlen_t ineed; /* blocks needed for inode allocation */ 574 xfs_extlen_t longest = 0; /* longest extent available */ 575 xfs_mount_t *mp; /* mount point structure */ 576 int needspace; /* file mode implies space allocated */ 577 xfs_perag_t *pag; /* per allocation group data */ 578 xfs_agnumber_t pagno; /* parent (starting) ag number */ 579 int error; 580 581 /* 582 * Files of these types need at least one block if length > 0 583 * (and they won't fit in the inode, but that's hard to figure out). 584 */ 585 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 586 mp = tp->t_mountp; 587 agcount = mp->m_maxagi; 588 if (S_ISDIR(mode)) 589 pagno = xfs_ialloc_next_ag(mp); 590 else { 591 pagno = XFS_INO_TO_AGNO(mp, parent); 592 if (pagno >= agcount) 593 pagno = 0; 594 } 595 596 ASSERT(pagno < agcount); 597 598 /* 599 * Loop through allocation groups, looking for one with a little 600 * free space in it. Note we don't look for free inodes, exactly. 601 * Instead, we include whether there is a need to allocate inodes 602 * to mean that blocks must be allocated for them, 603 * if none are currently free. 604 */ 605 agno = pagno; 606 flags = XFS_ALLOC_FLAG_TRYLOCK; 607 for (;;) { 608 pag = xfs_perag_get(mp, agno); 609 if (!pag->pagi_inodeok) { 610 xfs_ialloc_next_ag(mp); 611 goto nextag; 612 } 613 614 if (!pag->pagi_init) { 615 error = xfs_ialloc_pagi_init(mp, tp, agno); 616 if (error) 617 goto nextag; 618 } 619 620 if (pag->pagi_freecount) { 621 xfs_perag_put(pag); 622 return agno; 623 } 624 625 if (!okalloc) 626 goto nextag; 627 628 if (!pag->pagf_init) { 629 error = xfs_alloc_pagf_init(mp, tp, agno, flags); 630 if (error) 631 goto nextag; 632 } 633 634 /* 635 * Is there enough free space for the file plus a block of 636 * inodes? (if we need to allocate some)? 637 */ 638 ineed = mp->m_ialloc_blks; 639 longest = pag->pagf_longest; 640 if (!longest) 641 longest = pag->pagf_flcount > 0; 642 643 if (pag->pagf_freeblks >= needspace + ineed && 644 longest >= ineed) { 645 xfs_perag_put(pag); 646 return agno; 647 } 648 nextag: 649 xfs_perag_put(pag); 650 /* 651 * No point in iterating over the rest, if we're shutting 652 * down. 653 */ 654 if (XFS_FORCED_SHUTDOWN(mp)) 655 return NULLAGNUMBER; 656 agno++; 657 if (agno >= agcount) 658 agno = 0; 659 if (agno == pagno) { 660 if (flags == 0) 661 return NULLAGNUMBER; 662 flags = 0; 663 } 664 } 665 } 666 667 /* 668 * Try to retrieve the next record to the left/right from the current one. 669 */ 670 STATIC int 671 xfs_ialloc_next_rec( 672 struct xfs_btree_cur *cur, 673 xfs_inobt_rec_incore_t *rec, 674 int *done, 675 int left) 676 { 677 int error; 678 int i; 679 680 if (left) 681 error = xfs_btree_decrement(cur, 0, &i); 682 else 683 error = xfs_btree_increment(cur, 0, &i); 684 685 if (error) 686 return error; 687 *done = !i; 688 if (i) { 689 error = xfs_inobt_get_rec(cur, rec, &i); 690 if (error) 691 return error; 692 XFS_WANT_CORRUPTED_RETURN(i == 1); 693 } 694 695 return 0; 696 } 697 698 STATIC int 699 xfs_ialloc_get_rec( 700 struct xfs_btree_cur *cur, 701 xfs_agino_t agino, 702 xfs_inobt_rec_incore_t *rec, 703 int *done) 704 { 705 int error; 706 int i; 707 708 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 709 if (error) 710 return error; 711 *done = !i; 712 if (i) { 713 error = xfs_inobt_get_rec(cur, rec, &i); 714 if (error) 715 return error; 716 XFS_WANT_CORRUPTED_RETURN(i == 1); 717 } 718 719 return 0; 720 } 721 722 /* 723 * Allocate an inode using the inobt-only algorithm. 724 */ 725 STATIC int 726 xfs_dialloc_ag_inobt( 727 struct xfs_trans *tp, 728 struct xfs_buf *agbp, 729 xfs_ino_t parent, 730 xfs_ino_t *inop) 731 { 732 struct xfs_mount *mp = tp->t_mountp; 733 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 734 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 735 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 736 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 737 struct xfs_perag *pag; 738 struct xfs_btree_cur *cur, *tcur; 739 struct xfs_inobt_rec_incore rec, trec; 740 xfs_ino_t ino; 741 int error; 742 int offset; 743 int i, j; 744 745 pag = xfs_perag_get(mp, agno); 746 747 ASSERT(pag->pagi_init); 748 ASSERT(pag->pagi_inodeok); 749 ASSERT(pag->pagi_freecount > 0); 750 751 restart_pagno: 752 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 753 /* 754 * If pagino is 0 (this is the root inode allocation) use newino. 755 * This must work because we've just allocated some. 756 */ 757 if (!pagino) 758 pagino = be32_to_cpu(agi->agi_newino); 759 760 error = xfs_check_agi_freecount(cur, agi); 761 if (error) 762 goto error0; 763 764 /* 765 * If in the same AG as the parent, try to get near the parent. 766 */ 767 if (pagno == agno) { 768 int doneleft; /* done, to the left */ 769 int doneright; /* done, to the right */ 770 int searchdistance = 10; 771 772 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 773 if (error) 774 goto error0; 775 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 776 777 error = xfs_inobt_get_rec(cur, &rec, &j); 778 if (error) 779 goto error0; 780 XFS_WANT_CORRUPTED_GOTO(j == 1, error0); 781 782 if (rec.ir_freecount > 0) { 783 /* 784 * Found a free inode in the same chunk 785 * as the parent, done. 786 */ 787 goto alloc_inode; 788 } 789 790 791 /* 792 * In the same AG as parent, but parent's chunk is full. 793 */ 794 795 /* duplicate the cursor, search left & right simultaneously */ 796 error = xfs_btree_dup_cursor(cur, &tcur); 797 if (error) 798 goto error0; 799 800 /* 801 * Skip to last blocks looked up if same parent inode. 