xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc.c (revision 293d5b43)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_error.h"
35 #include "xfs_bmap.h"
36 #include "xfs_cksum.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_icreate_item.h"
40 #include "xfs_icache.h"
41 #include "xfs_trace.h"
42 #include "xfs_log.h"
43 #include "xfs_rmap.h"
44 
45 
46 /*
47  * Allocation group level functions.
48  */
49 static inline int
50 xfs_ialloc_cluster_alignment(
51 	struct xfs_mount	*mp)
52 {
53 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
54 	    mp->m_sb.sb_inoalignmt >=
55 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
56 		return mp->m_sb.sb_inoalignmt;
57 	return 1;
58 }
59 
60 /*
61  * Lookup a record by ino in the btree given by cur.
62  */
63 int					/* error */
64 xfs_inobt_lookup(
65 	struct xfs_btree_cur	*cur,	/* btree cursor */
66 	xfs_agino_t		ino,	/* starting inode of chunk */
67 	xfs_lookup_t		dir,	/* <=, >=, == */
68 	int			*stat)	/* success/failure */
69 {
70 	cur->bc_rec.i.ir_startino = ino;
71 	cur->bc_rec.i.ir_holemask = 0;
72 	cur->bc_rec.i.ir_count = 0;
73 	cur->bc_rec.i.ir_freecount = 0;
74 	cur->bc_rec.i.ir_free = 0;
75 	return xfs_btree_lookup(cur, dir, stat);
76 }
77 
78 /*
79  * Update the record referred to by cur to the value given.
80  * This either works (return 0) or gets an EFSCORRUPTED error.
81  */
82 STATIC int				/* error */
83 xfs_inobt_update(
84 	struct xfs_btree_cur	*cur,	/* btree cursor */
85 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
86 {
87 	union xfs_btree_rec	rec;
88 
89 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
90 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
91 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
92 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
93 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
94 	} else {
95 		/* ir_holemask/ir_count not supported on-disk */
96 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
97 	}
98 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
99 	return xfs_btree_update(cur, &rec);
100 }
101 
102 /*
103  * Get the data from the pointed-to record.
104  */
105 int					/* error */
106 xfs_inobt_get_rec(
107 	struct xfs_btree_cur	*cur,	/* btree cursor */
108 	xfs_inobt_rec_incore_t	*irec,	/* btree record */
109 	int			*stat)	/* output: success/failure */
110 {
111 	union xfs_btree_rec	*rec;
112 	int			error;
113 
114 	error = xfs_btree_get_rec(cur, &rec, stat);
115 	if (error || *stat == 0)
116 		return error;
117 
118 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
119 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
120 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
121 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
122 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
123 	} else {
124 		/*
125 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
126 		 * values for full inode chunks.
127 		 */
128 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
129 		irec->ir_count = XFS_INODES_PER_CHUNK;
130 		irec->ir_freecount =
131 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
132 	}
133 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
134 
135 	return 0;
136 }
137 
138 /*
139  * Insert a single inobt record. Cursor must already point to desired location.
140  */
141 STATIC int
142 xfs_inobt_insert_rec(
143 	struct xfs_btree_cur	*cur,
144 	__uint16_t		holemask,
145 	__uint8_t		count,
146 	__int32_t		freecount,
147 	xfs_inofree_t		free,
148 	int			*stat)
149 {
150 	cur->bc_rec.i.ir_holemask = holemask;
151 	cur->bc_rec.i.ir_count = count;
152 	cur->bc_rec.i.ir_freecount = freecount;
153 	cur->bc_rec.i.ir_free = free;
154 	return xfs_btree_insert(cur, stat);
155 }
156 
157 /*
158  * Insert records describing a newly allocated inode chunk into the inobt.
159  */
160 STATIC int
161 xfs_inobt_insert(
162 	struct xfs_mount	*mp,
163 	struct xfs_trans	*tp,
164 	struct xfs_buf		*agbp,
165 	xfs_agino_t		newino,
166 	xfs_agino_t		newlen,
167 	xfs_btnum_t		btnum)
168 {
169 	struct xfs_btree_cur	*cur;
170 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
171 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
172 	xfs_agino_t		thisino;
173 	int			i;
174 	int			error;
175 
176 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
177 
178 	for (thisino = newino;
179 	     thisino < newino + newlen;
180 	     thisino += XFS_INODES_PER_CHUNK) {
181 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
182 		if (error) {
183 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
184 			return error;
185 		}
186 		ASSERT(i == 0);
187 
188 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
189 					     XFS_INODES_PER_CHUNK,
190 					     XFS_INODES_PER_CHUNK,
191 					     XFS_INOBT_ALL_FREE, &i);
192 		if (error) {
193 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
194 			return error;
195 		}
196 		ASSERT(i == 1);
197 	}
198 
199 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
200 
201 	return 0;
202 }
203 
204 /*
205  * Verify that the number of free inodes in the AGI is correct.
206  */
207 #ifdef DEBUG
208 STATIC int
209 xfs_check_agi_freecount(
210 	struct xfs_btree_cur	*cur,
211 	struct xfs_agi		*agi)
212 {
213 	if (cur->bc_nlevels == 1) {
214 		xfs_inobt_rec_incore_t rec;
215 		int		freecount = 0;
216 		int		error;
217 		int		i;
218 
219 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
220 		if (error)
221 			return error;
222 
223 		do {
224 			error = xfs_inobt_get_rec(cur, &rec, &i);
225 			if (error)
226 				return error;
227 
228 			if (i) {
229 				freecount += rec.ir_freecount;
230 				error = xfs_btree_increment(cur, 0, &i);
231 				if (error)
232 					return error;
233 			}
234 		} while (i == 1);
235 
236 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
237 			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
238 	}
239 	return 0;
240 }
241 #else
242 #define xfs_check_agi_freecount(cur, agi)	0
243 #endif
244 
245 /*
246  * Initialise a new set of inodes. When called without a transaction context
247  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
248  * than logging them (which in a transaction context puts them into the AIL
249  * for writeback rather than the xfsbufd queue).
250  */
251 int
252 xfs_ialloc_inode_init(
253 	struct xfs_mount	*mp,
254 	struct xfs_trans	*tp,
255 	struct list_head	*buffer_list,
256 	int			icount,
257 	xfs_agnumber_t		agno,
258 	xfs_agblock_t		agbno,
259 	xfs_agblock_t		length,
260 	unsigned int		gen)
261 {
262 	struct xfs_buf		*fbuf;
263 	struct xfs_dinode	*free;
264 	int			nbufs, blks_per_cluster, inodes_per_cluster;
265 	int			version;
266 	int			i, j;
267 	xfs_daddr_t		d;
268 	xfs_ino_t		ino = 0;
269 
270 	/*
271 	 * Loop over the new block(s), filling in the inodes.  For small block
272 	 * sizes, manipulate the inodes in buffers  which are multiples of the
273 	 * blocks size.
274 	 */
275 	blks_per_cluster = xfs_icluster_size_fsb(mp);
276 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
277 	nbufs = length / blks_per_cluster;
278 
279 	/*
280 	 * Figure out what version number to use in the inodes we create.  If
281 	 * the superblock version has caught up to the one that supports the new
282 	 * inode format, then use the new inode version.  Otherwise use the old
283 	 * version so that old kernels will continue to be able to use the file
284 	 * system.
285 	 *
286 	 * For v3 inodes, we also need to write the inode number into the inode,
287 	 * so calculate the first inode number of the chunk here as
288 	 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
289 	 * across multiple filesystem blocks (such as a cluster) and so cannot
290 	 * be used in the cluster buffer loop below.
291 	 *
292 	 * Further, because we are writing the inode directly into the buffer
293 	 * and calculating a CRC on the entire inode, we have ot log the entire
294 	 * inode so that the entire range the CRC covers is present in the log.
295 	 * That means for v3 inode we log the entire buffer rather than just the
296 	 * inode cores.
297 	 */
298 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
299 		version = 3;
300 		ino = XFS_AGINO_TO_INO(mp, agno,
301 				       XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
302 
303 		/*
304 		 * log the initialisation that is about to take place as an
305 		 * logical operation. This means the transaction does not
306 		 * need to log the physical changes to the inode buffers as log
307 		 * recovery will know what initialisation is actually needed.
308 		 * Hence we only need to log the buffers as "ordered" buffers so
309 		 * they track in the AIL as if they were physically logged.
310 		 */
311 		if (tp)
312 			xfs_icreate_log(tp, agno, agbno, icount,
313 					mp->m_sb.sb_inodesize, length, gen);
314 	} else
315 		version = 2;
316 
317 	for (j = 0; j < nbufs; j++) {
318 		/*
319 		 * Get the block.
320 		 */
321 		d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
322 		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
323 					 mp->m_bsize * blks_per_cluster,
324 					 XBF_UNMAPPED);
325 		if (!fbuf)
326 			return -ENOMEM;
327 
328 		/* Initialize the inode buffers and log them appropriately. */
329 		fbuf->b_ops = &xfs_inode_buf_ops;
330 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
331 		for (i = 0; i < inodes_per_cluster; i++) {
332 			int	ioffset = i << mp->m_sb.sb_inodelog;
333 			uint	isize = xfs_dinode_size(version);
334 
335 			free = xfs_make_iptr(mp, fbuf, i);
336 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
337 			free->di_version = version;
338 			free->di_gen = cpu_to_be32(gen);
339 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
340 
341 			if (version == 3) {
342 				free->di_ino = cpu_to_be64(ino);
343 				ino++;
344 				uuid_copy(&free->di_uuid,
345 					  &mp->m_sb.sb_meta_uuid);
346 				xfs_dinode_calc_crc(mp, free);
347 			} else if (tp) {
348 				/* just log the inode core */
349 				xfs_trans_log_buf(tp, fbuf, ioffset,
350 						  ioffset + isize - 1);
351 			}
352 		}
353 
354 		if (tp) {
355 			/*
356 			 * Mark the buffer as an inode allocation buffer so it
357 			 * sticks in AIL at the point of this allocation
358 			 * transaction. This ensures the they are on disk before
359 			 * the tail of the log can be moved past this
360 			 * transaction (i.e. by preventing relogging from moving
361 			 * it forward in the log).
