1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_defer.h" 28 #include "xfs_inode.h" 29 #include "xfs_btree.h" 30 #include "xfs_ialloc.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_alloc.h" 33 #include "xfs_rtalloc.h" 34 #include "xfs_error.h" 35 #include "xfs_bmap.h" 36 #include "xfs_cksum.h" 37 #include "xfs_trans.h" 38 #include "xfs_buf_item.h" 39 #include "xfs_icreate_item.h" 40 #include "xfs_icache.h" 41 #include "xfs_trace.h" 42 #include "xfs_log.h" 43 #include "xfs_rmap.h" 44 45 46 /* 47 * Allocation group level functions. 48 */ 49 static inline int 50 xfs_ialloc_cluster_alignment( 51 struct xfs_mount *mp) 52 { 53 if (xfs_sb_version_hasalign(&mp->m_sb) && 54 mp->m_sb.sb_inoalignmt >= 55 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 56 return mp->m_sb.sb_inoalignmt; 57 return 1; 58 } 59 60 /* 61 * Lookup a record by ino in the btree given by cur. 62 */ 63 int /* error */ 64 xfs_inobt_lookup( 65 struct xfs_btree_cur *cur, /* btree cursor */ 66 xfs_agino_t ino, /* starting inode of chunk */ 67 xfs_lookup_t dir, /* <=, >=, == */ 68 int *stat) /* success/failure */ 69 { 70 cur->bc_rec.i.ir_startino = ino; 71 cur->bc_rec.i.ir_holemask = 0; 72 cur->bc_rec.i.ir_count = 0; 73 cur->bc_rec.i.ir_freecount = 0; 74 cur->bc_rec.i.ir_free = 0; 75 return xfs_btree_lookup(cur, dir, stat); 76 } 77 78 /* 79 * Update the record referred to by cur to the value given. 80 * This either works (return 0) or gets an EFSCORRUPTED error. 81 */ 82 STATIC int /* error */ 83 xfs_inobt_update( 84 struct xfs_btree_cur *cur, /* btree cursor */ 85 xfs_inobt_rec_incore_t *irec) /* btree record */ 86 { 87 union xfs_btree_rec rec; 88 89 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 90 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { 91 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); 92 rec.inobt.ir_u.sp.ir_count = irec->ir_count; 93 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; 94 } else { 95 /* ir_holemask/ir_count not supported on-disk */ 96 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); 97 } 98 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 99 return xfs_btree_update(cur, &rec); 100 } 101 102 /* 103 * Get the data from the pointed-to record. 104 */ 105 int /* error */ 106 xfs_inobt_get_rec( 107 struct xfs_btree_cur *cur, /* btree cursor */ 108 xfs_inobt_rec_incore_t *irec, /* btree record */ 109 int *stat) /* output: success/failure */ 110 { 111 union xfs_btree_rec *rec; 112 int error; 113 114 error = xfs_btree_get_rec(cur, &rec, stat); 115 if (error || *stat == 0) 116 return error; 117 118 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 119 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { 120 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); 121 irec->ir_count = rec->inobt.ir_u.sp.ir_count; 122 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; 123 } else { 124 /* 125 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded 126 * values for full inode chunks. 127 */ 128 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; 129 irec->ir_count = XFS_INODES_PER_CHUNK; 130 irec->ir_freecount = 131 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); 132 } 133 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 134 135 return 0; 136 } 137 138 /* 139 * Insert a single inobt record. Cursor must already point to desired location. 140 */ 141 STATIC int 142 xfs_inobt_insert_rec( 143 struct xfs_btree_cur *cur, 144 __uint16_t holemask, 145 __uint8_t count, 146 __int32_t freecount, 147 xfs_inofree_t free, 148 int *stat) 149 { 150 cur->bc_rec.i.ir_holemask = holemask; 151 cur->bc_rec.i.ir_count = count; 152 cur->bc_rec.i.ir_freecount = freecount; 153 cur->bc_rec.i.ir_free = free; 154 return xfs_btree_insert(cur, stat); 155 } 156 157 /* 158 * Insert records describing a newly allocated inode chunk into the inobt. 159 */ 160 STATIC int 161 xfs_inobt_insert( 162 struct xfs_mount *mp, 163 struct xfs_trans *tp, 164 struct xfs_buf *agbp, 165 xfs_agino_t newino, 166 xfs_agino_t newlen, 167 xfs_btnum_t btnum) 168 { 169 struct xfs_btree_cur *cur; 170 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 171 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 172 xfs_agino_t thisino; 173 int i; 174 int error; 175 176 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 177 178 for (thisino = newino; 179 thisino < newino + newlen; 180 thisino += XFS_INODES_PER_CHUNK) { 181 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 182 if (error) { 183 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 184 return error; 185 } 186 ASSERT(i == 0); 187 188 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, 189 XFS_INODES_PER_CHUNK, 190 XFS_INODES_PER_CHUNK, 191 XFS_INOBT_ALL_FREE, &i); 192 if (error) { 193 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 194 return error; 195 } 196 ASSERT(i == 1); 197 } 198 199 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 200 201 return 0; 202 } 203 204 /* 205 * Verify that the number of free inodes in the AGI is correct. 206 */ 207 #ifdef DEBUG 208 STATIC int 209 xfs_check_agi_freecount( 210 struct xfs_btree_cur *cur, 211 struct xfs_agi *agi) 212 { 213 if (cur->bc_nlevels == 1) { 214 xfs_inobt_rec_incore_t rec; 215 int freecount = 0; 216 int error; 217 int i; 218 219 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 220 if (error) 221 return error; 222 223 do { 224 error = xfs_inobt_get_rec(cur, &rec, &i); 225 if (error) 226 return error; 227 228 if (i) { 229 freecount += rec.ir_freecount; 230 error = xfs_btree_increment(cur, 0, &i); 231 if (error) 232 return error; 233 } 234 } while (i == 1); 235 236 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) 237 ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); 238 } 239 return 0; 240 } 241 #else 242 #define xfs_check_agi_freecount(cur, agi) 0 243 #endif 244 245 /* 246 * Initialise a new set of inodes. When called without a transaction context 247 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 248 * than logging them (which in a transaction context puts them into the AIL 249 * for writeback rather than the xfsbufd queue). 250 */ 251 int 252 xfs_ialloc_inode_init( 253 struct xfs_mount *mp, 254 struct xfs_trans *tp, 255 struct list_head *buffer_list, 256 int icount, 257 xfs_agnumber_t agno, 258 xfs_agblock_t agbno, 259 xfs_agblock_t length, 260 unsigned int gen) 261 { 262 struct xfs_buf *fbuf; 263 struct xfs_dinode *free; 264 int nbufs, blks_per_cluster, inodes_per_cluster; 265 int version; 266 int i, j; 267 xfs_daddr_t d; 268 xfs_ino_t ino = 0; 269 270 /* 271 * Loop over the new block(s), filling in the inodes. For small block 272 * sizes, manipulate the inodes in buffers which are multiples of the 273 * blocks size. 274 */ 275 blks_per_cluster = xfs_icluster_size_fsb(mp); 276 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 277 nbufs = length / blks_per_cluster; 278 279 /* 280 * Figure out what version number to use in the inodes we create. If 281 * the superblock version has caught up to the one that supports the new 282 * inode format, then use the new inode version. Otherwise use the old 283 * version so that old kernels will continue to be able to use the file 284 * system. 285 * 286 * For v3 inodes, we also need to write the inode number into the inode, 287 * so calculate the first inode number of the chunk here as 288 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not 289 * across multiple filesystem blocks (such as a cluster) and so cannot 290 * be used in the cluster buffer loop below. 291 * 292 * Further, because we are writing the inode directly into the buffer 293 * and calculating a CRC on the entire inode, we have ot log the entire 294 * inode so that the entire range the CRC covers is present in the log. 295 * That means for v3 inode we log the entire buffer rather than just the 296 * inode cores. 297 */ 298 if (xfs_sb_version_hascrc(&mp->m_sb)) { 299 version = 3; 300 ino = XFS_AGINO_TO_INO(mp, agno, 301 XFS_OFFBNO_TO_AGINO(mp, agbno, 0)); 302 303 /* 304 * log the initialisation that is about to take place as an 305 * logical operation. This means the transaction does not 306 * need to log the physical changes to the inode buffers as log 307 * recovery will know what initialisation is actually needed. 308 * Hence we only need to log the buffers as "ordered" buffers so 309 * they track in the AIL as if they were physically logged. 310 */ 311 if (tp) 312 xfs_icreate_log(tp, agno, agbno, icount, 313 mp->m_sb.sb_inodesize, length, gen); 314 } else 315 version = 2; 316 317 for (j = 0; j < nbufs; j++) { 318 /* 319 * Get the block. 320 */ 321 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster)); 322 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 323 mp->m_bsize * blks_per_cluster, 324 XBF_UNMAPPED); 325 if (!fbuf) 326 return -ENOMEM; 327 328 /* Initialize the inode buffers and log them appropriately. */ 329 fbuf->b_ops = &xfs_inode_buf_ops; 330 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 331 for (i = 0; i < inodes_per_cluster; i++) { 332 int ioffset = i << mp->m_sb.sb_inodelog; 333 uint isize = xfs_dinode_size(version); 334 335 free = xfs_make_iptr(mp, fbuf, i); 336 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 337 free->di_version = version; 338 free->di_gen = cpu_to_be32(gen); 339 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 340 341 if (version == 3) { 342 free->di_ino = cpu_to_be64(ino); 343 ino++; 344 uuid_copy(&free->di_uuid, 345 &mp->m_sb.sb_meta_uuid); 346 xfs_dinode_calc_crc(mp, free); 347 } else if (tp) { 348 /* just log the inode core */ 349 xfs_trans_log_buf(tp, fbuf, ioffset, 350 ioffset + isize - 1); 351 } 352 } 353 354 if (tp) { 355 /* 356 * Mark the buffer as an inode allocation buffer so it 357 * sticks in AIL at the point of this allocation 358 * transaction. This ensures the they are on disk before 359 * the tail of the log can be moved past this 360 * transaction (i.e. by preventing relogging from moving 361 * it forward in the log). 