xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc.c (revision 029f7f3b8701cc7aca8bdb31f0c7edd6a479e357)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_inode.h"
28 #include "xfs_btree.h"
29 #include "xfs_ialloc.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_alloc.h"
32 #include "xfs_rtalloc.h"
33 #include "xfs_error.h"
34 #include "xfs_bmap.h"
35 #include "xfs_cksum.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_icreate_item.h"
39 #include "xfs_icache.h"
40 #include "xfs_trace.h"
41 #include "xfs_log.h"
42 
43 
44 /*
45  * Allocation group level functions.
46  */
47 static inline int
48 xfs_ialloc_cluster_alignment(
49 	struct xfs_mount	*mp)
50 {
51 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
52 	    mp->m_sb.sb_inoalignmt >=
53 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
54 		return mp->m_sb.sb_inoalignmt;
55 	return 1;
56 }
57 
58 /*
59  * Lookup a record by ino in the btree given by cur.
60  */
61 int					/* error */
62 xfs_inobt_lookup(
63 	struct xfs_btree_cur	*cur,	/* btree cursor */
64 	xfs_agino_t		ino,	/* starting inode of chunk */
65 	xfs_lookup_t		dir,	/* <=, >=, == */
66 	int			*stat)	/* success/failure */
67 {
68 	cur->bc_rec.i.ir_startino = ino;
69 	cur->bc_rec.i.ir_holemask = 0;
70 	cur->bc_rec.i.ir_count = 0;
71 	cur->bc_rec.i.ir_freecount = 0;
72 	cur->bc_rec.i.ir_free = 0;
73 	return xfs_btree_lookup(cur, dir, stat);
74 }
75 
76 /*
77  * Update the record referred to by cur to the value given.
78  * This either works (return 0) or gets an EFSCORRUPTED error.
79  */
80 STATIC int				/* error */
81 xfs_inobt_update(
82 	struct xfs_btree_cur	*cur,	/* btree cursor */
83 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
84 {
85 	union xfs_btree_rec	rec;
86 
87 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
88 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
89 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
90 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
91 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
92 	} else {
93 		/* ir_holemask/ir_count not supported on-disk */
94 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
95 	}
96 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
97 	return xfs_btree_update(cur, &rec);
98 }
99 
100 /*
101  * Get the data from the pointed-to record.
102  */
103 int					/* error */
104 xfs_inobt_get_rec(
105 	struct xfs_btree_cur	*cur,	/* btree cursor */
106 	xfs_inobt_rec_incore_t	*irec,	/* btree record */
107 	int			*stat)	/* output: success/failure */
108 {
109 	union xfs_btree_rec	*rec;
110 	int			error;
111 
112 	error = xfs_btree_get_rec(cur, &rec, stat);
113 	if (error || *stat == 0)
114 		return error;
115 
116 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
117 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
118 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
119 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
120 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
121 	} else {
122 		/*
123 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
124 		 * values for full inode chunks.
125 		 */
126 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
127 		irec->ir_count = XFS_INODES_PER_CHUNK;
128 		irec->ir_freecount =
129 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
130 	}
131 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
132 
133 	return 0;
134 }
135 
136 /*
137  * Insert a single inobt record. Cursor must already point to desired location.
138  */
139 STATIC int
140 xfs_inobt_insert_rec(
141 	struct xfs_btree_cur	*cur,
142 	__uint16_t		holemask,
143 	__uint8_t		count,
144 	__int32_t		freecount,
145 	xfs_inofree_t		free,
146 	int			*stat)
147 {
148 	cur->bc_rec.i.ir_holemask = holemask;
149 	cur->bc_rec.i.ir_count = count;
150 	cur->bc_rec.i.ir_freecount = freecount;
151 	cur->bc_rec.i.ir_free = free;
152 	return xfs_btree_insert(cur, stat);
153 }
154 
155 /*
156  * Insert records describing a newly allocated inode chunk into the inobt.
157  */
158 STATIC int
159 xfs_inobt_insert(
160 	struct xfs_mount	*mp,
161 	struct xfs_trans	*tp,
162 	struct xfs_buf		*agbp,
163 	xfs_agino_t		newino,
164 	xfs_agino_t		newlen,
165 	xfs_btnum_t		btnum)
166 {
167 	struct xfs_btree_cur	*cur;
168 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
169 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
170 	xfs_agino_t		thisino;
171 	int			i;
172 	int			error;
173 
174 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
175 
176 	for (thisino = newino;
177 	     thisino < newino + newlen;
178 	     thisino += XFS_INODES_PER_CHUNK) {
179 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
180 		if (error) {
181 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
182 			return error;
183 		}
184 		ASSERT(i == 0);
185 
186 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
187 					     XFS_INODES_PER_CHUNK,
188 					     XFS_INODES_PER_CHUNK,
189 					     XFS_INOBT_ALL_FREE, &i);
190 		if (error) {
191 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
192 			return error;
193 		}
194 		ASSERT(i == 1);
195 	}
196 
197 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
198 
199 	return 0;
200 }
201 
202 /*
203  * Verify that the number of free inodes in the AGI is correct.
204  */
205 #ifdef DEBUG
206 STATIC int
207 xfs_check_agi_freecount(
208 	struct xfs_btree_cur	*cur,
209 	struct xfs_agi		*agi)
210 {
211 	if (cur->bc_nlevels == 1) {
212 		xfs_inobt_rec_incore_t rec;
213 		int		freecount = 0;
214 		int		error;
215 		int		i;
216 
217 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
218 		if (error)
219 			return error;
220 
221 		do {
222 			error = xfs_inobt_get_rec(cur, &rec, &i);
223 			if (error)
224 				return error;
225 
226 			if (i) {
227 				freecount += rec.ir_freecount;
228 				error = xfs_btree_increment(cur, 0, &i);
229 				if (error)
230 					return error;
231 			}
232 		} while (i == 1);
233 
234 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
235 			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
236 	}
237 	return 0;
238 }
239 #else
240 #define xfs_check_agi_freecount(cur, agi)	0
241 #endif
242 
243 /*
244  * Initialise a new set of inodes. When called without a transaction context
245  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
246  * than logging them (which in a transaction context puts them into the AIL
247  * for writeback rather than the xfsbufd queue).