802 */ 803 if (pagino != NULLAGINO && 804 pag->pagl_pagino == pagino && 805 pag->pagl_leftrec != NULLAGINO && 806 pag->pagl_rightrec != NULLAGINO) { 807 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 808 &trec, &doneleft); 809 if (error) 810 goto error1; 811 812 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 813 &rec, &doneright); 814 if (error) 815 goto error1; 816 } else { 817 /* search left with tcur, back up 1 record */ 818 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 819 if (error) 820 goto error1; 821 822 /* search right with cur, go forward 1 record. */ 823 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 824 if (error) 825 goto error1; 826 } 827 828 /* 829 * Loop until we find an inode chunk with a free inode. 830 */ 831 while (!doneleft || !doneright) { 832 int useleft; /* using left inode chunk this time */ 833 834 if (!--searchdistance) { 835 /* 836 * Not in range - save last search 837 * location and allocate a new inode 838 */ 839 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 840 pag->pagl_leftrec = trec.ir_startino; 841 pag->pagl_rightrec = rec.ir_startino; 842 pag->pagl_pagino = pagino; 843 goto newino; 844 } 845 846 /* figure out the closer block if both are valid. */ 847 if (!doneleft && !doneright) { 848 useleft = pagino - 849 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 850 rec.ir_startino - pagino; 851 } else { 852 useleft = !doneleft; 853 } 854 855 /* free inodes to the left? */ 856 if (useleft && trec.ir_freecount) { 857 rec = trec; 858 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 859 cur = tcur; 860 861 pag->pagl_leftrec = trec.ir_startino; 862 pag->pagl_rightrec = rec.ir_startino; 863 pag->pagl_pagino = pagino; 864 goto alloc_inode; 865 } 866 867 /* free inodes to the right? */ 868 if (!useleft && rec.ir_freecount) { 869 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 870 871 pag->pagl_leftrec = trec.ir_startino; 872 pag->pagl_rightrec = rec.ir_startino; 873 pag->pagl_pagino = pagino; 874 goto alloc_inode; 875 } 876 877 /* get next record to check */ 878 if (useleft) { 879 error = xfs_ialloc_next_rec(tcur, &trec, 880 &doneleft, 1); 881 } else { 882 error = xfs_ialloc_next_rec(cur, &rec, 883 &doneright, 0); 884 } 885 if (error) 886 goto error1; 887 } 888 889 /* 890 * We've reached the end of the btree. because 891 * we are only searching a small chunk of the 892 * btree each search, there is obviously free 893 * inodes closer to the parent inode than we 894 * are now. restart the search again. 895 */ 896 pag->pagl_pagino = NULLAGINO; 897 pag->pagl_leftrec = NULLAGINO; 898 pag->pagl_rightrec = NULLAGINO; 899 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 900 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 901 goto restart_pagno; 902 } 903 904 /* 905 * In a different AG from the parent. 906 * See if the most recently allocated block has any free. 907 */ 908 newino: 909 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 910 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 911 XFS_LOOKUP_EQ, &i); 912 if (error) 913 goto error0; 914 915 if (i == 1) { 916 error = xfs_inobt_get_rec(cur, &rec, &j); 917 if (error) 918 goto error0; 919 920 if (j == 1 && rec.ir_freecount > 0) { 921 /* 922 * The last chunk allocated in the group 923 * still has a free inode. 924 */ 925 goto alloc_inode; 926 } 927 } 928 } 929 930 /* 931 * None left in the last group, search the whole AG 932 */ 933 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 934 if (error) 935 goto error0; 936 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 937 938 for (;;) { 939 error = xfs_inobt_get_rec(cur, &rec, &i); 940 if (error) 941 goto error0; 942 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 943 if (rec.ir_freecount > 0) 944 break; 945 error = xfs_btree_increment(cur, 0, &i); 946 if (error) 947 goto error0; 948 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 949 } 950 951 alloc_inode: 952 offset = xfs_lowbit64(rec.ir_free); 953 ASSERT(offset >= 0); 954 ASSERT(offset < XFS_INODES_PER_CHUNK); 955 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 956 XFS_INODES_PER_CHUNK) == 0); 957 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 958 rec.ir_free &= ~XFS_INOBT_MASK(offset); 959 rec.ir_freecount--; 960 error = xfs_inobt_update(cur, &rec); 961 if (error) 962 goto error0; 963 be32_add_cpu(&agi->agi_freecount, -1); 964 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 965 pag->pagi_freecount--; 966 967 error = xfs_check_agi_freecount(cur, agi); 968 if (error) 969 goto error0; 970 971 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 972 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 973 xfs_perag_put(pag); 974 *inop = ino; 975 return 0; 976 error1: 977 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 978 error0: 979 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 980 xfs_perag_put(pag); 981 return error; 982 } 983 984 /* 985 * Use the free inode btree to allocate an inode based on distance from the 986 * parent. Note that the provided cursor may be deleted and replaced. 987 */ 988 STATIC int 989 xfs_dialloc_ag_finobt_near( 990 xfs_agino_t pagino, 991 struct xfs_btree_cur **ocur, 992 struct xfs_inobt_rec_incore *rec) 993 { 994 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 995 struct xfs_btree_cur *rcur; /* right search cursor */ 996 struct xfs_inobt_rec_incore rrec; 997 int error; 998 int i, j; 999 1000 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1001 if (error) 1002 return error; 1003 1004 if (i == 1) { 1005 error = xfs_inobt_get_rec(lcur, rec, &i); 1006 if (error) 1007 return error; 1008 XFS_WANT_CORRUPTED_RETURN(i == 1); 1009 1010 /* 1011 * See if we've landed in the parent inode record. The finobt 1012 * only tracks chunks with at least one free inode, so record 1013 * existence is enough. 1014 */ 1015 if (pagino >= rec->ir_startino && 1016 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1017 return 0; 1018 } 1019 1020 error = xfs_btree_dup_cursor(lcur, &rcur); 1021 if (error) 1022 return error; 1023 1024 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1025 if (error) 1026 goto error_rcur; 1027 if (j == 1) { 1028 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1029 if (error) 1030 goto error_rcur; 1031 XFS_WANT_CORRUPTED_GOTO(j == 1, error_rcur); 1032 } 1033 1034 XFS_WANT_CORRUPTED_GOTO(i == 1 || j == 1, error_rcur); 1035 if (i == 1 && j == 1) { 1036 /* 1037 * Both the left and right records are valid. Choose the closer 1038 * inode chunk to the target. 