362 */ 363 xfs_trans_inode_alloc_buf(tp, fbuf); 364 if (version == 3) { 365 /* 366 * Mark the buffer as ordered so that they are 367 * not physically logged in the transaction but 368 * still tracked in the AIL as part of the 369 * transaction and pin the log appropriately. 370 */ 371 xfs_trans_ordered_buf(tp, fbuf); 372 xfs_trans_log_buf(tp, fbuf, 0, 373 BBTOB(fbuf->b_length) - 1); 374 } 375 } else { 376 fbuf->b_flags |= XBF_DONE; 377 xfs_buf_delwri_queue(fbuf, buffer_list); 378 xfs_buf_relse(fbuf); 379 } 380 } 381 return 0; 382 } 383 384 /* 385 * Align startino and allocmask for a recently allocated sparse chunk such that 386 * they are fit for insertion (or merge) into the on-disk inode btrees. 387 * 388 * Background: 389 * 390 * When enabled, sparse inode support increases the inode alignment from cluster 391 * size to inode chunk size. This means that the minimum range between two 392 * non-adjacent inode records in the inobt is large enough for a full inode 393 * record. This allows for cluster sized, cluster aligned block allocation 394 * without need to worry about whether the resulting inode record overlaps with 395 * another record in the tree. Without this basic rule, we would have to deal 396 * with the consequences of overlap by potentially undoing recent allocations in 397 * the inode allocation codepath. 398 * 399 * Because of this alignment rule (which is enforced on mount), there are two 400 * inobt possibilities for newly allocated sparse chunks. One is that the 401 * aligned inode record for the chunk covers a range of inodes not already 402 * covered in the inobt (i.e., it is safe to insert a new sparse record). The 403 * other is that a record already exists at the aligned startino that considers 404 * the newly allocated range as sparse. In the latter case, record content is 405 * merged in hope that sparse inode chunks fill to full chunks over time. 406 */ 407 STATIC void 408 xfs_align_sparse_ino( 409 struct xfs_mount *mp, 410 xfs_agino_t *startino, 411 uint16_t *allocmask) 412 { 413 xfs_agblock_t agbno; 414 xfs_agblock_t mod; 415 int offset; 416 417 agbno = XFS_AGINO_TO_AGBNO(mp, *startino); 418 mod = agbno % mp->m_sb.sb_inoalignmt; 419 if (!mod) 420 return; 421 422 /* calculate the inode offset and align startino */ 423 offset = mod << mp->m_sb.sb_inopblog; 424 *startino -= offset; 425 426 /* 427 * Since startino has been aligned down, left shift allocmask such that 428 * it continues to represent the same physical inodes relative to the 429 * new startino. 430 */ 431 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; 432 } 433 434 /* 435 * Determine whether the source inode record can merge into the target. Both 436 * records must be sparse, the inode ranges must match and there must be no 437 * allocation overlap between the records. 438 */ 439 STATIC bool 440 __xfs_inobt_can_merge( 441 struct xfs_inobt_rec_incore *trec, /* tgt record */ 442 struct xfs_inobt_rec_incore *srec) /* src record */ 443 { 444 uint64_t talloc; 445 uint64_t salloc; 446 447 /* records must cover the same inode range */ 448 if (trec->ir_startino != srec->ir_startino) 449 return false; 450 451 /* both records must be sparse */ 452 if (!xfs_inobt_issparse(trec->ir_holemask) || 453 !xfs_inobt_issparse(srec->ir_holemask)) 454 return false; 455 456 /* both records must track some inodes */ 457 if (!trec->ir_count || !srec->ir_count) 458 return false; 459 460 /* can't exceed capacity of a full record */ 461 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) 462 return false; 463 464 /* verify there is no allocation overlap */ 465 talloc = xfs_inobt_irec_to_allocmask(trec); 466 salloc = xfs_inobt_irec_to_allocmask(srec); 467 if (talloc & salloc) 468 return false; 469 470 return true; 471 } 472 473 /* 474 * Merge the source inode record into the target. The caller must call 475 * __xfs_inobt_can_merge() to ensure the merge is valid. 476 */ 477 STATIC void 478 __xfs_inobt_rec_merge( 479 struct xfs_inobt_rec_incore *trec, /* target */ 480 struct xfs_inobt_rec_incore *srec) /* src */ 481 { 482 ASSERT(trec->ir_startino == srec->ir_startino); 483 484 /* combine the counts */ 485 trec->ir_count += srec->ir_count; 486 trec->ir_freecount += srec->ir_freecount; 487 488 /* 489 * Merge the holemask and free mask. For both fields, 0 bits refer to 490 * allocated inodes. We combine the allocated ranges with bitwise AND. 491 */ 492 trec->ir_holemask &= srec->ir_holemask; 493 trec->ir_free &= srec->ir_free; 494 } 495 496 /* 497 * Insert a new sparse inode chunk into the associated inode btree. The inode 498 * record for the sparse chunk is pre-aligned to a startino that should match 499 * any pre-existing sparse inode record in the tree. This allows sparse chunks 500 * to fill over time. 501 * 502 * This function supports two modes of handling preexisting records depending on 503 * the merge flag. If merge is true, the provided record is merged with the 504 * existing record and updated in place. The merged record is returned in nrec. 505 * If merge is false, an existing record is replaced with the provided record. 506 * If no preexisting record exists, the provided record is always inserted. 507 * 508 * It is considered corruption if a merge is requested and not possible. Given 509 * the sparse inode alignment constraints, this should never happen. 510 */ 511 STATIC int 512 xfs_inobt_insert_sprec( 513 struct xfs_mount *mp, 514 struct xfs_trans *tp, 515 struct xfs_buf *agbp, 516 int btnum, 517 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ 518 bool merge) /* merge or replace */ 519 { 520 struct xfs_btree_cur *cur; 521 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 522 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 523 int error; 524 int i; 525 struct xfs_inobt_rec_incore rec; 526 527 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 528 529 /* the new record is pre-aligned so we know where to look */ 530 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); 531 if (error) 532 goto error; 533 /* if nothing there, insert a new record and return */ 534 if (i == 0) { 535 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, 536 nrec->ir_count, nrec->ir_freecount, 537 nrec->ir_free, &i); 538 if (error) 539 goto error; 540 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 541 542 goto out; 543 } 544 545 /* 546 * A record exists at this startino. Merge or replace the record 547 * depending on what we've been asked to do. 548 */ 549 if (merge) { 550 error = xfs_inobt_get_rec(cur, &rec, &i); 551 if (error) 552 goto error; 553 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 554 XFS_WANT_CORRUPTED_GOTO(mp, 555 rec.ir_startino == nrec->ir_startino, 556 error); 557 558 /* 559 * This should never fail. If we have coexisting records that 560 * cannot merge, something is seriously wrong. 561 */ 562 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec), 563 error); 564 565 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino, 566 rec.ir_holemask, nrec->ir_startino, 567 nrec->ir_holemask); 568 569 /* merge to nrec to output the updated record */ 570 __xfs_inobt_rec_merge(nrec, &rec); 571 572 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino, 573 nrec->ir_holemask); 574 575 error = xfs_inobt_rec_check_count(mp, nrec); 576 if (error) 577 goto error; 578 } 579 580 error = xfs_inobt_update(cur, nrec); 581 if (error) 582 goto error; 583 584 out: 585 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 586 return 0; 587 error: 588 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 589 return error; 590 } 591 592 /* 593 * Allocate new inodes in the allocation group specified by agbp. 594 * Return 0 for success, else error code. 595 */ 596 STATIC int /* error code or 0 */ 597 xfs_ialloc_ag_alloc( 598 xfs_trans_t *tp, /* transaction pointer */ 599 xfs_buf_t *agbp, /* alloc group buffer */ 600 int *alloc) 601 { 602 xfs_agi_t *agi; /* allocation group header */ 603 xfs_alloc_arg_t args; /* allocation argument structure */ 604 xfs_agnumber_t agno; 605 int error; 606 xfs_agino_t newino; /* new first inode's number */ 607 xfs_agino_t newlen; /* new number of inodes */ 608 int isaligned = 0; /* inode allocation at stripe unit */ 609 /* boundary */ 610 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */ 611 struct xfs_inobt_rec_incore rec; 612 struct xfs_perag *pag; 613 int do_sparse = 0; 614 615 memset(&args, 0, sizeof(args)); 616 args.tp = tp; 617 args.mp = tp->t_mountp; 618 args.fsbno = NULLFSBLOCK; 619 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES); 620 621 #ifdef DEBUG 622 /* randomly do sparse inode allocations */ 623 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) && 624 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks) 625 do_sparse = prandom_u32() & 1; 626 #endif 627 628 /* 629 * Locking will ensure that we don't have two callers in here 630 * at one time. 631 */ 632 newlen = args.mp->m_ialloc_inos; 633 if (args.mp->m_maxicount && 634 percpu_counter_read_positive(&args.mp->m_icount) + newlen > 635 args.mp->m_maxicount) 636 return -ENOSPC; 637 args.minlen = args.maxlen = args.mp->m_ialloc_blks; 638 /* 639 * First try to allocate inodes contiguous with the last-allocated 640 * chunk of inodes. If the filesystem is striped, this will fill 641 * an entire stripe unit with inodes. 642 */ 643 agi = XFS_BUF_TO_AGI(agbp); 644 newino = be32_to_cpu(agi->agi_newino); 645 agno = be32_to_cpu(agi->agi_seqno); 646 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 647 args.mp->m_ialloc_blks; 648 if (do_sparse) 649 goto sparse_alloc; 650 if (likely(newino != NULLAGINO && 651 (args.agbno < be32_to_cpu(agi->agi_length)))) { 652 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 653 args.type = XFS_ALLOCTYPE_THIS_BNO; 654 args.prod = 1; 655 656 /* 657 * We need to take into account alignment here to ensure that 658 * we don't modify the free list if we fail to have an exact 659 * block. If we don't have an exact match, and every oher 660 * attempt allocation attempt fails, we'll end up cancelling 661 * a dirty transaction and shutting down. 662 * 663 * For an exact allocation, alignment must be 1, 664 * however we need to take cluster alignment into account when 665 * fixing up the freelist. Use the minalignslop field to 666 * indicate that extra blocks might be required for alignment, 667 * but not to use them in the actual exact allocation. 