248  */
249 int
250 xfs_ialloc_inode_init(
251 	struct xfs_mount	*mp,
252 	struct xfs_trans	*tp,
253 	struct list_head	*buffer_list,
254 	int			icount,
255 	xfs_agnumber_t		agno,
256 	xfs_agblock_t		agbno,
257 	xfs_agblock_t		length,
258 	unsigned int		gen)
259 {
260 	struct xfs_buf		*fbuf;
261 	struct xfs_dinode	*free;
262 	int			nbufs, blks_per_cluster, inodes_per_cluster;
263 	int			version;
264 	int			i, j;
265 	xfs_daddr_t		d;
266 	xfs_ino_t		ino = 0;
267 
268 	/*
269 	 * Loop over the new block(s), filling in the inodes.  For small block
270 	 * sizes, manipulate the inodes in buffers  which are multiples of the
271 	 * blocks size.
272 	 */
273 	blks_per_cluster = xfs_icluster_size_fsb(mp);
274 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
275 	nbufs = length / blks_per_cluster;
276 
277 	/*
278 	 * Figure out what version number to use in the inodes we create.  If
279 	 * the superblock version has caught up to the one that supports the new
280 	 * inode format, then use the new inode version.  Otherwise use the old
281 	 * version so that old kernels will continue to be able to use the file
282 	 * system.
283 	 *
284 	 * For v3 inodes, we also need to write the inode number into the inode,
285 	 * so calculate the first inode number of the chunk here as
286 	 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
287 	 * across multiple filesystem blocks (such as a cluster) and so cannot
288 	 * be used in the cluster buffer loop below.
289 	 *
290 	 * Further, because we are writing the inode directly into the buffer
291 	 * and calculating a CRC on the entire inode, we have ot log the entire
292 	 * inode so that the entire range the CRC covers is present in the log.
293 	 * That means for v3 inode we log the entire buffer rather than just the
294 	 * inode cores.
295 	 */
296 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
297 		version = 3;
298 		ino = XFS_AGINO_TO_INO(mp, agno,
299 				       XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
300 
301 		/*
302 		 * log the initialisation that is about to take place as an
303 		 * logical operation. This means the transaction does not
304 		 * need to log the physical changes to the inode buffers as log
305 		 * recovery will know what initialisation is actually needed.
306 		 * Hence we only need to log the buffers as "ordered" buffers so
307 		 * they track in the AIL as if they were physically logged.
308 		 */
309 		if (tp)
310 			xfs_icreate_log(tp, agno, agbno, icount,
311 					mp->m_sb.sb_inodesize, length, gen);
312 	} else
313 		version = 2;
314 
315 	for (j = 0; j < nbufs; j++) {
316 		/*
317 		 * Get the block.
318 		 */
319 		d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
320 		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
321 					 mp->m_bsize * blks_per_cluster,
322 					 XBF_UNMAPPED);
323 		if (!fbuf)
324 			return -ENOMEM;
325 
326 		/* Initialize the inode buffers and log them appropriately. */
327 		fbuf->b_ops = &xfs_inode_buf_ops;
328 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
329 		for (i = 0; i < inodes_per_cluster; i++) {
330 			int	ioffset = i << mp->m_sb.sb_inodelog;
331 			uint	isize = xfs_dinode_size(version);
332 
333 			free = xfs_make_iptr(mp, fbuf, i);
334 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
335 			free->di_version = version;
336 			free->di_gen = cpu_to_be32(gen);
337 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
338 
339 			if (version == 3) {
340 				free->di_ino = cpu_to_be64(ino);
341 				ino++;
342 				uuid_copy(&free->di_uuid,
343 					  &mp->m_sb.sb_meta_uuid);
344 				xfs_dinode_calc_crc(mp, free);
345 			} else if (tp) {
346 				/* just log the inode core */
347 				xfs_trans_log_buf(tp, fbuf, ioffset,
348 						  ioffset + isize - 1);
349 			}
350 		}
351 
352 		if (tp) {
353 			/*
354 			 * Mark the buffer as an inode allocation buffer so it
355 			 * sticks in AIL at the point of this allocation
356 			 * transaction. This ensures the they are on disk before
357 			 * the tail of the log can be moved past this
358 			 * transaction (i.e. by preventing relogging from moving
359 			 * it forward in the log).
360 			 */
361 			xfs_trans_inode_alloc_buf(tp, fbuf);
362 			if (version == 3) {
363 				/*
364 				 * Mark the buffer as ordered so that they are
365 				 * not physically logged in the transaction but
366 				 * still tracked in the AIL as part of the
367 				 * transaction and pin the log appropriately.
368 				 */
369 				xfs_trans_ordered_buf(tp, fbuf);
370 				xfs_trans_log_buf(tp, fbuf, 0,
371 						  BBTOB(fbuf->b_length) - 1);
372 			}
373 		} else {
374 			fbuf->b_flags |= XBF_DONE;
375 			xfs_buf_delwri_queue(fbuf, buffer_list);
376 			xfs_buf_relse(fbuf);
377 		}
378 	}
379 	return 0;
380 }
381 
382 /*
383  * Align startino and allocmask for a recently allocated sparse chunk such that
384  * they are fit for insertion (or merge) into the on-disk inode btrees.
