xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc.c (revision 2c3234d1)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_error.h"
35 #include "xfs_bmap.h"
36 #include "xfs_cksum.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_icreate_item.h"
40 #include "xfs_icache.h"
41 #include "xfs_trace.h"
42 #include "xfs_log.h"
43 
44 
45 /*
46  * Allocation group level functions.
47  */
48 static inline int
49 xfs_ialloc_cluster_alignment(
50 	struct xfs_mount	*mp)
51 {
52 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
53 	    mp->m_sb.sb_inoalignmt >=
54 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
55 		return mp->m_sb.sb_inoalignmt;
56 	return 1;
57 }
58 
59 /*
60  * Lookup a record by ino in the btree given by cur.
61  */
62 int					/* error */
63 xfs_inobt_lookup(
64 	struct xfs_btree_cur	*cur,	/* btree cursor */
65 	xfs_agino_t		ino,	/* starting inode of chunk */
66 	xfs_lookup_t		dir,	/* <=, >=, == */
67 	int			*stat)	/* success/failure */
68 {
69 	cur->bc_rec.i.ir_startino = ino;
70 	cur->bc_rec.i.ir_holemask = 0;
71 	cur->bc_rec.i.ir_count = 0;
72 	cur->bc_rec.i.ir_freecount = 0;
73 	cur->bc_rec.i.ir_free = 0;
74 	return xfs_btree_lookup(cur, dir, stat);
75 }
76 
77 /*
78  * Update the record referred to by cur to the value given.
79  * This either works (return 0) or gets an EFSCORRUPTED error.
80  */
81 STATIC int				/* error */
82 xfs_inobt_update(
83 	struct xfs_btree_cur	*cur,	/* btree cursor */
84 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
85 {
86 	union xfs_btree_rec	rec;
87 
88 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
89 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
90 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
91 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
92 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
93 	} else {
94 		/* ir_holemask/ir_count not supported on-disk */
95 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
96 	}
97 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
98 	return xfs_btree_update(cur, &rec);
99 }
100 
101 /*
102  * Get the data from the pointed-to record.
103  */
104 int					/* error */
105 xfs_inobt_get_rec(
106 	struct xfs_btree_cur	*cur,	/* btree cursor */
107 	xfs_inobt_rec_incore_t	*irec,	/* btree record */
108 	int			*stat)	/* output: success/failure */
109 {
110 	union xfs_btree_rec	*rec;
111 	int			error;
112 
113 	error = xfs_btree_get_rec(cur, &rec, stat);
114 	if (error || *stat == 0)
115 		return error;
116 
117 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
118 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
119 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
120 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
121 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
122 	} else {
123 		/*
124 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
125 		 * values for full inode chunks.
126 		 */
127 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
128 		irec->ir_count = XFS_INODES_PER_CHUNK;
129 		irec->ir_freecount =
130 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
131 	}
132 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
133 
134 	return 0;
135 }
136 
137 /*
138  * Insert a single inobt record. Cursor must already point to desired location.
139  */
140 STATIC int
141 xfs_inobt_insert_rec(
142 	struct xfs_btree_cur	*cur,
143 	__uint16_t		holemask,
144 	__uint8_t		count,
145 	__int32_t		freecount,
146 	xfs_inofree_t		free,
147 	int			*stat)
148 {
149 	cur->bc_rec.i.ir_holemask = holemask;
150 	cur->bc_rec.i.ir_count = count;
151 	cur->bc_rec.i.ir_freecount = freecount;
152 	cur->bc_rec.i.ir_free = free;
153 	return xfs_btree_insert(cur, stat);
154 }
155 
156 /*
157  * Insert records describing a newly allocated inode chunk into the inobt.
158  */
159 STATIC int
160 xfs_inobt_insert(
161 	struct xfs_mount	*mp,
162 	struct xfs_trans	*tp,
163 	struct xfs_buf		*agbp,
164 	xfs_agino_t		newino,
165 	xfs_agino_t		newlen,
166 	xfs_btnum_t		btnum)
167 {
168 	struct xfs_btree_cur	*cur;
169 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
170 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
171 	xfs_agino_t		thisino;
172 	int			i;
173 	int			error;
174 
175 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
176 
177 	for (thisino = newino;
178 	     thisino < newino + newlen;
179 	     thisino += XFS_INODES_PER_CHUNK) {
180 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
181 		if (error) {
182 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
183 			return error;
184 		}
185 		ASSERT(i == 0);
186 
187 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
188 					     XFS_INODES_PER_CHUNK,
189 					     XFS_INODES_PER_CHUNK,
190 					     XFS_INOBT_ALL_FREE, &i);
191 		if (error) {
192 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
193 			return error;
194 		}
195 		ASSERT(i == 1);
196 	}
197 
198 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
199 
200 	return 0;
201 }
202 
203 /*
204  * Verify that the number of free inodes in the AGI is correct.
205  */
206 #ifdef DEBUG
207 STATIC int
208 xfs_check_agi_freecount(
209 	struct xfs_btree_cur	*cur,
210 	struct xfs_agi		*agi)
211 {
212 	if (cur->bc_nlevels == 1) {
213 		xfs_inobt_rec_incore_t rec;
214 		int		freecount = 0;
215 		int		error;
216 		int		i;
217 
218 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
219 		if (error)
220 			return error;
221 
222 		do {
223 			error = xfs_inobt_get_rec(cur, &rec, &i);
224 			if (error)
225 				return error;
226 
227 			if (i) {
228 				freecount += rec.ir_freecount;
229 				error = xfs_btree_increment(cur, 0, &i);
230 				if (error)
231 					return error;
232 			}
233 		} while (i == 1);
234 
235 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
236 			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
237 	}
238 	return 0;
239 }
240 #else
241 #define xfs_check_agi_freecount(cur, agi)	0
242 #endif
243 
244 /*
245  * Initialise a new set of inodes. When called without a transaction context
246  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
247  * than logging them (which in a transaction context puts them into the AIL
248  * for writeback rather than the xfsbufd queue).
249  */
250 int
251 xfs_ialloc_inode_init(
252 	struct xfs_mount	*mp,
253 	struct xfs_trans	*tp,
254 	struct list_head	*buffer_list,
255 	int			icount,
256 	xfs_agnumber_t		agno,
257 	xfs_agblock_t		agbno,
258 	xfs_agblock_t		length,
259 	unsigned int		gen)
260 {
261 	struct xfs_buf		*fbuf;
262 	struct xfs_dinode	*free;
263 	int			nbufs, blks_per_cluster, inodes_per_cluster;
264 	int			version;
265 	int			i, j;
266 	xfs_daddr_t		d;
267 	xfs_ino_t		ino = 0;
268 
269 	/*
270 	 * Loop over the new block(s), filling in the inodes.  For small block
271 	 * sizes, manipulate the inodes in buffers  which are multiples of the
272 	 * blocks size.
273 	 */
274 	blks_per_cluster = xfs_icluster_size_fsb(mp);
275 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
276 	nbufs = length / blks_per_cluster;
277 
278 	/*
279 	 * Figure out what version number to use in the inodes we create.  If
280 	 * the superblock version has caught up to the one that supports the new
281 	 * inode format, then use the new inode version.  Otherwise use the old
282 	 * version so that old kernels will continue to be able to use the file
283 	 * system.
284 	 *
285 	 * For v3 inodes, we also need to write the inode number into the inode,
286 	 * so calculate the first inode number of the chunk here as
287 	 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
288 	 * across multiple filesystem blocks (such as a cluster) and so cannot
289 	 * be used in the cluster buffer loop below.
290 	 *
291 	 * Further, because we are writing the inode directly into the buffer
292 	 * and calculating a CRC on the entire inode, we have ot log the entire
293 	 * inode so that the entire range the CRC covers is present in the log.
294 	 * That means for v3 inode we log the entire buffer rather than just the
295 	 * inode cores.
296 	 */
297 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
298 		version = 3;
299 		ino = XFS_AGINO_TO_INO(mp, agno,
300 				       XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
301 
302 		/*
303 		 * log the initialisation that is about to take place as an
304 		 * logical operation. This means the transaction does not
305 		 * need to log the physical changes to the inode buffers as log
306 		 * recovery will know what initialisation is actually needed.
307 		 * Hence we only need to log the buffers as "ordered" buffers so
308 		 * they track in the AIL as if they were physically logged.
309 		 */
310 		if (tp)
311 			xfs_icreate_log(tp, agno, agbno, icount,
312 					mp->m_sb.sb_inodesize, length, gen);
313 	} else
314 		version = 2;
315 
316 	for (j = 0; j < nbufs; j++) {
317 		/*
318 		 * Get the block.
319 		 */
320 		d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
321 		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
322 					 mp->m_bsize * blks_per_cluster,
323 					 XBF_UNMAPPED);
324 		if (!fbuf)
325 			return -ENOMEM;
326 
327 		/* Initialize the inode buffers and log them appropriately. */
328 		fbuf->b_ops = &xfs_inode_buf_ops;
329 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
330 		for (i = 0; i < inodes_per_cluster; i++) {
331 			int	ioffset = i << mp->m_sb.sb_inodelog;
332 			uint	isize = xfs_dinode_size(version);
333 
334 			free = xfs_make_iptr(mp, fbuf, i);
335 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
336 			free->di_version = version;
337 			free->di_gen = cpu_to_be32(gen);
338 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
339 
340 			if (version == 3) {
341 				free->di_ino = cpu_to_be64(ino);
342 				ino++;
343 				uuid_copy(&free->di_uuid,
344 					  &mp->m_sb.sb_meta_uuid);
345 				xfs_dinode_calc_crc(mp, free);
346 			} else if (tp) {
347 				/* just log the inode core */
348 				xfs_trans_log_buf(tp, fbuf, ioffset,
349 						  ioffset + isize - 1);
350 			}
351 		}
352 
353 		if (tp) {
354 			/*
355 			 * Mark the buffer as an inode allocation buffer so it
356 			 * sticks in AIL at the point of this allocation
357 			 * transaction. This ensures the they are on disk before
358 			 * the tail of the log can be moved past this
359 			 * transaction (i.e. by preventing relogging from moving
360 			 * it forward in the log).
361 			 */
362 			xfs_trans_inode_alloc_buf(tp, fbuf);
363 			if (version == 3) {
364 				/*
365 				 * Mark the buffer as ordered so that they are
366 				 * not physically logged in the transaction but
367 				 * still tracked in the AIL as part of the
368 				 * transaction and pin the log appropriately.
