1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_defer.h" 28 #include "xfs_inode.h" 29 #include "xfs_btree.h" 30 #include "xfs_ialloc.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_alloc.h" 33 #include "xfs_rtalloc.h" 34 #include "xfs_error.h" 35 #include "xfs_bmap.h" 36 #include "xfs_cksum.h" 37 #include "xfs_trans.h" 38 #include "xfs_buf_item.h" 39 #include "xfs_icreate_item.h" 40 #include "xfs_icache.h" 41 #include "xfs_trace.h" 42 #include "xfs_log.h" 43 #include "xfs_rmap.h" 44 45 46 /* 47 * Allocation group level functions. 48 */ 49 static inline int 50 xfs_ialloc_cluster_alignment( 51 struct xfs_mount *mp) 52 { 53 if (xfs_sb_version_hasalign(&mp->m_sb) && 54 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) 55 return mp->m_sb.sb_inoalignmt; 56 return 1; 57 } 58 59 /* 60 * Lookup a record by ino in the btree given by cur. 61 */ 62 int /* error */ 63 xfs_inobt_lookup( 64 struct xfs_btree_cur *cur, /* btree cursor */ 65 xfs_agino_t ino, /* starting inode of chunk */ 66 xfs_lookup_t dir, /* <=, >=, == */ 67 int *stat) /* success/failure */ 68 { 69 cur->bc_rec.i.ir_startino = ino; 70 cur->bc_rec.i.ir_holemask = 0; 71 cur->bc_rec.i.ir_count = 0; 72 cur->bc_rec.i.ir_freecount = 0; 73 cur->bc_rec.i.ir_free = 0; 74 return xfs_btree_lookup(cur, dir, stat); 75 } 76 77 /* 78 * Update the record referred to by cur to the value given. 79 * This either works (return 0) or gets an EFSCORRUPTED error. 80 */ 81 STATIC int /* error */ 82 xfs_inobt_update( 83 struct xfs_btree_cur *cur, /* btree cursor */ 84 xfs_inobt_rec_incore_t *irec) /* btree record */ 85 { 86 union xfs_btree_rec rec; 87 88 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); 89 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { 90 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); 91 rec.inobt.ir_u.sp.ir_count = irec->ir_count; 92 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; 93 } else { 94 /* ir_holemask/ir_count not supported on-disk */ 95 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); 96 } 97 rec.inobt.ir_free = cpu_to_be64(irec->ir_free); 98 return xfs_btree_update(cur, &rec); 99 } 100 101 /* 102 * Get the data from the pointed-to record. 103 */ 104 int /* error */ 105 xfs_inobt_get_rec( 106 struct xfs_btree_cur *cur, /* btree cursor */ 107 xfs_inobt_rec_incore_t *irec, /* btree record */ 108 int *stat) /* output: success/failure */ 109 { 110 union xfs_btree_rec *rec; 111 int error; 112 113 error = xfs_btree_get_rec(cur, &rec, stat); 114 if (error || *stat == 0) 115 return error; 116 117 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); 118 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { 119 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); 120 irec->ir_count = rec->inobt.ir_u.sp.ir_count; 121 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; 122 } else { 123 /* 124 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded 125 * values for full inode chunks. 126 */ 127 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; 128 irec->ir_count = XFS_INODES_PER_CHUNK; 129 irec->ir_freecount = 130 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); 131 } 132 irec->ir_free = be64_to_cpu(rec->inobt.ir_free); 133 134 return 0; 135 } 136 137 /* 138 * Insert a single inobt record. Cursor must already point to desired location. 139 */ 140 STATIC int 141 xfs_inobt_insert_rec( 142 struct xfs_btree_cur *cur, 143 __uint16_t holemask, 144 __uint8_t count, 145 __int32_t freecount, 146 xfs_inofree_t free, 147 int *stat) 148 { 149 cur->bc_rec.i.ir_holemask = holemask; 150 cur->bc_rec.i.ir_count = count; 151 cur->bc_rec.i.ir_freecount = freecount; 152 cur->bc_rec.i.ir_free = free; 153 return xfs_btree_insert(cur, stat); 154 } 155 156 /* 157 * Insert records describing a newly allocated inode chunk into the inobt. 158 */ 159 STATIC int 160 xfs_inobt_insert( 161 struct xfs_mount *mp, 162 struct xfs_trans *tp, 163 struct xfs_buf *agbp, 164 xfs_agino_t newino, 165 xfs_agino_t newlen, 166 xfs_btnum_t btnum) 167 { 168 struct xfs_btree_cur *cur; 169 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 170 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 171 xfs_agino_t thisino; 172 int i; 173 int error; 174 175 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 176 177 for (thisino = newino; 178 thisino < newino + newlen; 179 thisino += XFS_INODES_PER_CHUNK) { 180 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); 181 if (error) { 182 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 183 return error; 184 } 185 ASSERT(i == 0); 186 187 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, 188 XFS_INODES_PER_CHUNK, 189 XFS_INODES_PER_CHUNK, 190 XFS_INOBT_ALL_FREE, &i); 191 if (error) { 192 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 193 return error; 194 } 195 ASSERT(i == 1); 196 } 197 198 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 199 200 return 0; 201 } 202 203 /* 204 * Verify that the number of free inodes in the AGI is correct. 205 */ 206 #ifdef DEBUG 207 STATIC int 208 xfs_check_agi_freecount( 209 struct xfs_btree_cur *cur, 210 struct xfs_agi *agi) 211 { 212 if (cur->bc_nlevels == 1) { 213 xfs_inobt_rec_incore_t rec; 214 int freecount = 0; 215 int error; 216 int i; 217 218 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 219 if (error) 220 return error; 221 222 do { 223 error = xfs_inobt_get_rec(cur, &rec, &i); 224 if (error) 225 return error; 226 227 if (i) { 228 freecount += rec.ir_freecount; 229 error = xfs_btree_increment(cur, 0, &i); 230 if (error) 231 return error; 232 } 233 } while (i == 1); 234 235 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) 236 ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); 237 } 238 return 0; 239 } 240 #else 241 #define xfs_check_agi_freecount(cur, agi) 0 242 #endif 243 244 /* 245 * Initialise a new set of inodes. When called without a transaction context 246 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather 247 * than logging them (which in a transaction context puts them into the AIL 248 * for writeback rather than the xfsbufd queue). 249 */ 250 int 251 xfs_ialloc_inode_init( 252 struct xfs_mount *mp, 253 struct xfs_trans *tp, 254 struct list_head *buffer_list, 255 int icount, 256 xfs_agnumber_t agno, 257 xfs_agblock_t agbno, 258 xfs_agblock_t length, 259 unsigned int gen) 260 { 261 struct xfs_buf *fbuf; 262 struct xfs_dinode *free; 263 int nbufs, blks_per_cluster, inodes_per_cluster; 264 int version; 265 int i, j; 266 xfs_daddr_t d; 267 xfs_ino_t ino = 0; 268 269 /* 270 * Loop over the new block(s), filling in the inodes. For small block 271 * sizes, manipulate the inodes in buffers which are multiples of the 272 * blocks size. 273 */ 274 blks_per_cluster = xfs_icluster_size_fsb(mp); 275 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 276 nbufs = length / blks_per_cluster; 277 278 /* 279 * Figure out what version number to use in the inodes we create. If 280 * the superblock version has caught up to the one that supports the new 281 * inode format, then use the new inode version. Otherwise use the old 282 * version so that old kernels will continue to be able to use the file 283 * system. 284 * 285 * For v3 inodes, we also need to write the inode number into the inode, 286 * so calculate the first inode number of the chunk here as 287 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not 288 * across multiple filesystem blocks (such as a cluster) and so cannot 289 * be used in the cluster buffer loop below. 290 * 291 * Further, because we are writing the inode directly into the buffer 292 * and calculating a CRC on the entire inode, we have ot log the entire 293 * inode so that the entire range the CRC covers is present in the log. 294 * That means for v3 inode we log the entire buffer rather than just the 295 * inode cores. 296 */ 297 if (xfs_sb_version_hascrc(&mp->m_sb)) { 298 version = 3; 299 ino = XFS_AGINO_TO_INO(mp, agno, 300 XFS_OFFBNO_TO_AGINO(mp, agbno, 0)); 301 302 /* 303 * log the initialisation that is about to take place as an 304 * logical operation. This means the transaction does not 305 * need to log the physical changes to the inode buffers as log 306 * recovery will know what initialisation is actually needed. 307 * Hence we only need to log the buffers as "ordered" buffers so 308 * they track in the AIL as if they were physically logged. 309 */ 310 if (tp) 311 xfs_icreate_log(tp, agno, agbno, icount, 312 mp->m_sb.sb_inodesize, length, gen); 313 } else 314 version = 2; 315 316 for (j = 0; j < nbufs; j++) { 317 /* 318 * Get the block. 319 */ 320 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster)); 321 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, 322 mp->m_bsize * blks_per_cluster, 323 XBF_UNMAPPED); 324 if (!fbuf) 325 return -ENOMEM; 326 327 /* Initialize the inode buffers and log them appropriately. */ 328 fbuf->b_ops = &xfs_inode_buf_ops; 329 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); 330 for (i = 0; i < inodes_per_cluster; i++) { 331 int ioffset = i << mp->m_sb.sb_inodelog; 332 uint isize = xfs_dinode_size(version); 333 334 free = xfs_make_iptr(mp, fbuf, i); 335 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); 336 free->di_version = version; 337 free->di_gen = cpu_to_be32(gen); 338 free->di_next_unlinked = cpu_to_be32(NULLAGINO); 339 340 if (version == 3) { 341 free->di_ino = cpu_to_be64(ino); 342 ino++; 343 uuid_copy(&free->di_uuid, 344 &mp->m_sb.sb_meta_uuid); 345 xfs_dinode_calc_crc(mp, free); 346 } else if (tp) { 347 /* just log the inode core */ 348 xfs_trans_log_buf(tp, fbuf, ioffset, 349 ioffset + isize - 1); 350 } 351 } 352 353 if (tp) { 354 /* 355 * Mark the buffer as an inode allocation buffer so it 356 * sticks in AIL at the point of this allocation 357 * transaction. This ensures the they are on disk before 358 * the tail of the log can be moved past this 359 * transaction (i.e. by preventing relogging from moving 360 * it forward in the log). 361 */ 362 xfs_trans_inode_alloc_buf(tp, fbuf); 363 if (version == 3) { 364 /* 365 * Mark the buffer as ordered so that they are 366 * not physically logged in the transaction but 367 * still tracked in the AIL as part of the 368 * transaction and pin the log appropriately. 