668 */ 669 args.alignment = 1; 670 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1; 671 672 /* Allow space for the inode btree to split. */ 673 args.minleft = args.mp->m_in_maxlevels - 1; 674 if ((error = xfs_alloc_vextent(&args))) 675 return error; 676 677 /* 678 * This request might have dirtied the transaction if the AG can 679 * satisfy the request, but the exact block was not available. 680 * If the allocation did fail, subsequent requests will relax 681 * the exact agbno requirement and increase the alignment 682 * instead. It is critical that the total size of the request 683 * (len + alignment + slop) does not increase from this point 684 * on, so reset minalignslop to ensure it is not included in 685 * subsequent requests. 686 */ 687 args.minalignslop = 0; 688 } 689 690 if (unlikely(args.fsbno == NULLFSBLOCK)) { 691 /* 692 * Set the alignment for the allocation. 693 * If stripe alignment is turned on then align at stripe unit 694 * boundary. 695 * If the cluster size is smaller than a filesystem block 696 * then we're doing I/O for inodes in filesystem block size 697 * pieces, so don't need alignment anyway. 698 */ 699 isaligned = 0; 700 if (args.mp->m_sinoalign) { 701 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); 702 args.alignment = args.mp->m_dalign; 703 isaligned = 1; 704 } else 705 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 706 /* 707 * Need to figure out where to allocate the inode blocks. 708 * Ideally they should be spaced out through the a.g. 709 * For now, just allocate blocks up front. 710 */ 711 args.agbno = be32_to_cpu(agi->agi_root); 712 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 713 /* 714 * Allocate a fixed-size extent of inodes. 715 */ 716 args.type = XFS_ALLOCTYPE_NEAR_BNO; 717 args.prod = 1; 718 /* 719 * Allow space for the inode btree to split. 720 */ 721 args.minleft = args.mp->m_in_maxlevels - 1; 722 if ((error = xfs_alloc_vextent(&args))) 723 return error; 724 } 725 726 /* 727 * If stripe alignment is turned on, then try again with cluster 728 * alignment. 729 */ 730 if (isaligned && args.fsbno == NULLFSBLOCK) { 731 args.type = XFS_ALLOCTYPE_NEAR_BNO; 732 args.agbno = be32_to_cpu(agi->agi_root); 733 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 734 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 735 if ((error = xfs_alloc_vextent(&args))) 736 return error; 737 } 738 739 /* 740 * Finally, try a sparse allocation if the filesystem supports it and 741 * the sparse allocation length is smaller than a full chunk. 742 */ 743 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) && 744 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks && 745 args.fsbno == NULLFSBLOCK) { 746 sparse_alloc: 747 args.type = XFS_ALLOCTYPE_NEAR_BNO; 748 args.agbno = be32_to_cpu(agi->agi_root); 749 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 750 args.alignment = args.mp->m_sb.sb_spino_align; 751 args.prod = 1; 752 753 args.minlen = args.mp->m_ialloc_min_blks; 754 args.maxlen = args.minlen; 755 756 /* 757 * The inode record will be aligned to full chunk size. We must 758 * prevent sparse allocation from AG boundaries that result in 759 * invalid inode records, such as records that start at agbno 0 760 * or extend beyond the AG. 761 * 762 * Set min agbno to the first aligned, non-zero agbno and max to 763 * the last aligned agbno that is at least one full chunk from 764 * the end of the AG. 765 */ 766 args.min_agbno = args.mp->m_sb.sb_inoalignmt; 767 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, 768 args.mp->m_sb.sb_inoalignmt) - 769 args.mp->m_ialloc_blks; 770 771 error = xfs_alloc_vextent(&args); 772 if (error) 773 return error; 774 775 newlen = args.len << args.mp->m_sb.sb_inopblog; 776 ASSERT(newlen <= XFS_INODES_PER_CHUNK); 777 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; 778 } 779 780 if (args.fsbno == NULLFSBLOCK) { 781 *alloc = 0; 782 return 0; 783 } 784 ASSERT(args.len == args.minlen); 785 786 /* 787 * Stamp and write the inode buffers. 788 * 789 * Seed the new inode cluster with a random generation number. This 790 * prevents short-term reuse of generation numbers if a chunk is 791 * freed and then immediately reallocated. We use random numbers 792 * rather than a linear progression to prevent the next generation 793 * number from being easily guessable. 794 */ 795 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno, 796 args.agbno, args.len, prandom_u32()); 797 798 if (error) 799 return error; 800 /* 801 * Convert the results. 802 */ 803 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); 804 805 if (xfs_inobt_issparse(~allocmask)) { 806 /* 807 * We've allocated a sparse chunk. Align the startino and mask. 808 */ 809 xfs_align_sparse_ino(args.mp, &newino, &allocmask); 810 811 rec.ir_startino = newino; 812 rec.ir_holemask = ~allocmask; 813 rec.ir_count = newlen; 814 rec.ir_freecount = newlen; 815 rec.ir_free = XFS_INOBT_ALL_FREE; 816 817 /* 818 * Insert the sparse record into the inobt and allow for a merge 819 * if necessary. If a merge does occur, rec is updated to the 820 * merged record. 821 */ 822 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO, 823 &rec, true); 824 if (error == -EFSCORRUPTED) { 825 xfs_alert(args.mp, 826 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", 827 XFS_AGINO_TO_INO(args.mp, agno, 828 rec.ir_startino), 829 rec.ir_holemask, rec.ir_count); 830 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); 831 } 832 if (error) 833 return error; 834 835 /* 836 * We can't merge the part we've just allocated as for the inobt 837 * due to finobt semantics. The original record may or may not 838 * exist independent of whether physical inodes exist in this 839 * sparse chunk. 840 * 841 * We must update the finobt record based on the inobt record. 842 * rec contains the fully merged and up to date inobt record 843 * from the previous call. Set merge false to replace any 844 * existing record with this one. 845 */ 846 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 847 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, 848 XFS_BTNUM_FINO, &rec, 849 false); 850 if (error) 851 return error; 852 } 853 } else { 854 /* full chunk - insert new records to both btrees */ 855 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 856 XFS_BTNUM_INO); 857 if (error) 858 return error; 859 860 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 861 error = xfs_inobt_insert(args.mp, tp, agbp, newino, 862 newlen, XFS_BTNUM_FINO); 863 if (error) 864 return error; 865 } 866 } 867 868 /* 869 * Update AGI counts and newino. 870 */ 871 be32_add_cpu(&agi->agi_count, newlen); 872 be32_add_cpu(&agi->agi_freecount, newlen); 873 pag = xfs_perag_get(args.mp, agno); 874 pag->pagi_freecount += newlen; 875 xfs_perag_put(pag); 876 agi->agi_newino = cpu_to_be32(newino); 877 878 /* 879 * Log allocation group header fields 880 */ 881 xfs_ialloc_log_agi(tp, agbp, 882 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 883 /* 884 * Modify/log superblock values for inode count and inode free count. 885 */ 886 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 887 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 888 *alloc = 1; 889 return 0; 890 } 891 892 STATIC xfs_agnumber_t 893 xfs_ialloc_next_ag( 894 xfs_mount_t *mp) 895 { 896 xfs_agnumber_t agno; 897 898 spin_lock(&mp->m_agirotor_lock); 899 agno = mp->m_agirotor; 900 if (++mp->m_agirotor >= mp->m_maxagi) 901 mp->m_agirotor = 0; 902 spin_unlock(&mp->m_agirotor_lock); 903 904 return agno; 905 } 906 907 /* 908 * Select an allocation group to look for a free inode in, based on the parent 909 * inode and the mode. Return the allocation group buffer. 910 */ 911 STATIC xfs_agnumber_t 912 xfs_ialloc_ag_select( 913 xfs_trans_t *tp, /* transaction pointer */ 914 xfs_ino_t parent, /* parent directory inode number */ 915 umode_t mode, /* bits set to indicate file type */ 916 int okalloc) /* ok to allocate more space */ 917 { 918 xfs_agnumber_t agcount; /* number of ag's in the filesystem */ 919 xfs_agnumber_t agno; /* current ag number */ 920 int flags; /* alloc buffer locking flags */ 921 xfs_extlen_t ineed; /* blocks needed for inode allocation */ 922 xfs_extlen_t longest = 0; /* longest extent available */ 923 xfs_mount_t *mp; /* mount point structure */ 924 int needspace; /* file mode implies space allocated */ 925 xfs_perag_t *pag; /* per allocation group data */ 926 xfs_agnumber_t pagno; /* parent (starting) ag number */ 927 int error; 928 929 /* 930 * Files of these types need at least one block if length > 0 931 * (and they won't fit in the inode, but that's hard to figure out). 932 */ 933 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 934 mp = tp->t_mountp; 935 agcount = mp->m_maxagi; 936 if (S_ISDIR(mode)) 937 pagno = xfs_ialloc_next_ag(mp); 938 else { 939 pagno = XFS_INO_TO_AGNO(mp, parent); 940 if (pagno >= agcount) 941 pagno = 0; 942 } 943 944 ASSERT(pagno < agcount); 945 946 /* 947 * Loop through allocation groups, looking for one with a little 948 * free space in it. Note we don't look for free inodes, exactly. 