369 				 */
370 				xfs_trans_ordered_buf(tp, fbuf);
371 				xfs_trans_log_buf(tp, fbuf, 0,
372 						  BBTOB(fbuf->b_length) - 1);
373 			}
374 		} else {
375 			fbuf->b_flags |= XBF_DONE;
376 			xfs_buf_delwri_queue(fbuf, buffer_list);
377 			xfs_buf_relse(fbuf);
378 		}
379 	}
380 	return 0;
381 }
382 
383 /*
384  * Align startino and allocmask for a recently allocated sparse chunk such that
385  * they are fit for insertion (or merge) into the on-disk inode btrees.
386  *
387  * Background:
388  *
389  * When enabled, sparse inode support increases the inode alignment from cluster
390  * size to inode chunk size. This means that the minimum range between two
391  * non-adjacent inode records in the inobt is large enough for a full inode
392  * record. This allows for cluster sized, cluster aligned block allocation
393  * without need to worry about whether the resulting inode record overlaps with
394  * another record in the tree. Without this basic rule, we would have to deal
395  * with the consequences of overlap by potentially undoing recent allocations in
396  * the inode allocation codepath.
397  *
398  * Because of this alignment rule (which is enforced on mount), there are two
399  * inobt possibilities for newly allocated sparse chunks. One is that the
400  * aligned inode record for the chunk covers a range of inodes not already
401  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
402  * other is that a record already exists at the aligned startino that considers
403  * the newly allocated range as sparse. In the latter case, record content is
404  * merged in hope that sparse inode chunks fill to full chunks over time.
405  */
406 STATIC void
407 xfs_align_sparse_ino(
408 	struct xfs_mount		*mp,
409 	xfs_agino_t			*startino,
410 	uint16_t			*allocmask)
411 {
412 	xfs_agblock_t			agbno;
413 	xfs_agblock_t			mod;
414 	int				offset;
415 
416 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
417 	mod = agbno % mp->m_sb.sb_inoalignmt;
418 	if (!mod)
419 		return;
420 
421 	/* calculate the inode offset and align startino */
422 	offset = mod << mp->m_sb.sb_inopblog;
423 	*startino -= offset;
424 
425 	/*
426 	 * Since startino has been aligned down, left shift allocmask such that
427 	 * it continues to represent the same physical inodes relative to the
428 	 * new startino.
429 	 */
430 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
431 }
432 
433 /*
434  * Determine whether the source inode record can merge into the target. Both
435  * records must be sparse, the inode ranges must match and there must be no
436  * allocation overlap between the records.
437  */
438 STATIC bool
439 __xfs_inobt_can_merge(
440 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
441 	struct xfs_inobt_rec_incore	*srec)	/* src record */
442 {
443 	uint64_t			talloc;
444 	uint64_t			salloc;
445 
446 	/* records must cover the same inode range */
447 	if (trec->ir_startino != srec->ir_startino)
448 		return false;
449 
450 	/* both records must be sparse */
451 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
452 	    !xfs_inobt_issparse(srec->ir_holemask))
453 		return false;
454 
455 	/* both records must track some inodes */
456 	if (!trec->ir_count || !srec->ir_count)
457 		return false;
458 
459 	/* can't exceed capacity of a full record */
460 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
461 		return false;
462 
463 	/* verify there is no allocation overlap */
464 	talloc = xfs_inobt_irec_to_allocmask(trec);
465 	salloc = xfs_inobt_irec_to_allocmask(srec);
466 	if (talloc & salloc)
467 		return false;
468 
469 	return true;
470 }
471 
472 /*
473  * Merge the source inode record into the target. The caller must call
474  * __xfs_inobt_can_merge() to ensure the merge is valid.
475  */
476 STATIC void
477 __xfs_inobt_rec_merge(
478 	struct xfs_inobt_rec_incore	*trec,	/* target */
479 	struct xfs_inobt_rec_incore	*srec)	/* src */
480 {
481 	ASSERT(trec->ir_startino == srec->ir_startino);
482 
483 	/* combine the counts */
484 	trec->ir_count += srec->ir_count;
485 	trec->ir_freecount += srec->ir_freecount;
486 
487 	/*
488 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
489 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
490 	 */
491 	trec->ir_holemask &= srec->ir_holemask;
492 	trec->ir_free &= srec->ir_free;
493 }
494 
495 /*
496  * Insert a new sparse inode chunk into the associated inode btree. The inode
497  * record for the sparse chunk is pre-aligned to a startino that should match
498  * any pre-existing sparse inode record in the tree. This allows sparse chunks
499  * to fill over time.
500  *
501  * This function supports two modes of handling preexisting records depending on
502  * the merge flag. If merge is true, the provided record is merged with the
503  * existing record and updated in place. The merged record is returned in nrec.
504  * If merge is false, an existing record is replaced with the provided record.
505  * If no preexisting record exists, the provided record is always inserted.
506  *
507  * It is considered corruption if a merge is requested and not possible. Given
508  * the sparse inode alignment constraints, this should never happen.
509  */
510 STATIC int
511 xfs_inobt_insert_sprec(
512 	struct xfs_mount		*mp,
513 	struct xfs_trans		*tp,
514 	struct xfs_buf			*agbp,
515 	int				btnum,
516 	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
517 	bool				merge)	/* merge or replace */
518 {
519 	struct xfs_btree_cur		*cur;
520 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
521 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
522 	int				error;
523 	int				i;
524 	struct xfs_inobt_rec_incore	rec;
525 
526 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
527 
528 	/* the new record is pre-aligned so we know where to look */
529 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
530 	if (error)
531 		goto error;
532 	/* if nothing there, insert a new record and return */
533 	if (i == 0) {
534 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
535 					     nrec->ir_count, nrec->ir_freecount,
536 					     nrec->ir_free, &i);
537 		if (error)
538 			goto error;
539 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
540 
541 		goto out;
542 	}
543 
544 	/*
545 	 * A record exists at this startino. Merge or replace the record
546 	 * depending on what we've been asked to do.
547 	 */
548 	if (merge) {
549 		error = xfs_inobt_get_rec(cur, &rec, &i);
550 		if (error)
551 			goto error;
552 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
553 		XFS_WANT_CORRUPTED_GOTO(mp,
554 					rec.ir_startino == nrec->ir_startino,
555 					error);
556 
557 		/*
558 		 * This should never fail. If we have coexisting records that
559 		 * cannot merge, something is seriously wrong.
560 		 */
561 		XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
562 					error);
563 
564 		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
565 					 rec.ir_holemask, nrec->ir_startino,
566 					 nrec->ir_holemask);
567 
568 		/* merge to nrec to output the updated record */
569 		__xfs_inobt_rec_merge(nrec, &rec);
570 
571 		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
572 					  nrec->ir_holemask);
573 
574 		error = xfs_inobt_rec_check_count(mp, nrec);
575 		if (error)
576 			goto error;
577 	}
578 
579 	error = xfs_inobt_update(cur, nrec);
580 	if (error)
581 		goto error;
582 
583 out:
584 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
585 	return 0;
586 error:
587 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
588 	return error;
589 }
590 
591 /*
592  * Allocate new inodes in the allocation group specified by agbp.
593  * Return 0 for success, else error code.
594  */
595 STATIC int				/* error code or 0 */
596 xfs_ialloc_ag_alloc(
597 	xfs_trans_t	*tp,		/* transaction pointer */
598 	xfs_buf_t	*agbp,		/* alloc group buffer */
599 	int		*alloc)
600 {
601 	xfs_agi_t	*agi;		/* allocation group header */
602 	xfs_alloc_arg_t	args;		/* allocation argument structure */
603 	xfs_agnumber_t	agno;
604 	int		error;
605 	xfs_agino_t	newino;		/* new first inode's number */
606 	xfs_agino_t	newlen;		/* new number of inodes */
607 	int		isaligned = 0;	/* inode allocation at stripe unit */
608 					/* boundary */
609 	uint16_t	allocmask = (uint16_t) -1; /* init. to full chunk */
610 	struct xfs_inobt_rec_incore rec;
611 	struct xfs_perag *pag;
612 	int		do_sparse = 0;
613 
614 	memset(&args, 0, sizeof(args));
615 	args.tp = tp;
616 	args.mp = tp->t_mountp;
617 	args.fsbno = NULLFSBLOCK;
618 
619 #ifdef DEBUG
620 	/* randomly do sparse inode allocations */
621 	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
622 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
623 		do_sparse = prandom_u32() & 1;
624 #endif
625 
626 	/*
627 	 * Locking will ensure that we don't have two callers in here
628 	 * at one time.
629 	 */
630 	newlen = args.mp->m_ialloc_inos;
631 	if (args.mp->m_maxicount &&
632 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
633 							args.mp->m_maxicount)
634 		return -ENOSPC;
635 	args.minlen = args.maxlen = args.mp->m_ialloc_blks;
636 	/*
637 	 * First try to allocate inodes contiguous with the last-allocated
638 	 * chunk of inodes.  If the filesystem is striped, this will fill
639 	 * an entire stripe unit with inodes.
640 	 */
641 	agi = XFS_BUF_TO_AGI(agbp);
642 	newino = be32_to_cpu(agi->agi_newino);
643 	agno = be32_to_cpu(agi->agi_seqno);
644 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
645 		     args.mp->m_ialloc_blks;
646 	if (do_sparse)
647 		goto sparse_alloc;
648 	if (likely(newino != NULLAGINO &&
649 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
650 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
651 		args.type = XFS_ALLOCTYPE_THIS_BNO;
652 		args.prod = 1;
653 
654 		/*
655 		 * We need to take into account alignment here to ensure that
656 		 * we don't modify the free list if we fail to have an exact
657 		 * block. If we don't have an exact match, and every oher
658 		 * attempt allocation attempt fails, we'll end up cancelling
659 		 * a dirty transaction and shutting down.
660 		 *
661 		 * For an exact allocation, alignment must be 1,
662 		 * however we need to take cluster alignment into account when
663 		 * fixing up the freelist. Use the minalignslop field to
664 		 * indicate that extra blocks might be required for alignment,
665 		 * but not to use them in the actual exact allocation.