1039 */ 1040 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1041 (rrec.ir_startino - pagino)) { 1042 *rec = rrec; 1043 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1044 *ocur = rcur; 1045 } else { 1046 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1047 } 1048 } else if (j == 1) { 1049 /* only the right record is valid */ 1050 *rec = rrec; 1051 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1052 *ocur = rcur; 1053 } else if (i == 1) { 1054 /* only the left record is valid */ 1055 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1056 } 1057 1058 return 0; 1059 1060 error_rcur: 1061 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1062 return error; 1063 } 1064 1065 /* 1066 * Use the free inode btree to find a free inode based on a newino hint. If 1067 * the hint is NULL, find the first free inode in the AG. 1068 */ 1069 STATIC int 1070 xfs_dialloc_ag_finobt_newino( 1071 struct xfs_agi *agi, 1072 struct xfs_btree_cur *cur, 1073 struct xfs_inobt_rec_incore *rec) 1074 { 1075 int error; 1076 int i; 1077 1078 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1079 error = xfs_inobt_lookup(cur, agi->agi_newino, XFS_LOOKUP_EQ, 1080 &i); 1081 if (error) 1082 return error; 1083 if (i == 1) { 1084 error = xfs_inobt_get_rec(cur, rec, &i); 1085 if (error) 1086 return error; 1087 XFS_WANT_CORRUPTED_RETURN(i == 1); 1088 1089 return 0; 1090 } 1091 } 1092 1093 /* 1094 * Find the first inode available in the AG. 1095 */ 1096 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1097 if (error) 1098 return error; 1099 XFS_WANT_CORRUPTED_RETURN(i == 1); 1100 1101 error = xfs_inobt_get_rec(cur, rec, &i); 1102 if (error) 1103 return error; 1104 XFS_WANT_CORRUPTED_RETURN(i == 1); 1105 1106 return 0; 1107 } 1108 1109 /* 1110 * Update the inobt based on a modification made to the finobt. Also ensure that 1111 * the records from both trees are equivalent post-modification. 1112 */ 1113 STATIC int 1114 xfs_dialloc_ag_update_inobt( 1115 struct xfs_btree_cur *cur, /* inobt cursor */ 1116 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1117 int offset) /* inode offset */ 1118 { 1119 struct xfs_inobt_rec_incore rec; 1120 int error; 1121 int i; 1122 1123 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1124 if (error) 1125 return error; 1126 XFS_WANT_CORRUPTED_RETURN(i == 1); 1127 1128 error = xfs_inobt_get_rec(cur, &rec, &i); 1129 if (error) 1130 return error; 1131 XFS_WANT_CORRUPTED_RETURN(i == 1); 1132 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1133 XFS_INODES_PER_CHUNK) == 0); 1134 1135 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1136 rec.ir_freecount--; 1137 1138 XFS_WANT_CORRUPTED_RETURN((rec.ir_free == frec->ir_free) && 1139 (rec.ir_freecount == frec->ir_freecount)); 1140 1141 error = xfs_inobt_update(cur, &rec); 1142 if (error) 1143 return error; 1144 1145 return 0; 1146 } 1147 1148 /* 1149 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1150 * back to the inobt search algorithm. 1151 * 1152 * The caller selected an AG for us, and made sure that free inodes are 1153 * available. 1154 */ 1155 STATIC int 1156 xfs_dialloc_ag( 1157 struct xfs_trans *tp, 1158 struct xfs_buf *agbp, 1159 xfs_ino_t parent, 1160 xfs_ino_t *inop) 1161 { 1162 struct xfs_mount *mp = tp->t_mountp; 1163 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1164 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1165 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1166 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1167 struct xfs_perag *pag; 1168 struct xfs_btree_cur *cur; /* finobt cursor */ 1169 struct xfs_btree_cur *icur; /* inobt cursor */ 1170 struct xfs_inobt_rec_incore rec; 1171 xfs_ino_t ino; 1172 int error; 1173 int offset; 1174 int i; 1175 1176 if (!xfs_sb_version_hasfinobt(&mp->m_sb)) 1177 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); 1178 1179 pag = xfs_perag_get(mp, agno); 1180 1181 /* 1182 * If pagino is 0 (this is the root inode allocation) use newino. 1183 * This must work because we've just allocated some. 1184 */ 1185 if (!pagino) 1186 pagino = be32_to_cpu(agi->agi_newino); 1187 1188 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1189 1190 error = xfs_check_agi_freecount(cur, agi); 1191 if (error) 1192 goto error_cur; 1193 1194 /* 1195 * The search algorithm depends on whether we're in the same AG as the 1196 * parent. If so, find the closest available inode to the parent. If 1197 * not, consider the agi hint or find the first free inode in the AG. 1198 */ 1199 if (agno == pagno) 1200 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1201 else 1202 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1203 if (error) 1204 goto error_cur; 1205 1206 offset = xfs_lowbit64(rec.ir_free); 1207 ASSERT(offset >= 0); 1208 ASSERT(offset < XFS_INODES_PER_CHUNK); 1209 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1210 XFS_INODES_PER_CHUNK) == 0); 1211 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1212 1213 /* 1214 * Modify or remove the finobt record. 1215 */ 1216 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1217 rec.ir_freecount--; 1218 if (rec.ir_freecount) 1219 error = xfs_inobt_update(cur, &rec); 1220 else 1221 error = xfs_btree_delete(cur, &i); 1222 if (error) 1223 goto error_cur; 1224 1225 /* 1226 * The finobt has now been updated appropriately. We haven't updated the 1227 * agi and superblock yet, so we can create an inobt cursor and validate 1228 * the original freecount. If all is well, make the equivalent update to 1229 * the inobt using the finobt record and offset information. 