385  *
386  * Background:
387  *
388  * When enabled, sparse inode support increases the inode alignment from cluster
389  * size to inode chunk size. This means that the minimum range between two
390  * non-adjacent inode records in the inobt is large enough for a full inode
391  * record. This allows for cluster sized, cluster aligned block allocation
392  * without need to worry about whether the resulting inode record overlaps with
393  * another record in the tree. Without this basic rule, we would have to deal
394  * with the consequences of overlap by potentially undoing recent allocations in
395  * the inode allocation codepath.
396  *
397  * Because of this alignment rule (which is enforced on mount), there are two
398  * inobt possibilities for newly allocated sparse chunks. One is that the
399  * aligned inode record for the chunk covers a range of inodes not already
400  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
401  * other is that a record already exists at the aligned startino that considers
402  * the newly allocated range as sparse. In the latter case, record content is
403  * merged in hope that sparse inode chunks fill to full chunks over time.
404  */
405 STATIC void
406 xfs_align_sparse_ino(
407 	struct xfs_mount		*mp,
408 	xfs_agino_t			*startino,
409 	uint16_t			*allocmask)
410 {
411 	xfs_agblock_t			agbno;
412 	xfs_agblock_t			mod;
413 	int				offset;
414 
415 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
416 	mod = agbno % mp->m_sb.sb_inoalignmt;
417 	if (!mod)
418 		return;
419 
420 	/* calculate the inode offset and align startino */
421 	offset = mod << mp->m_sb.sb_inopblog;
422 	*startino -= offset;
423 
424 	/*
425 	 * Since startino has been aligned down, left shift allocmask such that
426 	 * it continues to represent the same physical inodes relative to the
427 	 * new startino.
428 	 */
429 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
430 }
431 
432 /*
433  * Determine whether the source inode record can merge into the target. Both
434  * records must be sparse, the inode ranges must match and there must be no
435  * allocation overlap between the records.
436  */
437 STATIC bool
438 __xfs_inobt_can_merge(
439 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
440 	struct xfs_inobt_rec_incore	*srec)	/* src record */
441 {
442 	uint64_t			talloc;
443 	uint64_t			salloc;
444 
445 	/* records must cover the same inode range */
446 	if (trec->ir_startino != srec->ir_startino)
447 		return false;
448 
449 	/* both records must be sparse */
450 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
451 	    !xfs_inobt_issparse(srec->ir_holemask))
452 		return false;
453 
454 	/* both records must track some inodes */
455 	if (!trec->ir_count || !srec->ir_count)
456 		return false;
457 
458 	/* can't exceed capacity of a full record */
459 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
460 		return false;
461 
462 	/* verify there is no allocation overlap */
463 	talloc = xfs_inobt_irec_to_allocmask(trec);
464 	salloc = xfs_inobt_irec_to_allocmask(srec);
465 	if (talloc & salloc)
466 		return false;
467 
468 	return true;
469 }
470 
471 /*
472  * Merge the source inode record into the target. The caller must call
473  * __xfs_inobt_can_merge() to ensure the merge is valid.
474  */
475 STATIC void
476 __xfs_inobt_rec_merge(
477 	struct xfs_inobt_rec_incore	*trec,	/* target */
478 	struct xfs_inobt_rec_incore	*srec)	/* src */
479 {
480 	ASSERT(trec->ir_startino == srec->ir_startino);
481 
482 	/* combine the counts */
483 	trec->ir_count += srec->ir_count;
484 	trec->ir_freecount += srec->ir_freecount;
485 
486 	/*
487 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
488 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
489 	 */
490 	trec->ir_holemask &= srec->ir_holemask;
491 	trec->ir_free &= srec->ir_free;
492 }
493 
494 /*
495  * Insert a new sparse inode chunk into the associated inode btree. The inode
496  * record for the sparse chunk is pre-aligned to a startino that should match
497  * any pre-existing sparse inode record in the tree. This allows sparse chunks
498  * to fill over time.
499  *
500  * This function supports two modes of handling preexisting records depending on
501  * the merge flag. If merge is true, the provided record is merged with the
502  * existing record and updated in place. The merged record is returned in nrec.
503  * If merge is false, an existing record is replaced with the provided record.
504  * If no preexisting record exists, the provided record is always inserted.
505  *
506  * It is considered corruption if a merge is requested and not possible. Given
507  * the sparse inode alignment constraints, this should never happen.
508  */
509 STATIC int
510 xfs_inobt_insert_sprec(
511 	struct xfs_mount		*mp,
512 	struct xfs_trans		*tp,
513 	struct xfs_buf			*agbp,
514 	int				btnum,
515 	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
516 	bool				merge)	/* merge or replace */
517 {
518 	struct xfs_btree_cur		*cur;
519 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
520 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
521 	int				error;
522 	int				i;
523 	struct xfs_inobt_rec_incore	rec;
524 
525 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
526 
527 	/* the new record is pre-aligned so we know where to look */
528 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
529 	if (error)
530 		goto error;
531 	/* if nothing there, insert a new record and return */
532 	if (i == 0) {
533 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
534 					     nrec->ir_count, nrec->ir_freecount,
535 					     nrec->ir_free, &i);
536 		if (error)
537 			goto error;
538 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
539 
540 		goto out;
541 	}
542 
543 	/*
544 	 * A record exists at this startino. Merge or replace the record
545 	 * depending on what we've been asked to do.
546 	 */
547 	if (merge) {
548 		error = xfs_inobt_get_rec(cur, &rec, &i);
549 		if (error)
550 			goto error;
551 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
552 		XFS_WANT_CORRUPTED_GOTO(mp,
553 					rec.ir_startino == nrec->ir_startino,
554 					error);
555 
556 		/*
557 		 * This should never fail. If we have coexisting records that
558 		 * cannot merge, something is seriously wrong.