949 * Instead, we include whether there is a need to allocate inodes 950 * to mean that blocks must be allocated for them, 951 * if none are currently free. 952 */ 953 agno = pagno; 954 flags = XFS_ALLOC_FLAG_TRYLOCK; 955 for (;;) { 956 pag = xfs_perag_get(mp, agno); 957 if (!pag->pagi_inodeok) { 958 xfs_ialloc_next_ag(mp); 959 goto nextag; 960 } 961 962 if (!pag->pagi_init) { 963 error = xfs_ialloc_pagi_init(mp, tp, agno); 964 if (error) 965 goto nextag; 966 } 967 968 if (pag->pagi_freecount) { 969 xfs_perag_put(pag); 970 return agno; 971 } 972 973 if (!okalloc) 974 goto nextag; 975 976 if (!pag->pagf_init) { 977 error = xfs_alloc_pagf_init(mp, tp, agno, flags); 978 if (error) 979 goto nextag; 980 } 981 982 /* 983 * Check that there is enough free space for the file plus a 984 * chunk of inodes if we need to allocate some. If this is the 985 * first pass across the AGs, take into account the potential 986 * space needed for alignment of inode chunks when checking the 987 * longest contiguous free space in the AG - this prevents us 988 * from getting ENOSPC because we have free space larger than 989 * m_ialloc_blks but alignment constraints prevent us from using 990 * it. 991 * 992 * If we can't find an AG with space for full alignment slack to 993 * be taken into account, we must be near ENOSPC in all AGs. 994 * Hence we don't include alignment for the second pass and so 995 * if we fail allocation due to alignment issues then it is most 996 * likely a real ENOSPC condition. 997 */ 998 ineed = mp->m_ialloc_min_blks; 999 if (flags && ineed > 1) 1000 ineed += xfs_ialloc_cluster_alignment(mp); 1001 longest = pag->pagf_longest; 1002 if (!longest) 1003 longest = pag->pagf_flcount > 0; 1004 1005 if (pag->pagf_freeblks >= needspace + ineed && 1006 longest >= ineed) { 1007 xfs_perag_put(pag); 1008 return agno; 1009 } 1010 nextag: 1011 xfs_perag_put(pag); 1012 /* 1013 * No point in iterating over the rest, if we're shutting 1014 * down. 1015 */ 1016 if (XFS_FORCED_SHUTDOWN(mp)) 1017 return NULLAGNUMBER; 1018 agno++; 1019 if (agno >= agcount) 1020 agno = 0; 1021 if (agno == pagno) { 1022 if (flags == 0) 1023 return NULLAGNUMBER; 1024 flags = 0; 1025 } 1026 } 1027 } 1028 1029 /* 1030 * Try to retrieve the next record to the left/right from the current one. 1031 */ 1032 STATIC int 1033 xfs_ialloc_next_rec( 1034 struct xfs_btree_cur *cur, 1035 xfs_inobt_rec_incore_t *rec, 1036 int *done, 1037 int left) 1038 { 1039 int error; 1040 int i; 1041 1042 if (left) 1043 error = xfs_btree_decrement(cur, 0, &i); 1044 else 1045 error = xfs_btree_increment(cur, 0, &i); 1046 1047 if (error) 1048 return error; 1049 *done = !i; 1050 if (i) { 1051 error = xfs_inobt_get_rec(cur, rec, &i); 1052 if (error) 1053 return error; 1054 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1055 } 1056 1057 return 0; 1058 } 1059 1060 STATIC int 1061 xfs_ialloc_get_rec( 1062 struct xfs_btree_cur *cur, 1063 xfs_agino_t agino, 1064 xfs_inobt_rec_incore_t *rec, 1065 int *done) 1066 { 1067 int error; 1068 int i; 1069 1070 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 1071 if (error) 1072 return error; 1073 *done = !i; 1074 if (i) { 1075 error = xfs_inobt_get_rec(cur, rec, &i); 1076 if (error) 1077 return error; 1078 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1079 } 1080 1081 return 0; 1082 } 1083 1084 /* 1085 * Return the offset of the first free inode in the record. If the inode chunk 1086 * is sparsely allocated, we convert the record holemask to inode granularity 1087 * and mask off the unallocated regions from the inode free mask. 1088 */ 1089 STATIC int 1090 xfs_inobt_first_free_inode( 1091 struct xfs_inobt_rec_incore *rec) 1092 { 1093 xfs_inofree_t realfree; 1094 1095 /* if there are no holes, return the first available offset */ 1096 if (!xfs_inobt_issparse(rec->ir_holemask)) 1097 return xfs_lowbit64(rec->ir_free); 1098 1099 realfree = xfs_inobt_irec_to_allocmask(rec); 1100 realfree &= rec->ir_free; 1101 1102 return xfs_lowbit64(realfree); 1103 } 1104 1105 /* 1106 * Allocate an inode using the inobt-only algorithm. 1107 */ 1108 STATIC int 1109 xfs_dialloc_ag_inobt( 1110 struct xfs_trans *tp, 1111 struct xfs_buf *agbp, 1112 xfs_ino_t parent, 1113 xfs_ino_t *inop) 1114 { 1115 struct xfs_mount *mp = tp->t_mountp; 1116 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1117 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1118 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1119 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1120 struct xfs_perag *pag; 1121 struct xfs_btree_cur *cur, *tcur; 1122 struct xfs_inobt_rec_incore rec, trec; 1123 xfs_ino_t ino; 1124 int error; 1125 int offset; 1126 int i, j; 1127 1128 pag = xfs_perag_get(mp, agno); 1129 1130 ASSERT(pag->pagi_init); 1131 ASSERT(pag->pagi_inodeok); 1132 ASSERT(pag->pagi_freecount > 0); 1133 1134 restart_pagno: 1135 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1136 /* 1137 * If pagino is 0 (this is the root inode allocation) use newino. 1138 * This must work because we've just allocated some. 1139 */ 1140 if (!pagino) 1141 pagino = be32_to_cpu(agi->agi_newino); 1142 1143 error = xfs_check_agi_freecount(cur, agi); 1144 if (error) 1145 goto error0; 1146 1147 /* 1148 * If in the same AG as the parent, try to get near the parent. 1149 */ 1150 if (pagno == agno) { 1151 int doneleft; /* done, to the left */ 1152 int doneright; /* done, to the right */ 1153 int searchdistance = 10; 1154 1155 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 1156 if (error) 1157 goto error0; 1158 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1159 1160 error = xfs_inobt_get_rec(cur, &rec, &j); 1161 if (error) 1162 goto error0; 1163 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0); 1164 1165 if (rec.ir_freecount > 0) { 1166 /* 1167 * Found a free inode in the same chunk 1168 * as the parent, done. 1169 */ 1170 goto alloc_inode; 1171 } 1172 1173 1174 /* 1175 * In the same AG as parent, but parent's chunk is full. 1176 */ 1177 1178 /* duplicate the cursor, search left & right simultaneously */ 1179 error = xfs_btree_dup_cursor(cur, &tcur); 1180 if (error) 1181 goto error0; 1182 1183 /* 1184 * Skip to last blocks looked up if same parent inode. 1185 */ 1186 if (pagino != NULLAGINO && 1187 pag->pagl_pagino == pagino && 1188 pag->pagl_leftrec != NULLAGINO && 1189 pag->pagl_rightrec != NULLAGINO) { 1190 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 1191 &trec, &doneleft); 1192 if (error) 1193 goto error1; 1194 1195 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 1196 &rec, &doneright); 1197 if (error) 1198 goto error1; 1199 } else { 1200 /* search left with tcur, back up 1 record */ 1201 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 1202 if (error) 1203 goto error1; 1204 1205 /* search right with cur, go forward 1 record. */ 1206 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 1207 if (error) 1208 goto error1; 1209 } 1210 1211 /* 1212 * Loop until we find an inode chunk with a free inode. 1213 */ 1214 while (!doneleft || !doneright) { 1215 int useleft; /* using left inode chunk this time */ 1216 1217 if (!--searchdistance) { 1218 /* 1219 * Not in range - save last search 1220 * location and allocate a new inode 1221 */ 1222 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1223 pag->pagl_leftrec = trec.ir_startino; 1224 pag->pagl_rightrec = rec.ir_startino; 1225 pag->pagl_pagino = pagino; 1226 goto newino; 1227 } 1228 1229 /* figure out the closer block if both are valid. */ 1230 if (!doneleft && !doneright) { 1231 useleft = pagino - 1232 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 1233 rec.ir_startino - pagino; 1234 } else { 1235 useleft = !doneleft; 1236 } 1237 1238 /* free inodes to the left? */ 1239 if (useleft && trec.ir_freecount) { 1240 rec = trec; 1241 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1242 cur = tcur; 1243 1244 pag->pagl_leftrec = trec.ir_startino; 1245 pag->pagl_rightrec = rec.ir_startino; 1246 pag->pagl_pagino = pagino; 1247 goto alloc_inode; 1248 } 1249 1250 /* free inodes to the right? */ 1251 if (!useleft && rec.ir_freecount) { 1252 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1253 1254 pag->pagl_leftrec = trec.ir_startino; 1255 pag->pagl_rightrec = rec.ir_startino; 1256 pag->pagl_pagino = pagino; 1257 goto alloc_inode; 1258 } 1259 1260 /* get next record to check */ 1261 if (useleft) { 1262 error = xfs_ialloc_next_rec(tcur, &trec, 1263 &doneleft, 1); 1264 } else { 1265 error = xfs_ialloc_next_rec(cur, &rec, 1266 &doneright, 0); 1267 } 1268 if (error) 1269 goto error1; 1270 } 1271 1272 /* 1273 * We've reached the end of the btree. because 1274 * we are only searching a small chunk of the 1275 * btree each search, there is obviously free 1276 * inodes closer to the parent inode than we 1277 * are now. restart the search again. 1278 */ 1279 pag->pagl_pagino = NULLAGINO; 1280 pag->pagl_leftrec = NULLAGINO; 1281 pag->pagl_rightrec = NULLAGINO; 1282 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1283 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1284 goto restart_pagno; 1285 } 1286 1287 /* 1288 * In a different AG from the parent. 1289 * See if the most recently allocated block has any free. 1290 */ 1291 newino: 1292 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1293 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1294 XFS_LOOKUP_EQ, &i); 1295 if (error) 1296 goto error0; 1297 1298 if (i == 1) { 1299 error = xfs_inobt_get_rec(cur, &rec, &j); 1300 if (error) 1301 goto error0; 1302 1303 if (j == 1 && rec.ir_freecount > 0) { 1304 /* 1305 * The last chunk allocated in the group 1306 * still has a free inode. 1307 */ 1308 goto alloc_inode; 1309 } 1310 } 1311 } 1312 1313 /* 1314 * None left in the last group, search the whole AG 1315 */ 1316 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1317 if (error) 1318 goto error0; 1319 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1320 1321 for (;;) { 1322 error = xfs_inobt_get_rec(cur, &rec, &i); 1323 if (error) 1324 goto error0; 1325 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1326 if (rec.ir_freecount > 0) 1327 break; 1328 error = xfs_btree_increment(cur, 0, &i); 1329 if (error) 1330 goto error0; 1331 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1332 } 1333 1334 alloc_inode: 1335 offset = xfs_inobt_first_free_inode(&rec); 1336 ASSERT(offset >= 0); 1337 ASSERT(offset < XFS_INODES_PER_CHUNK); 1338 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1339 XFS_INODES_PER_CHUNK) == 0); 1340 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1341 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1342 rec.ir_freecount--; 1343 error = xfs_inobt_update(cur, &rec); 1344 if (error) 1345 goto error0; 1346 be32_add_cpu(&agi->agi_freecount, -1); 1347 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1348 pag->pagi_freecount--; 1349 1350 error = xfs_check_agi_freecount(cur, agi); 1351 if (error) 1352 goto error0; 1353 1354 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1355 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1356 xfs_perag_put(pag); 1357 *inop = ino; 1358 return 0; 1359 error1: 1360 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 1361 error0: 1362 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1363 xfs_perag_put(pag); 1364 return error; 1365 } 1366 1367 /* 1368 * Use the free inode btree to allocate an inode based on distance from the 1369 * parent. Note that the provided cursor may be deleted and replaced. 