1230 */ 1231 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1232 1233 error = xfs_check_agi_freecount(icur, agi); 1234 if (error) 1235 goto error_icur; 1236 1237 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1238 if (error) 1239 goto error_icur; 1240 1241 /* 1242 * Both trees have now been updated. We must update the perag and 1243 * superblock before we can check the freecount for each btree. 1244 */ 1245 be32_add_cpu(&agi->agi_freecount, -1); 1246 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1247 pag->pagi_freecount--; 1248 1249 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1250 1251 error = xfs_check_agi_freecount(icur, agi); 1252 if (error) 1253 goto error_icur; 1254 error = xfs_check_agi_freecount(cur, agi); 1255 if (error) 1256 goto error_icur; 1257 1258 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1259 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1260 xfs_perag_put(pag); 1261 *inop = ino; 1262 return 0; 1263 1264 error_icur: 1265 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1266 error_cur: 1267 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1268 xfs_perag_put(pag); 1269 return error; 1270 } 1271 1272 /* 1273 * Allocate an inode on disk. 1274 * 1275 * Mode is used to tell whether the new inode will need space, and whether it 1276 * is a directory. 1277 * 1278 * This function is designed to be called twice if it has to do an allocation 1279 * to make more free inodes. On the first call, *IO_agbp should be set to NULL. 1280 * If an inode is available without having to performn an allocation, an inode 1281 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation 1282 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. 1283 * The caller should then commit the current transaction, allocate a 1284 * new transaction, and call xfs_dialloc() again, passing in the previous value 1285 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI 1286 * buffer is locked across the two calls, the second call is guaranteed to have 1287 * a free inode available. 1288 * 1289 * Once we successfully pick an inode its number is returned and the on-disk 1290 * data structures are updated. The inode itself is not read in, since doing so 1291 * would break ordering constraints with xfs_reclaim. 1292 */ 1293 int 1294 xfs_dialloc( 1295 struct xfs_trans *tp, 1296 xfs_ino_t parent, 1297 umode_t mode, 1298 int okalloc, 1299 struct xfs_buf **IO_agbp, 1300 xfs_ino_t *inop) 1301 { 1302 struct xfs_mount *mp = tp->t_mountp; 1303 struct xfs_buf *agbp; 1304 xfs_agnumber_t agno; 1305 int error; 1306 int ialloced; 1307 int noroom = 0; 1308 xfs_agnumber_t start_agno; 1309 struct xfs_perag *pag; 1310 1311 if (*IO_agbp) { 1312 /* 1313 * If the caller passes in a pointer to the AGI buffer, 1314 * continue where we left off before. In this case, we 1315 * know that the allocation group has free inodes. 1316 */ 1317 agbp = *IO_agbp; 1318 goto out_alloc; 1319 } 1320 1321 /* 1322 * We do not have an agbp, so select an initial allocation 1323 * group for inode allocation. 1324 */ 1325 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc); 1326 if (start_agno == NULLAGNUMBER) { 1327 *inop = NULLFSINO; 1328 return 0; 1329 } 1330 1331 /* 1332 * If we have already hit the ceiling of inode blocks then clear 1333 * okalloc so we scan all available agi structures for a free 1334 * inode. 1335 */ 1336 if (mp->m_maxicount && 1337 mp->m_sb.sb_icount + mp->m_ialloc_inos > mp->m_maxicount) { 1338 noroom = 1; 1339 okalloc = 0; 1340 } 1341 1342 /* 1343 * Loop until we find an allocation group that either has free inodes 1344 * or in which we can allocate some inodes. Iterate through the 1345 * allocation groups upward, wrapping at the end. 1346 */ 1347 agno = start_agno; 1348 for (;;) { 1349 pag = xfs_perag_get(mp, agno); 1350 if (!pag->pagi_inodeok) { 1351 xfs_ialloc_next_ag(mp); 1352 goto nextag; 1353 } 1354 1355 if (!pag->pagi_init) { 1356 error = xfs_ialloc_pagi_init(mp, tp, agno); 1357 if (error) 1358 goto out_error; 1359 } 1360 1361 /* 1362 * Do a first racy fast path check if this AG is usable. 1363 */ 1364 if (!pag->pagi_freecount && !okalloc) 1365 goto nextag; 1366 1367 /* 1368 * Then read in the AGI buffer and recheck with the AGI buffer 1369 * lock held. 1370 */ 1371 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1372 if (error) 1373 goto out_error; 1374 1375 if (pag->pagi_freecount) { 1376 xfs_perag_put(pag); 1377 goto out_alloc; 1378 } 1379 1380 if (!okalloc) 1381 goto nextag_relse_buffer; 1382 1383 1384 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); 1385 if (error) { 1386 xfs_trans_brelse(tp, agbp); 1387 1388 if (error != -ENOSPC) 1389 goto out_error; 1390 1391 xfs_perag_put(pag); 1392 *inop = NULLFSINO; 1393 return 0; 1394 } 1395 1396 if (ialloced) { 1397 /* 1398 * We successfully allocated some inodes, return 1399 * the current context to the caller so that it 1400 * can commit the current transaction and call 1401 * us again where we left off. 1402 */ 1403 ASSERT(pag->pagi_freecount > 0); 1404 xfs_perag_put(pag); 1405 1406 *IO_agbp = agbp; 1407 *inop = NULLFSINO; 1408 return 0; 1409 } 1410 1411 nextag_relse_buffer: 1412 xfs_trans_brelse(tp, agbp); 1413 nextag: 1414 xfs_perag_put(pag); 1415 if (++agno == mp->m_sb.sb_agcount) 1416 agno = 0; 1417 if (agno == start_agno) { 1418 *inop = NULLFSINO; 1419 return noroom ? -ENOSPC : 0; 1420 } 1421 } 1422 1423 out_alloc: 1424 *IO_agbp = NULL; 1425 return xfs_dialloc_ag(tp, agbp, parent, inop); 1426 out_error: 1427 xfs_perag_put(pag); 1428 return error; 1429 } 1430 1431 STATIC int 1432 xfs_difree_inobt( 1433 struct xfs_mount *mp, 1434 struct xfs_trans *tp, 1435 struct xfs_buf *agbp, 1436 xfs_agino_t agino, 1437 struct xfs_bmap_free *flist, 1438 int *deleted, 1439 xfs_ino_t *first_ino, 1440 struct xfs_inobt_rec_incore *orec) 1441 { 1442 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1443 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1444 struct xfs_perag *pag; 1445 struct xfs_btree_cur *cur; 1446 struct xfs_inobt_rec_incore rec; 1447 int ilen; 1448 int error; 1449 int i; 1450 int off; 1451 1452 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1453 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 1454 1455 /* 1456 * Initialize the cursor. 