559 		 */
560 		XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
561 					error);
562 
563 		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
564 					 rec.ir_holemask, nrec->ir_startino,
565 					 nrec->ir_holemask);
566 
567 		/* merge to nrec to output the updated record */
568 		__xfs_inobt_rec_merge(nrec, &rec);
569 
570 		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
571 					  nrec->ir_holemask);
572 
573 		error = xfs_inobt_rec_check_count(mp, nrec);
574 		if (error)
575 			goto error;
576 	}
577 
578 	error = xfs_inobt_update(cur, nrec);
579 	if (error)
580 		goto error;
581 
582 out:
583 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
584 	return 0;
585 error:
586 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
587 	return error;
588 }
589 
590 /*
591  * Allocate new inodes in the allocation group specified by agbp.
592  * Return 0 for success, else error code.
593  */
594 STATIC int				/* error code or 0 */
595 xfs_ialloc_ag_alloc(
596 	xfs_trans_t	*tp,		/* transaction pointer */
597 	xfs_buf_t	*agbp,		/* alloc group buffer */
598 	int		*alloc)
599 {
600 	xfs_agi_t	*agi;		/* allocation group header */
601 	xfs_alloc_arg_t	args;		/* allocation argument structure */
602 	xfs_agnumber_t	agno;
603 	int		error;
604 	xfs_agino_t	newino;		/* new first inode's number */
605 	xfs_agino_t	newlen;		/* new number of inodes */
606 	int		isaligned = 0;	/* inode allocation at stripe unit */
607 					/* boundary */
608 	uint16_t	allocmask = (uint16_t) -1; /* init. to full chunk */
609 	struct xfs_inobt_rec_incore rec;
610 	struct xfs_perag *pag;
611 	int		do_sparse = 0;
612 
613 	memset(&args, 0, sizeof(args));
614 	args.tp = tp;
615 	args.mp = tp->t_mountp;
616 	args.fsbno = NULLFSBLOCK;
617 
618 #ifdef DEBUG
619 	/* randomly do sparse inode allocations */
620 	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
621 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
622 		do_sparse = prandom_u32() & 1;
623 #endif
624 
625 	/*
626 	 * Locking will ensure that we don't have two callers in here
627 	 * at one time.
628 	 */
629 	newlen = args.mp->m_ialloc_inos;
630 	if (args.mp->m_maxicount &&
631 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
632 							args.mp->m_maxicount)
633 		return -ENOSPC;
634 	args.minlen = args.maxlen = args.mp->m_ialloc_blks;
635 	/*
636 	 * First try to allocate inodes contiguous with the last-allocated
637 	 * chunk of inodes.  If the filesystem is striped, this will fill
638 	 * an entire stripe unit with inodes.
639 	 */
640 	agi = XFS_BUF_TO_AGI(agbp);
641 	newino = be32_to_cpu(agi->agi_newino);
642 	agno = be32_to_cpu(agi->agi_seqno);
643 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
644 		     args.mp->m_ialloc_blks;
645 	if (do_sparse)
646 		goto sparse_alloc;
647 	if (likely(newino != NULLAGINO &&
648 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
649 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
650 		args.type = XFS_ALLOCTYPE_THIS_BNO;
651 		args.prod = 1;
652 
653 		/*
654 		 * We need to take into account alignment here to ensure that
655 		 * we don't modify the free list if we fail to have an exact
656 		 * block. If we don't have an exact match, and every oher
657 		 * attempt allocation attempt fails, we'll end up cancelling
658 		 * a dirty transaction and shutting down.
659 		 *
660 		 * For an exact allocation, alignment must be 1,
661 		 * however we need to take cluster alignment into account when
662 		 * fixing up the freelist. Use the minalignslop field to
663 		 * indicate that extra blocks might be required for alignment,
664 		 * but not to use them in the actual exact allocation.
665 		 */
666 		args.alignment = 1;
667 		args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
668 
669 		/* Allow space for the inode btree to split. */
670 		args.minleft = args.mp->m_in_maxlevels - 1;
671 		if ((error = xfs_alloc_vextent(&args)))
672 			return error;
673 
674 		/*
675 		 * This request might have dirtied the transaction if the AG can
676 		 * satisfy the request, but the exact block was not available.
677 		 * If the allocation did fail, subsequent requests will relax
678 		 * the exact agbno requirement and increase the alignment
679 		 * instead. It is critical that the total size of the request
680 		 * (len + alignment + slop) does not increase from this point
681 		 * on, so reset minalignslop to ensure it is not included in
682 		 * subsequent requests.
683 		 */
684 		args.minalignslop = 0;
685 	}
686 
687 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
688 		/*
689 		 * Set the alignment for the allocation.
690 		 * If stripe alignment is turned on then align at stripe unit
691 		 * boundary.
692 		 * If the cluster size is smaller than a filesystem block
693 		 * then we're doing I/O for inodes in filesystem block size
694 		 * pieces, so don't need alignment anyway.
695 		 */
696 		isaligned = 0;
697 		if (args.mp->m_sinoalign) {
698 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
699 			args.alignment = args.mp->m_dalign;
700 			isaligned = 1;
701 		} else
702 			args.alignment = xfs_ialloc_cluster_alignment(args.mp);
703 		/*
704 		 * Need to figure out where to allocate the inode blocks.
705 		 * Ideally they should be spaced out through the a.g.
706 		 * For now, just allocate blocks up front.
707 		 */
708 		args.agbno = be32_to_cpu(agi->agi_root);
709 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
710 		/*
711 		 * Allocate a fixed-size extent of inodes.