362 			 */
363 			xfs_trans_inode_alloc_buf(tp, fbuf);
364 			if (version == 3) {
365 				/*
366 				 * Mark the buffer as ordered so that they are
367 				 * not physically logged in the transaction but
368 				 * still tracked in the AIL as part of the
369 				 * transaction and pin the log appropriately.
370 				 */
371 				xfs_trans_ordered_buf(tp, fbuf);
372 				xfs_trans_log_buf(tp, fbuf, 0,
373 						  BBTOB(fbuf->b_length) - 1);
374 			}
375 		} else {
376 			fbuf->b_flags |= XBF_DONE;
377 			xfs_buf_delwri_queue(fbuf, buffer_list);
378 			xfs_buf_relse(fbuf);
379 		}
380 	}
381 	return 0;
382 }
383 
384 /*
385  * Align startino and allocmask for a recently allocated sparse chunk such that
386  * they are fit for insertion (or merge) into the on-disk inode btrees.
387  *
388  * Background:
389  *
390  * When enabled, sparse inode support increases the inode alignment from cluster
391  * size to inode chunk size. This means that the minimum range between two
392  * non-adjacent inode records in the inobt is large enough for a full inode
393  * record. This allows for cluster sized, cluster aligned block allocation
394  * without need to worry about whether the resulting inode record overlaps with
395  * another record in the tree. Without this basic rule, we would have to deal
396  * with the consequences of overlap by potentially undoing recent allocations in
397  * the inode allocation codepath.
398  *
399  * Because of this alignment rule (which is enforced on mount), there are two
400  * inobt possibilities for newly allocated sparse chunks. One is that the
401  * aligned inode record for the chunk covers a range of inodes not already
402  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
403  * other is that a record already exists at the aligned startino that considers
404  * the newly allocated range as sparse. In the latter case, record content is
405  * merged in hope that sparse inode chunks fill to full chunks over time.
406  */
407 STATIC void
408 xfs_align_sparse_ino(
409 	struct xfs_mount		*mp,
410 	xfs_agino_t			*startino,
411 	uint16_t			*allocmask)
412 {
413 	xfs_agblock_t			agbno;
414 	xfs_agblock_t			mod;
415 	int				offset;
416 
417 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
418 	mod = agbno % mp->m_sb.sb_inoalignmt;
419 	if (!mod)
420 		return;
421 
422 	/* calculate the inode offset and align startino */
423 	offset = mod << mp->m_sb.sb_inopblog;
424 	*startino -= offset;
425 
426 	/*
427 	 * Since startino has been aligned down, left shift allocmask such that
428 	 * it continues to represent the same physical inodes relative to the
429 	 * new startino.
430 	 */
431 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
432 }
433 
434 /*
435  * Determine whether the source inode record can merge into the target. Both
436  * records must be sparse, the inode ranges must match and there must be no
437  * allocation overlap between the records.
438  */
439 STATIC bool
440 __xfs_inobt_can_merge(
441 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
442 	struct xfs_inobt_rec_incore	*srec)	/* src record */
443 {
444 	uint64_t			talloc;
445 	uint64_t			salloc;
446 
447 	/* records must cover the same inode range */
448 	if (trec->ir_startino != srec->ir_startino)
449 		return false;
450 
451 	/* both records must be sparse */
452 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
453 	    !xfs_inobt_issparse(srec->ir_holemask))
454 		return false;
455 
456 	/* both records must track some inodes */
457 	if (!trec->ir_count || !srec->ir_count)
458 		return false;
459 
460 	/* can't exceed capacity of a full record */
461 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
462 		return false;
463 
464 	/* verify there is no allocation overlap */
465 	talloc = xfs_inobt_irec_to_allocmask(trec);
466 	salloc = xfs_inobt_irec_to_allocmask(srec);
467 	if (talloc & salloc)
468 		return false;
469 
470 	return true;
471 }
472 
473 /*
474  * Merge the source inode record into the target. The caller must call
475  * __xfs_inobt_can_merge() to ensure the merge is valid.
476  */
477 STATIC void
478 __xfs_inobt_rec_merge(
479 	struct xfs_inobt_rec_incore	*trec,	/* target */
480 	struct xfs_inobt_rec_incore	*srec)	/* src */
481 {
482 	ASSERT(trec->ir_startino == srec->ir_startino);
483 
484 	/* combine the counts */
485 	trec->ir_count += srec->ir_count;
486 	trec->ir_freecount += srec->ir_freecount;
487 
488 	/*
489 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
490 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
491 	 */
492 	trec->ir_holemask &= srec->ir_holemask;
493 	trec->ir_free &= srec->ir_free;
494 }
495 
496 /*
497  * Insert a new sparse inode chunk into the associated inode btree. The inode
498  * record for the sparse chunk is pre-aligned to a startino that should match
499  * any pre-existing sparse inode record in the tree. This allows sparse chunks
500  * to fill over time.
501  *
502  * This function supports two modes of handling preexisting records depending on
503  * the merge flag. If merge is true, the provided record is merged with the
504  * existing record and updated in place. The merged record is returned in nrec.
505  * If merge is false, an existing record is replaced with the provided record.
506  * If no preexisting record exists, the provided record is always inserted.
507  *
508  * It is considered corruption if a merge is requested and not possible. Given
509  * the sparse inode alignment constraints, this should never happen.
510  */
511 STATIC int
512 xfs_inobt_insert_sprec(
513 	struct xfs_mount		*mp,
514 	struct xfs_trans		*tp,
515 	struct xfs_buf			*agbp,
516 	int				btnum,
517 	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
518 	bool				merge)	/* merge or replace */
519 {
520 	struct xfs_btree_cur		*cur;
521 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
522 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
523 	int				error;
524 	int				i;
525 	struct xfs_inobt_rec_incore	rec;
526 
527 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
528 
529 	/* the new record is pre-aligned so we know where to look */
530 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
531 	if (error)
532 		goto error;
533 	/* if nothing there, insert a new record and return */
534 	if (i == 0) {
535 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
536 					     nrec->ir_count, nrec->ir_freecount,
537 					     nrec->ir_free, &i);
538 		if (error)
539 			goto error;
540 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
541 
542 		goto out;
543 	}
544 
545 	/*
546 	 * A record exists at this startino. Merge or replace the record
547 	 * depending on what we've been asked to do.
548 	 */
549 	if (merge) {
550 		error = xfs_inobt_get_rec(cur, &rec, &i);
551 		if (error)
552 			goto error;
553 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
554 		XFS_WANT_CORRUPTED_GOTO(mp,
555 					rec.ir_startino == nrec->ir_startino,
556 					error);
557 
558 		/*
559 		 * This should never fail. If we have coexisting records that
560 		 * cannot merge, something is seriously wrong.
561 		 */
562 		XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
563 					error);
564 
565 		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
566 					 rec.ir_holemask, nrec->ir_startino,
567 					 nrec->ir_holemask);
568 
569 		/* merge to nrec to output the updated record */
570 		__xfs_inobt_rec_merge(nrec, &rec);
571 
572 		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
573 					  nrec->ir_holemask);
574 
575 		error = xfs_inobt_rec_check_count(mp, nrec);
576 		if (error)
577 			goto error;
578 	}
579 
580 	error = xfs_inobt_update(cur, nrec);
581 	if (error)
582 		goto error;
583 
584 out:
585 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
586 	return 0;
587 error:
588 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
589 	return error;
590 }
591 
592 /*
593  * Allocate new inodes in the allocation group specified by agbp.
594  * Return 0 for success, else error code.
595  */
596 STATIC int				/* error code or 0 */
597 xfs_ialloc_ag_alloc(
598 	xfs_trans_t	*tp,		/* transaction pointer */
599 	xfs_buf_t	*agbp,		/* alloc group buffer */
600 	int		*alloc)
601 {
602 	xfs_agi_t	*agi;		/* allocation group header */
603 	xfs_alloc_arg_t	args;		/* allocation argument structure */
604 	xfs_agnumber_t	agno;
605 	int		error;
606 	xfs_agino_t	newino;		/* new first inode's number */
607 	xfs_agino_t	newlen;		/* new number of inodes */
608 	int		isaligned = 0;	/* inode allocation at stripe unit */
609 					/* boundary */
610 	uint16_t	allocmask = (uint16_t) -1; /* init. to full chunk */
611 	struct xfs_inobt_rec_incore rec;
612 	struct xfs_perag *pag;
613 	int		do_sparse = 0;
614 
615 	memset(&args, 0, sizeof(args));
616 	args.tp = tp;
617 	args.mp = tp->t_mountp;
618 	args.fsbno = NULLFSBLOCK;
619 	xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
620 
621 #ifdef DEBUG
622 	/* randomly do sparse inode allocations */
623 	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
624 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
625 		do_sparse = prandom_u32() & 1;
626 #endif
627 
628 	/*
629 	 * Locking will ensure that we don't have two callers in here
630 	 * at one time.
631 	 */
632 	newlen = args.mp->m_ialloc_inos;
633 	if (args.mp->m_maxicount &&
634 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
635 							args.mp->m_maxicount)
636 		return -ENOSPC;
637 	args.minlen = args.maxlen = args.mp->m_ialloc_blks;
638 	/*
639 	 * First try to allocate inodes contiguous with the last-allocated
640 	 * chunk of inodes.  If the filesystem is striped, this will fill
641 	 * an entire stripe unit with inodes.
642 	 */
643 	agi = XFS_BUF_TO_AGI(agbp);
644 	newino = be32_to_cpu(agi->agi_newino);
645 	agno = be32_to_cpu(agi->agi_seqno);
646 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
647 		     args.mp->m_ialloc_blks;
648 	if (do_sparse)
649 		goto sparse_alloc;
650 	if (likely(newino != NULLAGINO &&
651 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
652 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
653 		args.type = XFS_ALLOCTYPE_THIS_BNO;
654 		args.prod = 1;
655 
656 		/*
657 		 * We need to take into account alignment here to ensure that
658 		 * we don't modify the free list if we fail to have an exact
659 		 * block. If we don't have an exact match, and every oher
660 		 * attempt allocation attempt fails, we'll end up cancelling
661 		 * a dirty transaction and shutting down.
662 		 *
663 		 * For an exact allocation, alignment must be 1,
664 		 * however we need to take cluster alignment into account when
665 		 * fixing up the freelist. Use the minalignslop field to
666 		 * indicate that extra blocks might be required for alignment,
667 		 * but not to use them in the actual exact allocation.