1457 */ 1458 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1459 1460 error = xfs_check_agi_freecount(cur, agi); 1461 if (error) 1462 goto error0; 1463 1464 /* 1465 * Look for the entry describing this inode. 1466 */ 1467 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 1468 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 1469 __func__, error); 1470 goto error0; 1471 } 1472 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 1473 error = xfs_inobt_get_rec(cur, &rec, &i); 1474 if (error) { 1475 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 1476 __func__, error); 1477 goto error0; 1478 } 1479 XFS_WANT_CORRUPTED_GOTO(i == 1, error0); 1480 /* 1481 * Get the offset in the inode chunk. 1482 */ 1483 off = agino - rec.ir_startino; 1484 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 1485 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 1486 /* 1487 * Mark the inode free & increment the count. 1488 */ 1489 rec.ir_free |= XFS_INOBT_MASK(off); 1490 rec.ir_freecount++; 1491 1492 /* 1493 * When an inode cluster is free, it becomes eligible for removal 1494 */ 1495 if (!(mp->m_flags & XFS_MOUNT_IKEEP) && 1496 (rec.ir_freecount == mp->m_ialloc_inos)) { 1497 1498 *deleted = 1; 1499 *first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); 1500 1501 /* 1502 * Remove the inode cluster from the AGI B+Tree, adjust the 1503 * AGI and Superblock inode counts, and mark the disk space 1504 * to be freed when the transaction is committed. 1505 */ 1506 ilen = mp->m_ialloc_inos; 1507 be32_add_cpu(&agi->agi_count, -ilen); 1508 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 1509 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 1510 pag = xfs_perag_get(mp, agno); 1511 pag->pagi_freecount -= ilen - 1; 1512 xfs_perag_put(pag); 1513 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 1514 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 1515 1516 if ((error = xfs_btree_delete(cur, &i))) { 1517 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 1518 __func__, error); 1519 goto error0; 1520 } 1521 1522 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, 1523 XFS_AGINO_TO_AGBNO(mp, rec.ir_startino)), 1524 mp->m_ialloc_blks, flist, mp); 1525 } else { 1526 *deleted = 0; 1527 1528 error = xfs_inobt_update(cur, &rec); 1529 if (error) { 1530 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 1531 __func__, error); 1532 goto error0; 1533 } 1534 1535 /* 1536 * Change the inode free counts and log the ag/sb changes. 1537 */ 1538 be32_add_cpu(&agi->agi_freecount, 1); 1539 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1540 pag = xfs_perag_get(mp, agno); 1541 pag->pagi_freecount++; 1542 xfs_perag_put(pag); 1543 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 1544 } 1545 1546 error = xfs_check_agi_freecount(cur, agi); 1547 if (error) 1548 goto error0; 1549 1550 *orec = rec; 1551 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1552 return 0; 1553 1554 error0: 1555 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1556 return error; 1557 } 1558 1559 /* 1560 * Free an inode in the free inode btree. 1561 */ 1562 STATIC int 1563 xfs_difree_finobt( 1564 struct xfs_mount *mp, 1565 struct xfs_trans *tp, 1566 struct xfs_buf *agbp, 1567 xfs_agino_t agino, 1568 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 1569 { 1570 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1571 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1572 struct xfs_btree_cur *cur; 1573 struct xfs_inobt_rec_incore rec; 1574 int offset = agino - ibtrec->ir_startino; 1575 int error; 1576 int i; 1577 1578 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1579 1580 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 1581 if (error) 1582 goto error; 1583 if (i == 0) { 1584 /* 1585 * If the record does not exist in the finobt, we must have just 1586 * freed an inode in a previously fully allocated chunk. If not, 1587 * something is out of sync. 1588 */ 1589 XFS_WANT_CORRUPTED_GOTO(ibtrec->ir_freecount == 1, error); 1590 1591 error = xfs_inobt_insert_rec(cur, ibtrec->ir_freecount, 1592 ibtrec->ir_free, &i); 1593 if (error) 1594 goto error; 1595 ASSERT(i == 1); 1596 1597 goto out; 1598 } 1599 1600 /* 1601 * Read and update the existing record. We could just copy the ibtrec 1602 * across here, but that would defeat the purpose of having redundant 1603 * metadata. By making the modifications independently, we can catch 1604 * corruptions that we wouldn't see if we just copied from one record 1605 * to another. 1606 */ 1607 error = xfs_inobt_get_rec(cur, &rec, &i); 1608 if (error) 1609 goto error; 1610 XFS_WANT_CORRUPTED_GOTO(i == 1, error); 1611 1612 rec.ir_free |= XFS_INOBT_MASK(offset); 1613 rec.ir_freecount++; 1614 1615 XFS_WANT_CORRUPTED_GOTO((rec.ir_free == ibtrec->ir_free) && 1616 (rec.ir_freecount == ibtrec->ir_freecount), 1617 error); 1618 1619 /* 1620 * The content of inobt records should always match between the inobt 1621 * and finobt. The lifecycle of records in the finobt is different from 1622 * the inobt in that the finobt only tracks records with at least one 1623 * free inode. Hence, if all of the inodes are free and we aren't 1624 * keeping inode chunks permanently on disk, remove the record. 1625 * Otherwise, update the record with the new information. 