1370 */ 1371 STATIC int 1372 xfs_dialloc_ag_finobt_near( 1373 xfs_agino_t pagino, 1374 struct xfs_btree_cur **ocur, 1375 struct xfs_inobt_rec_incore *rec) 1376 { 1377 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 1378 struct xfs_btree_cur *rcur; /* right search cursor */ 1379 struct xfs_inobt_rec_incore rrec; 1380 int error; 1381 int i, j; 1382 1383 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1384 if (error) 1385 return error; 1386 1387 if (i == 1) { 1388 error = xfs_inobt_get_rec(lcur, rec, &i); 1389 if (error) 1390 return error; 1391 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1); 1392 1393 /* 1394 * See if we've landed in the parent inode record. The finobt 1395 * only tracks chunks with at least one free inode, so record 1396 * existence is enough. 1397 */ 1398 if (pagino >= rec->ir_startino && 1399 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1400 return 0; 1401 } 1402 1403 error = xfs_btree_dup_cursor(lcur, &rcur); 1404 if (error) 1405 return error; 1406 1407 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1408 if (error) 1409 goto error_rcur; 1410 if (j == 1) { 1411 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1412 if (error) 1413 goto error_rcur; 1414 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur); 1415 } 1416 1417 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur); 1418 if (i == 1 && j == 1) { 1419 /* 1420 * Both the left and right records are valid. Choose the closer 1421 * inode chunk to the target. 1422 */ 1423 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1424 (rrec.ir_startino - pagino)) { 1425 *rec = rrec; 1426 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1427 *ocur = rcur; 1428 } else { 1429 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1430 } 1431 } else if (j == 1) { 1432 /* only the right record is valid */ 1433 *rec = rrec; 1434 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1435 *ocur = rcur; 1436 } else if (i == 1) { 1437 /* only the left record is valid */ 1438 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1439 } 1440 1441 return 0; 1442 1443 error_rcur: 1444 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1445 return error; 1446 } 1447 1448 /* 1449 * Use the free inode btree to find a free inode based on a newino hint. If 1450 * the hint is NULL, find the first free inode in the AG. 1451 */ 1452 STATIC int 1453 xfs_dialloc_ag_finobt_newino( 1454 struct xfs_agi *agi, 1455 struct xfs_btree_cur *cur, 1456 struct xfs_inobt_rec_incore *rec) 1457 { 1458 int error; 1459 int i; 1460 1461 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1462 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1463 XFS_LOOKUP_EQ, &i); 1464 if (error) 1465 return error; 1466 if (i == 1) { 1467 error = xfs_inobt_get_rec(cur, rec, &i); 1468 if (error) 1469 return error; 1470 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1471 return 0; 1472 } 1473 } 1474 1475 /* 1476 * Find the first inode available in the AG. 1477 */ 1478 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1479 if (error) 1480 return error; 1481 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1482 1483 error = xfs_inobt_get_rec(cur, rec, &i); 1484 if (error) 1485 return error; 1486 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1487 1488 return 0; 1489 } 1490 1491 /* 1492 * Update the inobt based on a modification made to the finobt. Also ensure that 1493 * the records from both trees are equivalent post-modification. 1494 */ 1495 STATIC int 1496 xfs_dialloc_ag_update_inobt( 1497 struct xfs_btree_cur *cur, /* inobt cursor */ 1498 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1499 int offset) /* inode offset */ 1500 { 1501 struct xfs_inobt_rec_incore rec; 1502 int error; 1503 int i; 1504 1505 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1506 if (error) 1507 return error; 1508 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1509 1510 error = xfs_inobt_get_rec(cur, &rec, &i); 1511 if (error) 1512 return error; 1513 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1514 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1515 XFS_INODES_PER_CHUNK) == 0); 1516 1517 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1518 rec.ir_freecount--; 1519 1520 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) && 1521 (rec.ir_freecount == frec->ir_freecount)); 1522 1523 return xfs_inobt_update(cur, &rec); 1524 } 1525 1526 /* 1527 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1528 * back to the inobt search algorithm. 1529 * 1530 * The caller selected an AG for us, and made sure that free inodes are 1531 * available. 1532 */ 1533 STATIC int 1534 xfs_dialloc_ag( 1535 struct xfs_trans *tp, 1536 struct xfs_buf *agbp, 1537 xfs_ino_t parent, 1538 xfs_ino_t *inop) 1539 { 1540 struct xfs_mount *mp = tp->t_mountp; 1541 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1542 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1543 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1544 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1545 struct xfs_perag *pag; 1546 struct xfs_btree_cur *cur; /* finobt cursor */ 1547 struct xfs_btree_cur *icur; /* inobt cursor */ 1548 struct xfs_inobt_rec_incore rec; 1549 xfs_ino_t ino; 1550 int error; 1551 int offset; 1552 int i; 1553 1554 if (!xfs_sb_version_hasfinobt(&mp->m_sb)) 1555 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); 1556 1557 pag = xfs_perag_get(mp, agno); 1558 1559 /* 1560 * If pagino is 0 (this is the root inode allocation) use newino. 1561 * This must work because we've just allocated some. 1562 */ 1563 if (!pagino) 1564 pagino = be32_to_cpu(agi->agi_newino); 1565 1566 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1567 1568 error = xfs_check_agi_freecount(cur, agi); 1569 if (error) 1570 goto error_cur; 1571 1572 /* 1573 * The search algorithm depends on whether we're in the same AG as the 1574 * parent. If so, find the closest available inode to the parent. If 1575 * not, consider the agi hint or find the first free inode in the AG. 1576 */ 1577 if (agno == pagno) 1578 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1579 else 1580 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1581 if (error) 1582 goto error_cur; 1583 1584 offset = xfs_inobt_first_free_inode(&rec); 1585 ASSERT(offset >= 0); 1586 ASSERT(offset < XFS_INODES_PER_CHUNK); 1587 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1588 XFS_INODES_PER_CHUNK) == 0); 1589 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1590 1591 /* 1592 * Modify or remove the finobt record. 1593 */ 1594 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1595 rec.ir_freecount--; 1596 if (rec.ir_freecount) 1597 error = xfs_inobt_update(cur, &rec); 1598 else 1599 error = xfs_btree_delete(cur, &i); 1600 if (error) 1601 goto error_cur; 1602 1603 /* 1604 * The finobt has now been updated appropriately. We haven't updated the 1605 * agi and superblock yet, so we can create an inobt cursor and validate 1606 * the original freecount. If all is well, make the equivalent update to 1607 * the inobt using the finobt record and offset information. 1608 */ 1609 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1610 1611 error = xfs_check_agi_freecount(icur, agi); 1612 if (error) 1613 goto error_icur; 1614 1615 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1616 if (error) 1617 goto error_icur; 1618 1619 /* 1620 * Both trees have now been updated. We must update the perag and 1621 * superblock before we can check the freecount for each btree. 1622 */ 1623 be32_add_cpu(&agi->agi_freecount, -1); 1624 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1625 pag->pagi_freecount--; 1626 1627 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1628 1629 error = xfs_check_agi_freecount(icur, agi); 1630 if (error) 1631 goto error_icur; 1632 error = xfs_check_agi_freecount(cur, agi); 1633 if (error) 1634 goto error_icur; 1635 1636 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1637 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1638 xfs_perag_put(pag); 1639 *inop = ino; 1640 return 0; 1641 1642 error_icur: 1643 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1644 error_cur: 1645 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1646 xfs_perag_put(pag); 1647 return error; 1648 } 1649 1650 /* 1651 * Allocate an inode on disk. 1652 * 1653 * Mode is used to tell whether the new inode will need space, and whether it 1654 * is a directory. 1655 * 1656 * This function is designed to be called twice if it has to do an allocation 1657 * to make more free inodes. On the first call, *IO_agbp should be set to NULL. 1658 * If an inode is available without having to performn an allocation, an inode 1659 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation 1660 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. 1661 * The caller should then commit the current transaction, allocate a 1662 * new transaction, and call xfs_dialloc() again, passing in the previous value 1663 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI 1664 * buffer is locked across the two calls, the second call is guaranteed to have 1665 * a free inode available. 