369 */ 370 xfs_trans_ordered_buf(tp, fbuf); 371 xfs_trans_log_buf(tp, fbuf, 0, 372 BBTOB(fbuf->b_length) - 1); 373 } 374 } else { 375 fbuf->b_flags |= XBF_DONE; 376 xfs_buf_delwri_queue(fbuf, buffer_list); 377 xfs_buf_relse(fbuf); 378 } 379 } 380 return 0; 381 } 382 383 /* 384 * Align startino and allocmask for a recently allocated sparse chunk such that 385 * they are fit for insertion (or merge) into the on-disk inode btrees. 386 * 387 * Background: 388 * 389 * When enabled, sparse inode support increases the inode alignment from cluster 390 * size to inode chunk size. This means that the minimum range between two 391 * non-adjacent inode records in the inobt is large enough for a full inode 392 * record. This allows for cluster sized, cluster aligned block allocation 393 * without need to worry about whether the resulting inode record overlaps with 394 * another record in the tree. Without this basic rule, we would have to deal 395 * with the consequences of overlap by potentially undoing recent allocations in 396 * the inode allocation codepath. 397 * 398 * Because of this alignment rule (which is enforced on mount), there are two 399 * inobt possibilities for newly allocated sparse chunks. One is that the 400 * aligned inode record for the chunk covers a range of inodes not already 401 * covered in the inobt (i.e., it is safe to insert a new sparse record). The 402 * other is that a record already exists at the aligned startino that considers 403 * the newly allocated range as sparse. In the latter case, record content is 404 * merged in hope that sparse inode chunks fill to full chunks over time. 405 */ 406 STATIC void 407 xfs_align_sparse_ino( 408 struct xfs_mount *mp, 409 xfs_agino_t *startino, 410 uint16_t *allocmask) 411 { 412 xfs_agblock_t agbno; 413 xfs_agblock_t mod; 414 int offset; 415 416 agbno = XFS_AGINO_TO_AGBNO(mp, *startino); 417 mod = agbno % mp->m_sb.sb_inoalignmt; 418 if (!mod) 419 return; 420 421 /* calculate the inode offset and align startino */ 422 offset = mod << mp->m_sb.sb_inopblog; 423 *startino -= offset; 424 425 /* 426 * Since startino has been aligned down, left shift allocmask such that 427 * it continues to represent the same physical inodes relative to the 428 * new startino. 429 */ 430 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; 431 } 432 433 /* 434 * Determine whether the source inode record can merge into the target. Both 435 * records must be sparse, the inode ranges must match and there must be no 436 * allocation overlap between the records. 437 */ 438 STATIC bool 439 __xfs_inobt_can_merge( 440 struct xfs_inobt_rec_incore *trec, /* tgt record */ 441 struct xfs_inobt_rec_incore *srec) /* src record */ 442 { 443 uint64_t talloc; 444 uint64_t salloc; 445 446 /* records must cover the same inode range */ 447 if (trec->ir_startino != srec->ir_startino) 448 return false; 449 450 /* both records must be sparse */ 451 if (!xfs_inobt_issparse(trec->ir_holemask) || 452 !xfs_inobt_issparse(srec->ir_holemask)) 453 return false; 454 455 /* both records must track some inodes */ 456 if (!trec->ir_count || !srec->ir_count) 457 return false; 458 459 /* can't exceed capacity of a full record */ 460 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) 461 return false; 462 463 /* verify there is no allocation overlap */ 464 talloc = xfs_inobt_irec_to_allocmask(trec); 465 salloc = xfs_inobt_irec_to_allocmask(srec); 466 if (talloc & salloc) 467 return false; 468 469 return true; 470 } 471 472 /* 473 * Merge the source inode record into the target. The caller must call 474 * __xfs_inobt_can_merge() to ensure the merge is valid. 475 */ 476 STATIC void 477 __xfs_inobt_rec_merge( 478 struct xfs_inobt_rec_incore *trec, /* target */ 479 struct xfs_inobt_rec_incore *srec) /* src */ 480 { 481 ASSERT(trec->ir_startino == srec->ir_startino); 482 483 /* combine the counts */ 484 trec->ir_count += srec->ir_count; 485 trec->ir_freecount += srec->ir_freecount; 486 487 /* 488 * Merge the holemask and free mask. For both fields, 0 bits refer to 489 * allocated inodes. We combine the allocated ranges with bitwise AND. 490 */ 491 trec->ir_holemask &= srec->ir_holemask; 492 trec->ir_free &= srec->ir_free; 493 } 494 495 /* 496 * Insert a new sparse inode chunk into the associated inode btree. The inode 497 * record for the sparse chunk is pre-aligned to a startino that should match 498 * any pre-existing sparse inode record in the tree. This allows sparse chunks 499 * to fill over time. 500 * 501 * This function supports two modes of handling preexisting records depending on 502 * the merge flag. If merge is true, the provided record is merged with the 503 * existing record and updated in place. The merged record is returned in nrec. 504 * If merge is false, an existing record is replaced with the provided record. 505 * If no preexisting record exists, the provided record is always inserted. 506 * 507 * It is considered corruption if a merge is requested and not possible. Given 508 * the sparse inode alignment constraints, this should never happen. 509 */ 510 STATIC int 511 xfs_inobt_insert_sprec( 512 struct xfs_mount *mp, 513 struct xfs_trans *tp, 514 struct xfs_buf *agbp, 515 int btnum, 516 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ 517 bool merge) /* merge or replace */ 518 { 519 struct xfs_btree_cur *cur; 520 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 521 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 522 int error; 523 int i; 524 struct xfs_inobt_rec_incore rec; 525 526 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); 527 528 /* the new record is pre-aligned so we know where to look */ 529 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); 530 if (error) 531 goto error; 532 /* if nothing there, insert a new record and return */ 533 if (i == 0) { 534 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, 535 nrec->ir_count, nrec->ir_freecount, 536 nrec->ir_free, &i); 537 if (error) 538 goto error; 539 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 540 541 goto out; 542 } 543 544 /* 545 * A record exists at this startino. Merge or replace the record 546 * depending on what we've been asked to do. 547 */ 548 if (merge) { 549 error = xfs_inobt_get_rec(cur, &rec, &i); 550 if (error) 551 goto error; 552 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 553 XFS_WANT_CORRUPTED_GOTO(mp, 554 rec.ir_startino == nrec->ir_startino, 555 error); 556 557 /* 558 * This should never fail. If we have coexisting records that 559 * cannot merge, something is seriously wrong. 560 */ 561 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec), 562 error); 563 564 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino, 565 rec.ir_holemask, nrec->ir_startino, 566 nrec->ir_holemask); 567 568 /* merge to nrec to output the updated record */ 569 __xfs_inobt_rec_merge(nrec, &rec); 570 571 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino, 572 nrec->ir_holemask); 573 574 error = xfs_inobt_rec_check_count(mp, nrec); 575 if (error) 576 goto error; 577 } 578 579 error = xfs_inobt_update(cur, nrec); 580 if (error) 581 goto error; 582 583 out: 584 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 585 return 0; 586 error: 587 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 588 return error; 589 } 590 591 /* 592 * Allocate new inodes in the allocation group specified by agbp. 593 * Return 0 for success, else error code. 594 */ 595 STATIC int /* error code or 0 */ 596 xfs_ialloc_ag_alloc( 597 xfs_trans_t *tp, /* transaction pointer */ 598 xfs_buf_t *agbp, /* alloc group buffer */ 599 int *alloc) 600 { 601 xfs_agi_t *agi; /* allocation group header */ 602 xfs_alloc_arg_t args; /* allocation argument structure */ 603 xfs_agnumber_t agno; 604 int error; 605 xfs_agino_t newino; /* new first inode's number */ 606 xfs_agino_t newlen; /* new number of inodes */ 607 int isaligned = 0; /* inode allocation at stripe unit */ 608 /* boundary */ 609 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */ 610 struct xfs_inobt_rec_incore rec; 611 struct xfs_perag *pag; 612 int do_sparse = 0; 613 614 memset(&args, 0, sizeof(args)); 615 args.tp = tp; 616 args.mp = tp->t_mountp; 617 args.fsbno = NULLFSBLOCK; 618 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES); 619 620 #ifdef DEBUG 621 /* randomly do sparse inode allocations */ 622 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) && 623 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks) 624 do_sparse = prandom_u32() & 1; 625 #endif 626 627 /* 628 * Locking will ensure that we don't have two callers in here 629 * at one time. 630 */ 631 newlen = args.mp->m_ialloc_inos; 632 if (args.mp->m_maxicount && 633 percpu_counter_read_positive(&args.mp->m_icount) + newlen > 634 args.mp->m_maxicount) 635 return -ENOSPC; 636 args.minlen = args.maxlen = args.mp->m_ialloc_blks; 637 /* 638 * First try to allocate inodes contiguous with the last-allocated 639 * chunk of inodes. If the filesystem is striped, this will fill 640 * an entire stripe unit with inodes. 641 */ 642 agi = XFS_BUF_TO_AGI(agbp); 643 newino = be32_to_cpu(agi->agi_newino); 644 agno = be32_to_cpu(agi->agi_seqno); 645 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + 646 args.mp->m_ialloc_blks; 647 if (do_sparse) 648 goto sparse_alloc; 649 if (likely(newino != NULLAGINO && 650 (args.agbno < be32_to_cpu(agi->agi_length)))) { 651 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 652 args.type = XFS_ALLOCTYPE_THIS_BNO; 653 args.prod = 1; 654 655 /* 656 * We need to take into account alignment here to ensure that 657 * we don't modify the free list if we fail to have an exact 658 * block. If we don't have an exact match, and every oher 659 * attempt allocation attempt fails, we'll end up cancelling 660 * a dirty transaction and shutting down. 661 * 662 * For an exact allocation, alignment must be 1, 663 * however we need to take cluster alignment into account when 664 * fixing up the freelist. Use the minalignslop field to 665 * indicate that extra blocks might be required for alignment, 666 * but not to use them in the actual exact allocation. 