1626 */ 1627 if (rec.ir_freecount == mp->m_ialloc_inos && 1628 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 1629 error = xfs_btree_delete(cur, &i); 1630 if (error) 1631 goto error; 1632 ASSERT(i == 1); 1633 } else { 1634 error = xfs_inobt_update(cur, &rec); 1635 if (error) 1636 goto error; 1637 } 1638 1639 out: 1640 error = xfs_check_agi_freecount(cur, agi); 1641 if (error) 1642 goto error; 1643 1644 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1645 return 0; 1646 1647 error: 1648 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1649 return error; 1650 } 1651 1652 /* 1653 * Free disk inode. Carefully avoids touching the incore inode, all 1654 * manipulations incore are the caller's responsibility. 1655 * The on-disk inode is not changed by this operation, only the 1656 * btree (free inode mask) is changed. 1657 */ 1658 int 1659 xfs_difree( 1660 struct xfs_trans *tp, /* transaction pointer */ 1661 xfs_ino_t inode, /* inode to be freed */ 1662 struct xfs_bmap_free *flist, /* extents to free */ 1663 int *deleted,/* set if inode cluster was deleted */ 1664 xfs_ino_t *first_ino)/* first inode in deleted cluster */ 1665 { 1666 /* REFERENCED */ 1667 xfs_agblock_t agbno; /* block number containing inode */ 1668 struct xfs_buf *agbp; /* buffer for allocation group header */ 1669 xfs_agino_t agino; /* allocation group inode number */ 1670 xfs_agnumber_t agno; /* allocation group number */ 1671 int error; /* error return value */ 1672 struct xfs_mount *mp; /* mount structure for filesystem */ 1673 struct xfs_inobt_rec_incore rec;/* btree record */ 1674 1675 mp = tp->t_mountp; 1676 1677 /* 1678 * Break up inode number into its components. 1679 */ 1680 agno = XFS_INO_TO_AGNO(mp, inode); 1681 if (agno >= mp->m_sb.sb_agcount) { 1682 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", 1683 __func__, agno, mp->m_sb.sb_agcount); 1684 ASSERT(0); 1685 return -EINVAL; 1686 } 1687 agino = XFS_INO_TO_AGINO(mp, inode); 1688 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { 1689 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 1690 __func__, (unsigned long long)inode, 1691 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); 1692 ASSERT(0); 1693 return -EINVAL; 1694 } 1695 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 1696 if (agbno >= mp->m_sb.sb_agblocks) { 1697 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 1698 __func__, agbno, mp->m_sb.sb_agblocks); 1699 ASSERT(0); 1700 return -EINVAL; 1701 } 1702 /* 1703 * Get the allocation group header. 1704 */ 1705 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1706 if (error) { 1707 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 1708 __func__, error); 1709 return error; 1710 } 1711 1712 /* 1713 * Fix up the inode allocation btree. 1714 */ 1715 error = xfs_difree_inobt(mp, tp, agbp, agino, flist, deleted, first_ino, 1716 &rec); 1717 if (error) 1718 goto error0; 1719 1720 /* 1721 * Fix up the free inode btree. 1722 */ 1723 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 1724 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); 1725 if (error) 1726 goto error0; 1727 } 1728 1729 return 0; 1730 1731 error0: 1732 return error; 1733 } 1734 1735 STATIC int 1736 xfs_imap_lookup( 1737 struct xfs_mount *mp, 1738 struct xfs_trans *tp, 1739 xfs_agnumber_t agno, 1740 xfs_agino_t agino, 1741 xfs_agblock_t agbno, 1742 xfs_agblock_t *chunk_agbno, 1743 xfs_agblock_t *offset_agbno, 1744 int flags) 1745 { 1746 struct xfs_inobt_rec_incore rec; 1747 struct xfs_btree_cur *cur; 1748 struct xfs_buf *agbp; 1749 int error; 1750 int i; 1751 1752 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1753 if (error) { 1754 xfs_alert(mp, 1755 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 1756 __func__, error, agno); 1757 return error; 1758 } 1759 1760 /* 1761 * Lookup the inode record for the given agino. If the record cannot be 1762 * found, then it's an invalid inode number and we should abort. Once 1763 * we have a record, we need to ensure it contains the inode number 1764 * we are looking up. 1765 */ 1766 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1767 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 1768 if (!error) { 1769 if (i) 1770 error = xfs_inobt_get_rec(cur, &rec, &i); 1771 if (!error && i == 0) 1772 error = -EINVAL; 1773 } 1774 1775 xfs_trans_brelse(tp, agbp); 1776 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1777 if (error) 1778 return error; 1779 1780 /* check that the returned record contains the required inode */ 1781 if (rec.ir_startino > agino || 1782 rec.ir_startino + mp->m_ialloc_inos <= agino) 1783 return -EINVAL; 1784 1785 /* for untrusted inodes check it is allocated first */ 1786 if ((flags & XFS_IGET_UNTRUSTED) && 1787 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 1788 return -EINVAL; 1789 1790 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 1791 *offset_agbno = agbno - *chunk_agbno; 1792 return 0; 1793 } 1794 1795 /* 1796 * Return the location of the inode in imap, for mapping it into a buffer. 1797 */ 1798 int 1799 xfs_imap( 1800 xfs_mount_t *mp, /* file system mount structure */ 1801 xfs_trans_t *tp, /* transaction pointer */ 1802 xfs_ino_t ino, /* inode to locate */ 1803 struct xfs_imap *imap, /* location map structure */ 1804 uint flags) /* flags for inode btree lookup */ 1805 { 1806 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 1807 xfs_agino_t agino; /* inode number within alloc group */ 1808 xfs_agnumber_t agno; /* allocation group number */ 1809 int blks_per_cluster; /* num blocks per inode cluster */ 1810 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 1811 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 1812 int error; /* error code */ 1813 int offset; /* index of inode in its buffer */ 1814 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 1815 1816 ASSERT(ino != NULLFSINO); 1817 1818 /* 1819 * Split up the inode number into its parts. 