666 		 */
667 		args.alignment = 1;
668 		args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
669 
670 		/* Allow space for the inode btree to split. */
671 		args.minleft = args.mp->m_in_maxlevels - 1;
672 		if ((error = xfs_alloc_vextent(&args)))
673 			return error;
674 
675 		/*
676 		 * This request might have dirtied the transaction if the AG can
677 		 * satisfy the request, but the exact block was not available.
678 		 * If the allocation did fail, subsequent requests will relax
679 		 * the exact agbno requirement and increase the alignment
680 		 * instead. It is critical that the total size of the request
681 		 * (len + alignment + slop) does not increase from this point
682 		 * on, so reset minalignslop to ensure it is not included in
683 		 * subsequent requests.
684 		 */
685 		args.minalignslop = 0;
686 	}
687 
688 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
689 		/*
690 		 * Set the alignment for the allocation.
691 		 * If stripe alignment is turned on then align at stripe unit
692 		 * boundary.
693 		 * If the cluster size is smaller than a filesystem block
694 		 * then we're doing I/O for inodes in filesystem block size
695 		 * pieces, so don't need alignment anyway.
696 		 */
697 		isaligned = 0;
698 		if (args.mp->m_sinoalign) {
699 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
700 			args.alignment = args.mp->m_dalign;
701 			isaligned = 1;
702 		} else
703 			args.alignment = xfs_ialloc_cluster_alignment(args.mp);
704 		/*
705 		 * Need to figure out where to allocate the inode blocks.
706 		 * Ideally they should be spaced out through the a.g.
707 		 * For now, just allocate blocks up front.
708 		 */
709 		args.agbno = be32_to_cpu(agi->agi_root);
710 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
711 		/*
712 		 * Allocate a fixed-size extent of inodes.
713 		 */
714 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
715 		args.prod = 1;
716 		/*
717 		 * Allow space for the inode btree to split.
718 		 */
719 		args.minleft = args.mp->m_in_maxlevels - 1;
720 		if ((error = xfs_alloc_vextent(&args)))
721 			return error;
722 	}
723 
724 	/*
725 	 * If stripe alignment is turned on, then try again with cluster
726 	 * alignment.
727 	 */
728 	if (isaligned && args.fsbno == NULLFSBLOCK) {
729 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
730 		args.agbno = be32_to_cpu(agi->agi_root);
731 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
732 		args.alignment = xfs_ialloc_cluster_alignment(args.mp);
733 		if ((error = xfs_alloc_vextent(&args)))
734 			return error;
735 	}
736 
737 	/*
738 	 * Finally, try a sparse allocation if the filesystem supports it and
739 	 * the sparse allocation length is smaller than a full chunk.
740 	 */
741 	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
742 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
743 	    args.fsbno == NULLFSBLOCK) {
744 sparse_alloc:
745 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
746 		args.agbno = be32_to_cpu(agi->agi_root);
747 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
748 		args.alignment = args.mp->m_sb.sb_spino_align;
749 		args.prod = 1;
750 
751 		args.minlen = args.mp->m_ialloc_min_blks;
752 		args.maxlen = args.minlen;
753 
754 		/*
755 		 * The inode record will be aligned to full chunk size. We must
756 		 * prevent sparse allocation from AG boundaries that result in
757 		 * invalid inode records, such as records that start at agbno 0
758 		 * or extend beyond the AG.
759 		 *
760 		 * Set min agbno to the first aligned, non-zero agbno and max to
761 		 * the last aligned agbno that is at least one full chunk from
762 		 * the end of the AG.
763 		 */
764 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
765 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
766 					    args.mp->m_sb.sb_inoalignmt) -
767 				 args.mp->m_ialloc_blks;
768 
769 		error = xfs_alloc_vextent(&args);
770 		if (error)
771 			return error;
772 
773 		newlen = args.len << args.mp->m_sb.sb_inopblog;
774 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
775 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
776 	}
777 
778 	if (args.fsbno == NULLFSBLOCK) {
779 		*alloc = 0;
780 		return 0;
781 	}
782 	ASSERT(args.len == args.minlen);
783 
784 	/*
785 	 * Stamp and write the inode buffers.
786 	 *
787 	 * Seed the new inode cluster with a random generation number. This
788 	 * prevents short-term reuse of generation numbers if a chunk is
789 	 * freed and then immediately reallocated. We use random numbers
790 	 * rather than a linear progression to prevent the next generation
791 	 * number from being easily guessable.
792 	 */
793 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
794 			args.agbno, args.len, prandom_u32());
795 
796 	if (error)
797 		return error;
798 	/*
799 	 * Convert the results.
800 	 */
801 	newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
802 
803 	if (xfs_inobt_issparse(~allocmask)) {
804 		/*
805 		 * We've allocated a sparse chunk. Align the startino and mask.
806 		 */
807 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
808 
809 		rec.ir_startino = newino;
810 		rec.ir_holemask = ~allocmask;
811 		rec.ir_count = newlen;
812 		rec.ir_freecount = newlen;
813 		rec.ir_free = XFS_INOBT_ALL_FREE;
814 
815 		/*
816 		 * Insert the sparse record into the inobt and allow for a merge
817 		 * if necessary. If a merge does occur, rec is updated to the
818 		 * merged record.
819 		 */
820 		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
821 					       &rec, true);
822 		if (error == -EFSCORRUPTED) {
823 			xfs_alert(args.mp,
824 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
825 				  XFS_AGINO_TO_INO(args.mp, agno,
826 						   rec.ir_startino),
827 				  rec.ir_holemask, rec.ir_count);
828 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
829 		}
830 		if (error)
831 			return error;
832 
833 		/*
834 		 * We can't merge the part we've just allocated as for the inobt
835 		 * due to finobt semantics. The original record may or may not
836 		 * exist independent of whether physical inodes exist in this
837 		 * sparse chunk.
838 		 *
839 		 * We must update the finobt record based on the inobt record.
840 		 * rec contains the fully merged and up to date inobt record
841 		 * from the previous call. Set merge false to replace any
842 		 * existing record with this one.
843 		 */
844 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
845 			error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
846 						       XFS_BTNUM_FINO, &rec,
847 						       false);
848 			if (error)
849 				return error;
850 		}
851 	} else {
852 		/* full chunk - insert new records to both btrees */
853 		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
854 					 XFS_BTNUM_INO);
855 		if (error)
856 			return error;
857 
858 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
859 			error = xfs_inobt_insert(args.mp, tp, agbp, newino,
860 						 newlen, XFS_BTNUM_FINO);
861 			if (error)
862 				return error;
863 		}
864 	}
865 
866 	/*
867 	 * Update AGI counts and newino.
868 	 */
869 	be32_add_cpu(&agi->agi_count, newlen);
870 	be32_add_cpu(&agi->agi_freecount, newlen);
871 	pag = xfs_perag_get(args.mp, agno);
872 	pag->pagi_freecount += newlen;
873 	xfs_perag_put(pag);
874 	agi->agi_newino = cpu_to_be32(newino);
875 
876 	/*
877 	 * Log allocation group header fields
878 	 */
879 	xfs_ialloc_log_agi(tp, agbp,
880 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
881 	/*
882 	 * Modify/log superblock values for inode count and inode free count.
883 	 */
884 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
885 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
886 	*alloc = 1;
887 	return 0;
888 }
889 
890 STATIC xfs_agnumber_t
891 xfs_ialloc_next_ag(
892 	xfs_mount_t	*mp)
893 {
894 	xfs_agnumber_t	agno;
895 
896 	spin_lock(&mp->m_agirotor_lock);
897 	agno = mp->m_agirotor;
898 	if (++mp->m_agirotor >= mp->m_maxagi)
899 		mp->m_agirotor = 0;
900 	spin_unlock(&mp->m_agirotor_lock);
901 
902 	return agno;
903 }
904 
905 /*
906  * Select an allocation group to look for a free inode in, based on the parent
907  * inode and the mode.  Return the allocation group buffer.
908  */
909 STATIC xfs_agnumber_t
910 xfs_ialloc_ag_select(
911 	xfs_trans_t	*tp,		/* transaction pointer */
912 	xfs_ino_t	parent,		/* parent directory inode number */
913 	umode_t		mode,		/* bits set to indicate file type */
914 	int		okalloc)	/* ok to allocate more space */
915 {
916 	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
917 	xfs_agnumber_t	agno;		/* current ag number */
918 	int		flags;		/* alloc buffer locking flags */
919 	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
920 	xfs_extlen_t	longest = 0;	/* longest extent available */
921 	xfs_mount_t	*mp;		/* mount point structure */
922 	int		needspace;	/* file mode implies space allocated */
923 	xfs_perag_t	*pag;		/* per allocation group data */
924 	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
925 	int		error;
926 
927 	/*
928 	 * Files of these types need at least one block if length > 0
929 	 * (and they won't fit in the inode, but that's hard to figure out).
930 	 */
931 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
932 	mp = tp->t_mountp;
933 	agcount = mp->m_maxagi;
934 	if (S_ISDIR(mode))
935 		pagno = xfs_ialloc_next_ag(mp);
936 	else {
937 		pagno = XFS_INO_TO_AGNO(mp, parent);
938 		if (pagno >= agcount)
939 			pagno = 0;
940 	}
941 
942 	ASSERT(pagno < agcount);
943 
944 	/*
945 	 * Loop through allocation groups, looking for one with a little
946 	 * free space in it.  Note we don't look for free inodes, exactly.
947 	 * Instead, we include whether there is a need to allocate inodes
948 	 * to mean that blocks must be allocated for them,
949 	 * if none are currently free.
950 	 */
951 	agno = pagno;
952 	flags = XFS_ALLOC_FLAG_TRYLOCK;
953 	for (;;) {
954 		pag = xfs_perag_get(mp, agno);
955 		if (!pag->pagi_inodeok) {
956 			xfs_ialloc_next_ag(mp);
957 			goto nextag;
958 		}
959 
960 		if (!pag->pagi_init) {
961 			error = xfs_ialloc_pagi_init(mp, tp, agno);
962 			if (error)
963 				goto nextag;
964 		}
965 
966 		if (pag->pagi_freecount) {
967 			xfs_perag_put(pag);
968 			return agno;
969 		}
970 
971 		if (!okalloc)
972 			goto nextag;
973 
974 		if (!pag->pagf_init) {
975 			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
976 			if (error)
977 				goto nextag;
978 		}
979 
980 		/*
981 		 * Check that there is enough free space for the file plus a
982 		 * chunk of inodes if we need to allocate some. If this is the
983 		 * first pass across the AGs, take into account the potential
984 		 * space needed for alignment of inode chunks when checking the
985 		 * longest contiguous free space in the AG - this prevents us
986 		 * from getting ENOSPC because we have free space larger than
987 		 * m_ialloc_blks but alignment constraints prevent us from using
988 		 * it.