667 */ 668 args.alignment = 1; 669 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1; 670 671 /* Allow space for the inode btree to split. */ 672 args.minleft = args.mp->m_in_maxlevels - 1; 673 if ((error = xfs_alloc_vextent(&args))) 674 return error; 675 676 /* 677 * This request might have dirtied the transaction if the AG can 678 * satisfy the request, but the exact block was not available. 679 * If the allocation did fail, subsequent requests will relax 680 * the exact agbno requirement and increase the alignment 681 * instead. It is critical that the total size of the request 682 * (len + alignment + slop) does not increase from this point 683 * on, so reset minalignslop to ensure it is not included in 684 * subsequent requests. 685 */ 686 args.minalignslop = 0; 687 } 688 689 if (unlikely(args.fsbno == NULLFSBLOCK)) { 690 /* 691 * Set the alignment for the allocation. 692 * If stripe alignment is turned on then align at stripe unit 693 * boundary. 694 * If the cluster size is smaller than a filesystem block 695 * then we're doing I/O for inodes in filesystem block size 696 * pieces, so don't need alignment anyway. 697 */ 698 isaligned = 0; 699 if (args.mp->m_sinoalign) { 700 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); 701 args.alignment = args.mp->m_dalign; 702 isaligned = 1; 703 } else 704 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 705 /* 706 * Need to figure out where to allocate the inode blocks. 707 * Ideally they should be spaced out through the a.g. 708 * For now, just allocate blocks up front. 709 */ 710 args.agbno = be32_to_cpu(agi->agi_root); 711 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 712 /* 713 * Allocate a fixed-size extent of inodes. 714 */ 715 args.type = XFS_ALLOCTYPE_NEAR_BNO; 716 args.prod = 1; 717 /* 718 * Allow space for the inode btree to split. 719 */ 720 args.minleft = args.mp->m_in_maxlevels - 1; 721 if ((error = xfs_alloc_vextent(&args))) 722 return error; 723 } 724 725 /* 726 * If stripe alignment is turned on, then try again with cluster 727 * alignment. 728 */ 729 if (isaligned && args.fsbno == NULLFSBLOCK) { 730 args.type = XFS_ALLOCTYPE_NEAR_BNO; 731 args.agbno = be32_to_cpu(agi->agi_root); 732 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 733 args.alignment = xfs_ialloc_cluster_alignment(args.mp); 734 if ((error = xfs_alloc_vextent(&args))) 735 return error; 736 } 737 738 /* 739 * Finally, try a sparse allocation if the filesystem supports it and 740 * the sparse allocation length is smaller than a full chunk. 741 */ 742 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) && 743 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks && 744 args.fsbno == NULLFSBLOCK) { 745 sparse_alloc: 746 args.type = XFS_ALLOCTYPE_NEAR_BNO; 747 args.agbno = be32_to_cpu(agi->agi_root); 748 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); 749 args.alignment = args.mp->m_sb.sb_spino_align; 750 args.prod = 1; 751 752 args.minlen = args.mp->m_ialloc_min_blks; 753 args.maxlen = args.minlen; 754 755 /* 756 * The inode record will be aligned to full chunk size. We must 757 * prevent sparse allocation from AG boundaries that result in 758 * invalid inode records, such as records that start at agbno 0 759 * or extend beyond the AG. 760 * 761 * Set min agbno to the first aligned, non-zero agbno and max to 762 * the last aligned agbno that is at least one full chunk from 763 * the end of the AG. 764 */ 765 args.min_agbno = args.mp->m_sb.sb_inoalignmt; 766 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, 767 args.mp->m_sb.sb_inoalignmt) - 768 args.mp->m_ialloc_blks; 769 770 error = xfs_alloc_vextent(&args); 771 if (error) 772 return error; 773 774 newlen = args.len << args.mp->m_sb.sb_inopblog; 775 ASSERT(newlen <= XFS_INODES_PER_CHUNK); 776 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; 777 } 778 779 if (args.fsbno == NULLFSBLOCK) { 780 *alloc = 0; 781 return 0; 782 } 783 ASSERT(args.len == args.minlen); 784 785 /* 786 * Stamp and write the inode buffers. 787 * 788 * Seed the new inode cluster with a random generation number. This 789 * prevents short-term reuse of generation numbers if a chunk is 790 * freed and then immediately reallocated. We use random numbers 791 * rather than a linear progression to prevent the next generation 792 * number from being easily guessable. 793 */ 794 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno, 795 args.agbno, args.len, prandom_u32()); 796 797 if (error) 798 return error; 799 /* 800 * Convert the results. 801 */ 802 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); 803 804 if (xfs_inobt_issparse(~allocmask)) { 805 /* 806 * We've allocated a sparse chunk. Align the startino and mask. 807 */ 808 xfs_align_sparse_ino(args.mp, &newino, &allocmask); 809 810 rec.ir_startino = newino; 811 rec.ir_holemask = ~allocmask; 812 rec.ir_count = newlen; 813 rec.ir_freecount = newlen; 814 rec.ir_free = XFS_INOBT_ALL_FREE; 815 816 /* 817 * Insert the sparse record into the inobt and allow for a merge 818 * if necessary. If a merge does occur, rec is updated to the 819 * merged record. 820 */ 821 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO, 822 &rec, true); 823 if (error == -EFSCORRUPTED) { 824 xfs_alert(args.mp, 825 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", 826 XFS_AGINO_TO_INO(args.mp, agno, 827 rec.ir_startino), 828 rec.ir_holemask, rec.ir_count); 829 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); 830 } 831 if (error) 832 return error; 833 834 /* 835 * We can't merge the part we've just allocated as for the inobt 836 * due to finobt semantics. The original record may or may not 837 * exist independent of whether physical inodes exist in this 838 * sparse chunk. 839 * 840 * We must update the finobt record based on the inobt record. 841 * rec contains the fully merged and up to date inobt record 842 * from the previous call. Set merge false to replace any 843 * existing record with this one. 844 */ 845 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 846 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, 847 XFS_BTNUM_FINO, &rec, 848 false); 849 if (error) 850 return error; 851 } 852 } else { 853 /* full chunk - insert new records to both btrees */ 854 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, 855 XFS_BTNUM_INO); 856 if (error) 857 return error; 858 859 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { 860 error = xfs_inobt_insert(args.mp, tp, agbp, newino, 861 newlen, XFS_BTNUM_FINO); 862 if (error) 863 return error; 864 } 865 } 866 867 /* 868 * Update AGI counts and newino. 869 */ 870 be32_add_cpu(&agi->agi_count, newlen); 871 be32_add_cpu(&agi->agi_freecount, newlen); 872 pag = xfs_perag_get(args.mp, agno); 873 pag->pagi_freecount += newlen; 874 xfs_perag_put(pag); 875 agi->agi_newino = cpu_to_be32(newino); 876 877 /* 878 * Log allocation group header fields 879 */ 880 xfs_ialloc_log_agi(tp, agbp, 881 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); 882 /* 883 * Modify/log superblock values for inode count and inode free count. 884 */ 885 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); 886 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); 887 *alloc = 1; 888 return 0; 889 } 890 891 STATIC xfs_agnumber_t 892 xfs_ialloc_next_ag( 893 xfs_mount_t *mp) 894 { 895 xfs_agnumber_t agno; 896 897 spin_lock(&mp->m_agirotor_lock); 898 agno = mp->m_agirotor; 899 if (++mp->m_agirotor >= mp->m_maxagi) 900 mp->m_agirotor = 0; 901 spin_unlock(&mp->m_agirotor_lock); 902 903 return agno; 904 } 905 906 /* 907 * Select an allocation group to look for a free inode in, based on the parent 908 * inode and the mode. Return the allocation group buffer. 909 */ 910 STATIC xfs_agnumber_t 911 xfs_ialloc_ag_select( 912 xfs_trans_t *tp, /* transaction pointer */ 913 xfs_ino_t parent, /* parent directory inode number */ 914 umode_t mode, /* bits set to indicate file type */ 915 int okalloc) /* ok to allocate more space */ 916 { 917 xfs_agnumber_t agcount; /* number of ag's in the filesystem */ 918 xfs_agnumber_t agno; /* current ag number */ 919 int flags; /* alloc buffer locking flags */ 920 xfs_extlen_t ineed; /* blocks needed for inode allocation */ 921 xfs_extlen_t longest = 0; /* longest extent available */ 922 xfs_mount_t *mp; /* mount point structure */ 923 int needspace; /* file mode implies space allocated */ 924 xfs_perag_t *pag; /* per allocation group data */ 925 xfs_agnumber_t pagno; /* parent (starting) ag number */ 926 int error; 927 928 /* 929 * Files of these types need at least one block if length > 0 930 * (and they won't fit in the inode, but that's hard to figure out). 931 */ 932 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); 933 mp = tp->t_mountp; 934 agcount = mp->m_maxagi; 935 if (S_ISDIR(mode)) 936 pagno = xfs_ialloc_next_ag(mp); 937 else { 938 pagno = XFS_INO_TO_AGNO(mp, parent); 939 if (pagno >= agcount) 940 pagno = 0; 941 } 942 943 ASSERT(pagno < agcount); 944 945 /* 946 * Loop through allocation groups, looking for one with a little 947 * free space in it. Note we don't look for free inodes, exactly. 948 * Instead, we include whether there is a need to allocate inodes 949 * to mean that blocks must be allocated for them, 950 * if none are currently free. 951 */ 952 agno = pagno; 953 flags = XFS_ALLOC_FLAG_TRYLOCK; 954 for (;;) { 955 pag = xfs_perag_get(mp, agno); 956 if (!pag->pagi_inodeok) { 957 xfs_ialloc_next_ag(mp); 958 goto nextag; 959 } 960 961 if (!pag->pagi_init) { 962 error = xfs_ialloc_pagi_init(mp, tp, agno); 963 if (error) 964 goto nextag; 965 } 966 967 if (pag->pagi_freecount) { 968 xfs_perag_put(pag); 969 return agno; 970 } 971 972 if (!okalloc) 973 goto nextag; 974 975 if (!pag->pagf_init) { 976 error = xfs_alloc_pagf_init(mp, tp, agno, flags); 977 if (error) 978 goto nextag; 979 } 980 981 /* 982 * Check that there is enough free space for the file plus a 983 * chunk of inodes if we need to allocate some. If this is the 984 * first pass across the AGs, take into account the potential 985 * space needed for alignment of inode chunks when checking the 986 * longest contiguous free space in the AG - this prevents us 987 * from getting ENOSPC because we have free space larger than 988 * m_ialloc_blks but alignment constraints prevent us from using 989 * it. 990 * 991 * If we can't find an AG with space for full alignment slack to 992 * be taken into account, we must be near ENOSPC in all AGs. 993 * Hence we don't include alignment for the second pass and so 994 * if we fail allocation due to alignment issues then it is most 995 * likely a real ENOSPC condition. 