712 		 */
713 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
714 		args.prod = 1;
715 		/*
716 		 * Allow space for the inode btree to split.
717 		 */
718 		args.minleft = args.mp->m_in_maxlevels - 1;
719 		if ((error = xfs_alloc_vextent(&args)))
720 			return error;
721 	}
722 
723 	/*
724 	 * If stripe alignment is turned on, then try again with cluster
725 	 * alignment.
726 	 */
727 	if (isaligned && args.fsbno == NULLFSBLOCK) {
728 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
729 		args.agbno = be32_to_cpu(agi->agi_root);
730 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
731 		args.alignment = xfs_ialloc_cluster_alignment(args.mp);
732 		if ((error = xfs_alloc_vextent(&args)))
733 			return error;
734 	}
735 
736 	/*
737 	 * Finally, try a sparse allocation if the filesystem supports it and
738 	 * the sparse allocation length is smaller than a full chunk.
739 	 */
740 	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
741 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
742 	    args.fsbno == NULLFSBLOCK) {
743 sparse_alloc:
744 		args.type = XFS_ALLOCTYPE_NEAR_BNO;
745 		args.agbno = be32_to_cpu(agi->agi_root);
746 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
747 		args.alignment = args.mp->m_sb.sb_spino_align;
748 		args.prod = 1;
749 
750 		args.minlen = args.mp->m_ialloc_min_blks;
751 		args.maxlen = args.minlen;
752 
753 		/*
754 		 * The inode record will be aligned to full chunk size. We must
755 		 * prevent sparse allocation from AG boundaries that result in
756 		 * invalid inode records, such as records that start at agbno 0
757 		 * or extend beyond the AG.
758 		 *
759 		 * Set min agbno to the first aligned, non-zero agbno and max to
760 		 * the last aligned agbno that is at least one full chunk from
761 		 * the end of the AG.
762 		 */
763 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
764 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
765 					    args.mp->m_sb.sb_inoalignmt) -
766 				 args.mp->m_ialloc_blks;
767 
768 		error = xfs_alloc_vextent(&args);
769 		if (error)
770 			return error;
771 
772 		newlen = args.len << args.mp->m_sb.sb_inopblog;
773 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
774 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
775 	}
776 
777 	if (args.fsbno == NULLFSBLOCK) {
778 		*alloc = 0;
779 		return 0;
780 	}
781 	ASSERT(args.len == args.minlen);
782 
783 	/*
784 	 * Stamp and write the inode buffers.
785 	 *
786 	 * Seed the new inode cluster with a random generation number. This
787 	 * prevents short-term reuse of generation numbers if a chunk is
788 	 * freed and then immediately reallocated. We use random numbers
789 	 * rather than a linear progression to prevent the next generation
790 	 * number from being easily guessable.
791 	 */
792 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
793 			args.agbno, args.len, prandom_u32());
794 
795 	if (error)
796 		return error;
797 	/*
798 	 * Convert the results.
799 	 */
800 	newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
801 
802 	if (xfs_inobt_issparse(~allocmask)) {
803 		/*
804 		 * We've allocated a sparse chunk. Align the startino and mask.
805 		 */
806 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
807 
808 		rec.ir_startino = newino;
809 		rec.ir_holemask = ~allocmask;
810 		rec.ir_count = newlen;
811 		rec.ir_freecount = newlen;
812 		rec.ir_free = XFS_INOBT_ALL_FREE;
813 
814 		/*
815 		 * Insert the sparse record into the inobt and allow for a merge
816 		 * if necessary. If a merge does occur, rec is updated to the
817 		 * merged record.
818 		 */
819 		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
820 					       &rec, true);
821 		if (error == -EFSCORRUPTED) {
822 			xfs_alert(args.mp,
823 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
824 				  XFS_AGINO_TO_INO(args.mp, agno,
825 						   rec.ir_startino),
826 				  rec.ir_holemask, rec.ir_count);
827 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
828 		}
829 		if (error)
830 			return error;
831 
832 		/*
833 		 * We can't merge the part we've just allocated as for the inobt
834 		 * due to finobt semantics. The original record may or may not
835 		 * exist independent of whether physical inodes exist in this
836 		 * sparse chunk.
837 		 *
838 		 * We must update the finobt record based on the inobt record.
839 		 * rec contains the fully merged and up to date inobt record
840 		 * from the previous call. Set merge false to replace any
841 		 * existing record with this one.
842 		 */
843 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
844 			error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
845 						       XFS_BTNUM_FINO, &rec,
846 						       false);
847 			if (error)
848 				return error;
849 		}
850 	} else {
851 		/* full chunk - insert new records to both btrees */
852 		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
853 					 XFS_BTNUM_INO);
854 		if (error)
855 			return error;
856 
857 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
858 			error = xfs_inobt_insert(args.mp, tp, agbp, newino,
859 						 newlen, XFS_BTNUM_FINO);
860 			if (error)
861 				return error;
862 		}
863 	}
864 
865 	/*
866 	 * Update AGI counts and newino.
867 	 */
868 	be32_add_cpu(&agi->agi_count, newlen);
869 	be32_add_cpu(&agi->agi_freecount, newlen);
870 	pag = xfs_perag_get(args.mp, agno);
871 	pag->pagi_freecount += newlen;
872 	xfs_perag_put(pag);
873 	agi->agi_newino = cpu_to_be32(newino);
874 
875 	/*
876 	 * Log allocation group header fields
877 	 */
878 	xfs_ialloc_log_agi(tp, agbp,
879 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
880 	/*
881 	 * Modify/log superblock values for inode count and inode free count.