989 		 *
990 		 * If we can't find an AG with space for full alignment slack to
991 		 * be taken into account, we must be near ENOSPC in all AGs.
992 		 * Hence we don't include alignment for the second pass and so
993 		 * if we fail allocation due to alignment issues then it is most
994 		 * likely a real ENOSPC condition.
995 		 */
996 		ineed = mp->m_ialloc_min_blks;
997 		if (flags && ineed > 1)
998 			ineed += xfs_ialloc_cluster_alignment(mp);
999 		longest = pag->pagf_longest;
1000 		if (!longest)
1001 			longest = pag->pagf_flcount > 0;
1002 
1003 		if (pag->pagf_freeblks >= needspace + ineed &&
1004 		    longest >= ineed) {
1005 			xfs_perag_put(pag);
1006 			return agno;
1007 		}
1008 nextag:
1009 		xfs_perag_put(pag);
1010 		/*
1011 		 * No point in iterating over the rest, if we're shutting
1012 		 * down.
1013 		 */
1014 		if (XFS_FORCED_SHUTDOWN(mp))
1015 			return NULLAGNUMBER;
1016 		agno++;
1017 		if (agno >= agcount)
1018 			agno = 0;
1019 		if (agno == pagno) {
1020 			if (flags == 0)
1021 				return NULLAGNUMBER;
1022 			flags = 0;
1023 		}
1024 	}
1025 }
1026 
1027 /*
1028  * Try to retrieve the next record to the left/right from the current one.
1029  */
1030 STATIC int
1031 xfs_ialloc_next_rec(
1032 	struct xfs_btree_cur	*cur,
1033 	xfs_inobt_rec_incore_t	*rec,
1034 	int			*done,
1035 	int			left)
1036 {
1037 	int                     error;
1038 	int			i;
1039 
1040 	if (left)
1041 		error = xfs_btree_decrement(cur, 0, &i);
1042 	else
1043 		error = xfs_btree_increment(cur, 0, &i);
1044 
1045 	if (error)
1046 		return error;
1047 	*done = !i;
1048 	if (i) {
1049 		error = xfs_inobt_get_rec(cur, rec, &i);
1050 		if (error)
1051 			return error;
1052 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1053 	}
1054 
1055 	return 0;
1056 }
1057 
1058 STATIC int
1059 xfs_ialloc_get_rec(
1060 	struct xfs_btree_cur	*cur,
1061 	xfs_agino_t		agino,
1062 	xfs_inobt_rec_incore_t	*rec,
1063 	int			*done)
1064 {
1065 	int                     error;
1066 	int			i;
1067 
1068 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1069 	if (error)
1070 		return error;
1071 	*done = !i;
1072 	if (i) {
1073 		error = xfs_inobt_get_rec(cur, rec, &i);
1074 		if (error)
1075 			return error;
1076 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 /*
1083  * Return the offset of the first free inode in the record. If the inode chunk
1084  * is sparsely allocated, we convert the record holemask to inode granularity
1085  * and mask off the unallocated regions from the inode free mask.
1086  */
1087 STATIC int
1088 xfs_inobt_first_free_inode(
1089 	struct xfs_inobt_rec_incore	*rec)
1090 {
1091 	xfs_inofree_t			realfree;
1092 
1093 	/* if there are no holes, return the first available offset */
1094 	if (!xfs_inobt_issparse(rec->ir_holemask))
1095 		return xfs_lowbit64(rec->ir_free);
1096 
1097 	realfree = xfs_inobt_irec_to_allocmask(rec);
1098 	realfree &= rec->ir_free;
1099 
1100 	return xfs_lowbit64(realfree);
1101 }
1102 
1103 /*
1104  * Allocate an inode using the inobt-only algorithm.
1105  */
1106 STATIC int
1107 xfs_dialloc_ag_inobt(
1108 	struct xfs_trans	*tp,
1109 	struct xfs_buf		*agbp,
1110 	xfs_ino_t		parent,
1111 	xfs_ino_t		*inop)
1112 {
1113 	struct xfs_mount	*mp = tp->t_mountp;
1114 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
1115 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
1116 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1117 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1118 	struct xfs_perag	*pag;
1119 	struct xfs_btree_cur	*cur, *tcur;
1120 	struct xfs_inobt_rec_incore rec, trec;
1121 	xfs_ino_t		ino;
1122 	int			error;
1123 	int			offset;
1124 	int			i, j;
1125 
1126 	pag = xfs_perag_get(mp, agno);
1127 
1128 	ASSERT(pag->pagi_init);
1129 	ASSERT(pag->pagi_inodeok);
1130 	ASSERT(pag->pagi_freecount > 0);
1131 
1132  restart_pagno:
1133 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1134 	/*
1135 	 * If pagino is 0 (this is the root inode allocation) use newino.
1136 	 * This must work because we've just allocated some.
1137 	 */
1138 	if (!pagino)
1139 		pagino = be32_to_cpu(agi->agi_newino);
1140 
1141 	error = xfs_check_agi_freecount(cur, agi);
1142 	if (error)
1143 		goto error0;
1144 
1145 	/*
1146 	 * If in the same AG as the parent, try to get near the parent.
1147 	 */
1148 	if (pagno == agno) {
1149 		int		doneleft;	/* done, to the left */
1150 		int		doneright;	/* done, to the right */
1151 		int		searchdistance = 10;
1152 
1153 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1154 		if (error)
1155 			goto error0;
1156 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1157 
1158 		error = xfs_inobt_get_rec(cur, &rec, &j);
1159 		if (error)
1160 			goto error0;
1161 		XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1162 
1163 		if (rec.ir_freecount > 0) {
1164 			/*
1165 			 * Found a free inode in the same chunk
1166 			 * as the parent, done.
1167 			 */
1168 			goto alloc_inode;
1169 		}
1170 
1171 
1172 		/*
1173 		 * In the same AG as parent, but parent's chunk is full.
1174 		 */
1175 
1176 		/* duplicate the cursor, search left & right simultaneously */
1177 		error = xfs_btree_dup_cursor(cur, &tcur);
1178 		if (error)
1179 			goto error0;
1180 
1181 		/*
1182 		 * Skip to last blocks looked up if same parent inode.
1183 		 */
1184 		if (pagino != NULLAGINO &&
1185 		    pag->pagl_pagino == pagino &&
1186 		    pag->pagl_leftrec != NULLAGINO &&
1187 		    pag->pagl_rightrec != NULLAGINO) {
1188 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1189 						   &trec, &doneleft);
1190 			if (error)
1191 				goto error1;
1192 
1193 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1194 						   &rec, &doneright);
1195 			if (error)
1196 				goto error1;
1197 		} else {
1198 			/* search left with tcur, back up 1 record */
1199 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1200 			if (error)
1201 				goto error1;
1202 
1203 			/* search right with cur, go forward 1 record. */
1204 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1205 			if (error)
1206 				goto error1;
1207 		}
1208 
1209 		/*
1210 		 * Loop until we find an inode chunk with a free inode.
1211 		 */
1212 		while (!doneleft || !doneright) {
1213 			int	useleft;  /* using left inode chunk this time */
1214 
1215 			if (!--searchdistance) {
1216 				/*
1217 				 * Not in range - save last search
1218 				 * location and allocate a new inode
1219 				 */
1220 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1221 				pag->pagl_leftrec = trec.ir_startino;
1222 				pag->pagl_rightrec = rec.ir_startino;
1223 				pag->pagl_pagino = pagino;
1224 				goto newino;
1225 			}
1226 
1227 			/* figure out the closer block if both are valid. */
1228 			if (!doneleft && !doneright) {
1229 				useleft = pagino -
1230 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1231 				  rec.ir_startino - pagino;
1232 			} else {
1233 				useleft = !doneleft;
1234 			}
1235 
1236 			/* free inodes to the left? */
1237 			if (useleft && trec.ir_freecount) {
1238 				rec = trec;
1239 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1240 				cur = tcur;
1241 
1242 				pag->pagl_leftrec = trec.ir_startino;
1243 				pag->pagl_rightrec = rec.ir_startino;
1244 				pag->pagl_pagino = pagino;
1245 				goto alloc_inode;
1246 			}
1247 
1248 			/* free inodes to the right? */
1249 			if (!useleft && rec.ir_freecount) {
1250 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1251 
1252 				pag->pagl_leftrec = trec.ir_startino;
1253 				pag->pagl_rightrec = rec.ir_startino;
1254 				pag->pagl_pagino = pagino;
1255 				goto alloc_inode;
1256 			}
1257 
1258 			/* get next record to check */
1259 			if (useleft) {
1260 				error = xfs_ialloc_next_rec(tcur, &trec,
1261 								 &doneleft, 1);
1262 			} else {
1263 				error = xfs_ialloc_next_rec(cur, &rec,
1264 								 &doneright, 0);
1265 			}
1266 			if (error)
1267 				goto error1;
1268 		}
1269 
1270 		/*
1271 		 * We've reached the end of the btree. because
1272 		 * we are only searching a small chunk of the
1273 		 * btree each search, there is obviously free
1274 		 * inodes closer to the parent inode than we
1275 		 * are now. restart the search again.
1276 		 */
1277 		pag->pagl_pagino = NULLAGINO;
1278 		pag->pagl_leftrec = NULLAGINO;
1279 		pag->pagl_rightrec = NULLAGINO;
1280 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1281 		xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1282 		goto restart_pagno;
1283 	}
1284 
1285 	/*
1286 	 * In a different AG from the parent.
1287 	 * See if the most recently allocated block has any free.
1288 	 */
1289 newino:
1290 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1291 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1292 					 XFS_LOOKUP_EQ, &i);
1293 		if (error)
1294 			goto error0;
1295 
1296 		if (i == 1) {
1297 			error = xfs_inobt_get_rec(cur, &rec, &j);
1298 			if (error)
1299 				goto error0;
1300 
1301 			if (j == 1 && rec.ir_freecount > 0) {
1302 				/*
1303 				 * The last chunk allocated in the group
1304 				 * still has a free inode.