996 */ 997 ineed = mp->m_ialloc_min_blks; 998 if (flags && ineed > 1) 999 ineed += xfs_ialloc_cluster_alignment(mp); 1000 longest = pag->pagf_longest; 1001 if (!longest) 1002 longest = pag->pagf_flcount > 0; 1003 1004 if (pag->pagf_freeblks >= needspace + ineed && 1005 longest >= ineed) { 1006 xfs_perag_put(pag); 1007 return agno; 1008 } 1009 nextag: 1010 xfs_perag_put(pag); 1011 /* 1012 * No point in iterating over the rest, if we're shutting 1013 * down. 1014 */ 1015 if (XFS_FORCED_SHUTDOWN(mp)) 1016 return NULLAGNUMBER; 1017 agno++; 1018 if (agno >= agcount) 1019 agno = 0; 1020 if (agno == pagno) { 1021 if (flags == 0) 1022 return NULLAGNUMBER; 1023 flags = 0; 1024 } 1025 } 1026 } 1027 1028 /* 1029 * Try to retrieve the next record to the left/right from the current one. 1030 */ 1031 STATIC int 1032 xfs_ialloc_next_rec( 1033 struct xfs_btree_cur *cur, 1034 xfs_inobt_rec_incore_t *rec, 1035 int *done, 1036 int left) 1037 { 1038 int error; 1039 int i; 1040 1041 if (left) 1042 error = xfs_btree_decrement(cur, 0, &i); 1043 else 1044 error = xfs_btree_increment(cur, 0, &i); 1045 1046 if (error) 1047 return error; 1048 *done = !i; 1049 if (i) { 1050 error = xfs_inobt_get_rec(cur, rec, &i); 1051 if (error) 1052 return error; 1053 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1054 } 1055 1056 return 0; 1057 } 1058 1059 STATIC int 1060 xfs_ialloc_get_rec( 1061 struct xfs_btree_cur *cur, 1062 xfs_agino_t agino, 1063 xfs_inobt_rec_incore_t *rec, 1064 int *done) 1065 { 1066 int error; 1067 int i; 1068 1069 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); 1070 if (error) 1071 return error; 1072 *done = !i; 1073 if (i) { 1074 error = xfs_inobt_get_rec(cur, rec, &i); 1075 if (error) 1076 return error; 1077 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1078 } 1079 1080 return 0; 1081 } 1082 1083 /* 1084 * Return the offset of the first free inode in the record. If the inode chunk 1085 * is sparsely allocated, we convert the record holemask to inode granularity 1086 * and mask off the unallocated regions from the inode free mask. 1087 */ 1088 STATIC int 1089 xfs_inobt_first_free_inode( 1090 struct xfs_inobt_rec_incore *rec) 1091 { 1092 xfs_inofree_t realfree; 1093 1094 /* if there are no holes, return the first available offset */ 1095 if (!xfs_inobt_issparse(rec->ir_holemask)) 1096 return xfs_lowbit64(rec->ir_free); 1097 1098 realfree = xfs_inobt_irec_to_allocmask(rec); 1099 realfree &= rec->ir_free; 1100 1101 return xfs_lowbit64(realfree); 1102 } 1103 1104 /* 1105 * Allocate an inode using the inobt-only algorithm. 1106 */ 1107 STATIC int 1108 xfs_dialloc_ag_inobt( 1109 struct xfs_trans *tp, 1110 struct xfs_buf *agbp, 1111 xfs_ino_t parent, 1112 xfs_ino_t *inop) 1113 { 1114 struct xfs_mount *mp = tp->t_mountp; 1115 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1116 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1117 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1118 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1119 struct xfs_perag *pag; 1120 struct xfs_btree_cur *cur, *tcur; 1121 struct xfs_inobt_rec_incore rec, trec; 1122 xfs_ino_t ino; 1123 int error; 1124 int offset; 1125 int i, j; 1126 1127 pag = xfs_perag_get(mp, agno); 1128 1129 ASSERT(pag->pagi_init); 1130 ASSERT(pag->pagi_inodeok); 1131 ASSERT(pag->pagi_freecount > 0); 1132 1133 restart_pagno: 1134 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1135 /* 1136 * If pagino is 0 (this is the root inode allocation) use newino. 1137 * This must work because we've just allocated some. 1138 */ 1139 if (!pagino) 1140 pagino = be32_to_cpu(agi->agi_newino); 1141 1142 error = xfs_check_agi_freecount(cur, agi); 1143 if (error) 1144 goto error0; 1145 1146 /* 1147 * If in the same AG as the parent, try to get near the parent. 1148 */ 1149 if (pagno == agno) { 1150 int doneleft; /* done, to the left */ 1151 int doneright; /* done, to the right */ 1152 int searchdistance = 10; 1153 1154 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); 1155 if (error) 1156 goto error0; 1157 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1158 1159 error = xfs_inobt_get_rec(cur, &rec, &j); 1160 if (error) 1161 goto error0; 1162 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0); 1163 1164 if (rec.ir_freecount > 0) { 1165 /* 1166 * Found a free inode in the same chunk 1167 * as the parent, done. 1168 */ 1169 goto alloc_inode; 1170 } 1171 1172 1173 /* 1174 * In the same AG as parent, but parent's chunk is full. 1175 */ 1176 1177 /* duplicate the cursor, search left & right simultaneously */ 1178 error = xfs_btree_dup_cursor(cur, &tcur); 1179 if (error) 1180 goto error0; 1181 1182 /* 1183 * Skip to last blocks looked up if same parent inode. 1184 */ 1185 if (pagino != NULLAGINO && 1186 pag->pagl_pagino == pagino && 1187 pag->pagl_leftrec != NULLAGINO && 1188 pag->pagl_rightrec != NULLAGINO) { 1189 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, 1190 &trec, &doneleft); 1191 if (error) 1192 goto error1; 1193 1194 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, 1195 &rec, &doneright); 1196 if (error) 1197 goto error1; 1198 } else { 1199 /* search left with tcur, back up 1 record */ 1200 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); 1201 if (error) 1202 goto error1; 1203 1204 /* search right with cur, go forward 1 record. */ 1205 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); 1206 if (error) 1207 goto error1; 1208 } 1209 1210 /* 1211 * Loop until we find an inode chunk with a free inode. 1212 */ 1213 while (!doneleft || !doneright) { 1214 int useleft; /* using left inode chunk this time */ 1215 1216 if (!--searchdistance) { 1217 /* 1218 * Not in range - save last search 1219 * location and allocate a new inode 1220 */ 1221 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1222 pag->pagl_leftrec = trec.ir_startino; 1223 pag->pagl_rightrec = rec.ir_startino; 1224 pag->pagl_pagino = pagino; 1225 goto newino; 1226 } 1227 1228 /* figure out the closer block if both are valid. */ 1229 if (!doneleft && !doneright) { 1230 useleft = pagino - 1231 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < 1232 rec.ir_startino - pagino; 1233 } else { 1234 useleft = !doneleft; 1235 } 1236 1237 /* free inodes to the left? */ 1238 if (useleft && trec.ir_freecount) { 1239 rec = trec; 1240 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1241 cur = tcur; 1242 1243 pag->pagl_leftrec = trec.ir_startino; 1244 pag->pagl_rightrec = rec.ir_startino; 1245 pag->pagl_pagino = pagino; 1246 goto alloc_inode; 1247 } 1248 1249 /* free inodes to the right? */ 1250 if (!useleft && rec.ir_freecount) { 1251 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1252 1253 pag->pagl_leftrec = trec.ir_startino; 1254 pag->pagl_rightrec = rec.ir_startino; 1255 pag->pagl_pagino = pagino; 1256 goto alloc_inode; 1257 } 1258 1259 /* get next record to check */ 1260 if (useleft) { 1261 error = xfs_ialloc_next_rec(tcur, &trec, 1262 &doneleft, 1); 1263 } else { 1264 error = xfs_ialloc_next_rec(cur, &rec, 1265 &doneright, 0); 1266 } 1267 if (error) 1268 goto error1; 1269 } 1270 1271 /* 1272 * We've reached the end of the btree. because 1273 * we are only searching a small chunk of the 1274 * btree each search, there is obviously free 1275 * inodes closer to the parent inode than we 1276 * are now. restart the search again. 1277 */ 1278 pag->pagl_pagino = NULLAGINO; 1279 pag->pagl_leftrec = NULLAGINO; 1280 pag->pagl_rightrec = NULLAGINO; 1281 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 1282 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1283 goto restart_pagno; 1284 } 1285 1286 /* 1287 * In a different AG from the parent. 1288 * See if the most recently allocated block has any free. 1289 */ 1290 newino: 1291 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1292 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1293 XFS_LOOKUP_EQ, &i); 1294 if (error) 1295 goto error0; 1296 1297 if (i == 1) { 1298 error = xfs_inobt_get_rec(cur, &rec, &j); 1299 if (error) 1300 goto error0; 1301 1302 if (j == 1 && rec.ir_freecount > 0) { 1303 /* 1304 * The last chunk allocated in the group 1305 * still has a free inode. 1306 */ 1307 goto alloc_inode; 1308 } 1309 } 1310 } 1311 1312 /* 1313 * None left in the last group, search the whole AG 1314 */ 1315 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1316 if (error) 1317 goto error0; 1318 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1319 1320 for (;;) { 1321 error = xfs_inobt_get_rec(cur, &rec, &i); 1322 if (error) 1323 goto error0; 1324 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1325 if (rec.ir_freecount > 0) 1326 break; 1327 error = xfs_btree_increment(cur, 0, &i); 1328 if (error) 1329 goto error0; 1330 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1331 } 1332 1333 alloc_inode: 1334 offset = xfs_inobt_first_free_inode(&rec); 1335 ASSERT(offset >= 0); 1336 ASSERT(offset < XFS_INODES_PER_CHUNK); 1337 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1338 XFS_INODES_PER_CHUNK) == 0); 1339 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1340 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1341 rec.ir_freecount--; 1342 error = xfs_inobt_update(cur, &rec); 1343 if (error) 1344 goto error0; 1345 be32_add_cpu(&agi->agi_freecount, -1); 1346 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1347 pag->pagi_freecount--; 1348 1349 error = xfs_check_agi_freecount(cur, agi); 1350 if (error) 1351 goto error0; 1352 1353 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1354 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1355 xfs_perag_put(pag); 1356 *inop = ino; 1357 return 0; 1358 error1: 1359 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 1360 error0: 1361 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1362 xfs_perag_put(pag); 1363 return error; 1364 } 1365 1366 /* 1367 * Use the free inode btree to allocate an inode based on distance from the 1368 * parent. Note that the provided cursor may be deleted and replaced. 