668 		 */
669 		args.alignment = 1;
670 		args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
671 
672 		/* Allow space for the inode btree to split. */
673 		args.minleft = args.mp->m_in_maxlevels - 1;
674 		if ((error = xfs_alloc_vextent(&args)))
675 			return error;
676 
677 		/*
678 		 * This request might have dirtied the transaction if the AG can
679 		 * satisfy the request, but the exact block was not available.
680 		 * If the allocation did fail, subsequent requests will relax
681 		 * the exact agbno requirement and increase the alignment
682 		 * instead. It is critical that the total size of the request
683 		 * (len + alignment + slop) does not increase from this point
684 		 * on, so reset minalignslop to ensure it is not included in
685 		 * subsequent requests.
686 		 */
687 		args.minalignslop = 0;
688 	}
689 
690 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
691 		/*
692 		 * Set the alignment for the allocation.
693 		 * If stripe alignment is turned on then align at stripe unit
694 		 * boundary.
695 		 * If the cluster size is smaller than a filesystem block
696 		 * then we're doing I/O for inodes in filesystem block size
697 		 * pieces, so don't need alignment anyway.
698 		 */
699 		isaligned = 0;
700 		if (args.mp->m_sinoalign) {
701 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
702 			args.alignment = args.mp->m_dalign;
703 			isaligned = 1;
704 		} else
705 			args.alignment = xfs_ialloc_cluster_alignment(args.mp);
706 		/*
707 		 * Need to figure out where to allocate the inode blocks.
708 		 * Ideally they should be spaced out through the a.g.
709 		 * For now, just allocate blocks up front.
710 		 */
711 		args.agbno = be32_to_cpu(agi->agi_root);
712 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
713 		/*
714 		 * Allocate a fixed-size extent of inodes.
715 		 */
716 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
717 		args.prod = 1;
718 		/*
719 		 * Allow space for the inode btree to split.
720 		 */
721 		args.minleft = args.mp->m_in_maxlevels - 1;
722 		if ((error = xfs_alloc_vextent(&args)))
723 			return error;
724 	}
725 
726 	/*
727 	 * If stripe alignment is turned on, then try again with cluster
728 	 * alignment.
729 	 */
730 	if (isaligned && args.fsbno == NULLFSBLOCK) {
731 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
732 		args.agbno = be32_to_cpu(agi->agi_root);
733 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
734 		args.alignment = xfs_ialloc_cluster_alignment(args.mp);
735 		if ((error = xfs_alloc_vextent(&args)))
736 			return error;
737 	}
738 
739 	/*
740 	 * Finally, try a sparse allocation if the filesystem supports it and
741 	 * the sparse allocation length is smaller than a full chunk.
742 	 */
743 	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
744 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
745 	    args.fsbno == NULLFSBLOCK) {
746 sparse_alloc:
747 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
748 		args.agbno = be32_to_cpu(agi->agi_root);
749 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
750 		args.alignment = args.mp->m_sb.sb_spino_align;
751 		args.prod = 1;
752 
753 		args.minlen = args.mp->m_ialloc_min_blks;
754 		args.maxlen = args.minlen;
755 
756 		/*
757 		 * The inode record will be aligned to full chunk size. We must
758 		 * prevent sparse allocation from AG boundaries that result in
759 		 * invalid inode records, such as records that start at agbno 0
760 		 * or extend beyond the AG.
761 		 *
762 		 * Set min agbno to the first aligned, non-zero agbno and max to
763 		 * the last aligned agbno that is at least one full chunk from
764 		 * the end of the AG.
765 		 */
766 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
767 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
768 					    args.mp->m_sb.sb_inoalignmt) -
769 				 args.mp->m_ialloc_blks;
770 
771 		error = xfs_alloc_vextent(&args);
772 		if (error)
773 			return error;
774 
775 		newlen = args.len << args.mp->m_sb.sb_inopblog;
776 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
777 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
778 	}
779 
780 	if (args.fsbno == NULLFSBLOCK) {
781 		*alloc = 0;
782 		return 0;
783 	}
784 	ASSERT(args.len == args.minlen);
785 
786 	/*
787 	 * Stamp and write the inode buffers.
788 	 *
789 	 * Seed the new inode cluster with a random generation number. This
790 	 * prevents short-term reuse of generation numbers if a chunk is
791 	 * freed and then immediately reallocated. We use random numbers
792 	 * rather than a linear progression to prevent the next generation
793 	 * number from being easily guessable.
794 	 */
795 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
796 			args.agbno, args.len, prandom_u32());
797 
798 	if (error)
799 		return error;
800 	/*
801 	 * Convert the results.
802 	 */
803 	newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
804 
805 	if (xfs_inobt_issparse(~allocmask)) {
806 		/*
807 		 * We've allocated a sparse chunk. Align the startino and mask.
808 		 */
809 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
810 
811 		rec.ir_startino = newino;
812 		rec.ir_holemask = ~allocmask;
813 		rec.ir_count = newlen;
814 		rec.ir_freecount = newlen;
815 		rec.ir_free = XFS_INOBT_ALL_FREE;
816 
817 		/*
818 		 * Insert the sparse record into the inobt and allow for a merge
819 		 * if necessary. If a merge does occur, rec is updated to the
820 		 * merged record.
821 		 */
822 		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
823 					       &rec, true);
824 		if (error == -EFSCORRUPTED) {
825 			xfs_alert(args.mp,
826 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
827 				  XFS_AGINO_TO_INO(args.mp, agno,
828 						   rec.ir_startino),
829 				  rec.ir_holemask, rec.ir_count);
830 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
831 		}
832 		if (error)
833 			return error;
834 
835 		/*
836 		 * We can't merge the part we've just allocated as for the inobt
837 		 * due to finobt semantics. The original record may or may not
838 		 * exist independent of whether physical inodes exist in this
839 		 * sparse chunk.
840 		 *
841 		 * We must update the finobt record based on the inobt record.
842 		 * rec contains the fully merged and up to date inobt record
843 		 * from the previous call. Set merge false to replace any
844 		 * existing record with this one.
845 		 */
846 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
847 			error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
848 						       XFS_BTNUM_FINO, &rec,
849 						       false);
850 			if (error)
851 				return error;
852 		}
853 	} else {
854 		/* full chunk - insert new records to both btrees */
855 		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
856 					 XFS_BTNUM_INO);
857 		if (error)
858 			return error;
859 
860 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
861 			error = xfs_inobt_insert(args.mp, tp, agbp, newino,
862 						 newlen, XFS_BTNUM_FINO);
863 			if (error)
864 				return error;
865 		}
866 	}
867 
868 	/*
869 	 * Update AGI counts and newino.
870 	 */
871 	be32_add_cpu(&agi->agi_count, newlen);
872 	be32_add_cpu(&agi->agi_freecount, newlen);
873 	pag = xfs_perag_get(args.mp, agno);
874 	pag->pagi_freecount += newlen;
875 	xfs_perag_put(pag);
876 	agi->agi_newino = cpu_to_be32(newino);
877 
878 	/*
879 	 * Log allocation group header fields
880 	 */
881 	xfs_ialloc_log_agi(tp, agbp,
882 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
883 	/*
884 	 * Modify/log superblock values for inode count and inode free count.
885 	 */
886 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
887 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
888 	*alloc = 1;
889 	return 0;
890 }
891 
892 STATIC xfs_agnumber_t
893 xfs_ialloc_next_ag(
894 	xfs_mount_t	*mp)
895 {
896 	xfs_agnumber_t	agno;
897 
898 	spin_lock(&mp->m_agirotor_lock);
899 	agno = mp->m_agirotor;
900 	if (++mp->m_agirotor >= mp->m_maxagi)
901 		mp->m_agirotor = 0;
902 	spin_unlock(&mp->m_agirotor_lock);
903 
904 	return agno;
905 }
906 
907 /*
908  * Select an allocation group to look for a free inode in, based on the parent
909  * inode and the mode.  Return the allocation group buffer.
910  */
911 STATIC xfs_agnumber_t
912 xfs_ialloc_ag_select(
913 	xfs_trans_t	*tp,		/* transaction pointer */
914 	xfs_ino_t	parent,		/* parent directory inode number */
915 	umode_t		mode,		/* bits set to indicate file type */
916 	int		okalloc)	/* ok to allocate more space */
917 {
918 	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
919 	xfs_agnumber_t	agno;		/* current ag number */
920 	int		flags;		/* alloc buffer locking flags */
921 	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
922 	xfs_extlen_t	longest = 0;	/* longest extent available */
923 	xfs_mount_t	*mp;		/* mount point structure */
924 	int		needspace;	/* file mode implies space allocated */
925 	xfs_perag_t	*pag;		/* per allocation group data */
926 	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
927 	int		error;
928 
929 	/*
930 	 * Files of these types need at least one block if length > 0
931 	 * (and they won't fit in the inode, but that's hard to figure out).
932 	 */
933 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
934 	mp = tp->t_mountp;
935 	agcount = mp->m_maxagi;
936 	if (S_ISDIR(mode))
937 		pagno = xfs_ialloc_next_ag(mp);
938 	else {
939 		pagno = XFS_INO_TO_AGNO(mp, parent);
940 		if (pagno >= agcount)
941 			pagno = 0;
942 	}
943 
944 	ASSERT(pagno < agcount);
945 
946 	/*
947 	 * Loop through allocation groups, looking for one with a little
948 	 * free space in it.  Note we don't look for free inodes, exactly.
949 	 * Instead, we include whether there is a need to allocate inodes
950 	 * to mean that blocks must be allocated for them,
951 	 * if none are currently free.
952 	 */
953 	agno = pagno;
954 	flags = XFS_ALLOC_FLAG_TRYLOCK;
955 	for (;;) {
956 		pag = xfs_perag_get(mp, agno);
957 		if (!pag->pagi_inodeok) {
958 			xfs_ialloc_next_ag(mp);
959 			goto nextag;
960 		}
961 
962 		if (!pag->pagi_init) {
963 			error = xfs_ialloc_pagi_init(mp, tp, agno);
964 			if (error)
965 				goto nextag;
966 		}
967 
968 		if (pag->pagi_freecount) {
969 			xfs_perag_put(pag);
970 			return agno;
971 		}
972 
973 		if (!okalloc)
974 			goto nextag;
975 
976 		if (!pag->pagf_init) {
977 			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
978 			if (error)
979 				goto nextag;
980 		}
981 
982 		/*
983 		 * Check that there is enough free space for the file plus a
984 		 * chunk of inodes if we need to allocate some. If this is the
985 		 * first pass across the AGs, take into account the potential
986 		 * space needed for alignment of inode chunks when checking the
987 		 * longest contiguous free space in the AG - this prevents us
988 		 * from getting ENOSPC because we have free space larger than
989 		 * m_ialloc_blks but alignment constraints prevent us from using
990 		 * it.