1305 				 */
1306 				goto alloc_inode;
1307 			}
1308 		}
1309 	}
1310 
1311 	/*
1312 	 * None left in the last group, search the whole AG
1313 	 */
1314 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1315 	if (error)
1316 		goto error0;
1317 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1318 
1319 	for (;;) {
1320 		error = xfs_inobt_get_rec(cur, &rec, &i);
1321 		if (error)
1322 			goto error0;
1323 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1324 		if (rec.ir_freecount > 0)
1325 			break;
1326 		error = xfs_btree_increment(cur, 0, &i);
1327 		if (error)
1328 			goto error0;
1329 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1330 	}
1331 
1332 alloc_inode:
1333 	offset = xfs_inobt_first_free_inode(&rec);
1334 	ASSERT(offset >= 0);
1335 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1336 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1337 				   XFS_INODES_PER_CHUNK) == 0);
1338 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1339 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1340 	rec.ir_freecount--;
1341 	error = xfs_inobt_update(cur, &rec);
1342 	if (error)
1343 		goto error0;
1344 	be32_add_cpu(&agi->agi_freecount, -1);
1345 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1346 	pag->pagi_freecount--;
1347 
1348 	error = xfs_check_agi_freecount(cur, agi);
1349 	if (error)
1350 		goto error0;
1351 
1352 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1353 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1354 	xfs_perag_put(pag);
1355 	*inop = ino;
1356 	return 0;
1357 error1:
1358 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1359 error0:
1360 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1361 	xfs_perag_put(pag);
1362 	return error;
1363 }
1364 
1365 /*
1366  * Use the free inode btree to allocate an inode based on distance from the
1367  * parent. Note that the provided cursor may be deleted and replaced.
1368  */
1369 STATIC int
1370 xfs_dialloc_ag_finobt_near(
1371 	xfs_agino_t			pagino,
1372 	struct xfs_btree_cur		**ocur,
1373 	struct xfs_inobt_rec_incore	*rec)
1374 {
1375 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1376 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1377 	struct xfs_inobt_rec_incore	rrec;
1378 	int				error;
1379 	int				i, j;
1380 
1381 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1382 	if (error)
1383 		return error;
1384 
1385 	if (i == 1) {
1386 		error = xfs_inobt_get_rec(lcur, rec, &i);
1387 		if (error)
1388 			return error;
1389 		XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1390 
1391 		/*
1392 		 * See if we've landed in the parent inode record. The finobt
1393 		 * only tracks chunks with at least one free inode, so record
1394 		 * existence is enough.
1395 		 */
1396 		if (pagino >= rec->ir_startino &&
1397 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1398 			return 0;
1399 	}
1400 
1401 	error = xfs_btree_dup_cursor(lcur, &rcur);
1402 	if (error)
1403 		return error;
1404 
1405 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1406 	if (error)
1407 		goto error_rcur;
1408 	if (j == 1) {
1409 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1410 		if (error)
1411 			goto error_rcur;
1412 		XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1413 	}
1414 
1415 	XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1416 	if (i == 1 && j == 1) {
1417 		/*
1418 		 * Both the left and right records are valid. Choose the closer
1419 		 * inode chunk to the target.
1420 		 */
1421 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1422 		    (rrec.ir_startino - pagino)) {
1423 			*rec = rrec;
1424 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1425 			*ocur = rcur;
1426 		} else {
1427 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1428 		}
1429 	} else if (j == 1) {
1430 		/* only the right record is valid */
1431 		*rec = rrec;
1432 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1433 		*ocur = rcur;
1434 	} else if (i == 1) {
1435 		/* only the left record is valid */
1436 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1437 	}
1438 
1439 	return 0;
1440 
1441 error_rcur:
1442 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1443 	return error;
1444 }
1445 
1446 /*
1447  * Use the free inode btree to find a free inode based on a newino hint. If
1448  * the hint is NULL, find the first free inode in the AG.
1449  */
1450 STATIC int
1451 xfs_dialloc_ag_finobt_newino(
1452 	struct xfs_agi			*agi,
1453 	struct xfs_btree_cur		*cur,
1454 	struct xfs_inobt_rec_incore	*rec)
1455 {
1456 	int error;
1457 	int i;
1458 
1459 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1460 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1461 					 XFS_LOOKUP_EQ, &i);
1462 		if (error)
1463 			return error;
1464 		if (i == 1) {
1465 			error = xfs_inobt_get_rec(cur, rec, &i);
1466 			if (error)
1467 				return error;
1468 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1469 			return 0;
1470 		}
1471 	}
1472 
1473 	/*
1474 	 * Find the first inode available in the AG.
1475 	 */
1476 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1477 	if (error)
1478 		return error;
1479 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1480 
1481 	error = xfs_inobt_get_rec(cur, rec, &i);
1482 	if (error)
1483 		return error;
1484 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1485 
1486 	return 0;
1487 }
1488 
1489 /*
1490  * Update the inobt based on a modification made to the finobt. Also ensure that
1491  * the records from both trees are equivalent post-modification.
1492  */
1493 STATIC int
1494 xfs_dialloc_ag_update_inobt(
1495 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1496 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1497 	int				offset) /* inode offset */
1498 {
1499 	struct xfs_inobt_rec_incore	rec;
1500 	int				error;
1501 	int				i;
1502 
1503 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1504 	if (error)
1505 		return error;
1506 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1507 
1508 	error = xfs_inobt_get_rec(cur, &rec, &i);
1509 	if (error)
1510 		return error;
1511 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1512 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1513 				   XFS_INODES_PER_CHUNK) == 0);
1514 
1515 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1516 	rec.ir_freecount--;
1517 
1518 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1519 				  (rec.ir_freecount == frec->ir_freecount));
1520 
1521 	return xfs_inobt_update(cur, &rec);
1522 }
1523 
1524 /*
1525  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1526  * back to the inobt search algorithm.
1527  *
1528  * The caller selected an AG for us, and made sure that free inodes are
1529  * available.
1530  */
1531 STATIC int
1532 xfs_dialloc_ag(
1533 	struct xfs_trans	*tp,
1534 	struct xfs_buf		*agbp,
1535 	xfs_ino_t		parent,
1536 	xfs_ino_t		*inop)
1537 {
1538 	struct xfs_mount		*mp = tp->t_mountp;
1539 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1540 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1541 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1542 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1543 	struct xfs_perag		*pag;
1544 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1545 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1546 	struct xfs_inobt_rec_incore	rec;
1547 	xfs_ino_t			ino;
1548 	int				error;
1549 	int				offset;
1550 	int				i;
1551 
1552 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1553 		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1554 
1555 	pag = xfs_perag_get(mp, agno);
1556 
1557 	/*
1558 	 * If pagino is 0 (this is the root inode allocation) use newino.
1559 	 * This must work because we've just allocated some.
1560 	 */
1561 	if (!pagino)
1562 		pagino = be32_to_cpu(agi->agi_newino);
1563 
1564 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1565 
1566 	error = xfs_check_agi_freecount(cur, agi);
1567 	if (error)
1568 		goto error_cur;
1569 
1570 	/*
1571 	 * The search algorithm depends on whether we're in the same AG as the
1572 	 * parent. If so, find the closest available inode to the parent. If
1573 	 * not, consider the agi hint or find the first free inode in the AG.
1574 	 */
1575 	if (agno == pagno)
1576 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1577 	else
1578 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1579 	if (error)
1580 		goto error_cur;
1581 
1582 	offset = xfs_inobt_first_free_inode(&rec);
1583 	ASSERT(offset >= 0);
1584 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1585 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1586 				   XFS_INODES_PER_CHUNK) == 0);
1587 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1588 
1589 	/*
1590 	 * Modify or remove the finobt record.
1591 	 */
1592 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1593 	rec.ir_freecount--;
1594 	if (rec.ir_freecount)
1595 		error = xfs_inobt_update(cur, &rec);
1596 	else
1597 		error = xfs_btree_delete(cur, &i);
1598 	if (error)
1599 		goto error_cur;
1600 
1601 	/*
1602 	 * The finobt has now been updated appropriately. We haven't updated the
1603 	 * agi and superblock yet, so we can create an inobt cursor and validate
1604 	 * the original freecount. If all is well, make the equivalent update to
1605 	 * the inobt using the finobt record and offset information.
1606 	 */
1607 	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1608 
1609 	error = xfs_check_agi_freecount(icur, agi);
1610 	if (error)
1611 		goto error_icur;
1612 
1613 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1614 	if (error)
1615 		goto error_icur;
1616 
1617 	/*
1618 	 * Both trees have now been updated. We must update the perag and
1619 	 * superblock before we can check the freecount for each btree.
1620 	 */
1621 	be32_add_cpu(&agi->agi_freecount, -1);
1622 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1623 	pag->pagi_freecount--;
1624 
1625 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1626 
1627 	error = xfs_check_agi_freecount(icur, agi);
1628 	if (error)
1629 		goto error_icur;
1630 	error = xfs_check_agi_freecount(cur, agi);
1631 	if (error)
1632 		goto error_icur;
1633 
1634 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1635 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1636 	xfs_perag_put(pag);
1637 	*inop = ino;
1638 	return 0;
1639 
1640 error_icur:
1641 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1642 error_cur:
1643 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1644 	xfs_perag_put(pag);
1645 	return error;
1646 }
1647 
1648 /*
1649  * Allocate an inode on disk.
1650  *
1651  * Mode is used to tell whether the new inode will need space, and whether it
1652  * is a directory.
1653  *
1654  * This function is designed to be called twice if it has to do an allocation
1655  * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1656  * If an inode is available without having to performn an allocation, an inode
1657  * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1658  * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1659  * The caller should then commit the current transaction, allocate a
1660  * new transaction, and call xfs_dialloc() again, passing in the previous value
1661  * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1662  * buffer is locked across the two calls, the second call is guaranteed to have
1663  * a free inode available.
1664  *
1665  * Once we successfully pick an inode its number is returned and the on-disk
1666  * data structures are updated.  The inode itself is not read in, since doing so
1667  * would break ordering constraints with xfs_reclaim.