1666 * 1667 * Once we successfully pick an inode its number is returned and the on-disk 1668 * data structures are updated. The inode itself is not read in, since doing so 1669 * would break ordering constraints with xfs_reclaim. 1670 */ 1671 int 1672 xfs_dialloc( 1673 struct xfs_trans *tp, 1674 xfs_ino_t parent, 1675 umode_t mode, 1676 int okalloc, 1677 struct xfs_buf **IO_agbp, 1678 xfs_ino_t *inop) 1679 { 1680 struct xfs_mount *mp = tp->t_mountp; 1681 struct xfs_buf *agbp; 1682 xfs_agnumber_t agno; 1683 int error; 1684 int ialloced; 1685 int noroom = 0; 1686 xfs_agnumber_t start_agno; 1687 struct xfs_perag *pag; 1688 1689 if (*IO_agbp) { 1690 /* 1691 * If the caller passes in a pointer to the AGI buffer, 1692 * continue where we left off before. In this case, we 1693 * know that the allocation group has free inodes. 1694 */ 1695 agbp = *IO_agbp; 1696 goto out_alloc; 1697 } 1698 1699 /* 1700 * We do not have an agbp, so select an initial allocation 1701 * group for inode allocation. 1702 */ 1703 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc); 1704 if (start_agno == NULLAGNUMBER) { 1705 *inop = NULLFSINO; 1706 return 0; 1707 } 1708 1709 /* 1710 * If we have already hit the ceiling of inode blocks then clear 1711 * okalloc so we scan all available agi structures for a free 1712 * inode. 1713 * 1714 * Read rough value of mp->m_icount by percpu_counter_read_positive, 1715 * which will sacrifice the preciseness but improve the performance. 1716 */ 1717 if (mp->m_maxicount && 1718 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos 1719 > mp->m_maxicount) { 1720 noroom = 1; 1721 okalloc = 0; 1722 } 1723 1724 /* 1725 * Loop until we find an allocation group that either has free inodes 1726 * or in which we can allocate some inodes. Iterate through the 1727 * allocation groups upward, wrapping at the end. 1728 */ 1729 agno = start_agno; 1730 for (;;) { 1731 pag = xfs_perag_get(mp, agno); 1732 if (!pag->pagi_inodeok) { 1733 xfs_ialloc_next_ag(mp); 1734 goto nextag; 1735 } 1736 1737 if (!pag->pagi_init) { 1738 error = xfs_ialloc_pagi_init(mp, tp, agno); 1739 if (error) 1740 goto out_error; 1741 } 1742 1743 /* 1744 * Do a first racy fast path check if this AG is usable. 1745 */ 1746 if (!pag->pagi_freecount && !okalloc) 1747 goto nextag; 1748 1749 /* 1750 * Then read in the AGI buffer and recheck with the AGI buffer 1751 * lock held. 1752 */ 1753 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1754 if (error) 1755 goto out_error; 1756 1757 if (pag->pagi_freecount) { 1758 xfs_perag_put(pag); 1759 goto out_alloc; 1760 } 1761 1762 if (!okalloc) 1763 goto nextag_relse_buffer; 1764 1765 1766 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); 1767 if (error) { 1768 xfs_trans_brelse(tp, agbp); 1769 1770 if (error != -ENOSPC) 1771 goto out_error; 1772 1773 xfs_perag_put(pag); 1774 *inop = NULLFSINO; 1775 return 0; 1776 } 1777 1778 if (ialloced) { 1779 /* 1780 * We successfully allocated some inodes, return 1781 * the current context to the caller so that it 1782 * can commit the current transaction and call 1783 * us again where we left off. 1784 */ 1785 ASSERT(pag->pagi_freecount > 0); 1786 xfs_perag_put(pag); 1787 1788 *IO_agbp = agbp; 1789 *inop = NULLFSINO; 1790 return 0; 1791 } 1792 1793 nextag_relse_buffer: 1794 xfs_trans_brelse(tp, agbp); 1795 nextag: 1796 xfs_perag_put(pag); 1797 if (++agno == mp->m_sb.sb_agcount) 1798 agno = 0; 1799 if (agno == start_agno) { 1800 *inop = NULLFSINO; 1801 return noroom ? -ENOSPC : 0; 1802 } 1803 } 1804 1805 out_alloc: 1806 *IO_agbp = NULL; 1807 return xfs_dialloc_ag(tp, agbp, parent, inop); 1808 out_error: 1809 xfs_perag_put(pag); 1810 return error; 1811 } 1812 1813 /* 1814 * Free the blocks of an inode chunk. We must consider that the inode chunk 1815 * might be sparse and only free the regions that are allocated as part of the 1816 * chunk. 1817 */ 1818 STATIC void 1819 xfs_difree_inode_chunk( 1820 struct xfs_mount *mp, 1821 xfs_agnumber_t agno, 1822 struct xfs_inobt_rec_incore *rec, 1823 struct xfs_defer_ops *dfops) 1824 { 1825 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino); 1826 int startidx, endidx; 1827 int nextbit; 1828 xfs_agblock_t agbno; 1829 int contigblk; 1830 struct xfs_owner_info oinfo; 1831 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); 1832 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES); 1833 1834 if (!xfs_inobt_issparse(rec->ir_holemask)) { 1835 /* not sparse, calculate extent info directly */ 1836 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno), 1837 mp->m_ialloc_blks, &oinfo); 1838 return; 1839 } 1840 1841 /* holemask is only 16-bits (fits in an unsigned long) */ 1842 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); 1843 holemask[0] = rec->ir_holemask; 1844 1845 /* 1846 * Find contiguous ranges of zeroes (i.e., allocated regions) in the 1847 * holemask and convert the start/end index of each range to an extent. 1848 * We start with the start and end index both pointing at the first 0 in 1849 * the mask. 1850 */ 1851 startidx = endidx = find_first_zero_bit(holemask, 1852 XFS_INOBT_HOLEMASK_BITS); 1853 nextbit = startidx + 1; 1854 while (startidx < XFS_INOBT_HOLEMASK_BITS) { 1855 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, 1856 nextbit); 1857 /* 1858 * If the next zero bit is contiguous, update the end index of 1859 * the current range and continue. 1860 */ 1861 if (nextbit != XFS_INOBT_HOLEMASK_BITS && 1862 nextbit == endidx + 1) { 1863 endidx = nextbit; 1864 goto next; 1865 } 1866 1867 /* 1868 * nextbit is not contiguous with the current end index. Convert 1869 * the current start/end to an extent and add it to the free 1870 * list. 1871 */ 1872 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / 1873 mp->m_sb.sb_inopblock; 1874 contigblk = ((endidx - startidx + 1) * 1875 XFS_INODES_PER_HOLEMASK_BIT) / 1876 mp->m_sb.sb_inopblock; 1877 1878 ASSERT(agbno % mp->m_sb.sb_spino_align == 0); 1879 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); 1880 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno), 1881 contigblk, &oinfo); 1882 1883 /* reset range to current bit and carry on... */ 1884 startidx = endidx = nextbit; 1885 1886 next: 1887 nextbit++; 1888 } 1889 } 1890 1891 STATIC int 1892 xfs_difree_inobt( 1893 struct xfs_mount *mp, 1894 struct xfs_trans *tp, 1895 struct xfs_buf *agbp, 1896 xfs_agino_t agino, 1897 struct xfs_defer_ops *dfops, 1898 struct xfs_icluster *xic, 1899 struct xfs_inobt_rec_incore *orec) 1900 { 1901 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1902 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1903 struct xfs_perag *pag; 1904 struct xfs_btree_cur *cur; 1905 struct xfs_inobt_rec_incore rec; 1906 int ilen; 1907 int error; 1908 int i; 1909 int off; 1910 1911 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1912 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 1913 1914 /* 1915 * Initialize the cursor. 1916 */ 1917 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1918 1919 error = xfs_check_agi_freecount(cur, agi); 1920 if (error) 1921 goto error0; 1922 1923 /* 1924 * Look for the entry describing this inode. 1925 */ 1926 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 1927 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 1928 __func__, error); 1929 goto error0; 1930 } 1931 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1932 error = xfs_inobt_get_rec(cur, &rec, &i); 1933 if (error) { 1934 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 1935 __func__, error); 1936 goto error0; 1937 } 1938 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1939 /* 1940 * Get the offset in the inode chunk. 1941 */ 1942 off = agino - rec.ir_startino; 1943 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 1944 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 1945 /* 1946 * Mark the inode free & increment the count. 1947 */ 1948 rec.ir_free |= XFS_INOBT_MASK(off); 1949 rec.ir_freecount++; 1950 1951 /* 1952 * When an inode chunk is free, it becomes eligible for removal. Don't 1953 * remove the chunk if the block size is large enough for multiple inode 1954 * chunks (that might not be free). 1955 */ 1956 if (!(mp->m_flags & XFS_MOUNT_IKEEP) && 1957 rec.ir_free == XFS_INOBT_ALL_FREE && 1958 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 1959 xic->deleted = 1; 1960 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); 1961 xic->alloc = xfs_inobt_irec_to_allocmask(&rec); 1962 1963 /* 1964 * Remove the inode cluster from the AGI B+Tree, adjust the 1965 * AGI and Superblock inode counts, and mark the disk space 1966 * to be freed when the transaction is committed. 1967 */ 1968 ilen = rec.ir_freecount; 1969 be32_add_cpu(&agi->agi_count, -ilen); 1970 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 1971 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 1972 pag = xfs_perag_get(mp, agno); 1973 pag->pagi_freecount -= ilen - 1; 1974 xfs_perag_put(pag); 1975 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 1976 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 1977 1978 if ((error = xfs_btree_delete(cur, &i))) { 1979 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 1980 __func__, error); 1981 goto error0; 1982 } 1983 1984 xfs_difree_inode_chunk(mp, agno, &rec, dfops); 1985 } else { 1986 xic->deleted = 0; 1987 1988 error = xfs_inobt_update(cur, &rec); 1989 if (error) { 1990 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 1991 __func__, error); 1992 goto error0; 1993 } 1994 1995 /* 1996 * Change the inode free counts and log the ag/sb changes. 1997 */ 1998 be32_add_cpu(&agi->agi_freecount, 1); 1999 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 2000 pag = xfs_perag_get(mp, agno); 2001 pag->pagi_freecount++; 2002 xfs_perag_put(pag); 2003 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 2004 } 2005 2006 error = xfs_check_agi_freecount(cur, agi); 2007 if (error) 2008 goto error0; 2009 2010 *orec = rec; 2011 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2012 return 0; 2013 2014 error0: 2015 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2016 return error; 2017 } 2018 2019 /* 2020 * Free an inode in the free inode btree. 