1369 */ 1370 STATIC int 1371 xfs_dialloc_ag_finobt_near( 1372 xfs_agino_t pagino, 1373 struct xfs_btree_cur **ocur, 1374 struct xfs_inobt_rec_incore *rec) 1375 { 1376 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ 1377 struct xfs_btree_cur *rcur; /* right search cursor */ 1378 struct xfs_inobt_rec_incore rrec; 1379 int error; 1380 int i, j; 1381 1382 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); 1383 if (error) 1384 return error; 1385 1386 if (i == 1) { 1387 error = xfs_inobt_get_rec(lcur, rec, &i); 1388 if (error) 1389 return error; 1390 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1); 1391 1392 /* 1393 * See if we've landed in the parent inode record. The finobt 1394 * only tracks chunks with at least one free inode, so record 1395 * existence is enough. 1396 */ 1397 if (pagino >= rec->ir_startino && 1398 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) 1399 return 0; 1400 } 1401 1402 error = xfs_btree_dup_cursor(lcur, &rcur); 1403 if (error) 1404 return error; 1405 1406 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); 1407 if (error) 1408 goto error_rcur; 1409 if (j == 1) { 1410 error = xfs_inobt_get_rec(rcur, &rrec, &j); 1411 if (error) 1412 goto error_rcur; 1413 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur); 1414 } 1415 1416 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur); 1417 if (i == 1 && j == 1) { 1418 /* 1419 * Both the left and right records are valid. Choose the closer 1420 * inode chunk to the target. 1421 */ 1422 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > 1423 (rrec.ir_startino - pagino)) { 1424 *rec = rrec; 1425 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1426 *ocur = rcur; 1427 } else { 1428 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1429 } 1430 } else if (j == 1) { 1431 /* only the right record is valid */ 1432 *rec = rrec; 1433 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); 1434 *ocur = rcur; 1435 } else if (i == 1) { 1436 /* only the left record is valid */ 1437 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); 1438 } 1439 1440 return 0; 1441 1442 error_rcur: 1443 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); 1444 return error; 1445 } 1446 1447 /* 1448 * Use the free inode btree to find a free inode based on a newino hint. If 1449 * the hint is NULL, find the first free inode in the AG. 1450 */ 1451 STATIC int 1452 xfs_dialloc_ag_finobt_newino( 1453 struct xfs_agi *agi, 1454 struct xfs_btree_cur *cur, 1455 struct xfs_inobt_rec_incore *rec) 1456 { 1457 int error; 1458 int i; 1459 1460 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { 1461 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), 1462 XFS_LOOKUP_EQ, &i); 1463 if (error) 1464 return error; 1465 if (i == 1) { 1466 error = xfs_inobt_get_rec(cur, rec, &i); 1467 if (error) 1468 return error; 1469 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1470 return 0; 1471 } 1472 } 1473 1474 /* 1475 * Find the first inode available in the AG. 1476 */ 1477 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); 1478 if (error) 1479 return error; 1480 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1481 1482 error = xfs_inobt_get_rec(cur, rec, &i); 1483 if (error) 1484 return error; 1485 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1486 1487 return 0; 1488 } 1489 1490 /* 1491 * Update the inobt based on a modification made to the finobt. Also ensure that 1492 * the records from both trees are equivalent post-modification. 1493 */ 1494 STATIC int 1495 xfs_dialloc_ag_update_inobt( 1496 struct xfs_btree_cur *cur, /* inobt cursor */ 1497 struct xfs_inobt_rec_incore *frec, /* finobt record */ 1498 int offset) /* inode offset */ 1499 { 1500 struct xfs_inobt_rec_incore rec; 1501 int error; 1502 int i; 1503 1504 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); 1505 if (error) 1506 return error; 1507 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1508 1509 error = xfs_inobt_get_rec(cur, &rec, &i); 1510 if (error) 1511 return error; 1512 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); 1513 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % 1514 XFS_INODES_PER_CHUNK) == 0); 1515 1516 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1517 rec.ir_freecount--; 1518 1519 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) && 1520 (rec.ir_freecount == frec->ir_freecount)); 1521 1522 return xfs_inobt_update(cur, &rec); 1523 } 1524 1525 /* 1526 * Allocate an inode using the free inode btree, if available. Otherwise, fall 1527 * back to the inobt search algorithm. 1528 * 1529 * The caller selected an AG for us, and made sure that free inodes are 1530 * available. 1531 */ 1532 STATIC int 1533 xfs_dialloc_ag( 1534 struct xfs_trans *tp, 1535 struct xfs_buf *agbp, 1536 xfs_ino_t parent, 1537 xfs_ino_t *inop) 1538 { 1539 struct xfs_mount *mp = tp->t_mountp; 1540 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1541 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1542 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); 1543 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); 1544 struct xfs_perag *pag; 1545 struct xfs_btree_cur *cur; /* finobt cursor */ 1546 struct xfs_btree_cur *icur; /* inobt cursor */ 1547 struct xfs_inobt_rec_incore rec; 1548 xfs_ino_t ino; 1549 int error; 1550 int offset; 1551 int i; 1552 1553 if (!xfs_sb_version_hasfinobt(&mp->m_sb)) 1554 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); 1555 1556 pag = xfs_perag_get(mp, agno); 1557 1558 /* 1559 * If pagino is 0 (this is the root inode allocation) use newino. 1560 * This must work because we've just allocated some. 1561 */ 1562 if (!pagino) 1563 pagino = be32_to_cpu(agi->agi_newino); 1564 1565 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 1566 1567 error = xfs_check_agi_freecount(cur, agi); 1568 if (error) 1569 goto error_cur; 1570 1571 /* 1572 * The search algorithm depends on whether we're in the same AG as the 1573 * parent. If so, find the closest available inode to the parent. If 1574 * not, consider the agi hint or find the first free inode in the AG. 1575 */ 1576 if (agno == pagno) 1577 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); 1578 else 1579 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); 1580 if (error) 1581 goto error_cur; 1582 1583 offset = xfs_inobt_first_free_inode(&rec); 1584 ASSERT(offset >= 0); 1585 ASSERT(offset < XFS_INODES_PER_CHUNK); 1586 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % 1587 XFS_INODES_PER_CHUNK) == 0); 1588 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); 1589 1590 /* 1591 * Modify or remove the finobt record. 1592 */ 1593 rec.ir_free &= ~XFS_INOBT_MASK(offset); 1594 rec.ir_freecount--; 1595 if (rec.ir_freecount) 1596 error = xfs_inobt_update(cur, &rec); 1597 else 1598 error = xfs_btree_delete(cur, &i); 1599 if (error) 1600 goto error_cur; 1601 1602 /* 1603 * The finobt has now been updated appropriately. We haven't updated the 1604 * agi and superblock yet, so we can create an inobt cursor and validate 1605 * the original freecount. If all is well, make the equivalent update to 1606 * the inobt using the finobt record and offset information. 1607 */ 1608 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1609 1610 error = xfs_check_agi_freecount(icur, agi); 1611 if (error) 1612 goto error_icur; 1613 1614 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); 1615 if (error) 1616 goto error_icur; 1617 1618 /* 1619 * Both trees have now been updated. We must update the perag and 1620 * superblock before we can check the freecount for each btree. 1621 */ 1622 be32_add_cpu(&agi->agi_freecount, -1); 1623 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1624 pag->pagi_freecount--; 1625 1626 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); 1627 1628 error = xfs_check_agi_freecount(icur, agi); 1629 if (error) 1630 goto error_icur; 1631 error = xfs_check_agi_freecount(cur, agi); 1632 if (error) 1633 goto error_icur; 1634 1635 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); 1636 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 1637 xfs_perag_put(pag); 1638 *inop = ino; 1639 return 0; 1640 1641 error_icur: 1642 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); 1643 error_cur: 1644 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 1645 xfs_perag_put(pag); 1646 return error; 1647 } 1648 1649 /* 1650 * Allocate an inode on disk. 1651 * 1652 * Mode is used to tell whether the new inode will need space, and whether it 1653 * is a directory. 1654 * 1655 * This function is designed to be called twice if it has to do an allocation 1656 * to make more free inodes. On the first call, *IO_agbp should be set to NULL. 1657 * If an inode is available without having to performn an allocation, an inode 1658 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation 1659 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. 1660 * The caller should then commit the current transaction, allocate a 1661 * new transaction, and call xfs_dialloc() again, passing in the previous value 1662 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI 1663 * buffer is locked across the two calls, the second call is guaranteed to have 1664 * a free inode available. 1665 * 1666 * Once we successfully pick an inode its number is returned and the on-disk 1667 * data structures are updated. The inode itself is not read in, since doing so 1668 * would break ordering constraints with xfs_reclaim. 