1668  */
1669 int
1670 xfs_dialloc(
1671 	struct xfs_trans	*tp,
1672 	xfs_ino_t		parent,
1673 	umode_t			mode,
1674 	int			okalloc,
1675 	struct xfs_buf		**IO_agbp,
1676 	xfs_ino_t		*inop)
1677 {
1678 	struct xfs_mount	*mp = tp->t_mountp;
1679 	struct xfs_buf		*agbp;
1680 	xfs_agnumber_t		agno;
1681 	int			error;
1682 	int			ialloced;
1683 	int			noroom = 0;
1684 	xfs_agnumber_t		start_agno;
1685 	struct xfs_perag	*pag;
1686 
1687 	if (*IO_agbp) {
1688 		/*
1689 		 * If the caller passes in a pointer to the AGI buffer,
1690 		 * continue where we left off before.  In this case, we
1691 		 * know that the allocation group has free inodes.
1692 		 */
1693 		agbp = *IO_agbp;
1694 		goto out_alloc;
1695 	}
1696 
1697 	/*
1698 	 * We do not have an agbp, so select an initial allocation
1699 	 * group for inode allocation.
1700 	 */
1701 	start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1702 	if (start_agno == NULLAGNUMBER) {
1703 		*inop = NULLFSINO;
1704 		return 0;
1705 	}
1706 
1707 	/*
1708 	 * If we have already hit the ceiling of inode blocks then clear
1709 	 * okalloc so we scan all available agi structures for a free
1710 	 * inode.
1711 	 *
1712 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1713 	 * which will sacrifice the preciseness but improve the performance.
1714 	 */
1715 	if (mp->m_maxicount &&
1716 	    percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1717 							> mp->m_maxicount) {
1718 		noroom = 1;
1719 		okalloc = 0;
1720 	}
1721 
1722 	/*
1723 	 * Loop until we find an allocation group that either has free inodes
1724 	 * or in which we can allocate some inodes.  Iterate through the
1725 	 * allocation groups upward, wrapping at the end.
1726 	 */
1727 	agno = start_agno;
1728 	for (;;) {
1729 		pag = xfs_perag_get(mp, agno);
1730 		if (!pag->pagi_inodeok) {
1731 			xfs_ialloc_next_ag(mp);
1732 			goto nextag;
1733 		}
1734 
1735 		if (!pag->pagi_init) {
1736 			error = xfs_ialloc_pagi_init(mp, tp, agno);
1737 			if (error)
1738 				goto out_error;
1739 		}
1740 
1741 		/*
1742 		 * Do a first racy fast path check if this AG is usable.
1743 		 */
1744 		if (!pag->pagi_freecount && !okalloc)
1745 			goto nextag;
1746 
1747 		/*
1748 		 * Then read in the AGI buffer and recheck with the AGI buffer
1749 		 * lock held.
1750 		 */
1751 		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1752 		if (error)
1753 			goto out_error;
1754 
1755 		if (pag->pagi_freecount) {
1756 			xfs_perag_put(pag);
1757 			goto out_alloc;
1758 		}
1759 
1760 		if (!okalloc)
1761 			goto nextag_relse_buffer;
1762 
1763 
1764 		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1765 		if (error) {
1766 			xfs_trans_brelse(tp, agbp);
1767 
1768 			if (error != -ENOSPC)
1769 				goto out_error;
1770 
1771 			xfs_perag_put(pag);
1772 			*inop = NULLFSINO;
1773 			return 0;
1774 		}
1775 
1776 		if (ialloced) {
1777 			/*
1778 			 * We successfully allocated some inodes, return
1779 			 * the current context to the caller so that it
1780 			 * can commit the current transaction and call
1781 			 * us again where we left off.
1782 			 */
1783 			ASSERT(pag->pagi_freecount > 0);
1784 			xfs_perag_put(pag);
1785 
1786 			*IO_agbp = agbp;
1787 			*inop = NULLFSINO;
1788 			return 0;
1789 		}
1790 
1791 nextag_relse_buffer:
1792 		xfs_trans_brelse(tp, agbp);
1793 nextag:
1794 		xfs_perag_put(pag);
1795 		if (++agno == mp->m_sb.sb_agcount)
1796 			agno = 0;
1797 		if (agno == start_agno) {
1798 			*inop = NULLFSINO;
1799 			return noroom ? -ENOSPC : 0;
1800 		}
1801 	}
1802 
1803 out_alloc:
1804 	*IO_agbp = NULL;
1805 	return xfs_dialloc_ag(tp, agbp, parent, inop);
1806 out_error:
1807 	xfs_perag_put(pag);
1808 	return error;
1809 }
1810 
1811 /*
1812  * Free the blocks of an inode chunk. We must consider that the inode chunk
1813  * might be sparse and only free the regions that are allocated as part of the
1814  * chunk.
1815  */
1816 STATIC void
1817 xfs_difree_inode_chunk(
1818 	struct xfs_mount		*mp,
1819 	xfs_agnumber_t			agno,
1820 	struct xfs_inobt_rec_incore	*rec,
1821 	struct xfs_defer_ops		*dfops)
1822 {
1823 	xfs_agblock_t	sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1824 	int		startidx, endidx;
1825 	int		nextbit;
1826 	xfs_agblock_t	agbno;
1827 	int		contigblk;
1828 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1829 
1830 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1831 		/* not sparse, calculate extent info directly */
1832 		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1833 				  mp->m_ialloc_blks);
1834 		return;
1835 	}
1836 
1837 	/* holemask is only 16-bits (fits in an unsigned long) */
1838 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1839 	holemask[0] = rec->ir_holemask;
1840 
1841 	/*
1842 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1843 	 * holemask and convert the start/end index of each range to an extent.
1844 	 * We start with the start and end index both pointing at the first 0 in
1845 	 * the mask.
1846 	 */
1847 	startidx = endidx = find_first_zero_bit(holemask,
1848 						XFS_INOBT_HOLEMASK_BITS);
1849 	nextbit = startidx + 1;
1850 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1851 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1852 					     nextbit);
1853 		/*
1854 		 * If the next zero bit is contiguous, update the end index of
1855 		 * the current range and continue.
1856 		 */
1857 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1858 		    nextbit == endidx + 1) {
1859 			endidx = nextbit;
1860 			goto next;
1861 		}
1862 
1863 		/*
1864 		 * nextbit is not contiguous with the current end index. Convert
1865 		 * the current start/end to an extent and add it to the free
1866 		 * list.
1867 		 */
1868 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1869 				  mp->m_sb.sb_inopblock;
1870 		contigblk = ((endidx - startidx + 1) *
1871 			     XFS_INODES_PER_HOLEMASK_BIT) /
1872 			    mp->m_sb.sb_inopblock;
1873 
1874 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1875 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1876 		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1877 				  contigblk);
1878 
1879 		/* reset range to current bit and carry on... */
1880 		startidx = endidx = nextbit;
1881 
1882 next:
1883 		nextbit++;
1884 	}
1885 }
1886 
1887 STATIC int
1888 xfs_difree_inobt(
1889 	struct xfs_mount		*mp,
1890 	struct xfs_trans		*tp,
1891 	struct xfs_buf			*agbp,
1892 	xfs_agino_t			agino,
1893 	struct xfs_defer_ops		*dfops,
1894 	struct xfs_icluster		*xic,
1895 	struct xfs_inobt_rec_incore	*orec)
1896 {
1897 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1898 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1899 	struct xfs_perag		*pag;
1900 	struct xfs_btree_cur		*cur;
1901 	struct xfs_inobt_rec_incore	rec;
1902 	int				ilen;
1903 	int				error;
1904 	int				i;
1905 	int				off;
1906 
1907 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1908 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1909 
1910 	/*
1911 	 * Initialize the cursor.
1912 	 */
1913 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1914 
1915 	error = xfs_check_agi_freecount(cur, agi);
1916 	if (error)
1917 		goto error0;
1918 
1919 	/*
1920 	 * Look for the entry describing this inode.
1921 	 */
1922 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1923 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1924 			__func__, error);
1925 		goto error0;
1926 	}
1927 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1928 	error = xfs_inobt_get_rec(cur, &rec, &i);
1929 	if (error) {
1930 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1931 			__func__, error);
1932 		goto error0;
1933 	}
1934 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1935 	/*
1936 	 * Get the offset in the inode chunk.
1937 	 */
1938 	off = agino - rec.ir_startino;
1939 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1940 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1941 	/*
1942 	 * Mark the inode free & increment the count.
1943 	 */
1944 	rec.ir_free |= XFS_INOBT_MASK(off);
1945 	rec.ir_freecount++;
1946 
1947 	/*
1948 	 * When an inode chunk is free, it becomes eligible for removal. Don't
1949 	 * remove the chunk if the block size is large enough for multiple inode
1950 	 * chunks (that might not be free).
1951 	 */
1952 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1953 	    rec.ir_free == XFS_INOBT_ALL_FREE &&
1954 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1955 		xic->deleted = 1;
1956 		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1957 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1958 
1959 		/*
1960 		 * Remove the inode cluster from the AGI B+Tree, adjust the
1961 		 * AGI and Superblock inode counts, and mark the disk space
1962 		 * to be freed when the transaction is committed.
1963 		 */
1964 		ilen = rec.ir_freecount;
1965 		be32_add_cpu(&agi->agi_count, -ilen);
1966 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1967 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1968 		pag = xfs_perag_get(mp, agno);
1969 		pag->pagi_freecount -= ilen - 1;
1970 		xfs_perag_put(pag);
1971 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1972 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1973 
1974 		if ((error = xfs_btree_delete(cur, &i))) {
1975 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1976 				__func__, error);
1977 			goto error0;
1978 		}
1979 
1980 		xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1981 	} else {
1982 		xic->deleted = 0;
1983 
1984 		error = xfs_inobt_update(cur, &rec);
1985 		if (error) {
1986 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1987 				__func__, error);
1988 			goto error0;
1989 		}
1990 
1991 		/*
1992 		 * Change the inode free counts and log the ag/sb changes.
1993 		 */
1994 		be32_add_cpu(&agi->agi_freecount, 1);
1995 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1996 		pag = xfs_perag_get(mp, agno);
1997 		pag->pagi_freecount++;
1998 		xfs_perag_put(pag);
1999 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2000 	}
2001 
2002 	error = xfs_check_agi_freecount(cur, agi);
2003 	if (error)
2004 		goto error0;
2005 
2006 	*orec = rec;
2007 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2008 	return 0;
2009 
2010 error0:
2011 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2012 	return error;
2013 }
2014 
2015 /*
2016  * Free an inode in the free inode btree.