882 	 */
883 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
884 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
885 	*alloc = 1;
886 	return 0;
887 }
888 
889 STATIC xfs_agnumber_t
890 xfs_ialloc_next_ag(
891 	xfs_mount_t	*mp)
892 {
893 	xfs_agnumber_t	agno;
894 
895 	spin_lock(&mp->m_agirotor_lock);
896 	agno = mp->m_agirotor;
897 	if (++mp->m_agirotor >= mp->m_maxagi)
898 		mp->m_agirotor = 0;
899 	spin_unlock(&mp->m_agirotor_lock);
900 
901 	return agno;
902 }
903 
904 /*
905  * Select an allocation group to look for a free inode in, based on the parent
906  * inode and the mode.  Return the allocation group buffer.
907  */
908 STATIC xfs_agnumber_t
909 xfs_ialloc_ag_select(
910 	xfs_trans_t	*tp,		/* transaction pointer */
911 	xfs_ino_t	parent,		/* parent directory inode number */
912 	umode_t		mode,		/* bits set to indicate file type */
913 	int		okalloc)	/* ok to allocate more space */
914 {
915 	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
916 	xfs_agnumber_t	agno;		/* current ag number */
917 	int		flags;		/* alloc buffer locking flags */
918 	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
919 	xfs_extlen_t	longest = 0;	/* longest extent available */
920 	xfs_mount_t	*mp;		/* mount point structure */
921 	int		needspace;	/* file mode implies space allocated */
922 	xfs_perag_t	*pag;		/* per allocation group data */
923 	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
924 	int		error;
925 
926 	/*
927 	 * Files of these types need at least one block if length > 0
928 	 * (and they won't fit in the inode, but that's hard to figure out).
929 	 */
930 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
931 	mp = tp->t_mountp;
932 	agcount = mp->m_maxagi;
933 	if (S_ISDIR(mode))
934 		pagno = xfs_ialloc_next_ag(mp);
935 	else {
936 		pagno = XFS_INO_TO_AGNO(mp, parent);
937 		if (pagno >= agcount)
938 			pagno = 0;
939 	}
940 
941 	ASSERT(pagno < agcount);
942 
943 	/*
944 	 * Loop through allocation groups, looking for one with a little
945 	 * free space in it.  Note we don't look for free inodes, exactly.
946 	 * Instead, we include whether there is a need to allocate inodes
947 	 * to mean that blocks must be allocated for them,
948 	 * if none are currently free.
949 	 */
950 	agno = pagno;
951 	flags = XFS_ALLOC_FLAG_TRYLOCK;
952 	for (;;) {
953 		pag = xfs_perag_get(mp, agno);
954 		if (!pag->pagi_inodeok) {
955 			xfs_ialloc_next_ag(mp);
956 			goto nextag;
957 		}
958 
959 		if (!pag->pagi_init) {
960 			error = xfs_ialloc_pagi_init(mp, tp, agno);
961 			if (error)
962 				goto nextag;
963 		}
964 
965 		if (pag->pagi_freecount) {
966 			xfs_perag_put(pag);
967 			return agno;
968 		}
969 
970 		if (!okalloc)
971 			goto nextag;
972 
973 		if (!pag->pagf_init) {
974 			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
975 			if (error)
976 				goto nextag;
977 		}
978 
979 		/*
980 		 * Check that there is enough free space for the file plus a
981 		 * chunk of inodes if we need to allocate some. If this is the
982 		 * first pass across the AGs, take into account the potential
983 		 * space needed for alignment of inode chunks when checking the
984 		 * longest contiguous free space in the AG - this prevents us
985 		 * from getting ENOSPC because we have free space larger than
986 		 * m_ialloc_blks but alignment constraints prevent us from using
987 		 * it.
988 		 *
989 		 * If we can't find an AG with space for full alignment slack to
990 		 * be taken into account, we must be near ENOSPC in all AGs.
991 		 * Hence we don't include alignment for the second pass and so
992 		 * if we fail allocation due to alignment issues then it is most
993 		 * likely a real ENOSPC condition.
994 		 */
995 		ineed = mp->m_ialloc_min_blks;
996 		if (flags && ineed > 1)
997 			ineed += xfs_ialloc_cluster_alignment(mp);
998 		longest = pag->pagf_longest;
999 		if (!longest)
1000 			longest = pag->pagf_flcount > 0;
1001 
1002 		if (pag->pagf_freeblks >= needspace + ineed &&
1003 		    longest >= ineed) {
1004 			xfs_perag_put(pag);
1005 			return agno;
1006 		}
1007 nextag:
1008 		xfs_perag_put(pag);
1009 		/*
1010 		 * No point in iterating over the rest, if we're shutting
1011 		 * down.
1012 		 */
1013 		if (XFS_FORCED_SHUTDOWN(mp))
1014 			return NULLAGNUMBER;
1015 		agno++;
1016 		if (agno >= agcount)
1017 			agno = 0;
1018 		if (agno == pagno) {
1019 			if (flags == 0)
1020 				return NULLAGNUMBER;
1021 			flags = 0;
1022 		}
1023 	}
1024 }
1025 
1026 /*
1027  * Try to retrieve the next record to the left/right from the current one.