991 		 *
992 		 * If we can't find an AG with space for full alignment slack to
993 		 * be taken into account, we must be near ENOSPC in all AGs.
994 		 * Hence we don't include alignment for the second pass and so
995 		 * if we fail allocation due to alignment issues then it is most
996 		 * likely a real ENOSPC condition.
997 		 */
998 		ineed = mp->m_ialloc_min_blks;
999 		if (flags && ineed > 1)
1000 			ineed += xfs_ialloc_cluster_alignment(mp);
1001 		longest = pag->pagf_longest;
1002 		if (!longest)
1003 			longest = pag->pagf_flcount > 0;
1004 
1005 		if (pag->pagf_freeblks >= needspace + ineed &&
1006 		    longest >= ineed) {
1007 			xfs_perag_put(pag);
1008 			return agno;
1009 		}
1010 nextag:
1011 		xfs_perag_put(pag);
1012 		/*
1013 		 * No point in iterating over the rest, if we're shutting
1014 		 * down.
1015 		 */
1016 		if (XFS_FORCED_SHUTDOWN(mp))
1017 			return NULLAGNUMBER;
1018 		agno++;
1019 		if (agno >= agcount)
1020 			agno = 0;
1021 		if (agno == pagno) {
1022 			if (flags == 0)
1023 				return NULLAGNUMBER;
1024 			flags = 0;
1025 		}
1026 	}
1027 }
1028 
1029 /*
1030  * Try to retrieve the next record to the left/right from the current one.
1031  */
1032 STATIC int
1033 xfs_ialloc_next_rec(
1034 	struct xfs_btree_cur	*cur,
1035 	xfs_inobt_rec_incore_t	*rec,
1036 	int			*done,
1037 	int			left)
1038 {
1039 	int                     error;
1040 	int			i;
1041 
1042 	if (left)
1043 		error = xfs_btree_decrement(cur, 0, &i);
1044 	else
1045 		error = xfs_btree_increment(cur, 0, &i);
1046 
1047 	if (error)
1048 		return error;
1049 	*done = !i;
1050 	if (i) {
1051 		error = xfs_inobt_get_rec(cur, rec, &i);
1052 		if (error)
1053 			return error;
1054 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 STATIC int
1061 xfs_ialloc_get_rec(
1062 	struct xfs_btree_cur	*cur,
1063 	xfs_agino_t		agino,
1064 	xfs_inobt_rec_incore_t	*rec,
1065 	int			*done)
1066 {
1067 	int                     error;
1068 	int			i;
1069 
1070 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1071 	if (error)
1072 		return error;
1073 	*done = !i;
1074 	if (i) {
1075 		error = xfs_inobt_get_rec(cur, rec, &i);
1076 		if (error)
1077 			return error;
1078 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1079 	}
1080 
1081 	return 0;
1082 }
1083 
1084 /*
1085  * Return the offset of the first free inode in the record. If the inode chunk
1086  * is sparsely allocated, we convert the record holemask to inode granularity
1087  * and mask off the unallocated regions from the inode free mask.
1088  */
1089 STATIC int
1090 xfs_inobt_first_free_inode(
1091 	struct xfs_inobt_rec_incore	*rec)
1092 {
1093 	xfs_inofree_t			realfree;
1094 
1095 	/* if there are no holes, return the first available offset */
1096 	if (!xfs_inobt_issparse(rec->ir_holemask))
1097 		return xfs_lowbit64(rec->ir_free);
1098 
1099 	realfree = xfs_inobt_irec_to_allocmask(rec);
1100 	realfree &= rec->ir_free;
1101 
1102 	return xfs_lowbit64(realfree);
1103 }
1104 
1105 /*
1106  * Allocate an inode using the inobt-only algorithm.
1107  */
1108 STATIC int
1109 xfs_dialloc_ag_inobt(
1110 	struct xfs_trans	*tp,
1111 	struct xfs_buf		*agbp,
1112 	xfs_ino_t		parent,
1113 	xfs_ino_t		*inop)
1114 {
1115 	struct xfs_mount	*mp = tp->t_mountp;
1116 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
1117 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
1118 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1119 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1120 	struct xfs_perag	*pag;
1121 	struct xfs_btree_cur	*cur, *tcur;
1122 	struct xfs_inobt_rec_incore rec, trec;
1123 	xfs_ino_t		ino;
1124 	int			error;
1125 	int			offset;
1126 	int			i, j;
1127 
1128 	pag = xfs_perag_get(mp, agno);
1129 
1130 	ASSERT(pag->pagi_init);
1131 	ASSERT(pag->pagi_inodeok);
1132 	ASSERT(pag->pagi_freecount > 0);
1133 
1134  restart_pagno:
1135 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1136 	/*
1137 	 * If pagino is 0 (this is the root inode allocation) use newino.
1138 	 * This must work because we've just allocated some.
1139 	 */
1140 	if (!pagino)
1141 		pagino = be32_to_cpu(agi->agi_newino);
1142 
1143 	error = xfs_check_agi_freecount(cur, agi);
1144 	if (error)
1145 		goto error0;
1146 
1147 	/*
1148 	 * If in the same AG as the parent, try to get near the parent.
1149 	 */
1150 	if (pagno == agno) {
1151 		int		doneleft;	/* done, to the left */
1152 		int		doneright;	/* done, to the right */
1153 		int		searchdistance = 10;
1154 
1155 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1156 		if (error)
1157 			goto error0;
1158 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1159 
1160 		error = xfs_inobt_get_rec(cur, &rec, &j);
1161 		if (error)
1162 			goto error0;
1163 		XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1164 
1165 		if (rec.ir_freecount > 0) {
1166 			/*
1167 			 * Found a free inode in the same chunk
1168 			 * as the parent, done.
1169 			 */
1170 			goto alloc_inode;
1171 		}
1172 
1173 
1174 		/*
1175 		 * In the same AG as parent, but parent's chunk is full.
1176 		 */
1177 
1178 		/* duplicate the cursor, search left & right simultaneously */
1179 		error = xfs_btree_dup_cursor(cur, &tcur);
1180 		if (error)
1181 			goto error0;
1182 
1183 		/*
1184 		 * Skip to last blocks looked up if same parent inode.
1185 		 */
1186 		if (pagino != NULLAGINO &&
1187 		    pag->pagl_pagino == pagino &&
1188 		    pag->pagl_leftrec != NULLAGINO &&
1189 		    pag->pagl_rightrec != NULLAGINO) {
1190 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1191 						   &trec, &doneleft);
1192 			if (error)
1193 				goto error1;
1194 
1195 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1196 						   &rec, &doneright);
1197 			if (error)
1198 				goto error1;
1199 		} else {
1200 			/* search left with tcur, back up 1 record */
1201 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1202 			if (error)
1203 				goto error1;
1204 
1205 			/* search right with cur, go forward 1 record. */
1206 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1207 			if (error)
1208 				goto error1;
1209 		}
1210 
1211 		/*
1212 		 * Loop until we find an inode chunk with a free inode.
1213 		 */
1214 		while (!doneleft || !doneright) {
1215 			int	useleft;  /* using left inode chunk this time */
1216 
1217 			if (!--searchdistance) {
1218 				/*
1219 				 * Not in range - save last search
1220 				 * location and allocate a new inode
1221 				 */
1222 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1223 				pag->pagl_leftrec = trec.ir_startino;
1224 				pag->pagl_rightrec = rec.ir_startino;
1225 				pag->pagl_pagino = pagino;
1226 				goto newino;
1227 			}
1228 
1229 			/* figure out the closer block if both are valid. */
1230 			if (!doneleft && !doneright) {
1231 				useleft = pagino -
1232 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1233 				  rec.ir_startino - pagino;
1234 			} else {
1235 				useleft = !doneleft;
1236 			}
1237 
1238 			/* free inodes to the left? */
1239 			if (useleft && trec.ir_freecount) {
1240 				rec = trec;
1241 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1242 				cur = tcur;
1243 
1244 				pag->pagl_leftrec = trec.ir_startino;
1245 				pag->pagl_rightrec = rec.ir_startino;
1246 				pag->pagl_pagino = pagino;
1247 				goto alloc_inode;
1248 			}
1249 
1250 			/* free inodes to the right? */
1251 			if (!useleft && rec.ir_freecount) {
1252 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1253 
1254 				pag->pagl_leftrec = trec.ir_startino;
1255 				pag->pagl_rightrec = rec.ir_startino;
1256 				pag->pagl_pagino = pagino;
1257 				goto alloc_inode;
1258 			}
1259 
1260 			/* get next record to check */
1261 			if (useleft) {
1262 				error = xfs_ialloc_next_rec(tcur, &trec,
1263 								 &doneleft, 1);
1264 			} else {
1265 				error = xfs_ialloc_next_rec(cur, &rec,
1266 								 &doneright, 0);
1267 			}
1268 			if (error)
1269 				goto error1;
1270 		}
1271 
1272 		/*
1273 		 * We've reached the end of the btree. because
1274 		 * we are only searching a small chunk of the
1275 		 * btree each search, there is obviously free
1276 		 * inodes closer to the parent inode than we
1277 		 * are now. restart the search again.
1278 		 */
1279 		pag->pagl_pagino = NULLAGINO;
1280 		pag->pagl_leftrec = NULLAGINO;
1281 		pag->pagl_rightrec = NULLAGINO;
1282 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1283 		xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1284 		goto restart_pagno;
1285 	}
1286 
1287 	/*
1288 	 * In a different AG from the parent.
1289 	 * See if the most recently allocated block has any free.
1290 	 */
1291 newino:
1292 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1293 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1294 					 XFS_LOOKUP_EQ, &i);
1295 		if (error)
1296 			goto error0;
1297 
1298 		if (i == 1) {
1299 			error = xfs_inobt_get_rec(cur, &rec, &j);
1300 			if (error)
1301 				goto error0;
1302 
1303 			if (j == 1 && rec.ir_freecount > 0) {
1304 				/*
1305 				 * The last chunk allocated in the group
1306 				 * still has a free inode.