1820 */ 1821 agno = XFS_INO_TO_AGNO(mp, ino); 1822 agino = XFS_INO_TO_AGINO(mp, ino); 1823 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 1824 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || 1825 ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 1826 #ifdef DEBUG 1827 /* 1828 * Don't output diagnostic information for untrusted inodes 1829 * as they can be invalid without implying corruption. 1830 */ 1831 if (flags & XFS_IGET_UNTRUSTED) 1832 return -EINVAL; 1833 if (agno >= mp->m_sb.sb_agcount) { 1834 xfs_alert(mp, 1835 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", 1836 __func__, agno, mp->m_sb.sb_agcount); 1837 } 1838 if (agbno >= mp->m_sb.sb_agblocks) { 1839 xfs_alert(mp, 1840 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 1841 __func__, (unsigned long long)agbno, 1842 (unsigned long)mp->m_sb.sb_agblocks); 1843 } 1844 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 1845 xfs_alert(mp, 1846 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 1847 __func__, ino, 1848 XFS_AGINO_TO_INO(mp, agno, agino)); 1849 } 1850 xfs_stack_trace(); 1851 #endif /* DEBUG */ 1852 return -EINVAL; 1853 } 1854 1855 blks_per_cluster = xfs_icluster_size_fsb(mp); 1856 1857 /* 1858 * For bulkstat and handle lookups, we have an untrusted inode number 1859 * that we have to verify is valid. We cannot do this just by reading 1860 * the inode buffer as it may have been unlinked and removed leaving 1861 * inodes in stale state on disk. Hence we have to do a btree lookup 1862 * in all cases where an untrusted inode number is passed. 1863 */ 1864 if (flags & XFS_IGET_UNTRUSTED) { 1865 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 1866 &chunk_agbno, &offset_agbno, flags); 1867 if (error) 1868 return error; 1869 goto out_map; 1870 } 1871 1872 /* 1873 * If the inode cluster size is the same as the blocksize or 1874 * smaller we get to the buffer by simple arithmetics. 1875 */ 1876 if (blks_per_cluster == 1) { 1877 offset = XFS_INO_TO_OFFSET(mp, ino); 1878 ASSERT(offset < mp->m_sb.sb_inopblock); 1879 1880 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); 1881 imap->im_len = XFS_FSB_TO_BB(mp, 1); 1882 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog); 1883 return 0; 1884 } 1885 1886 /* 1887 * If the inode chunks are aligned then use simple maths to 1888 * find the location. Otherwise we have to do a btree 1889 * lookup to find the location. 1890 */ 1891 if (mp->m_inoalign_mask) { 1892 offset_agbno = agbno & mp->m_inoalign_mask; 1893 chunk_agbno = agbno - offset_agbno; 1894 } else { 1895 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 1896 &chunk_agbno, &offset_agbno, flags); 1897 if (error) 1898 return error; 1899 } 1900 1901 out_map: 1902 ASSERT(agbno >= chunk_agbno); 1903 cluster_agbno = chunk_agbno + 1904 ((offset_agbno / blks_per_cluster) * blks_per_cluster); 1905 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 1906 XFS_INO_TO_OFFSET(mp, ino); 1907 1908 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); 1909 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster); 1910 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog); 1911 1912 /* 1913 * If the inode number maps to a block outside the bounds 1914 * of the file system then return NULL rather than calling 1915 * read_buf and panicing when we get an error from the 1916 * driver. 1917 */ 1918 if ((imap->im_blkno + imap->im_len) > 1919 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 1920 xfs_alert(mp, 1921 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 1922 __func__, (unsigned long long) imap->im_blkno, 1923 (unsigned long long) imap->im_len, 1924 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 1925 return -EINVAL; 1926 } 1927 return 0; 1928 } 1929 1930 /* 1931 * Compute and fill in value of m_in_maxlevels. 1932 */ 1933 void 1934 xfs_ialloc_compute_maxlevels( 1935 xfs_mount_t *mp) /* file system mount structure */ 1936 { 1937 int level; 1938 uint maxblocks; 1939 uint maxleafents; 1940 int minleafrecs; 1941 int minnoderecs; 1942 1943 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >> 1944 XFS_INODES_PER_CHUNK_LOG; 1945 minleafrecs = mp->m_alloc_mnr[0]; 1946 minnoderecs = mp->m_alloc_mnr[1]; 1947 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs; 1948 for (level = 1; maxblocks > 1; level++) 1949 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs; 1950 mp->m_in_maxlevels = level; 1951 } 1952 1953 /* 1954 * Log specified fields for the ag hdr (inode section). The growth of the agi 1955 * structure over time requires that we interpret the buffer as two logical 1956 * regions delineated by the end of the unlinked list. This is due to the size 1957 * of the hash table and its location in the middle of the agi. 1958 * 1959 * For example, a request to log a field before agi_unlinked and a field after 1960 * agi_unlinked could cause us to log the entire hash table and use an excessive 1961 * amount of log space. To avoid this behavior, log the region up through 1962 * agi_unlinked in one call and the region after agi_unlinked through the end of 1963 * the structure in another. 1964 */ 1965 void 1966 xfs_ialloc_log_agi( 1967 xfs_trans_t *tp, /* transaction pointer */ 1968 xfs_buf_t *bp, /* allocation group header buffer */ 1969 int fields) /* bitmask of fields to log */ 1970 { 1971 int first; /* first byte number */ 1972 int last; /* last byte number */ 1973 static const short offsets[] = { /* field starting offsets */ 1974 /* keep in sync with bit definitions */ 1975 offsetof(xfs_agi_t, agi_magicnum), 1976 offsetof(xfs_agi_t, agi_versionnum), 1977 offsetof(xfs_agi_t, agi_seqno), 1978 offsetof(xfs_agi_t, agi_length), 1979 offsetof(xfs_agi_t, agi_count), 1980 offsetof(xfs_agi_t, agi_root), 1981 offsetof(xfs_agi_t, agi_level), 1982 offsetof(xfs_agi_t, agi_freecount), 1983 offsetof(xfs_agi_t, agi_newino), 1984 offsetof(xfs_agi_t, agi_dirino), 1985 offsetof(xfs_agi_t, agi_unlinked), 1986 offsetof(xfs_agi_t, agi_free_root), 1987 offsetof(xfs_agi_t, agi_free_level), 1988 sizeof(xfs_agi_t) 1989 }; 1990 #ifdef DEBUG 1991 xfs_agi_t *agi; /* allocation group header */ 1992 1993 agi = XFS_BUF_TO_AGI(bp); 1994 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1995 #endif 1996 1997 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF); 1998 1999 /* 2000 * Compute byte offsets for the first and last fields in the first 2001 * region and log the agi buffer. This only logs up through 2002 * agi_unlinked. 