1028  */
1029 STATIC int
1030 xfs_ialloc_next_rec(
1031 	struct xfs_btree_cur	*cur,
1032 	xfs_inobt_rec_incore_t	*rec,
1033 	int			*done,
1034 	int			left)
1035 {
1036 	int                     error;
1037 	int			i;
1038 
1039 	if (left)
1040 		error = xfs_btree_decrement(cur, 0, &i);
1041 	else
1042 		error = xfs_btree_increment(cur, 0, &i);
1043 
1044 	if (error)
1045 		return error;
1046 	*done = !i;
1047 	if (i) {
1048 		error = xfs_inobt_get_rec(cur, rec, &i);
1049 		if (error)
1050 			return error;
1051 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 STATIC int
1058 xfs_ialloc_get_rec(
1059 	struct xfs_btree_cur	*cur,
1060 	xfs_agino_t		agino,
1061 	xfs_inobt_rec_incore_t	*rec,
1062 	int			*done)
1063 {
1064 	int                     error;
1065 	int			i;
1066 
1067 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1068 	if (error)
1069 		return error;
1070 	*done = !i;
1071 	if (i) {
1072 		error = xfs_inobt_get_rec(cur, rec, &i);
1073 		if (error)
1074 			return error;
1075 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1076 	}
1077 
1078 	return 0;
1079 }
1080 
1081 /*
1082  * Return the offset of the first free inode in the record. If the inode chunk
1083  * is sparsely allocated, we convert the record holemask to inode granularity
1084  * and mask off the unallocated regions from the inode free mask.
1085  */
1086 STATIC int
1087 xfs_inobt_first_free_inode(
1088 	struct xfs_inobt_rec_incore	*rec)
1089 {
1090 	xfs_inofree_t			realfree;
1091 
1092 	/* if there are no holes, return the first available offset */
1093 	if (!xfs_inobt_issparse(rec->ir_holemask))
1094 		return xfs_lowbit64(rec->ir_free);
1095 
1096 	realfree = xfs_inobt_irec_to_allocmask(rec);
1097 	realfree &= rec->ir_free;
1098 
1099 	return xfs_lowbit64(realfree);
1100 }
1101 
1102 /*
1103  * Allocate an inode using the inobt-only algorithm.
1104  */
1105 STATIC int
1106 xfs_dialloc_ag_inobt(
1107 	struct xfs_trans	*tp,
1108 	struct xfs_buf		*agbp,
1109 	xfs_ino_t		parent,
1110 	xfs_ino_t		*inop)
1111 {
1112 	struct xfs_mount	*mp = tp->t_mountp;
1113 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
1114 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
1115 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1116 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1117 	struct xfs_perag	*pag;
1118 	struct xfs_btree_cur	*cur, *tcur;
1119 	struct xfs_inobt_rec_incore rec, trec;
1120 	xfs_ino_t		ino;
1121 	int			error;
1122 	int			offset;
1123 	int			i, j;
1124 
1125 	pag = xfs_perag_get(mp, agno);
1126 
1127 	ASSERT(pag->pagi_init);
1128 	ASSERT(pag->pagi_inodeok);
1129 	ASSERT(pag->pagi_freecount > 0);
1130 
1131  restart_pagno:
1132 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1133 	/*
1134 	 * If pagino is 0 (this is the root inode allocation) use newino.
1135 	 * This must work because we've just allocated some.
1136 	 */
1137 	if (!pagino)
1138 		pagino = be32_to_cpu(agi->agi_newino);
1139 
1140 	error = xfs_check_agi_freecount(cur, agi);
1141 	if (error)
1142 		goto error0;
1143 
1144 	/*
1145 	 * If in the same AG as the parent, try to get near the parent.
1146 	 */
1147 	if (pagno == agno) {
1148 		int		doneleft;	/* done, to the left */
1149 		int		doneright;	/* done, to the right */
1150 		int		searchdistance = 10;
1151 
1152 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1153 		if (error)
1154 			goto error0;
1155 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1156 
1157 		error = xfs_inobt_get_rec(cur, &rec, &j);
1158 		if (error)
1159 			goto error0;
1160 		XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1161 
1162 		if (rec.ir_freecount > 0) {
1163 			/*
1164 			 * Found a free inode in the same chunk
1165 			 * as the parent, done.
1166 			 */
1167 			goto alloc_inode;
1168 		}
1169 
1170 
1171 		/*
1172 		 * In the same AG as parent, but parent's chunk is full.
1173 		 */
1174 
1175 		/* duplicate the cursor, search left & right simultaneously */
1176 		error = xfs_btree_dup_cursor(cur, &tcur);
1177 		if (error)
1178 			goto error0;
1179 
1180 		/*
1181 		 * Skip to last blocks looked up if same parent inode.
1182 		 */
1183 		if (pagino != NULLAGINO &&
1184 		    pag->pagl_pagino == pagino &&
1185 		    pag->pagl_leftrec != NULLAGINO &&
1186 		    pag->pagl_rightrec != NULLAGINO) {
1187 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1188 						   &trec, &doneleft);
1189 			if (error)
1190 				goto error1;
1191 
1192 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1193 						   &rec, &doneright);
1194 			if (error)
1195 				goto error1;
1196 		} else {
1197 			/* search left with tcur, back up 1 record */
1198 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1199 			if (error)
1200 				goto error1;
1201 
1202 			/* search right with cur, go forward 1 record. */
1203 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1204 			if (error)
1205 				goto error1;
1206 		}
1207 
1208 		/*
1209 		 * Loop until we find an inode chunk with a free inode.