2021 */ 2022 STATIC int 2023 xfs_difree_finobt( 2024 struct xfs_mount *mp, 2025 struct xfs_trans *tp, 2026 struct xfs_buf *agbp, 2027 xfs_agino_t agino, 2028 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 2029 { 2030 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 2031 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 2032 struct xfs_btree_cur *cur; 2033 struct xfs_inobt_rec_incore rec; 2034 int offset = agino - ibtrec->ir_startino; 2035 int error; 2036 int i; 2037 2038 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 2039 2040 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 2041 if (error) 2042 goto error; 2043 if (i == 0) { 2044 /* 2045 * If the record does not exist in the finobt, we must have just 2046 * freed an inode in a previously fully allocated chunk. If not, 2047 * something is out of sync. 2048 */ 2049 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error); 2050 2051 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, 2052 ibtrec->ir_count, 2053 ibtrec->ir_freecount, 2054 ibtrec->ir_free, &i); 2055 if (error) 2056 goto error; 2057 ASSERT(i == 1); 2058 2059 goto out; 2060 } 2061 2062 /* 2063 * Read and update the existing record. We could just copy the ibtrec 2064 * across here, but that would defeat the purpose of having redundant 2065 * metadata. By making the modifications independently, we can catch 2066 * corruptions that we wouldn't see if we just copied from one record 2067 * to another. 2068 */ 2069 error = xfs_inobt_get_rec(cur, &rec, &i); 2070 if (error) 2071 goto error; 2072 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 2073 2074 rec.ir_free |= XFS_INOBT_MASK(offset); 2075 rec.ir_freecount++; 2076 2077 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) && 2078 (rec.ir_freecount == ibtrec->ir_freecount), 2079 error); 2080 2081 /* 2082 * The content of inobt records should always match between the inobt 2083 * and finobt. The lifecycle of records in the finobt is different from 2084 * the inobt in that the finobt only tracks records with at least one 2085 * free inode. Hence, if all of the inodes are free and we aren't 2086 * keeping inode chunks permanently on disk, remove the record. 2087 * Otherwise, update the record with the new information. 2088 * 2089 * Note that we currently can't free chunks when the block size is large 2090 * enough for multiple chunks. Leave the finobt record to remain in sync 2091 * with the inobt. 2092 */ 2093 if (rec.ir_free == XFS_INOBT_ALL_FREE && 2094 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK && 2095 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 2096 error = xfs_btree_delete(cur, &i); 2097 if (error) 2098 goto error; 2099 ASSERT(i == 1); 2100 } else { 2101 error = xfs_inobt_update(cur, &rec); 2102 if (error) 2103 goto error; 2104 } 2105 2106 out: 2107 error = xfs_check_agi_freecount(cur, agi); 2108 if (error) 2109 goto error; 2110 2111 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2112 return 0; 2113 2114 error: 2115 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2116 return error; 2117 } 2118 2119 /* 2120 * Free disk inode. Carefully avoids touching the incore inode, all 2121 * manipulations incore are the caller's responsibility. 2122 * The on-disk inode is not changed by this operation, only the 2123 * btree (free inode mask) is changed. 2124 */ 2125 int 2126 xfs_difree( 2127 struct xfs_trans *tp, /* transaction pointer */ 2128 xfs_ino_t inode, /* inode to be freed */ 2129 struct xfs_defer_ops *dfops, /* extents to free */ 2130 struct xfs_icluster *xic) /* cluster info if deleted */ 2131 { 2132 /* REFERENCED */ 2133 xfs_agblock_t agbno; /* block number containing inode */ 2134 struct xfs_buf *agbp; /* buffer for allocation group header */ 2135 xfs_agino_t agino; /* allocation group inode number */ 2136 xfs_agnumber_t agno; /* allocation group number */ 2137 int error; /* error return value */ 2138 struct xfs_mount *mp; /* mount structure for filesystem */ 2139 struct xfs_inobt_rec_incore rec;/* btree record */ 2140 2141 mp = tp->t_mountp; 2142 2143 /* 2144 * Break up inode number into its components. 2145 */ 2146 agno = XFS_INO_TO_AGNO(mp, inode); 2147 if (agno >= mp->m_sb.sb_agcount) { 2148 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", 2149 __func__, agno, mp->m_sb.sb_agcount); 2150 ASSERT(0); 2151 return -EINVAL; 2152 } 2153 agino = XFS_INO_TO_AGINO(mp, inode); 2154 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { 2155 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 2156 __func__, (unsigned long long)inode, 2157 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); 2158 ASSERT(0); 2159 return -EINVAL; 2160 } 2161 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2162 if (agbno >= mp->m_sb.sb_agblocks) { 2163 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 2164 __func__, agbno, mp->m_sb.sb_agblocks); 2165 ASSERT(0); 2166 return -EINVAL; 2167 } 2168 /* 2169 * Get the allocation group header. 2170 */ 2171 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2172 if (error) { 2173 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 2174 __func__, error); 2175 return error; 2176 } 2177 2178 /* 2179 * Fix up the inode allocation btree. 2180 */ 2181 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec); 2182 if (error) 2183 goto error0; 2184 2185 /* 2186 * Fix up the free inode btree. 2187 */ 2188 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 2189 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); 2190 if (error) 2191 goto error0; 2192 } 2193 2194 return 0; 2195 2196 error0: 2197 return error; 2198 } 2199 2200 STATIC int 2201 xfs_imap_lookup( 2202 struct xfs_mount *mp, 2203 struct xfs_trans *tp, 2204 xfs_agnumber_t agno, 2205 xfs_agino_t agino, 2206 xfs_agblock_t agbno, 2207 xfs_agblock_t *chunk_agbno, 2208 xfs_agblock_t *offset_agbno, 2209 int flags) 2210 { 2211 struct xfs_inobt_rec_incore rec; 2212 struct xfs_btree_cur *cur; 2213 struct xfs_buf *agbp; 2214 int error; 2215 int i; 2216 2217 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2218 if (error) { 2219 xfs_alert(mp, 2220 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 2221 __func__, error, agno); 2222 return error; 2223 } 2224 2225 /* 2226 * Lookup the inode record for the given agino. If the record cannot be 2227 * found, then it's an invalid inode number and we should abort. Once 2228 * we have a record, we need to ensure it contains the inode number 2229 * we are looking up. 2230 */ 2231 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 2232 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 2233 if (!error) { 2234 if (i) 2235 error = xfs_inobt_get_rec(cur, &rec, &i); 2236 if (!error && i == 0) 2237 error = -EINVAL; 2238 } 2239 2240 xfs_trans_brelse(tp, agbp); 2241 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); 2242 if (error) 2243 return error; 2244 2245 /* check that the returned record contains the required inode */ 2246 if (rec.ir_startino > agino || 2247 rec.ir_startino + mp->m_ialloc_inos <= agino) 2248 return -EINVAL; 2249 2250 /* for untrusted inodes check it is allocated first */ 2251 if ((flags & XFS_IGET_UNTRUSTED) && 2252 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 2253 return -EINVAL; 2254 2255 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 2256 *offset_agbno = agbno - *chunk_agbno; 2257 return 0; 2258 } 2259 2260 /* 2261 * Return the location of the inode in imap, for mapping it into a buffer. 2262 */ 2263 int 2264 xfs_imap( 2265 xfs_mount_t *mp, /* file system mount structure */ 2266 xfs_trans_t *tp, /* transaction pointer */ 2267 xfs_ino_t ino, /* inode to locate */ 2268 struct xfs_imap *imap, /* location map structure */ 2269 uint flags) /* flags for inode btree lookup */ 2270 { 2271 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 2272 xfs_agino_t agino; /* inode number within alloc group */ 2273 xfs_agnumber_t agno; /* allocation group number */ 2274 int blks_per_cluster; /* num blocks per inode cluster */ 2275 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 2276 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 2277 int error; /* error code */ 2278 int offset; /* index of inode in its buffer */ 2279 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 2280 2281 ASSERT(ino != NULLFSINO); 2282 2283 /* 2284 * Split up the inode number into its parts. 2285 */ 2286 agno = XFS_INO_TO_AGNO(mp, ino); 2287 agino = XFS_INO_TO_AGINO(mp, ino); 2288 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2289 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || 2290 ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2291 #ifdef DEBUG 2292 /* 2293 * Don't output diagnostic information for untrusted inodes 2294 * as they can be invalid without implying corruption. 2295 */ 2296 if (flags & XFS_IGET_UNTRUSTED) 2297 return -EINVAL; 2298 if (agno >= mp->m_sb.sb_agcount) { 2299 xfs_alert(mp, 2300 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", 2301 __func__, agno, mp->m_sb.sb_agcount); 2302 } 2303 if (agbno >= mp->m_sb.sb_agblocks) { 2304 xfs_alert(mp, 2305 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 2306 __func__, (unsigned long long)agbno, 2307 (unsigned long)mp->m_sb.sb_agblocks); 2308 } 2309 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2310 xfs_alert(mp, 2311 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 2312 __func__, ino, 2313 XFS_AGINO_TO_INO(mp, agno, agino)); 2314 } 2315 xfs_stack_trace(); 2316 #endif /* DEBUG */ 2317 return -EINVAL; 2318 } 2319 2320 blks_per_cluster = xfs_icluster_size_fsb(mp); 2321 2322 /* 2323 * For bulkstat and handle lookups, we have an untrusted inode number 2324 * that we have to verify is valid. We cannot do this just by reading 2325 * the inode buffer as it may have been unlinked and removed leaving 2326 * inodes in stale state on disk. Hence we have to do a btree lookup 2327 * in all cases where an untrusted inode number is passed. 