1669 */ 1670 int 1671 xfs_dialloc( 1672 struct xfs_trans *tp, 1673 xfs_ino_t parent, 1674 umode_t mode, 1675 int okalloc, 1676 struct xfs_buf **IO_agbp, 1677 xfs_ino_t *inop) 1678 { 1679 struct xfs_mount *mp = tp->t_mountp; 1680 struct xfs_buf *agbp; 1681 xfs_agnumber_t agno; 1682 int error; 1683 int ialloced; 1684 int noroom = 0; 1685 xfs_agnumber_t start_agno; 1686 struct xfs_perag *pag; 1687 1688 if (*IO_agbp) { 1689 /* 1690 * If the caller passes in a pointer to the AGI buffer, 1691 * continue where we left off before. In this case, we 1692 * know that the allocation group has free inodes. 1693 */ 1694 agbp = *IO_agbp; 1695 goto out_alloc; 1696 } 1697 1698 /* 1699 * We do not have an agbp, so select an initial allocation 1700 * group for inode allocation. 1701 */ 1702 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc); 1703 if (start_agno == NULLAGNUMBER) { 1704 *inop = NULLFSINO; 1705 return 0; 1706 } 1707 1708 /* 1709 * If we have already hit the ceiling of inode blocks then clear 1710 * okalloc so we scan all available agi structures for a free 1711 * inode. 1712 * 1713 * Read rough value of mp->m_icount by percpu_counter_read_positive, 1714 * which will sacrifice the preciseness but improve the performance. 1715 */ 1716 if (mp->m_maxicount && 1717 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos 1718 > mp->m_maxicount) { 1719 noroom = 1; 1720 okalloc = 0; 1721 } 1722 1723 /* 1724 * Loop until we find an allocation group that either has free inodes 1725 * or in which we can allocate some inodes. Iterate through the 1726 * allocation groups upward, wrapping at the end. 1727 */ 1728 agno = start_agno; 1729 for (;;) { 1730 pag = xfs_perag_get(mp, agno); 1731 if (!pag->pagi_inodeok) { 1732 xfs_ialloc_next_ag(mp); 1733 goto nextag; 1734 } 1735 1736 if (!pag->pagi_init) { 1737 error = xfs_ialloc_pagi_init(mp, tp, agno); 1738 if (error) 1739 goto out_error; 1740 } 1741 1742 /* 1743 * Do a first racy fast path check if this AG is usable. 1744 */ 1745 if (!pag->pagi_freecount && !okalloc) 1746 goto nextag; 1747 1748 /* 1749 * Then read in the AGI buffer and recheck with the AGI buffer 1750 * lock held. 1751 */ 1752 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 1753 if (error) 1754 goto out_error; 1755 1756 if (pag->pagi_freecount) { 1757 xfs_perag_put(pag); 1758 goto out_alloc; 1759 } 1760 1761 if (!okalloc) 1762 goto nextag_relse_buffer; 1763 1764 1765 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); 1766 if (error) { 1767 xfs_trans_brelse(tp, agbp); 1768 1769 if (error != -ENOSPC) 1770 goto out_error; 1771 1772 xfs_perag_put(pag); 1773 *inop = NULLFSINO; 1774 return 0; 1775 } 1776 1777 if (ialloced) { 1778 /* 1779 * We successfully allocated some inodes, return 1780 * the current context to the caller so that it 1781 * can commit the current transaction and call 1782 * us again where we left off. 1783 */ 1784 ASSERT(pag->pagi_freecount > 0); 1785 xfs_perag_put(pag); 1786 1787 *IO_agbp = agbp; 1788 *inop = NULLFSINO; 1789 return 0; 1790 } 1791 1792 nextag_relse_buffer: 1793 xfs_trans_brelse(tp, agbp); 1794 nextag: 1795 xfs_perag_put(pag); 1796 if (++agno == mp->m_sb.sb_agcount) 1797 agno = 0; 1798 if (agno == start_agno) { 1799 *inop = NULLFSINO; 1800 return noroom ? -ENOSPC : 0; 1801 } 1802 } 1803 1804 out_alloc: 1805 *IO_agbp = NULL; 1806 return xfs_dialloc_ag(tp, agbp, parent, inop); 1807 out_error: 1808 xfs_perag_put(pag); 1809 return error; 1810 } 1811 1812 /* 1813 * Free the blocks of an inode chunk. We must consider that the inode chunk 1814 * might be sparse and only free the regions that are allocated as part of the 1815 * chunk. 1816 */ 1817 STATIC void 1818 xfs_difree_inode_chunk( 1819 struct xfs_mount *mp, 1820 xfs_agnumber_t agno, 1821 struct xfs_inobt_rec_incore *rec, 1822 struct xfs_defer_ops *dfops) 1823 { 1824 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino); 1825 int startidx, endidx; 1826 int nextbit; 1827 xfs_agblock_t agbno; 1828 int contigblk; 1829 struct xfs_owner_info oinfo; 1830 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); 1831 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES); 1832 1833 if (!xfs_inobt_issparse(rec->ir_holemask)) { 1834 /* not sparse, calculate extent info directly */ 1835 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno), 1836 mp->m_ialloc_blks, &oinfo); 1837 return; 1838 } 1839 1840 /* holemask is only 16-bits (fits in an unsigned long) */ 1841 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); 1842 holemask[0] = rec->ir_holemask; 1843 1844 /* 1845 * Find contiguous ranges of zeroes (i.e., allocated regions) in the 1846 * holemask and convert the start/end index of each range to an extent. 1847 * We start with the start and end index both pointing at the first 0 in 1848 * the mask. 1849 */ 1850 startidx = endidx = find_first_zero_bit(holemask, 1851 XFS_INOBT_HOLEMASK_BITS); 1852 nextbit = startidx + 1; 1853 while (startidx < XFS_INOBT_HOLEMASK_BITS) { 1854 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, 1855 nextbit); 1856 /* 1857 * If the next zero bit is contiguous, update the end index of 1858 * the current range and continue. 1859 */ 1860 if (nextbit != XFS_INOBT_HOLEMASK_BITS && 1861 nextbit == endidx + 1) { 1862 endidx = nextbit; 1863 goto next; 1864 } 1865 1866 /* 1867 * nextbit is not contiguous with the current end index. Convert 1868 * the current start/end to an extent and add it to the free 1869 * list. 1870 */ 1871 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / 1872 mp->m_sb.sb_inopblock; 1873 contigblk = ((endidx - startidx + 1) * 1874 XFS_INODES_PER_HOLEMASK_BIT) / 1875 mp->m_sb.sb_inopblock; 1876 1877 ASSERT(agbno % mp->m_sb.sb_spino_align == 0); 1878 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); 1879 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno), 1880 contigblk, &oinfo); 1881 1882 /* reset range to current bit and carry on... */ 1883 startidx = endidx = nextbit; 1884 1885 next: 1886 nextbit++; 1887 } 1888 } 1889 1890 STATIC int 1891 xfs_difree_inobt( 1892 struct xfs_mount *mp, 1893 struct xfs_trans *tp, 1894 struct xfs_buf *agbp, 1895 xfs_agino_t agino, 1896 struct xfs_defer_ops *dfops, 1897 struct xfs_icluster *xic, 1898 struct xfs_inobt_rec_incore *orec) 1899 { 1900 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 1901 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 1902 struct xfs_perag *pag; 1903 struct xfs_btree_cur *cur; 1904 struct xfs_inobt_rec_incore rec; 1905 int ilen; 1906 int error; 1907 int i; 1908 int off; 1909 1910 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 1911 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); 1912 1913 /* 1914 * Initialize the cursor. 1915 */ 1916 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 1917 1918 error = xfs_check_agi_freecount(cur, agi); 1919 if (error) 1920 goto error0; 1921 1922 /* 1923 * Look for the entry describing this inode. 1924 */ 1925 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { 1926 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", 1927 __func__, error); 1928 goto error0; 1929 } 1930 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1931 error = xfs_inobt_get_rec(cur, &rec, &i); 1932 if (error) { 1933 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", 1934 __func__, error); 1935 goto error0; 1936 } 1937 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); 1938 /* 1939 * Get the offset in the inode chunk. 1940 */ 1941 off = agino - rec.ir_startino; 1942 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); 1943 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); 1944 /* 1945 * Mark the inode free & increment the count. 1946 */ 1947 rec.ir_free |= XFS_INOBT_MASK(off); 1948 rec.ir_freecount++; 1949 1950 /* 1951 * When an inode chunk is free, it becomes eligible for removal. Don't 1952 * remove the chunk if the block size is large enough for multiple inode 1953 * chunks (that might not be free). 1954 */ 1955 if (!(mp->m_flags & XFS_MOUNT_IKEEP) && 1956 rec.ir_free == XFS_INOBT_ALL_FREE && 1957 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { 1958 xic->deleted = 1; 1959 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); 1960 xic->alloc = xfs_inobt_irec_to_allocmask(&rec); 1961 1962 /* 1963 * Remove the inode cluster from the AGI B+Tree, adjust the 1964 * AGI and Superblock inode counts, and mark the disk space 1965 * to be freed when the transaction is committed. 1966 */ 1967 ilen = rec.ir_freecount; 1968 be32_add_cpu(&agi->agi_count, -ilen); 1969 be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); 1970 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); 1971 pag = xfs_perag_get(mp, agno); 1972 pag->pagi_freecount -= ilen - 1; 1973 xfs_perag_put(pag); 1974 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); 1975 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); 1976 1977 if ((error = xfs_btree_delete(cur, &i))) { 1978 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", 1979 __func__, error); 1980 goto error0; 1981 } 1982 1983 xfs_difree_inode_chunk(mp, agno, &rec, dfops); 1984 } else { 1985 xic->deleted = 0; 1986 1987 error = xfs_inobt_update(cur, &rec); 1988 if (error) { 1989 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", 1990 __func__, error); 1991 goto error0; 1992 } 1993 1994 /* 1995 * Change the inode free counts and log the ag/sb changes. 1996 */ 1997 be32_add_cpu(&agi->agi_freecount, 1); 1998 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); 1999 pag = xfs_perag_get(mp, agno); 2000 pag->pagi_freecount++; 2001 xfs_perag_put(pag); 2002 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); 2003 } 2004 2005 error = xfs_check_agi_freecount(cur, agi); 2006 if (error) 2007 goto error0; 2008 2009 *orec = rec; 2010 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2011 return 0; 2012 2013 error0: 2014 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2015 return error; 2016 } 2017 2018 /* 2019 * Free an inode in the free inode btree. 