2017  */
2018 STATIC int
2019 xfs_difree_finobt(
2020 	struct xfs_mount		*mp,
2021 	struct xfs_trans		*tp,
2022 	struct xfs_buf			*agbp,
2023 	xfs_agino_t			agino,
2024 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2025 {
2026 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
2027 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
2028 	struct xfs_btree_cur		*cur;
2029 	struct xfs_inobt_rec_incore	rec;
2030 	int				offset = agino - ibtrec->ir_startino;
2031 	int				error;
2032 	int				i;
2033 
2034 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2035 
2036 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2037 	if (error)
2038 		goto error;
2039 	if (i == 0) {
2040 		/*
2041 		 * If the record does not exist in the finobt, we must have just
2042 		 * freed an inode in a previously fully allocated chunk. If not,
2043 		 * something is out of sync.
2044 		 */
2045 		XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2046 
2047 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2048 					     ibtrec->ir_count,
2049 					     ibtrec->ir_freecount,
2050 					     ibtrec->ir_free, &i);
2051 		if (error)
2052 			goto error;
2053 		ASSERT(i == 1);
2054 
2055 		goto out;
2056 	}
2057 
2058 	/*
2059 	 * Read and update the existing record. We could just copy the ibtrec
2060 	 * across here, but that would defeat the purpose of having redundant
2061 	 * metadata. By making the modifications independently, we can catch
2062 	 * corruptions that we wouldn't see if we just copied from one record
2063 	 * to another.
2064 	 */
2065 	error = xfs_inobt_get_rec(cur, &rec, &i);
2066 	if (error)
2067 		goto error;
2068 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2069 
2070 	rec.ir_free |= XFS_INOBT_MASK(offset);
2071 	rec.ir_freecount++;
2072 
2073 	XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2074 				(rec.ir_freecount == ibtrec->ir_freecount),
2075 				error);
2076 
2077 	/*
2078 	 * The content of inobt records should always match between the inobt
2079 	 * and finobt. The lifecycle of records in the finobt is different from
2080 	 * the inobt in that the finobt only tracks records with at least one
2081 	 * free inode. Hence, if all of the inodes are free and we aren't
2082 	 * keeping inode chunks permanently on disk, remove the record.
2083 	 * Otherwise, update the record with the new information.
2084 	 *
2085 	 * Note that we currently can't free chunks when the block size is large
2086 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2087 	 * with the inobt.
2088 	 */
2089 	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2090 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2091 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2092 		error = xfs_btree_delete(cur, &i);
2093 		if (error)
2094 			goto error;
2095 		ASSERT(i == 1);
2096 	} else {
2097 		error = xfs_inobt_update(cur, &rec);
2098 		if (error)
2099 			goto error;
2100 	}
2101 
2102 out:
2103 	error = xfs_check_agi_freecount(cur, agi);
2104 	if (error)
2105 		goto error;
2106 
2107 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2108 	return 0;
2109 
2110 error:
2111 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2112 	return error;
2113 }
2114 
2115 /*
2116  * Free disk inode.  Carefully avoids touching the incore inode, all
2117  * manipulations incore are the caller's responsibility.
2118  * The on-disk inode is not changed by this operation, only the
2119  * btree (free inode mask) is changed.
2120  */
2121 int
2122 xfs_difree(
2123 	struct xfs_trans	*tp,		/* transaction pointer */
2124 	xfs_ino_t		inode,		/* inode to be freed */
2125 	struct xfs_defer_ops	*dfops,		/* extents to free */
2126 	struct xfs_icluster	*xic)	/* cluster info if deleted */
2127 {
2128 	/* REFERENCED */
2129 	xfs_agblock_t		agbno;	/* block number containing inode */
2130 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2131 	xfs_agino_t		agino;	/* allocation group inode number */
2132 	xfs_agnumber_t		agno;	/* allocation group number */
2133 	int			error;	/* error return value */
2134 	struct xfs_mount	*mp;	/* mount structure for filesystem */
2135 	struct xfs_inobt_rec_incore rec;/* btree record */
2136 
2137 	mp = tp->t_mountp;
2138 
2139 	/*
2140 	 * Break up inode number into its components.
2141 	 */
2142 	agno = XFS_INO_TO_AGNO(mp, inode);
2143 	if (agno >= mp->m_sb.sb_agcount)  {
2144 		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2145 			__func__, agno, mp->m_sb.sb_agcount);
2146 		ASSERT(0);
2147 		return -EINVAL;
2148 	}
2149 	agino = XFS_INO_TO_AGINO(mp, inode);
2150 	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2151 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2152 			__func__, (unsigned long long)inode,
2153 			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2154 		ASSERT(0);
2155 		return -EINVAL;
2156 	}
2157 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2158 	if (agbno >= mp->m_sb.sb_agblocks)  {
2159 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2160 			__func__, agbno, mp->m_sb.sb_agblocks);
2161 		ASSERT(0);
2162 		return -EINVAL;
2163 	}
2164 	/*
2165 	 * Get the allocation group header.
2166 	 */
2167 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2168 	if (error) {
2169 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2170 			__func__, error);
2171 		return error;
2172 	}
2173 
2174 	/*
2175 	 * Fix up the inode allocation btree.
2176 	 */
2177 	error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2178 	if (error)
2179 		goto error0;
2180 
2181 	/*
2182 	 * Fix up the free inode btree.
2183 	 */
2184 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2185 		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2186 		if (error)
2187 			goto error0;
2188 	}
2189 
2190 	return 0;
2191 
2192 error0:
2193 	return error;
2194 }
2195 
2196 STATIC int
2197 xfs_imap_lookup(
2198 	struct xfs_mount	*mp,
2199 	struct xfs_trans	*tp,
2200 	xfs_agnumber_t		agno,
2201 	xfs_agino_t		agino,
2202 	xfs_agblock_t		agbno,
2203 	xfs_agblock_t		*chunk_agbno,
2204 	xfs_agblock_t		*offset_agbno,
2205 	int			flags)
2206 {
2207 	struct xfs_inobt_rec_incore rec;
2208 	struct xfs_btree_cur	*cur;
2209 	struct xfs_buf		*agbp;
2210 	int			error;
2211 	int			i;
2212 
2213 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2214 	if (error) {
2215 		xfs_alert(mp,
2216 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2217 			__func__, error, agno);
2218 		return error;
2219 	}
2220 
2221 	/*
2222 	 * Lookup the inode record for the given agino. If the record cannot be
2223 	 * found, then it's an invalid inode number and we should abort. Once
2224 	 * we have a record, we need to ensure it contains the inode number
2225 	 * we are looking up.
2226 	 */
2227 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2228 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2229 	if (!error) {
2230 		if (i)
2231 			error = xfs_inobt_get_rec(cur, &rec, &i);
2232 		if (!error && i == 0)
2233 			error = -EINVAL;
2234 	}
2235 
2236 	xfs_trans_brelse(tp, agbp);
2237 	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2238 	if (error)
2239 		return error;
2240 
2241 	/* check that the returned record contains the required inode */
2242 	if (rec.ir_startino > agino ||
2243 	    rec.ir_startino + mp->m_ialloc_inos <= agino)
2244 		return -EINVAL;
2245 
2246 	/* for untrusted inodes check it is allocated first */
2247 	if ((flags & XFS_IGET_UNTRUSTED) &&
2248 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2249 		return -EINVAL;
2250 
2251 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2252 	*offset_agbno = agbno - *chunk_agbno;
2253 	return 0;
2254 }
2255 
2256 /*
2257  * Return the location of the inode in imap, for mapping it into a buffer.
2258  */
2259 int
2260 xfs_imap(
2261 	xfs_mount_t	 *mp,	/* file system mount structure */
2262 	xfs_trans_t	 *tp,	/* transaction pointer */
2263 	xfs_ino_t	ino,	/* inode to locate */
2264 	struct xfs_imap	*imap,	/* location map structure */
2265 	uint		flags)	/* flags for inode btree lookup */
2266 {
2267 	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
2268 	xfs_agino_t	agino;	/* inode number within alloc group */
2269 	xfs_agnumber_t	agno;	/* allocation group number */
2270 	int		blks_per_cluster; /* num blocks per inode cluster */
2271 	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
2272 	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
2273 	int		error;	/* error code */
2274 	int		offset;	/* index of inode in its buffer */
2275 	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
2276 
2277 	ASSERT(ino != NULLFSINO);
2278 
2279 	/*
2280 	 * Split up the inode number into its parts.
2281 	 */
2282 	agno = XFS_INO_TO_AGNO(mp, ino);
2283 	agino = XFS_INO_TO_AGINO(mp, ino);
2284 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2285 	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2286 	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2287 #ifdef DEBUG
2288 		/*
2289 		 * Don't output diagnostic information for untrusted inodes
2290 		 * as they can be invalid without implying corruption.
2291 		 */
2292 		if (flags & XFS_IGET_UNTRUSTED)
2293 			return -EINVAL;
2294 		if (agno >= mp->m_sb.sb_agcount) {
2295 			xfs_alert(mp,
2296 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2297 				__func__, agno, mp->m_sb.sb_agcount);
2298 		}
2299 		if (agbno >= mp->m_sb.sb_agblocks) {
2300 			xfs_alert(mp,
2301 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2302 				__func__, (unsigned long long)agbno,
2303 				(unsigned long)mp->m_sb.sb_agblocks);
2304 		}
2305 		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2306 			xfs_alert(mp,
2307 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2308 				__func__, ino,
2309 				XFS_AGINO_TO_INO(mp, agno, agino));
2310 		}
2311 		xfs_stack_trace();
2312 #endif /* DEBUG */
2313 		return -EINVAL;
2314 	}
2315 
2316 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2317 
2318 	/*
2319 	 * For bulkstat and handle lookups, we have an untrusted inode number
2320 	 * that we have to verify is valid. We cannot do this just by reading
2321 	 * the inode buffer as it may have been unlinked and removed leaving
2322 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2323 	 * in all cases where an untrusted inode number is passed.
2324 	 */
2325 	if (flags & XFS_IGET_UNTRUSTED) {
2326 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2327 					&chunk_agbno, &offset_agbno, flags);
2328 		if (error)
2329 			return error;
2330 		goto out_map;
2331 	}
2332 
2333 	/*
2334 	 * If the inode cluster size is the same as the blocksize or
2335 	 * smaller we get to the buffer by simple arithmetics.