2328 */ 2329 if (flags & XFS_IGET_UNTRUSTED) { 2330 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2331 &chunk_agbno, &offset_agbno, flags); 2332 if (error) 2333 return error; 2334 goto out_map; 2335 } 2336 2337 /* 2338 * If the inode cluster size is the same as the blocksize or 2339 * smaller we get to the buffer by simple arithmetics. 2340 */ 2341 if (blks_per_cluster == 1) { 2342 offset = XFS_INO_TO_OFFSET(mp, ino); 2343 ASSERT(offset < mp->m_sb.sb_inopblock); 2344 2345 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); 2346 imap->im_len = XFS_FSB_TO_BB(mp, 1); 2347 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog); 2348 return 0; 2349 } 2350 2351 /* 2352 * If the inode chunks are aligned then use simple maths to 2353 * find the location. Otherwise we have to do a btree 2354 * lookup to find the location. 2355 */ 2356 if (mp->m_inoalign_mask) { 2357 offset_agbno = agbno & mp->m_inoalign_mask; 2358 chunk_agbno = agbno - offset_agbno; 2359 } else { 2360 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2361 &chunk_agbno, &offset_agbno, flags); 2362 if (error) 2363 return error; 2364 } 2365 2366 out_map: 2367 ASSERT(agbno >= chunk_agbno); 2368 cluster_agbno = chunk_agbno + 2369 ((offset_agbno / blks_per_cluster) * blks_per_cluster); 2370 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 2371 XFS_INO_TO_OFFSET(mp, ino); 2372 2373 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); 2374 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster); 2375 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog); 2376 2377 /* 2378 * If the inode number maps to a block outside the bounds 2379 * of the file system then return NULL rather than calling 2380 * read_buf and panicing when we get an error from the 2381 * driver. 2382 */ 2383 if ((imap->im_blkno + imap->im_len) > 2384 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 2385 xfs_alert(mp, 2386 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 2387 __func__, (unsigned long long) imap->im_blkno, 2388 (unsigned long long) imap->im_len, 2389 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 2390 return -EINVAL; 2391 } 2392 return 0; 2393 } 2394 2395 /* 2396 * Compute and fill in value of m_in_maxlevels. 2397 */ 2398 void 2399 xfs_ialloc_compute_maxlevels( 2400 xfs_mount_t *mp) /* file system mount structure */ 2401 { 2402 uint inodes; 2403 2404 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; 2405 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr, 2406 inodes); 2407 } 2408 2409 /* 2410 * Log specified fields for the ag hdr (inode section). The growth of the agi 2411 * structure over time requires that we interpret the buffer as two logical 2412 * regions delineated by the end of the unlinked list. This is due to the size 2413 * of the hash table and its location in the middle of the agi. 2414 * 2415 * For example, a request to log a field before agi_unlinked and a field after 2416 * agi_unlinked could cause us to log the entire hash table and use an excessive 2417 * amount of log space. To avoid this behavior, log the region up through 2418 * agi_unlinked in one call and the region after agi_unlinked through the end of 2419 * the structure in another. 2420 */ 2421 void 2422 xfs_ialloc_log_agi( 2423 xfs_trans_t *tp, /* transaction pointer */ 2424 xfs_buf_t *bp, /* allocation group header buffer */ 2425 int fields) /* bitmask of fields to log */ 2426 { 2427 int first; /* first byte number */ 2428 int last; /* last byte number */ 2429 static const short offsets[] = { /* field starting offsets */ 2430 /* keep in sync with bit definitions */ 2431 offsetof(xfs_agi_t, agi_magicnum), 2432 offsetof(xfs_agi_t, agi_versionnum), 2433 offsetof(xfs_agi_t, agi_seqno), 2434 offsetof(xfs_agi_t, agi_length), 2435 offsetof(xfs_agi_t, agi_count), 2436 offsetof(xfs_agi_t, agi_root), 2437 offsetof(xfs_agi_t, agi_level), 2438 offsetof(xfs_agi_t, agi_freecount), 2439 offsetof(xfs_agi_t, agi_newino), 2440 offsetof(xfs_agi_t, agi_dirino), 2441 offsetof(xfs_agi_t, agi_unlinked), 2442 offsetof(xfs_agi_t, agi_free_root), 2443 offsetof(xfs_agi_t, agi_free_level), 2444 sizeof(xfs_agi_t) 2445 }; 2446 #ifdef DEBUG 2447 xfs_agi_t *agi; /* allocation group header */ 2448 2449 agi = XFS_BUF_TO_AGI(bp); 2450 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2451 #endif 2452 2453 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF); 2454 2455 /* 2456 * Compute byte offsets for the first and last fields in the first 2457 * region and log the agi buffer. This only logs up through 2458 * agi_unlinked. 2459 */ 2460 if (fields & XFS_AGI_ALL_BITS_R1) { 2461 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2462 &first, &last); 2463 xfs_trans_log_buf(tp, bp, first, last); 2464 } 2465 2466 /* 2467 * Mask off the bits in the first region and calculate the first and 2468 * last field offsets for any bits in the second region. 2469 */ 2470 fields &= ~XFS_AGI_ALL_BITS_R1; 2471 if (fields) { 2472 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2473 &first, &last); 2474 xfs_trans_log_buf(tp, bp, first, last); 2475 } 2476 } 2477 2478 #ifdef DEBUG 2479 STATIC void 2480 xfs_check_agi_unlinked( 2481 struct xfs_agi *agi) 2482 { 2483 int i; 2484 2485 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) 2486 ASSERT(agi->agi_unlinked[i]); 2487 } 2488 #else 2489 #define xfs_check_agi_unlinked(agi) 2490 #endif 2491 2492 static bool 2493 xfs_agi_verify( 2494 struct xfs_buf *bp) 2495 { 2496 struct xfs_mount *mp = bp->b_target->bt_mount; 2497 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); 2498 2499 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2500 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) 2501 return false; 2502 if (!xfs_log_check_lsn(mp, 2503 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn))) 2504 return false; 2505 } 2506 2507 /* 2508 * Validate the magic number of the agi block. 2509 */ 2510 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC)) 2511 return false; 2512 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2513 return false; 2514 2515 if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS) 2516 return false; 2517 /* 2518 * during growfs operations, the perag is not fully initialised, 2519 * so we can't use it for any useful checking. growfs ensures we can't 2520 * use it by using uncached buffers that don't have the perag attached 2521 * so we can detect and avoid this problem. 2522 */ 2523 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) 2524 return false; 2525 2526 xfs_check_agi_unlinked(agi); 2527 return true; 2528 } 2529 2530 static void 2531 xfs_agi_read_verify( 2532 struct xfs_buf *bp) 2533 { 2534 struct xfs_mount *mp = bp->b_target->bt_mount; 2535 2536 if (xfs_sb_version_hascrc(&mp->m_sb) && 2537 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2538 xfs_buf_ioerror(bp, -EFSBADCRC); 2539 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp, 2540 XFS_ERRTAG_IALLOC_READ_AGI, 2541 XFS_RANDOM_IALLOC_READ_AGI)) 2542 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2543 2544 if (bp->b_error) 2545 xfs_verifier_error(bp); 2546 } 2547 2548 static void 2549 xfs_agi_write_verify( 2550 struct xfs_buf *bp) 2551 { 2552 struct xfs_mount *mp = bp->b_target->bt_mount; 2553 struct xfs_buf_log_item *bip = bp->b_fspriv; 2554 2555 if (!xfs_agi_verify(bp)) { 2556 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2557 xfs_verifier_error(bp); 2558 return; 2559 } 2560 2561 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2562 return; 2563 2564 if (bip) 2565 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2566 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2567 } 2568 2569 const struct xfs_buf_ops xfs_agi_buf_ops = { 2570 .name = "xfs_agi", 2571 .verify_read = xfs_agi_read_verify, 2572 .verify_write = xfs_agi_write_verify, 2573 }; 2574 2575 /* 2576 * Read in the allocation group header (inode allocation section) 2577 */ 2578 int 2579 xfs_read_agi( 2580 struct xfs_mount *mp, /* file system mount structure */ 2581 struct xfs_trans *tp, /* transaction pointer */ 2582 xfs_agnumber_t agno, /* allocation group number */ 2583 struct xfs_buf **bpp) /* allocation group hdr buf */ 2584 { 2585 int error; 2586 2587 trace_xfs_read_agi(mp, agno); 2588 2589 ASSERT(agno != NULLAGNUMBER); 2590 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2591 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 2592 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); 2593 if (error) 2594 return error; 2595 2596 xfs_buf_set_ref(*bpp, XFS_AGI_REF); 2597 return 0; 2598 } 2599 2600 int 2601 xfs_ialloc_read_agi( 2602 struct xfs_mount *mp, /* file system mount structure */ 2603 struct xfs_trans *tp, /* transaction pointer */ 2604 xfs_agnumber_t agno, /* allocation group number */ 2605 struct xfs_buf **bpp) /* allocation group hdr buf */ 2606 { 2607 struct xfs_agi *agi; /* allocation group header */ 2608 struct xfs_perag *pag; /* per allocation group data */ 2609 int error; 2610 2611 trace_xfs_ialloc_read_agi(mp, agno); 2612 2613 error = xfs_read_agi(mp, tp, agno, bpp); 2614 if (error) 2615 return error; 2616 2617 agi = XFS_BUF_TO_AGI(*bpp); 2618 pag = xfs_perag_get(mp, agno); 2619 if (!pag->pagi_init) { 2620 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2621 pag->pagi_count = be32_to_cpu(agi->agi_count); 2622 pag->pagi_init = 1; 2623 } 2624 2625 /* 2626 * It's possible for these to be out of sync if 2627 * we are in the middle of a forced shutdown. 2628 */ 2629 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2630 XFS_FORCED_SHUTDOWN(mp)); 2631 xfs_perag_put(pag); 2632 return 0; 2633 } 2634 2635 /* 2636 * Read in the agi to initialise the per-ag data in the mount structure 2637 */ 2638 int 2639 xfs_ialloc_pagi_init( 2640 xfs_mount_t *mp, /* file system mount structure */ 2641 xfs_trans_t *tp, /* transaction pointer */ 2642 xfs_agnumber_t agno) /* allocation group number */ 2643 { 2644 xfs_buf_t *bp = NULL; 2645 int error; 2646 2647 error = xfs_ialloc_read_agi(mp, tp, agno, &bp); 2648 if (error) 2649 return error; 2650 if (bp) 2651 xfs_trans_brelse(tp, bp); 2652 return 0; 2653 } 2654