2003 */ 2004 if (fields & XFS_AGI_ALL_BITS_R1) { 2005 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2006 &first, &last); 2007 xfs_trans_log_buf(tp, bp, first, last); 2008 } 2009 2010 /* 2011 * Mask off the bits in the first region and calculate the first and 2012 * last field offsets for any bits in the second region. 2013 */ 2014 fields &= ~XFS_AGI_ALL_BITS_R1; 2015 if (fields) { 2016 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2017 &first, &last); 2018 xfs_trans_log_buf(tp, bp, first, last); 2019 } 2020 } 2021 2022 #ifdef DEBUG 2023 STATIC void 2024 xfs_check_agi_unlinked( 2025 struct xfs_agi *agi) 2026 { 2027 int i; 2028 2029 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) 2030 ASSERT(agi->agi_unlinked[i]); 2031 } 2032 #else 2033 #define xfs_check_agi_unlinked(agi) 2034 #endif 2035 2036 static bool 2037 xfs_agi_verify( 2038 struct xfs_buf *bp) 2039 { 2040 struct xfs_mount *mp = bp->b_target->bt_mount; 2041 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); 2042 2043 if (xfs_sb_version_hascrc(&mp->m_sb) && 2044 !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid)) 2045 return false; 2046 /* 2047 * Validate the magic number of the agi block. 2048 */ 2049 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC)) 2050 return false; 2051 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2052 return false; 2053 2054 /* 2055 * during growfs operations, the perag is not fully initialised, 2056 * so we can't use it for any useful checking. growfs ensures we can't 2057 * use it by using uncached buffers that don't have the perag attached 2058 * so we can detect and avoid this problem. 2059 */ 2060 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) 2061 return false; 2062 2063 xfs_check_agi_unlinked(agi); 2064 return true; 2065 } 2066 2067 static void 2068 xfs_agi_read_verify( 2069 struct xfs_buf *bp) 2070 { 2071 struct xfs_mount *mp = bp->b_target->bt_mount; 2072 2073 if (xfs_sb_version_hascrc(&mp->m_sb) && 2074 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2075 xfs_buf_ioerror(bp, -EFSBADCRC); 2076 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp, 2077 XFS_ERRTAG_IALLOC_READ_AGI, 2078 XFS_RANDOM_IALLOC_READ_AGI)) 2079 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2080 2081 if (bp->b_error) 2082 xfs_verifier_error(bp); 2083 } 2084 2085 static void 2086 xfs_agi_write_verify( 2087 struct xfs_buf *bp) 2088 { 2089 struct xfs_mount *mp = bp->b_target->bt_mount; 2090 struct xfs_buf_log_item *bip = bp->b_fspriv; 2091 2092 if (!xfs_agi_verify(bp)) { 2093 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2094 xfs_verifier_error(bp); 2095 return; 2096 } 2097 2098 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2099 return; 2100 2101 if (bip) 2102 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2103 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2104 } 2105 2106 const struct xfs_buf_ops xfs_agi_buf_ops = { 2107 .verify_read = xfs_agi_read_verify, 2108 .verify_write = xfs_agi_write_verify, 2109 }; 2110 2111 /* 2112 * Read in the allocation group header (inode allocation section) 2113 */ 2114 int 2115 xfs_read_agi( 2116 struct xfs_mount *mp, /* file system mount structure */ 2117 struct xfs_trans *tp, /* transaction pointer */ 2118 xfs_agnumber_t agno, /* allocation group number */ 2119 struct xfs_buf **bpp) /* allocation group hdr buf */ 2120 { 2121 int error; 2122 2123 trace_xfs_read_agi(mp, agno); 2124 2125 ASSERT(agno != NULLAGNUMBER); 2126 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2127 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 2128 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); 2129 if (error) 2130 return error; 2131 2132 xfs_buf_set_ref(*bpp, XFS_AGI_REF); 2133 return 0; 2134 } 2135 2136 int 2137 xfs_ialloc_read_agi( 2138 struct xfs_mount *mp, /* file system mount structure */ 2139 struct xfs_trans *tp, /* transaction pointer */ 2140 xfs_agnumber_t agno, /* allocation group number */ 2141 struct xfs_buf **bpp) /* allocation group hdr buf */ 2142 { 2143 struct xfs_agi *agi; /* allocation group header */ 2144 struct xfs_perag *pag; /* per allocation group data */ 2145 int error; 2146 2147 trace_xfs_ialloc_read_agi(mp, agno); 2148 2149 error = xfs_read_agi(mp, tp, agno, bpp); 2150 if (error) 2151 return error; 2152 2153 agi = XFS_BUF_TO_AGI(*bpp); 2154 pag = xfs_perag_get(mp, agno); 2155 if (!pag->pagi_init) { 2156 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2157 pag->pagi_count = be32_to_cpu(agi->agi_count); 2158 pag->pagi_init = 1; 2159 } 2160 2161 /* 2162 * It's possible for these to be out of sync if 2163 * we are in the middle of a forced shutdown. 2164 */ 2165 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2166 XFS_FORCED_SHUTDOWN(mp)); 2167 xfs_perag_put(pag); 2168 return 0; 2169 } 2170 2171 /* 2172 * Read in the agi to initialise the per-ag data in the mount structure 2173 */ 2174 int 2175 xfs_ialloc_pagi_init( 2176 xfs_mount_t *mp, /* file system mount structure */ 2177 xfs_trans_t *tp, /* transaction pointer */ 2178 xfs_agnumber_t agno) /* allocation group number */ 2179 { 2180 xfs_buf_t *bp = NULL; 2181 int error; 2182 2183 error = xfs_ialloc_read_agi(mp, tp, agno, &bp); 2184 if (error) 2185 return error; 2186 if (bp) 2187 xfs_trans_brelse(tp, bp); 2188 return 0; 2189 } 2190