1307 				 */
1308 				goto alloc_inode;
1309 			}
1310 		}
1311 	}
1312 
1313 	/*
1314 	 * None left in the last group, search the whole AG
1315 	 */
1316 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1317 	if (error)
1318 		goto error0;
1319 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1320 
1321 	for (;;) {
1322 		error = xfs_inobt_get_rec(cur, &rec, &i);
1323 		if (error)
1324 			goto error0;
1325 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1326 		if (rec.ir_freecount > 0)
1327 			break;
1328 		error = xfs_btree_increment(cur, 0, &i);
1329 		if (error)
1330 			goto error0;
1331 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1332 	}
1333 
1334 alloc_inode:
1335 	offset = xfs_inobt_first_free_inode(&rec);
1336 	ASSERT(offset >= 0);
1337 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1338 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1339 				   XFS_INODES_PER_CHUNK) == 0);
1340 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1341 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1342 	rec.ir_freecount--;
1343 	error = xfs_inobt_update(cur, &rec);
1344 	if (error)
1345 		goto error0;
1346 	be32_add_cpu(&agi->agi_freecount, -1);
1347 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1348 	pag->pagi_freecount--;
1349 
1350 	error = xfs_check_agi_freecount(cur, agi);
1351 	if (error)
1352 		goto error0;
1353 
1354 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1355 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1356 	xfs_perag_put(pag);
1357 	*inop = ino;
1358 	return 0;
1359 error1:
1360 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1361 error0:
1362 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1363 	xfs_perag_put(pag);
1364 	return error;
1365 }
1366 
1367 /*
1368  * Use the free inode btree to allocate an inode based on distance from the
1369  * parent. Note that the provided cursor may be deleted and replaced.
1370  */
1371 STATIC int
1372 xfs_dialloc_ag_finobt_near(
1373 	xfs_agino_t			pagino,
1374 	struct xfs_btree_cur		**ocur,
1375 	struct xfs_inobt_rec_incore	*rec)
1376 {
1377 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1378 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1379 	struct xfs_inobt_rec_incore	rrec;
1380 	int				error;
1381 	int				i, j;
1382 
1383 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1384 	if (error)
1385 		return error;
1386 
1387 	if (i == 1) {
1388 		error = xfs_inobt_get_rec(lcur, rec, &i);
1389 		if (error)
1390 			return error;
1391 		XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1392 
1393 		/*
1394 		 * See if we've landed in the parent inode record. The finobt
1395 		 * only tracks chunks with at least one free inode, so record
1396 		 * existence is enough.
1397 		 */
1398 		if (pagino >= rec->ir_startino &&
1399 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1400 			return 0;
1401 	}
1402 
1403 	error = xfs_btree_dup_cursor(lcur, &rcur);
1404 	if (error)
1405 		return error;
1406 
1407 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1408 	if (error)
1409 		goto error_rcur;
1410 	if (j == 1) {
1411 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1412 		if (error)
1413 			goto error_rcur;
1414 		XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1415 	}
1416 
1417 	XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1418 	if (i == 1 && j == 1) {
1419 		/*
1420 		 * Both the left and right records are valid. Choose the closer
1421 		 * inode chunk to the target.
1422 		 */
1423 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1424 		    (rrec.ir_startino - pagino)) {
1425 			*rec = rrec;
1426 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1427 			*ocur = rcur;
1428 		} else {
1429 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1430 		}
1431 	} else if (j == 1) {
1432 		/* only the right record is valid */
1433 		*rec = rrec;
1434 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1435 		*ocur = rcur;
1436 	} else if (i == 1) {
1437 		/* only the left record is valid */
1438 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1439 	}
1440 
1441 	return 0;
1442 
1443 error_rcur:
1444 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1445 	return error;
1446 }
1447 
1448 /*
1449  * Use the free inode btree to find a free inode based on a newino hint. If
1450  * the hint is NULL, find the first free inode in the AG.
1451  */
1452 STATIC int
1453 xfs_dialloc_ag_finobt_newino(
1454 	struct xfs_agi			*agi,
1455 	struct xfs_btree_cur		*cur,
1456 	struct xfs_inobt_rec_incore	*rec)
1457 {
1458 	int error;
1459 	int i;
1460 
1461 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1462 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1463 					 XFS_LOOKUP_EQ, &i);
1464 		if (error)
1465 			return error;
1466 		if (i == 1) {
1467 			error = xfs_inobt_get_rec(cur, rec, &i);
1468 			if (error)
1469 				return error;
1470 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1471 			return 0;
1472 		}
1473 	}
1474 
1475 	/*
1476 	 * Find the first inode available in the AG.
1477 	 */
1478 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1479 	if (error)
1480 		return error;
1481 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1482 
1483 	error = xfs_inobt_get_rec(cur, rec, &i);
1484 	if (error)
1485 		return error;
1486 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1487 
1488 	return 0;
1489 }
1490 
1491 /*
1492  * Update the inobt based on a modification made to the finobt. Also ensure that
1493  * the records from both trees are equivalent post-modification.
1494  */
1495 STATIC int
1496 xfs_dialloc_ag_update_inobt(
1497 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1498 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1499 	int				offset) /* inode offset */
1500 {
1501 	struct xfs_inobt_rec_incore	rec;
1502 	int				error;
1503 	int				i;
1504 
1505 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1506 	if (error)
1507 		return error;
1508 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1509 
1510 	error = xfs_inobt_get_rec(cur, &rec, &i);
1511 	if (error)
1512 		return error;
1513 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1514 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1515 				   XFS_INODES_PER_CHUNK) == 0);
1516 
1517 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1518 	rec.ir_freecount--;
1519 
1520 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1521 				  (rec.ir_freecount == frec->ir_freecount));
1522 
1523 	return xfs_inobt_update(cur, &rec);
1524 }
1525 
1526 /*
1527  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1528  * back to the inobt search algorithm.
1529  *
1530  * The caller selected an AG for us, and made sure that free inodes are
1531  * available.
1532  */
1533 STATIC int
1534 xfs_dialloc_ag(
1535 	struct xfs_trans	*tp,
1536 	struct xfs_buf		*agbp,
1537 	xfs_ino_t		parent,
1538 	xfs_ino_t		*inop)
1539 {
1540 	struct xfs_mount		*mp = tp->t_mountp;
1541 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1542 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1543 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1544 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1545 	struct xfs_perag		*pag;
1546 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1547 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1548 	struct xfs_inobt_rec_incore	rec;
1549 	xfs_ino_t			ino;
1550 	int				error;
1551 	int				offset;
1552 	int				i;
1553 
1554 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1555 		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1556 
1557 	pag = xfs_perag_get(mp, agno);
1558 
1559 	/*
1560 	 * If pagino is 0 (this is the root inode allocation) use newino.
1561 	 * This must work because we've just allocated some.
1562 	 */
1563 	if (!pagino)
1564 		pagino = be32_to_cpu(agi->agi_newino);
1565 
1566 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1567 
1568 	error = xfs_check_agi_freecount(cur, agi);
1569 	if (error)
1570 		goto error_cur;
1571 
1572 	/*
1573 	 * The search algorithm depends on whether we're in the same AG as the
1574 	 * parent. If so, find the closest available inode to the parent. If
1575 	 * not, consider the agi hint or find the first free inode in the AG.
1576 	 */
1577 	if (agno == pagno)
1578 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1579 	else
1580 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1581 	if (error)
1582 		goto error_cur;
1583 
1584 	offset = xfs_inobt_first_free_inode(&rec);
1585 	ASSERT(offset >= 0);
1586 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1587 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1588 				   XFS_INODES_PER_CHUNK) == 0);
1589 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1590 
1591 	/*
1592 	 * Modify or remove the finobt record.
1593 	 */
1594 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1595 	rec.ir_freecount--;
1596 	if (rec.ir_freecount)
1597 		error = xfs_inobt_update(cur, &rec);
1598 	else
1599 		error = xfs_btree_delete(cur, &i);
1600 	if (error)
1601 		goto error_cur;
1602 
1603 	/*
1604 	 * The finobt has now been updated appropriately. We haven't updated the
1605 	 * agi and superblock yet, so we can create an inobt cursor and validate
1606 	 * the original freecount. If all is well, make the equivalent update to
1607 	 * the inobt using the finobt record and offset information.
1608 	 */
1609 	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1610 
1611 	error = xfs_check_agi_freecount(icur, agi);
1612 	if (error)
1613 		goto error_icur;
1614 
1615 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1616 	if (error)
1617 		goto error_icur;
1618 
1619 	/*
1620 	 * Both trees have now been updated. We must update the perag and
1621 	 * superblock before we can check the freecount for each btree.
1622 	 */
1623 	be32_add_cpu(&agi->agi_freecount, -1);
1624 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1625 	pag->pagi_freecount--;
1626 
1627 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1628 
1629 	error = xfs_check_agi_freecount(icur, agi);
1630 	if (error)
1631 		goto error_icur;
1632 	error = xfs_check_agi_freecount(cur, agi);
1633 	if (error)
1634 		goto error_icur;
1635 
1636 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1637 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1638 	xfs_perag_put(pag);
1639 	*inop = ino;
1640 	return 0;
1641 
1642 error_icur:
1643 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1644 error_cur:
1645 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1646 	xfs_perag_put(pag);
1647 	return error;
1648 }
1649 
1650 /*
1651  * Allocate an inode on disk.
1652  *
1653  * Mode is used to tell whether the new inode will need space, and whether it
1654  * is a directory.
1655  *
1656  * This function is designed to be called twice if it has to do an allocation
1657  * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1658  * If an inode is available without having to performn an allocation, an inode
1659  * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1660  * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1661  * The caller should then commit the current transaction, allocate a
1662  * new transaction, and call xfs_dialloc() again, passing in the previous value
1663  * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1664  * buffer is locked across the two calls, the second call is guaranteed to have
1665  * a free inode available.
1666  *
1667  * Once we successfully pick an inode its number is returned and the on-disk
1668  * data structures are updated.  The inode itself is not read in, since doing so
1669  * would break ordering constraints with xfs_reclaim.