2020 */ 2021 STATIC int 2022 xfs_difree_finobt( 2023 struct xfs_mount *mp, 2024 struct xfs_trans *tp, 2025 struct xfs_buf *agbp, 2026 xfs_agino_t agino, 2027 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ 2028 { 2029 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); 2030 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); 2031 struct xfs_btree_cur *cur; 2032 struct xfs_inobt_rec_incore rec; 2033 int offset = agino - ibtrec->ir_startino; 2034 int error; 2035 int i; 2036 2037 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); 2038 2039 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); 2040 if (error) 2041 goto error; 2042 if (i == 0) { 2043 /* 2044 * If the record does not exist in the finobt, we must have just 2045 * freed an inode in a previously fully allocated chunk. If not, 2046 * something is out of sync. 2047 */ 2048 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error); 2049 2050 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, 2051 ibtrec->ir_count, 2052 ibtrec->ir_freecount, 2053 ibtrec->ir_free, &i); 2054 if (error) 2055 goto error; 2056 ASSERT(i == 1); 2057 2058 goto out; 2059 } 2060 2061 /* 2062 * Read and update the existing record. We could just copy the ibtrec 2063 * across here, but that would defeat the purpose of having redundant 2064 * metadata. By making the modifications independently, we can catch 2065 * corruptions that we wouldn't see if we just copied from one record 2066 * to another. 2067 */ 2068 error = xfs_inobt_get_rec(cur, &rec, &i); 2069 if (error) 2070 goto error; 2071 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); 2072 2073 rec.ir_free |= XFS_INOBT_MASK(offset); 2074 rec.ir_freecount++; 2075 2076 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) && 2077 (rec.ir_freecount == ibtrec->ir_freecount), 2078 error); 2079 2080 /* 2081 * The content of inobt records should always match between the inobt 2082 * and finobt. The lifecycle of records in the finobt is different from 2083 * the inobt in that the finobt only tracks records with at least one 2084 * free inode. Hence, if all of the inodes are free and we aren't 2085 * keeping inode chunks permanently on disk, remove the record. 2086 * Otherwise, update the record with the new information. 2087 * 2088 * Note that we currently can't free chunks when the block size is large 2089 * enough for multiple chunks. Leave the finobt record to remain in sync 2090 * with the inobt. 2091 */ 2092 if (rec.ir_free == XFS_INOBT_ALL_FREE && 2093 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK && 2094 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 2095 error = xfs_btree_delete(cur, &i); 2096 if (error) 2097 goto error; 2098 ASSERT(i == 1); 2099 } else { 2100 error = xfs_inobt_update(cur, &rec); 2101 if (error) 2102 goto error; 2103 } 2104 2105 out: 2106 error = xfs_check_agi_freecount(cur, agi); 2107 if (error) 2108 goto error; 2109 2110 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); 2111 return 0; 2112 2113 error: 2114 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); 2115 return error; 2116 } 2117 2118 /* 2119 * Free disk inode. Carefully avoids touching the incore inode, all 2120 * manipulations incore are the caller's responsibility. 2121 * The on-disk inode is not changed by this operation, only the 2122 * btree (free inode mask) is changed. 2123 */ 2124 int 2125 xfs_difree( 2126 struct xfs_trans *tp, /* transaction pointer */ 2127 xfs_ino_t inode, /* inode to be freed */ 2128 struct xfs_defer_ops *dfops, /* extents to free */ 2129 struct xfs_icluster *xic) /* cluster info if deleted */ 2130 { 2131 /* REFERENCED */ 2132 xfs_agblock_t agbno; /* block number containing inode */ 2133 struct xfs_buf *agbp; /* buffer for allocation group header */ 2134 xfs_agino_t agino; /* allocation group inode number */ 2135 xfs_agnumber_t agno; /* allocation group number */ 2136 int error; /* error return value */ 2137 struct xfs_mount *mp; /* mount structure for filesystem */ 2138 struct xfs_inobt_rec_incore rec;/* btree record */ 2139 2140 mp = tp->t_mountp; 2141 2142 /* 2143 * Break up inode number into its components. 2144 */ 2145 agno = XFS_INO_TO_AGNO(mp, inode); 2146 if (agno >= mp->m_sb.sb_agcount) { 2147 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", 2148 __func__, agno, mp->m_sb.sb_agcount); 2149 ASSERT(0); 2150 return -EINVAL; 2151 } 2152 agino = XFS_INO_TO_AGINO(mp, inode); 2153 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { 2154 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", 2155 __func__, (unsigned long long)inode, 2156 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); 2157 ASSERT(0); 2158 return -EINVAL; 2159 } 2160 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2161 if (agbno >= mp->m_sb.sb_agblocks) { 2162 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", 2163 __func__, agbno, mp->m_sb.sb_agblocks); 2164 ASSERT(0); 2165 return -EINVAL; 2166 } 2167 /* 2168 * Get the allocation group header. 2169 */ 2170 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2171 if (error) { 2172 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", 2173 __func__, error); 2174 return error; 2175 } 2176 2177 /* 2178 * Fix up the inode allocation btree. 2179 */ 2180 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec); 2181 if (error) 2182 goto error0; 2183 2184 /* 2185 * Fix up the free inode btree. 2186 */ 2187 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 2188 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); 2189 if (error) 2190 goto error0; 2191 } 2192 2193 return 0; 2194 2195 error0: 2196 return error; 2197 } 2198 2199 STATIC int 2200 xfs_imap_lookup( 2201 struct xfs_mount *mp, 2202 struct xfs_trans *tp, 2203 xfs_agnumber_t agno, 2204 xfs_agino_t agino, 2205 xfs_agblock_t agbno, 2206 xfs_agblock_t *chunk_agbno, 2207 xfs_agblock_t *offset_agbno, 2208 int flags) 2209 { 2210 struct xfs_inobt_rec_incore rec; 2211 struct xfs_btree_cur *cur; 2212 struct xfs_buf *agbp; 2213 int error; 2214 int i; 2215 2216 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); 2217 if (error) { 2218 xfs_alert(mp, 2219 "%s: xfs_ialloc_read_agi() returned error %d, agno %d", 2220 __func__, error, agno); 2221 return error; 2222 } 2223 2224 /* 2225 * Lookup the inode record for the given agino. If the record cannot be 2226 * found, then it's an invalid inode number and we should abort. Once 2227 * we have a record, we need to ensure it contains the inode number 2228 * we are looking up. 2229 */ 2230 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); 2231 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); 2232 if (!error) { 2233 if (i) 2234 error = xfs_inobt_get_rec(cur, &rec, &i); 2235 if (!error && i == 0) 2236 error = -EINVAL; 2237 } 2238 2239 xfs_trans_brelse(tp, agbp); 2240 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); 2241 if (error) 2242 return error; 2243 2244 /* check that the returned record contains the required inode */ 2245 if (rec.ir_startino > agino || 2246 rec.ir_startino + mp->m_ialloc_inos <= agino) 2247 return -EINVAL; 2248 2249 /* for untrusted inodes check it is allocated first */ 2250 if ((flags & XFS_IGET_UNTRUSTED) && 2251 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) 2252 return -EINVAL; 2253 2254 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); 2255 *offset_agbno = agbno - *chunk_agbno; 2256 return 0; 2257 } 2258 2259 /* 2260 * Return the location of the inode in imap, for mapping it into a buffer. 2261 */ 2262 int 2263 xfs_imap( 2264 xfs_mount_t *mp, /* file system mount structure */ 2265 xfs_trans_t *tp, /* transaction pointer */ 2266 xfs_ino_t ino, /* inode to locate */ 2267 struct xfs_imap *imap, /* location map structure */ 2268 uint flags) /* flags for inode btree lookup */ 2269 { 2270 xfs_agblock_t agbno; /* block number of inode in the alloc group */ 2271 xfs_agino_t agino; /* inode number within alloc group */ 2272 xfs_agnumber_t agno; /* allocation group number */ 2273 int blks_per_cluster; /* num blocks per inode cluster */ 2274 xfs_agblock_t chunk_agbno; /* first block in inode chunk */ 2275 xfs_agblock_t cluster_agbno; /* first block in inode cluster */ 2276 int error; /* error code */ 2277 int offset; /* index of inode in its buffer */ 2278 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ 2279 2280 ASSERT(ino != NULLFSINO); 2281 2282 /* 2283 * Split up the inode number into its parts. 2284 */ 2285 agno = XFS_INO_TO_AGNO(mp, ino); 2286 agino = XFS_INO_TO_AGINO(mp, ino); 2287 agbno = XFS_AGINO_TO_AGBNO(mp, agino); 2288 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || 2289 ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2290 #ifdef DEBUG 2291 /* 2292 * Don't output diagnostic information for untrusted inodes 2293 * as they can be invalid without implying corruption. 2294 */ 2295 if (flags & XFS_IGET_UNTRUSTED) 2296 return -EINVAL; 2297 if (agno >= mp->m_sb.sb_agcount) { 2298 xfs_alert(mp, 2299 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", 2300 __func__, agno, mp->m_sb.sb_agcount); 2301 } 2302 if (agbno >= mp->m_sb.sb_agblocks) { 2303 xfs_alert(mp, 2304 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", 2305 __func__, (unsigned long long)agbno, 2306 (unsigned long)mp->m_sb.sb_agblocks); 2307 } 2308 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { 2309 xfs_alert(mp, 2310 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", 2311 __func__, ino, 2312 XFS_AGINO_TO_INO(mp, agno, agino)); 2313 } 2314 xfs_stack_trace(); 2315 #endif /* DEBUG */ 2316 return -EINVAL; 2317 } 2318 2319 blks_per_cluster = xfs_icluster_size_fsb(mp); 2320 2321 /* 2322 * For bulkstat and handle lookups, we have an untrusted inode number 2323 * that we have to verify is valid. We cannot do this just by reading 2324 * the inode buffer as it may have been unlinked and removed leaving 2325 * inodes in stale state on disk. Hence we have to do a btree lookup 2326 * in all cases where an untrusted inode number is passed. 2327 */ 2328 if (flags & XFS_IGET_UNTRUSTED) { 2329 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2330 &chunk_agbno, &offset_agbno, flags); 2331 if (error) 2332 return error; 2333 goto out_map; 2334 } 2335 2336 /* 2337 * If the inode cluster size is the same as the blocksize or 2338 * smaller we get to the buffer by simple arithmetics. 