2336 	 */
2337 	if (blks_per_cluster == 1) {
2338 		offset = XFS_INO_TO_OFFSET(mp, ino);
2339 		ASSERT(offset < mp->m_sb.sb_inopblock);
2340 
2341 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2342 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2343 		imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2344 		return 0;
2345 	}
2346 
2347 	/*
2348 	 * If the inode chunks are aligned then use simple maths to
2349 	 * find the location. Otherwise we have to do a btree
2350 	 * lookup to find the location.
2351 	 */
2352 	if (mp->m_inoalign_mask) {
2353 		offset_agbno = agbno & mp->m_inoalign_mask;
2354 		chunk_agbno = agbno - offset_agbno;
2355 	} else {
2356 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2357 					&chunk_agbno, &offset_agbno, flags);
2358 		if (error)
2359 			return error;
2360 	}
2361 
2362 out_map:
2363 	ASSERT(agbno >= chunk_agbno);
2364 	cluster_agbno = chunk_agbno +
2365 		((offset_agbno / blks_per_cluster) * blks_per_cluster);
2366 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2367 		XFS_INO_TO_OFFSET(mp, ino);
2368 
2369 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2370 	imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2371 	imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2372 
2373 	/*
2374 	 * If the inode number maps to a block outside the bounds
2375 	 * of the file system then return NULL rather than calling
2376 	 * read_buf and panicing when we get an error from the
2377 	 * driver.
2378 	 */
2379 	if ((imap->im_blkno + imap->im_len) >
2380 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2381 		xfs_alert(mp,
2382 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2383 			__func__, (unsigned long long) imap->im_blkno,
2384 			(unsigned long long) imap->im_len,
2385 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2386 		return -EINVAL;
2387 	}
2388 	return 0;
2389 }
2390 
2391 /*
2392  * Compute and fill in value of m_in_maxlevels.
2393  */
2394 void
2395 xfs_ialloc_compute_maxlevels(
2396 	xfs_mount_t	*mp)		/* file system mount structure */
2397 {
2398 	uint		inodes;
2399 
2400 	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2401 	mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr,
2402 							 inodes);
2403 }
2404 
2405 /*
2406  * Log specified fields for the ag hdr (inode section). The growth of the agi
2407  * structure over time requires that we interpret the buffer as two logical
2408  * regions delineated by the end of the unlinked list. This is due to the size
2409  * of the hash table and its location in the middle of the agi.
2410  *
2411  * For example, a request to log a field before agi_unlinked and a field after
2412  * agi_unlinked could cause us to log the entire hash table and use an excessive
2413  * amount of log space. To avoid this behavior, log the region up through
2414  * agi_unlinked in one call and the region after agi_unlinked through the end of
2415  * the structure in another.
2416  */
2417 void
2418 xfs_ialloc_log_agi(
2419 	xfs_trans_t	*tp,		/* transaction pointer */
2420 	xfs_buf_t	*bp,		/* allocation group header buffer */
2421 	int		fields)		/* bitmask of fields to log */
2422 {
2423 	int			first;		/* first byte number */
2424 	int			last;		/* last byte number */
2425 	static const short	offsets[] = {	/* field starting offsets */
2426 					/* keep in sync with bit definitions */
2427 		offsetof(xfs_agi_t, agi_magicnum),
2428 		offsetof(xfs_agi_t, agi_versionnum),
2429 		offsetof(xfs_agi_t, agi_seqno),
2430 		offsetof(xfs_agi_t, agi_length),
2431 		offsetof(xfs_agi_t, agi_count),
2432 		offsetof(xfs_agi_t, agi_root),
2433 		offsetof(xfs_agi_t, agi_level),
2434 		offsetof(xfs_agi_t, agi_freecount),
2435 		offsetof(xfs_agi_t, agi_newino),
2436 		offsetof(xfs_agi_t, agi_dirino),
2437 		offsetof(xfs_agi_t, agi_unlinked),
2438 		offsetof(xfs_agi_t, agi_free_root),
2439 		offsetof(xfs_agi_t, agi_free_level),
2440 		sizeof(xfs_agi_t)
2441 	};
2442 #ifdef DEBUG
2443 	xfs_agi_t		*agi;	/* allocation group header */
2444 
2445 	agi = XFS_BUF_TO_AGI(bp);
2446 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2447 #endif
2448 
2449 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2450 
2451 	/*
2452 	 * Compute byte offsets for the first and last fields in the first
2453 	 * region and log the agi buffer. This only logs up through
2454 	 * agi_unlinked.
2455 	 */
2456 	if (fields & XFS_AGI_ALL_BITS_R1) {
2457 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2458 				  &first, &last);
2459 		xfs_trans_log_buf(tp, bp, first, last);
2460 	}
2461 
2462 	/*
2463 	 * Mask off the bits in the first region and calculate the first and
2464 	 * last field offsets for any bits in the second region.
2465 	 */
2466 	fields &= ~XFS_AGI_ALL_BITS_R1;
2467 	if (fields) {
2468 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2469 				  &first, &last);
2470 		xfs_trans_log_buf(tp, bp, first, last);
2471 	}
2472 }
2473 
2474 #ifdef DEBUG
2475 STATIC void
2476 xfs_check_agi_unlinked(
2477 	struct xfs_agi		*agi)
2478 {
2479 	int			i;
2480 
2481 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2482 		ASSERT(agi->agi_unlinked[i]);
2483 }
2484 #else
2485 #define xfs_check_agi_unlinked(agi)
2486 #endif
2487 
2488 static bool
2489 xfs_agi_verify(
2490 	struct xfs_buf	*bp)
2491 {
2492 	struct xfs_mount *mp = bp->b_target->bt_mount;
2493 	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp);
2494 
2495 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2496 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2497 			return false;
2498 		if (!xfs_log_check_lsn(mp,
2499 				be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2500 			return false;
2501 	}
2502 
2503 	/*
2504 	 * Validate the magic number of the agi block.
2505 	 */
2506 	if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2507 		return false;
2508 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2509 		return false;
2510 
2511 	if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2512 		return false;
2513 	/*
2514 	 * during growfs operations, the perag is not fully initialised,
2515 	 * so we can't use it for any useful checking. growfs ensures we can't
2516 	 * use it by using uncached buffers that don't have the perag attached
2517 	 * so we can detect and avoid this problem.
2518 	 */
2519 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2520 		return false;
2521 
2522 	xfs_check_agi_unlinked(agi);
2523 	return true;
2524 }
2525 
2526 static void
2527 xfs_agi_read_verify(
2528 	struct xfs_buf	*bp)
2529 {
2530 	struct xfs_mount *mp = bp->b_target->bt_mount;
2531 
2532 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2533 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2534 		xfs_buf_ioerror(bp, -EFSBADCRC);
2535 	else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2536 				XFS_ERRTAG_IALLOC_READ_AGI,
2537 				XFS_RANDOM_IALLOC_READ_AGI))
2538 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2539 
2540 	if (bp->b_error)
2541 		xfs_verifier_error(bp);
2542 }
2543 
2544 static void
2545 xfs_agi_write_verify(
2546 	struct xfs_buf	*bp)
2547 {
2548 	struct xfs_mount *mp = bp->b_target->bt_mount;
2549 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
2550 
2551 	if (!xfs_agi_verify(bp)) {
2552 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2553 		xfs_verifier_error(bp);
2554 		return;
2555 	}
2556 
2557 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2558 		return;
2559 
2560 	if (bip)
2561 		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2562 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2563 }
2564 
2565 const struct xfs_buf_ops xfs_agi_buf_ops = {
2566 	.name = "xfs_agi",
2567 	.verify_read = xfs_agi_read_verify,
2568 	.verify_write = xfs_agi_write_verify,
2569 };
2570 
2571 /*
2572  * Read in the allocation group header (inode allocation section)
2573  */
2574 int
2575 xfs_read_agi(
2576 	struct xfs_mount	*mp,	/* file system mount structure */
2577 	struct xfs_trans	*tp,	/* transaction pointer */
2578 	xfs_agnumber_t		agno,	/* allocation group number */
2579 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2580 {
2581 	int			error;
2582 
2583 	trace_xfs_read_agi(mp, agno);
2584 
2585 	ASSERT(agno != NULLAGNUMBER);
2586 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2587 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2588 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2589 	if (error)
2590 		return error;
2591 
2592 	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2593 	return 0;
2594 }
2595 
2596 int
2597 xfs_ialloc_read_agi(
2598 	struct xfs_mount	*mp,	/* file system mount structure */
2599 	struct xfs_trans	*tp,	/* transaction pointer */
2600 	xfs_agnumber_t		agno,	/* allocation group number */
2601 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2602 {
2603 	struct xfs_agi		*agi;	/* allocation group header */
2604 	struct xfs_perag	*pag;	/* per allocation group data */
2605 	int			error;
2606 
2607 	trace_xfs_ialloc_read_agi(mp, agno);
2608 
2609 	error = xfs_read_agi(mp, tp, agno, bpp);
2610 	if (error)
2611 		return error;
2612 
2613 	agi = XFS_BUF_TO_AGI(*bpp);
2614 	pag = xfs_perag_get(mp, agno);
2615 	if (!pag->pagi_init) {
2616 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2617 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2618 		pag->pagi_init = 1;
2619 	}
2620 
2621 	/*
2622 	 * It's possible for these to be out of sync if
2623 	 * we are in the middle of a forced shutdown.
2624 	 */
2625 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2626 		XFS_FORCED_SHUTDOWN(mp));
2627 	xfs_perag_put(pag);
2628 	return 0;
2629 }
2630 
2631 /*
2632  * Read in the agi to initialise the per-ag data in the mount structure
2633  */
2634 int
2635 xfs_ialloc_pagi_init(
2636 	xfs_mount_t	*mp,		/* file system mount structure */
2637 	xfs_trans_t	*tp,		/* transaction pointer */
2638 	xfs_agnumber_t	agno)		/* allocation group number */
2639 {
2640 	xfs_buf_t	*bp = NULL;
2641 	int		error;
2642 
2643 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2644 	if (error)
2645 		return error;
2646 	if (bp)
2647 		xfs_trans_brelse(tp, bp);
2648 	return 0;
2649 }
2650