1670  */
1671 int
1672 xfs_dialloc(
1673 	struct xfs_trans	*tp,
1674 	xfs_ino_t		parent,
1675 	umode_t			mode,
1676 	int			okalloc,
1677 	struct xfs_buf		**IO_agbp,
1678 	xfs_ino_t		*inop)
1679 {
1680 	struct xfs_mount	*mp = tp->t_mountp;
1681 	struct xfs_buf		*agbp;
1682 	xfs_agnumber_t		agno;
1683 	int			error;
1684 	int			ialloced;
1685 	int			noroom = 0;
1686 	xfs_agnumber_t		start_agno;
1687 	struct xfs_perag	*pag;
1688 
1689 	if (*IO_agbp) {
1690 		/*
1691 		 * If the caller passes in a pointer to the AGI buffer,
1692 		 * continue where we left off before.  In this case, we
1693 		 * know that the allocation group has free inodes.
1694 		 */
1695 		agbp = *IO_agbp;
1696 		goto out_alloc;
1697 	}
1698 
1699 	/*
1700 	 * We do not have an agbp, so select an initial allocation
1701 	 * group for inode allocation.
1702 	 */
1703 	start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1704 	if (start_agno == NULLAGNUMBER) {
1705 		*inop = NULLFSINO;
1706 		return 0;
1707 	}
1708 
1709 	/*
1710 	 * If we have already hit the ceiling of inode blocks then clear
1711 	 * okalloc so we scan all available agi structures for a free
1712 	 * inode.
1713 	 *
1714 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1715 	 * which will sacrifice the preciseness but improve the performance.
1716 	 */
1717 	if (mp->m_maxicount &&
1718 	    percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1719 							> mp->m_maxicount) {
1720 		noroom = 1;
1721 		okalloc = 0;
1722 	}
1723 
1724 	/*
1725 	 * Loop until we find an allocation group that either has free inodes
1726 	 * or in which we can allocate some inodes.  Iterate through the
1727 	 * allocation groups upward, wrapping at the end.
1728 	 */
1729 	agno = start_agno;
1730 	for (;;) {
1731 		pag = xfs_perag_get(mp, agno);
1732 		if (!pag->pagi_inodeok) {
1733 			xfs_ialloc_next_ag(mp);
1734 			goto nextag;
1735 		}
1736 
1737 		if (!pag->pagi_init) {
1738 			error = xfs_ialloc_pagi_init(mp, tp, agno);
1739 			if (error)
1740 				goto out_error;
1741 		}
1742 
1743 		/*
1744 		 * Do a first racy fast path check if this AG is usable.
1745 		 */
1746 		if (!pag->pagi_freecount && !okalloc)
1747 			goto nextag;
1748 
1749 		/*
1750 		 * Then read in the AGI buffer and recheck with the AGI buffer
1751 		 * lock held.
1752 		 */
1753 		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1754 		if (error)
1755 			goto out_error;
1756 
1757 		if (pag->pagi_freecount) {
1758 			xfs_perag_put(pag);
1759 			goto out_alloc;
1760 		}
1761 
1762 		if (!okalloc)
1763 			goto nextag_relse_buffer;
1764 
1765 
1766 		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1767 		if (error) {
1768 			xfs_trans_brelse(tp, agbp);
1769 
1770 			if (error != -ENOSPC)
1771 				goto out_error;
1772 
1773 			xfs_perag_put(pag);
1774 			*inop = NULLFSINO;
1775 			return 0;
1776 		}
1777 
1778 		if (ialloced) {
1779 			/*
1780 			 * We successfully allocated some inodes, return
1781 			 * the current context to the caller so that it
1782 			 * can commit the current transaction and call
1783 			 * us again where we left off.
1784 			 */
1785 			ASSERT(pag->pagi_freecount > 0);
1786 			xfs_perag_put(pag);
1787 
1788 			*IO_agbp = agbp;
1789 			*inop = NULLFSINO;
1790 			return 0;
1791 		}
1792 
1793 nextag_relse_buffer:
1794 		xfs_trans_brelse(tp, agbp);
1795 nextag:
1796 		xfs_perag_put(pag);
1797 		if (++agno == mp->m_sb.sb_agcount)
1798 			agno = 0;
1799 		if (agno == start_agno) {
1800 			*inop = NULLFSINO;
1801 			return noroom ? -ENOSPC : 0;
1802 		}
1803 	}
1804 
1805 out_alloc:
1806 	*IO_agbp = NULL;
1807 	return xfs_dialloc_ag(tp, agbp, parent, inop);
1808 out_error:
1809 	xfs_perag_put(pag);
1810 	return error;
1811 }
1812 
1813 /*
1814  * Free the blocks of an inode chunk. We must consider that the inode chunk
1815  * might be sparse and only free the regions that are allocated as part of the
1816  * chunk.
1817  */
1818 STATIC void
1819 xfs_difree_inode_chunk(
1820 	struct xfs_mount		*mp,
1821 	xfs_agnumber_t			agno,
1822 	struct xfs_inobt_rec_incore	*rec,
1823 	struct xfs_defer_ops		*dfops)
1824 {
1825 	xfs_agblock_t	sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1826 	int		startidx, endidx;
1827 	int		nextbit;
1828 	xfs_agblock_t	agbno;
1829 	int		contigblk;
1830 	struct xfs_owner_info	oinfo;
1831 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1832 	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1833 
1834 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1835 		/* not sparse, calculate extent info directly */
1836 		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1837 				  mp->m_ialloc_blks, &oinfo);
1838 		return;
1839 	}
1840 
1841 	/* holemask is only 16-bits (fits in an unsigned long) */
1842 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1843 	holemask[0] = rec->ir_holemask;
1844 
1845 	/*
1846 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1847 	 * holemask and convert the start/end index of each range to an extent.
1848 	 * We start with the start and end index both pointing at the first 0 in
1849 	 * the mask.
1850 	 */
1851 	startidx = endidx = find_first_zero_bit(holemask,
1852 						XFS_INOBT_HOLEMASK_BITS);
1853 	nextbit = startidx + 1;
1854 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1855 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1856 					     nextbit);
1857 		/*
1858 		 * If the next zero bit is contiguous, update the end index of
1859 		 * the current range and continue.
1860 		 */
1861 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1862 		    nextbit == endidx + 1) {
1863 			endidx = nextbit;
1864 			goto next;
1865 		}
1866 
1867 		/*
1868 		 * nextbit is not contiguous with the current end index. Convert
1869 		 * the current start/end to an extent and add it to the free
1870 		 * list.
1871 		 */
1872 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1873 				  mp->m_sb.sb_inopblock;
1874 		contigblk = ((endidx - startidx + 1) *
1875 			     XFS_INODES_PER_HOLEMASK_BIT) /
1876 			    mp->m_sb.sb_inopblock;
1877 
1878 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1879 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1880 		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1881 				  contigblk, &oinfo);
1882 
1883 		/* reset range to current bit and carry on... */
1884 		startidx = endidx = nextbit;
1885 
1886 next:
1887 		nextbit++;
1888 	}
1889 }
1890 
1891 STATIC int
1892 xfs_difree_inobt(
1893 	struct xfs_mount		*mp,
1894 	struct xfs_trans		*tp,
1895 	struct xfs_buf			*agbp,
1896 	xfs_agino_t			agino,
1897 	struct xfs_defer_ops		*dfops,
1898 	struct xfs_icluster		*xic,
1899 	struct xfs_inobt_rec_incore	*orec)
1900 {
1901 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1902 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1903 	struct xfs_perag		*pag;
1904 	struct xfs_btree_cur		*cur;
1905 	struct xfs_inobt_rec_incore	rec;
1906 	int				ilen;
1907 	int				error;
1908 	int				i;
1909 	int				off;
1910 
1911 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1912 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1913 
1914 	/*
1915 	 * Initialize the cursor.
1916 	 */
1917 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1918 
1919 	error = xfs_check_agi_freecount(cur, agi);
1920 	if (error)
1921 		goto error0;
1922 
1923 	/*
1924 	 * Look for the entry describing this inode.
1925 	 */
1926 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1927 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1928 			__func__, error);
1929 		goto error0;
1930 	}
1931 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1932 	error = xfs_inobt_get_rec(cur, &rec, &i);
1933 	if (error) {
1934 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1935 			__func__, error);
1936 		goto error0;
1937 	}
1938 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1939 	/*
1940 	 * Get the offset in the inode chunk.
1941 	 */
1942 	off = agino - rec.ir_startino;
1943 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1944 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1945 	/*
1946 	 * Mark the inode free & increment the count.
1947 	 */
1948 	rec.ir_free |= XFS_INOBT_MASK(off);
1949 	rec.ir_freecount++;
1950 
1951 	/*
1952 	 * When an inode chunk is free, it becomes eligible for removal. Don't
1953 	 * remove the chunk if the block size is large enough for multiple inode
1954 	 * chunks (that might not be free).
1955 	 */
1956 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1957 	    rec.ir_free == XFS_INOBT_ALL_FREE &&
1958 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1959 		xic->deleted = 1;
1960 		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1961 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1962 
1963 		/*
1964 		 * Remove the inode cluster from the AGI B+Tree, adjust the
1965 		 * AGI and Superblock inode counts, and mark the disk space
1966 		 * to be freed when the transaction is committed.
1967 		 */
1968 		ilen = rec.ir_freecount;
1969 		be32_add_cpu(&agi->agi_count, -ilen);
1970 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1971 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1972 		pag = xfs_perag_get(mp, agno);
1973 		pag->pagi_freecount -= ilen - 1;
1974 		xfs_perag_put(pag);
1975 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1976 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1977 
1978 		if ((error = xfs_btree_delete(cur, &i))) {
1979 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1980 				__func__, error);
1981 			goto error0;
1982 		}
1983 
1984 		xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1985 	} else {
1986 		xic->deleted = 0;
1987 
1988 		error = xfs_inobt_update(cur, &rec);
1989 		if (error) {
1990 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1991 				__func__, error);
1992 			goto error0;
1993 		}
1994 
1995 		/*
1996 		 * Change the inode free counts and log the ag/sb changes.
1997 		 */
1998 		be32_add_cpu(&agi->agi_freecount, 1);
1999 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2000 		pag = xfs_perag_get(mp, agno);
2001 		pag->pagi_freecount++;
2002 		xfs_perag_put(pag);
2003 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2004 	}
2005 
2006 	error = xfs_check_agi_freecount(cur, agi);
2007 	if (error)
2008 		goto error0;
2009 
2010 	*orec = rec;
2011 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2012 	return 0;
2013 
2014 error0:
2015 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2016 	return error;
2017 }
2018 
2019 /*
2020  * Free an inode in the free inode btree.