2339 */ 2340 if (blks_per_cluster == 1) { 2341 offset = XFS_INO_TO_OFFSET(mp, ino); 2342 ASSERT(offset < mp->m_sb.sb_inopblock); 2343 2344 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); 2345 imap->im_len = XFS_FSB_TO_BB(mp, 1); 2346 imap->im_boffset = (unsigned short)(offset << 2347 mp->m_sb.sb_inodelog); 2348 return 0; 2349 } 2350 2351 /* 2352 * If the inode chunks are aligned then use simple maths to 2353 * find the location. Otherwise we have to do a btree 2354 * lookup to find the location. 2355 */ 2356 if (mp->m_inoalign_mask) { 2357 offset_agbno = agbno & mp->m_inoalign_mask; 2358 chunk_agbno = agbno - offset_agbno; 2359 } else { 2360 error = xfs_imap_lookup(mp, tp, agno, agino, agbno, 2361 &chunk_agbno, &offset_agbno, flags); 2362 if (error) 2363 return error; 2364 } 2365 2366 out_map: 2367 ASSERT(agbno >= chunk_agbno); 2368 cluster_agbno = chunk_agbno + 2369 ((offset_agbno / blks_per_cluster) * blks_per_cluster); 2370 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + 2371 XFS_INO_TO_OFFSET(mp, ino); 2372 2373 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); 2374 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster); 2375 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); 2376 2377 /* 2378 * If the inode number maps to a block outside the bounds 2379 * of the file system then return NULL rather than calling 2380 * read_buf and panicing when we get an error from the 2381 * driver. 2382 */ 2383 if ((imap->im_blkno + imap->im_len) > 2384 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 2385 xfs_alert(mp, 2386 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", 2387 __func__, (unsigned long long) imap->im_blkno, 2388 (unsigned long long) imap->im_len, 2389 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 2390 return -EINVAL; 2391 } 2392 return 0; 2393 } 2394 2395 /* 2396 * Compute and fill in value of m_in_maxlevels. 2397 */ 2398 void 2399 xfs_ialloc_compute_maxlevels( 2400 xfs_mount_t *mp) /* file system mount structure */ 2401 { 2402 uint inodes; 2403 2404 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; 2405 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr, 2406 inodes); 2407 } 2408 2409 /* 2410 * Log specified fields for the ag hdr (inode section). The growth of the agi 2411 * structure over time requires that we interpret the buffer as two logical 2412 * regions delineated by the end of the unlinked list. This is due to the size 2413 * of the hash table and its location in the middle of the agi. 2414 * 2415 * For example, a request to log a field before agi_unlinked and a field after 2416 * agi_unlinked could cause us to log the entire hash table and use an excessive 2417 * amount of log space. To avoid this behavior, log the region up through 2418 * agi_unlinked in one call and the region after agi_unlinked through the end of 2419 * the structure in another. 2420 */ 2421 void 2422 xfs_ialloc_log_agi( 2423 xfs_trans_t *tp, /* transaction pointer */ 2424 xfs_buf_t *bp, /* allocation group header buffer */ 2425 int fields) /* bitmask of fields to log */ 2426 { 2427 int first; /* first byte number */ 2428 int last; /* last byte number */ 2429 static const short offsets[] = { /* field starting offsets */ 2430 /* keep in sync with bit definitions */ 2431 offsetof(xfs_agi_t, agi_magicnum), 2432 offsetof(xfs_agi_t, agi_versionnum), 2433 offsetof(xfs_agi_t, agi_seqno), 2434 offsetof(xfs_agi_t, agi_length), 2435 offsetof(xfs_agi_t, agi_count), 2436 offsetof(xfs_agi_t, agi_root), 2437 offsetof(xfs_agi_t, agi_level), 2438 offsetof(xfs_agi_t, agi_freecount), 2439 offsetof(xfs_agi_t, agi_newino), 2440 offsetof(xfs_agi_t, agi_dirino), 2441 offsetof(xfs_agi_t, agi_unlinked), 2442 offsetof(xfs_agi_t, agi_free_root), 2443 offsetof(xfs_agi_t, agi_free_level), 2444 sizeof(xfs_agi_t) 2445 }; 2446 #ifdef DEBUG 2447 xfs_agi_t *agi; /* allocation group header */ 2448 2449 agi = XFS_BUF_TO_AGI(bp); 2450 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); 2451 #endif 2452 2453 /* 2454 * Compute byte offsets for the first and last fields in the first 2455 * region and log the agi buffer. This only logs up through 2456 * agi_unlinked. 2457 */ 2458 if (fields & XFS_AGI_ALL_BITS_R1) { 2459 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, 2460 &first, &last); 2461 xfs_trans_log_buf(tp, bp, first, last); 2462 } 2463 2464 /* 2465 * Mask off the bits in the first region and calculate the first and 2466 * last field offsets for any bits in the second region. 2467 */ 2468 fields &= ~XFS_AGI_ALL_BITS_R1; 2469 if (fields) { 2470 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, 2471 &first, &last); 2472 xfs_trans_log_buf(tp, bp, first, last); 2473 } 2474 } 2475 2476 #ifdef DEBUG 2477 STATIC void 2478 xfs_check_agi_unlinked( 2479 struct xfs_agi *agi) 2480 { 2481 int i; 2482 2483 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) 2484 ASSERT(agi->agi_unlinked[i]); 2485 } 2486 #else 2487 #define xfs_check_agi_unlinked(agi) 2488 #endif 2489 2490 static bool 2491 xfs_agi_verify( 2492 struct xfs_buf *bp) 2493 { 2494 struct xfs_mount *mp = bp->b_target->bt_mount; 2495 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); 2496 2497 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2498 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) 2499 return false; 2500 if (!xfs_log_check_lsn(mp, 2501 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn))) 2502 return false; 2503 } 2504 2505 /* 2506 * Validate the magic number of the agi block. 2507 */ 2508 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC)) 2509 return false; 2510 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) 2511 return false; 2512 2513 if (be32_to_cpu(agi->agi_level) < 1 || 2514 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS) 2515 return false; 2516 2517 if (xfs_sb_version_hasfinobt(&mp->m_sb) && 2518 (be32_to_cpu(agi->agi_free_level) < 1 || 2519 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS)) 2520 return false; 2521 2522 /* 2523 * during growfs operations, the perag is not fully initialised, 2524 * so we can't use it for any useful checking. growfs ensures we can't 2525 * use it by using uncached buffers that don't have the perag attached 2526 * so we can detect and avoid this problem. 2527 */ 2528 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) 2529 return false; 2530 2531 xfs_check_agi_unlinked(agi); 2532 return true; 2533 } 2534 2535 static void 2536 xfs_agi_read_verify( 2537 struct xfs_buf *bp) 2538 { 2539 struct xfs_mount *mp = bp->b_target->bt_mount; 2540 2541 if (xfs_sb_version_hascrc(&mp->m_sb) && 2542 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) 2543 xfs_buf_ioerror(bp, -EFSBADCRC); 2544 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp, 2545 XFS_ERRTAG_IALLOC_READ_AGI, 2546 XFS_RANDOM_IALLOC_READ_AGI)) 2547 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2548 2549 if (bp->b_error) 2550 xfs_verifier_error(bp); 2551 } 2552 2553 static void 2554 xfs_agi_write_verify( 2555 struct xfs_buf *bp) 2556 { 2557 struct xfs_mount *mp = bp->b_target->bt_mount; 2558 struct xfs_buf_log_item *bip = bp->b_fspriv; 2559 2560 if (!xfs_agi_verify(bp)) { 2561 xfs_buf_ioerror(bp, -EFSCORRUPTED); 2562 xfs_verifier_error(bp); 2563 return; 2564 } 2565 2566 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2567 return; 2568 2569 if (bip) 2570 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); 2571 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); 2572 } 2573 2574 const struct xfs_buf_ops xfs_agi_buf_ops = { 2575 .name = "xfs_agi", 2576 .verify_read = xfs_agi_read_verify, 2577 .verify_write = xfs_agi_write_verify, 2578 }; 2579 2580 /* 2581 * Read in the allocation group header (inode allocation section) 2582 */ 2583 int 2584 xfs_read_agi( 2585 struct xfs_mount *mp, /* file system mount structure */ 2586 struct xfs_trans *tp, /* transaction pointer */ 2587 xfs_agnumber_t agno, /* allocation group number */ 2588 struct xfs_buf **bpp) /* allocation group hdr buf */ 2589 { 2590 int error; 2591 2592 trace_xfs_read_agi(mp, agno); 2593 2594 ASSERT(agno != NULLAGNUMBER); 2595 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 2596 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 2597 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); 2598 if (error) 2599 return error; 2600 if (tp) 2601 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF); 2602 2603 xfs_buf_set_ref(*bpp, XFS_AGI_REF); 2604 return 0; 2605 } 2606 2607 int 2608 xfs_ialloc_read_agi( 2609 struct xfs_mount *mp, /* file system mount structure */ 2610 struct xfs_trans *tp, /* transaction pointer */ 2611 xfs_agnumber_t agno, /* allocation group number */ 2612 struct xfs_buf **bpp) /* allocation group hdr buf */ 2613 { 2614 struct xfs_agi *agi; /* allocation group header */ 2615 struct xfs_perag *pag; /* per allocation group data */ 2616 int error; 2617 2618 trace_xfs_ialloc_read_agi(mp, agno); 2619 2620 error = xfs_read_agi(mp, tp, agno, bpp); 2621 if (error) 2622 return error; 2623 2624 agi = XFS_BUF_TO_AGI(*bpp); 2625 pag = xfs_perag_get(mp, agno); 2626 if (!pag->pagi_init) { 2627 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 2628 pag->pagi_count = be32_to_cpu(agi->agi_count); 2629 pag->pagi_init = 1; 2630 } 2631 2632 /* 2633 * It's possible for these to be out of sync if 2634 * we are in the middle of a forced shutdown. 2635 */ 2636 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || 2637 XFS_FORCED_SHUTDOWN(mp)); 2638 xfs_perag_put(pag); 2639 return 0; 2640 } 2641 2642 /* 2643 * Read in the agi to initialise the per-ag data in the mount structure 2644 */ 2645 int 2646 xfs_ialloc_pagi_init( 2647 xfs_mount_t *mp, /* file system mount structure */ 2648 xfs_trans_t *tp, /* transaction pointer */ 2649 xfs_agnumber_t agno) /* allocation group number */ 2650 { 2651 xfs_buf_t *bp = NULL; 2652 int error; 2653 2654 error = xfs_ialloc_read_agi(mp, tp, agno, &bp); 2655 if (error) 2656 return error; 2657 if (bp) 2658 xfs_trans_brelse(tp, bp); 2659 return 0; 2660 } 2661