2021  */
2022 STATIC int
2023 xfs_difree_finobt(
2024 	struct xfs_mount		*mp,
2025 	struct xfs_trans		*tp,
2026 	struct xfs_buf			*agbp,
2027 	xfs_agino_t			agino,
2028 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2029 {
2030 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
2031 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
2032 	struct xfs_btree_cur		*cur;
2033 	struct xfs_inobt_rec_incore	rec;
2034 	int				offset = agino - ibtrec->ir_startino;
2035 	int				error;
2036 	int				i;
2037 
2038 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2039 
2040 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2041 	if (error)
2042 		goto error;
2043 	if (i == 0) {
2044 		/*
2045 		 * If the record does not exist in the finobt, we must have just
2046 		 * freed an inode in a previously fully allocated chunk. If not,
2047 		 * something is out of sync.
2048 		 */
2049 		XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2050 
2051 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2052 					     ibtrec->ir_count,
2053 					     ibtrec->ir_freecount,
2054 					     ibtrec->ir_free, &i);
2055 		if (error)
2056 			goto error;
2057 		ASSERT(i == 1);
2058 
2059 		goto out;
2060 	}
2061 
2062 	/*
2063 	 * Read and update the existing record. We could just copy the ibtrec
2064 	 * across here, but that would defeat the purpose of having redundant
2065 	 * metadata. By making the modifications independently, we can catch
2066 	 * corruptions that we wouldn't see if we just copied from one record
2067 	 * to another.
2068 	 */
2069 	error = xfs_inobt_get_rec(cur, &rec, &i);
2070 	if (error)
2071 		goto error;
2072 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2073 
2074 	rec.ir_free |= XFS_INOBT_MASK(offset);
2075 	rec.ir_freecount++;
2076 
2077 	XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2078 				(rec.ir_freecount == ibtrec->ir_freecount),
2079 				error);
2080 
2081 	/*
2082 	 * The content of inobt records should always match between the inobt
2083 	 * and finobt. The lifecycle of records in the finobt is different from
2084 	 * the inobt in that the finobt only tracks records with at least one
2085 	 * free inode. Hence, if all of the inodes are free and we aren't
2086 	 * keeping inode chunks permanently on disk, remove the record.
2087 	 * Otherwise, update the record with the new information.
2088 	 *
2089 	 * Note that we currently can't free chunks when the block size is large
2090 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2091 	 * with the inobt.
2092 	 */
2093 	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2094 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2095 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2096 		error = xfs_btree_delete(cur, &i);
2097 		if (error)
2098 			goto error;
2099 		ASSERT(i == 1);
2100 	} else {
2101 		error = xfs_inobt_update(cur, &rec);
2102 		if (error)
2103 			goto error;
2104 	}
2105 
2106 out:
2107 	error = xfs_check_agi_freecount(cur, agi);
2108 	if (error)
2109 		goto error;
2110 
2111 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2112 	return 0;
2113 
2114 error:
2115 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2116 	return error;
2117 }
2118 
2119 /*
2120  * Free disk inode.  Carefully avoids touching the incore inode, all
2121  * manipulations incore are the caller's responsibility.
2122  * The on-disk inode is not changed by this operation, only the
2123  * btree (free inode mask) is changed.
2124  */
2125 int
2126 xfs_difree(
2127 	struct xfs_trans	*tp,		/* transaction pointer */
2128 	xfs_ino_t		inode,		/* inode to be freed */
2129 	struct xfs_defer_ops	*dfops,		/* extents to free */
2130 	struct xfs_icluster	*xic)	/* cluster info if deleted */
2131 {
2132 	/* REFERENCED */
2133 	xfs_agblock_t		agbno;	/* block number containing inode */
2134 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2135 	xfs_agino_t		agino;	/* allocation group inode number */
2136 	xfs_agnumber_t		agno;	/* allocation group number */
2137 	int			error;	/* error return value */
2138 	struct xfs_mount	*mp;	/* mount structure for filesystem */
2139 	struct xfs_inobt_rec_incore rec;/* btree record */
2140 
2141 	mp = tp->t_mountp;
2142 
2143 	/*
2144 	 * Break up inode number into its components.
2145 	 */
2146 	agno = XFS_INO_TO_AGNO(mp, inode);
2147 	if (agno >= mp->m_sb.sb_agcount)  {
2148 		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2149 			__func__, agno, mp->m_sb.sb_agcount);
2150 		ASSERT(0);
2151 		return -EINVAL;
2152 	}
2153 	agino = XFS_INO_TO_AGINO(mp, inode);
2154 	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2155 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2156 			__func__, (unsigned long long)inode,
2157 			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2158 		ASSERT(0);
2159 		return -EINVAL;
2160 	}
2161 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2162 	if (agbno >= mp->m_sb.sb_agblocks)  {
2163 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2164 			__func__, agbno, mp->m_sb.sb_agblocks);
2165 		ASSERT(0);
2166 		return -EINVAL;
2167 	}
2168 	/*
2169 	 * Get the allocation group header.
2170 	 */
2171 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2172 	if (error) {
2173 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2174 			__func__, error);
2175 		return error;
2176 	}
2177 
2178 	/*
2179 	 * Fix up the inode allocation btree.
2180 	 */
2181 	error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2182 	if (error)
2183 		goto error0;
2184 
2185 	/*
2186 	 * Fix up the free inode btree.
2187 	 */
2188 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2189 		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2190 		if (error)
2191 			goto error0;
2192 	}
2193 
2194 	return 0;
2195 
2196 error0:
2197 	return error;
2198 }
2199 
2200 STATIC int
2201 xfs_imap_lookup(
2202 	struct xfs_mount	*mp,
2203 	struct xfs_trans	*tp,
2204 	xfs_agnumber_t		agno,
2205 	xfs_agino_t		agino,
2206 	xfs_agblock_t		agbno,
2207 	xfs_agblock_t		*chunk_agbno,
2208 	xfs_agblock_t		*offset_agbno,
2209 	int			flags)
2210 {
2211 	struct xfs_inobt_rec_incore rec;
2212 	struct xfs_btree_cur	*cur;
2213 	struct xfs_buf		*agbp;
2214 	int			error;
2215 	int			i;
2216 
2217 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2218 	if (error) {
2219 		xfs_alert(mp,
2220 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2221 			__func__, error, agno);
2222 		return error;
2223 	}
2224 
2225 	/*
2226 	 * Lookup the inode record for the given agino. If the record cannot be
2227 	 * found, then it's an invalid inode number and we should abort. Once
2228 	 * we have a record, we need to ensure it contains the inode number
2229 	 * we are looking up.
2230 	 */
2231 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2232 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2233 	if (!error) {
2234 		if (i)
2235 			error = xfs_inobt_get_rec(cur, &rec, &i);
2236 		if (!error && i == 0)
2237 			error = -EINVAL;
2238 	}
2239 
2240 	xfs_trans_brelse(tp, agbp);
2241 	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2242 	if (error)
2243 		return error;
2244 
2245 	/* check that the returned record contains the required inode */
2246 	if (rec.ir_startino > agino ||
2247 	    rec.ir_startino + mp->m_ialloc_inos <= agino)
2248 		return -EINVAL;
2249 
2250 	/* for untrusted inodes check it is allocated first */
2251 	if ((flags & XFS_IGET_UNTRUSTED) &&
2252 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2253 		return -EINVAL;
2254 
2255 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2256 	*offset_agbno = agbno - *chunk_agbno;
2257 	return 0;
2258 }
2259 
2260 /*
2261  * Return the location of the inode in imap, for mapping it into a buffer.
2262  */
2263 int
2264 xfs_imap(
2265 	xfs_mount_t	 *mp,	/* file system mount structure */
2266 	xfs_trans_t	 *tp,	/* transaction pointer */
2267 	xfs_ino_t	ino,	/* inode to locate */
2268 	struct xfs_imap	*imap,	/* location map structure */
2269 	uint		flags)	/* flags for inode btree lookup */
2270 {
2271 	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
2272 	xfs_agino_t	agino;	/* inode number within alloc group */
2273 	xfs_agnumber_t	agno;	/* allocation group number */
2274 	int		blks_per_cluster; /* num blocks per inode cluster */
2275 	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
2276 	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
2277 	int		error;	/* error code */
2278 	int		offset;	/* index of inode in its buffer */
2279 	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
2280 
2281 	ASSERT(ino != NULLFSINO);
2282 
2283 	/*
2284 	 * Split up the inode number into its parts.
2285 	 */
2286 	agno = XFS_INO_TO_AGNO(mp, ino);
2287 	agino = XFS_INO_TO_AGINO(mp, ino);
2288 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2289 	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2290 	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2291 #ifdef DEBUG
2292 		/*
2293 		 * Don't output diagnostic information for untrusted inodes
2294 		 * as they can be invalid without implying corruption.
2295 		 */
2296 		if (flags & XFS_IGET_UNTRUSTED)
2297 			return -EINVAL;
2298 		if (agno >= mp->m_sb.sb_agcount) {
2299 			xfs_alert(mp,
2300 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2301 				__func__, agno, mp->m_sb.sb_agcount);
2302 		}
2303 		if (agbno >= mp->m_sb.sb_agblocks) {
2304 			xfs_alert(mp,
2305 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2306 				__func__, (unsigned long long)agbno,
2307 				(unsigned long)mp->m_sb.sb_agblocks);
2308 		}
2309 		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2310 			xfs_alert(mp,
2311 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2312 				__func__, ino,
2313 				XFS_AGINO_TO_INO(mp, agno, agino));
2314 		}
2315 		xfs_stack_trace();
2316 #endif /* DEBUG */
2317 		return -EINVAL;
2318 	}
2319 
2320 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2321 
2322 	/*
2323 	 * For bulkstat and handle lookups, we have an untrusted inode number
2324 	 * that we have to verify is valid. We cannot do this just by reading
2325 	 * the inode buffer as it may have been unlinked and removed leaving
2326 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2327 	 * in all cases where an untrusted inode number is passed.
2328 	 */
2329 	if (flags & XFS_IGET_UNTRUSTED) {
2330 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2331 					&chunk_agbno, &offset_agbno, flags);
2332 		if (error)
2333 			return error;
2334 		goto out_map;
2335 	}
2336 
2337 	/*
2338 	 * If the inode cluster size is the same as the blocksize or
2339 	 * smaller we get to the buffer by simple arithmetics.
2340 	 */
2341 	if (blks_per_cluster == 1) {
2342 		offset = XFS_INO_TO_OFFSET(mp, ino);
2343 		ASSERT(offset < mp->m_sb.sb_inopblock);
2344 
2345 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2346 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2347 		imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2348 		return 0;
2349 	}
2350 
2351 	/*
2352 	 * If the inode chunks are aligned then use simple maths to
2353 	 * find the location. Otherwise we have to do a btree
2354 	 * lookup to find the location.
2355 	 */
2356 	if (mp->m_inoalign_mask) {
2357 		offset_agbno = agbno & mp->m_inoalign_mask;
2358 		chunk_agbno = agbno - offset_agbno;
2359 	} else {
2360 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2361 					&chunk_agbno, &offset_agbno, flags);
2362 		if (error)
2363 			return error;
2364 	}
2365 
2366 out_map:
2367 	ASSERT(agbno >= chunk_agbno);
2368 	cluster_agbno = chunk_agbno +
2369 		((offset_agbno / blks_per_cluster) * blks_per_cluster);
2370 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2371 		XFS_INO_TO_OFFSET(mp, ino);
2372 
2373 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2374 	imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2375 	imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2376 
2377 	/*
2378 	 * If the inode number maps to a block outside the bounds
2379 	 * of the file system then return NULL rather than calling
2380 	 * read_buf and panicing when we get an error from the
2381 	 * driver.
2382 	 */
2383 	if ((imap->im_blkno + imap->im_len) >
2384 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2385 		xfs_alert(mp,
2386 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2387 			__func__, (unsigned long long) imap->im_blkno,
2388 			(unsigned long long) imap->im_len,
2389 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2390 		return -EINVAL;
2391 	}
2392 	return 0;
2393 }
2394 
2395 /*
2396  * Compute and fill in value of m_in_maxlevels.
2397  */
2398 void
2399 xfs_ialloc_compute_maxlevels(
2400 	xfs_mount_t	*mp)		/* file system mount structure */
2401 {
2402 	uint		inodes;
2403 
2404 	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2405 	mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr,
2406 							 inodes);
2407 }
2408 
2409 /*
2410  * Log specified fields for the ag hdr (inode section). The growth of the agi
2411  * structure over time requires that we interpret the buffer as two logical
2412  * regions delineated by the end of the unlinked list. This is due to the size
2413  * of the hash table and its location in the middle of the agi.
2414  *
2415  * For example, a request to log a field before agi_unlinked and a field after
2416  * agi_unlinked could cause us to log the entire hash table and use an excessive
2417  * amount of log space. To avoid this behavior, log the region up through
2418  * agi_unlinked in one call and the region after agi_unlinked through the end of
2419  * the structure in another.
2420  */
2421 void
2422 xfs_ialloc_log_agi(
2423 	xfs_trans_t	*tp,		/* transaction pointer */
2424 	xfs_buf_t	*bp,		/* allocation group header buffer */
2425 	int		fields)		/* bitmask of fields to log */
2426 {
2427 	int			first;		/* first byte number */
2428 	int			last;		/* last byte number */
2429 	static const short	offsets[] = {	/* field starting offsets */
2430 					/* keep in sync with bit definitions */
2431 		offsetof(xfs_agi_t, agi_magicnum),
2432 		offsetof(xfs_agi_t, agi_versionnum),
2433 		offsetof(xfs_agi_t, agi_seqno),
2434 		offsetof(xfs_agi_t, agi_length),
2435 		offsetof(xfs_agi_t, agi_count),
2436 		offsetof(xfs_agi_t, agi_root),
2437 		offsetof(xfs_agi_t, agi_level),
2438 		offsetof(xfs_agi_t, agi_freecount),
2439 		offsetof(xfs_agi_t, agi_newino),
2440 		offsetof(xfs_agi_t, agi_dirino),
2441 		offsetof(xfs_agi_t, agi_unlinked),
2442 		offsetof(xfs_agi_t, agi_free_root),
2443 		offsetof(xfs_agi_t, agi_free_level),
2444 		sizeof(xfs_agi_t)
2445 	};
2446 #ifdef DEBUG
2447 	xfs_agi_t		*agi;	/* allocation group header */
2448 
2449 	agi = XFS_BUF_TO_AGI(bp);
2450 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2451 #endif
2452 
2453 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2454 
2455 	/*
2456 	 * Compute byte offsets for the first and last fields in the first
2457 	 * region and log the agi buffer. This only logs up through
2458 	 * agi_unlinked.
2459 	 */
2460 	if (fields & XFS_AGI_ALL_BITS_R1) {
2461 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2462 				  &first, &last);
2463 		xfs_trans_log_buf(tp, bp, first, last);
2464 	}
2465 
2466 	/*
2467 	 * Mask off the bits in the first region and calculate the first and
2468 	 * last field offsets for any bits in the second region.
2469 	 */
2470 	fields &= ~XFS_AGI_ALL_BITS_R1;
2471 	if (fields) {
2472 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2473 				  &first, &last);
2474 		xfs_trans_log_buf(tp, bp, first, last);
2475 	}
2476 }
2477 
2478 #ifdef DEBUG
2479 STATIC void
2480 xfs_check_agi_unlinked(
2481 	struct xfs_agi		*agi)
2482 {
2483 	int			i;
2484 
2485 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2486 		ASSERT(agi->agi_unlinked[i]);
2487 }
2488 #else
2489 #define xfs_check_agi_unlinked(agi)
2490 #endif
2491 
2492 static bool
2493 xfs_agi_verify(
2494 	struct xfs_buf	*bp)
2495 {
2496 	struct xfs_mount *mp = bp->b_target->bt_mount;
2497 	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp);
2498 
2499 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2500 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2501 			return false;
2502 		if (!xfs_log_check_lsn(mp,
2503 				be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2504 			return false;
2505 	}
2506 
2507 	/*
2508 	 * Validate the magic number of the agi block.
2509 	 */
2510 	if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2511 		return false;
2512 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2513 		return false;
2514 
2515 	if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2516 		return false;
2517 	/*
2518 	 * during growfs operations, the perag is not fully initialised,
2519 	 * so we can't use it for any useful checking. growfs ensures we can't
2520 	 * use it by using uncached buffers that don't have the perag attached
2521 	 * so we can detect and avoid this problem.
2522 	 */
2523 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2524 		return false;
2525 
2526 	xfs_check_agi_unlinked(agi);
2527 	return true;
2528 }
2529 
2530 static void
2531 xfs_agi_read_verify(
2532 	struct xfs_buf	*bp)
2533 {
2534 	struct xfs_mount *mp = bp->b_target->bt_mount;
2535 
2536 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2537 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2538 		xfs_buf_ioerror(bp, -EFSBADCRC);
2539 	else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2540 				XFS_ERRTAG_IALLOC_READ_AGI,
2541 				XFS_RANDOM_IALLOC_READ_AGI))
2542 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2543 
2544 	if (bp->b_error)
2545 		xfs_verifier_error(bp);
2546 }
2547 
2548 static void
2549 xfs_agi_write_verify(
2550 	struct xfs_buf	*bp)
2551 {
2552 	struct xfs_mount *mp = bp->b_target->bt_mount;
2553 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
2554 
2555 	if (!xfs_agi_verify(bp)) {
2556 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2557 		xfs_verifier_error(bp);
2558 		return;
2559 	}
2560 
2561 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2562 		return;
2563 
2564 	if (bip)
2565 		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2566 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2567 }
2568 
2569 const struct xfs_buf_ops xfs_agi_buf_ops = {
2570 	.name = "xfs_agi",
2571 	.verify_read = xfs_agi_read_verify,
2572 	.verify_write = xfs_agi_write_verify,
2573 };
2574 
2575 /*
2576  * Read in the allocation group header (inode allocation section)
2577  */
2578 int
2579 xfs_read_agi(
2580 	struct xfs_mount	*mp,	/* file system mount structure */
2581 	struct xfs_trans	*tp,	/* transaction pointer */
2582 	xfs_agnumber_t		agno,	/* allocation group number */
2583 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2584 {
2585 	int			error;
2586 
2587 	trace_xfs_read_agi(mp, agno);
2588 
2589 	ASSERT(agno != NULLAGNUMBER);
2590 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2591 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2592 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2593 	if (error)
2594 		return error;
2595 
2596 	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2597 	return 0;
2598 }
2599 
2600 int
2601 xfs_ialloc_read_agi(
2602 	struct xfs_mount	*mp,	/* file system mount structure */
2603 	struct xfs_trans	*tp,	/* transaction pointer */
2604 	xfs_agnumber_t		agno,	/* allocation group number */
2605 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2606 {
2607 	struct xfs_agi		*agi;	/* allocation group header */
2608 	struct xfs_perag	*pag;	/* per allocation group data */
2609 	int			error;
2610 
2611 	trace_xfs_ialloc_read_agi(mp, agno);
2612 
2613 	error = xfs_read_agi(mp, tp, agno, bpp);
2614 	if (error)
2615 		return error;
2616 
2617 	agi = XFS_BUF_TO_AGI(*bpp);
2618 	pag = xfs_perag_get(mp, agno);
2619 	if (!pag->pagi_init) {
2620 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2621 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2622 		pag->pagi_init = 1;
2623 	}
2624 
2625 	/*
2626 	 * It's possible for these to be out of sync if
2627 	 * we are in the middle of a forced shutdown.
2628 	 */
2629 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2630 		XFS_FORCED_SHUTDOWN(mp));
2631 	xfs_perag_put(pag);
2632 	return 0;
2633 }
2634 
2635 /*
2636  * Read in the agi to initialise the per-ag data in the mount structure
2637  */
2638 int
2639 xfs_ialloc_pagi_init(
2640 	xfs_mount_t	*mp,		/* file system mount structure */
2641 	xfs_trans_t	*tp,		/* transaction pointer */
2642 	xfs_agnumber_t	agno)		/* allocation group number */
2643 {
2644 	xfs_buf_t	*bp = NULL;
2645 	int		error;
2646 
2647 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2648 	if (error)
2649 		return error;
2650 	if (bp)
2651 		xfs_trans_brelse(tp, bp);
2652 	return 0;
2653 }
2654