1210 		 */
1211 		while (!doneleft || !doneright) {
1212 			int	useleft;  /* using left inode chunk this time */
1213 
1214 			if (!--searchdistance) {
1215 				/*
1216 				 * Not in range - save last search
1217 				 * location and allocate a new inode
1218 				 */
1219 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1220 				pag->pagl_leftrec = trec.ir_startino;
1221 				pag->pagl_rightrec = rec.ir_startino;
1222 				pag->pagl_pagino = pagino;
1223 				goto newino;
1224 			}
1225 
1226 			/* figure out the closer block if both are valid. */
1227 			if (!doneleft && !doneright) {
1228 				useleft = pagino -
1229 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1230 				  rec.ir_startino - pagino;
1231 			} else {
1232 				useleft = !doneleft;
1233 			}
1234 
1235 			/* free inodes to the left? */
1236 			if (useleft && trec.ir_freecount) {
1237 				rec = trec;
1238 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1239 				cur = tcur;
1240 
1241 				pag->pagl_leftrec = trec.ir_startino;
1242 				pag->pagl_rightrec = rec.ir_startino;
1243 				pag->pagl_pagino = pagino;
1244 				goto alloc_inode;
1245 			}
1246 
1247 			/* free inodes to the right? */
1248 			if (!useleft && rec.ir_freecount) {
1249 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1250 
1251 				pag->pagl_leftrec = trec.ir_startino;
1252 				pag->pagl_rightrec = rec.ir_startino;
1253 				pag->pagl_pagino = pagino;
1254 				goto alloc_inode;
1255 			}
1256 
1257 			/* get next record to check */
1258 			if (useleft) {
1259 				error = xfs_ialloc_next_rec(tcur, &trec,
1260 								 &doneleft, 1);
1261 			} else {
1262 				error = xfs_ialloc_next_rec(cur, &rec,
1263 								 &doneright, 0);
1264 			}
1265 			if (error)
1266 				goto error1;
1267 		}
1268 
1269 		/*
1270 		 * We've reached the end of the btree. because
1271 		 * we are only searching a small chunk of the
1272 		 * btree each search, there is obviously free
1273 		 * inodes closer to the parent inode than we
1274 		 * are now. restart the search again.
1275 		 */
1276 		pag->pagl_pagino = NULLAGINO;
1277 		pag->pagl_leftrec = NULLAGINO;
1278 		pag->pagl_rightrec = NULLAGINO;
1279 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1280 		xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1281 		goto restart_pagno;
1282 	}
1283 
1284 	/*
1285 	 * In a different AG from the parent.
1286 	 * See if the most recently allocated block has any free.
1287 	 */
1288 newino:
1289 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1290 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1291 					 XFS_LOOKUP_EQ, &i);
1292 		if (error)
1293 			goto error0;
1294 
1295 		if (i == 1) {
1296 			error = xfs_inobt_get_rec(cur, &rec, &j);
1297 			if (error)
1298 				goto error0;
1299 
1300 			if (j == 1 && rec.ir_freecount > 0) {
1301 				/*
1302 				 * The last chunk allocated in the group
1303 				 * still has a free inode.
1304 				 */
1305 				goto alloc_inode;
1306 			}
1307 		}
1308 	}
1309 
1310 	/*
1311 	 * None left in the last group, search the whole AG
1312 	 */
1313 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1314 	if (error)
1315 		goto error0;
1316 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1317 
1318 	for (;;) {
1319 		error = xfs_inobt_get_rec(cur, &rec, &i);
1320 		if (error)
1321 			goto error0;
1322 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1323 		if (rec.ir_freecount > 0)
1324 			break;
1325 		error = xfs_btree_increment(cur, 0, &i);
1326 		if (error)
1327 			goto error0;
1328 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1329 	}
1330 
1331 alloc_inode:
1332 	offset = xfs_inobt_first_free_inode(&rec);
1333 	ASSERT(offset >= 0);
1334 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1335 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1336 				   XFS_INODES_PER_CHUNK) == 0);
1337 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1338 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1339 	rec.ir_freecount--;
1340 	error = xfs_inobt_update(cur, &rec);
1341 	if (error)
1342 		goto error0;
1343 	be32_add_cpu(&agi->agi_freecount, -1);
1344 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1345 	pag->pagi_freecount--;
1346 
1347 	error = xfs_check_agi_freecount(cur, agi);
1348 	if (error)
1349 		goto error0;
1350 
1351 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1352 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1353 	xfs_perag_put(pag);
1354 	*inop = ino;
1355 	return 0;
1356 error1:
1357 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1358 error0:
1359 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1360 	xfs_perag_put(pag);
1361 	return error;
1362 }
1363 
1364 /*
1365  * Use the free inode btree to allocate an inode based on distance from the
1366  * parent. Note that the provided cursor may be deleted and replaced.
1367  */
1368 STATIC int
1369 xfs_dialloc_ag_finobt_near(
1370 	xfs_agino_t			pagino,
1371 	struct xfs_btree_cur		**ocur,
1372 	struct xfs_inobt_rec_incore	*rec)
1373 {
1374 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1375 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1376 	struct xfs_inobt_rec_incore	rrec;
1377 	int				error;
1378 	int				i, j;
1379 
1380 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1381 	if (error)
1382 		return error;
1383 
1384 	if (i == 1) {
1385 		error = xfs_inobt_get_rec(lcur, rec, &i);
1386 		if (error)
1387 			return error;
1388 		XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1389 
1390 		/*
1391 		 * See if we've landed in the parent inode record. The finobt
1392 		 * only tracks chunks with at least one free inode, so record
1393 		 * existence is enough.
1394 		 */
1395 		if (pagino >= rec->ir_startino &&
1396 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1397 			return 0;
1398 	}
1399 
1400 	error = xfs_btree_dup_cursor(lcur, &rcur);
1401 	if (error)
1402 		return error;
1403 
1404 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1405 	if (error)
1406 		goto error_rcur;
1407 	if (j == 1) {
1408 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1409 		if (error)
1410 			goto error_rcur;
1411 		XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1412 	}
1413 
1414 	XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1415 	if (i == 1 && j == 1) {
1416 		/*
1417 		 * Both the left and right records are valid. Choose the closer
1418 		 * inode chunk to the target.
1419 		 */
1420 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1421 		    (rrec.ir_startino - pagino)) {
1422 			*rec = rrec;
1423 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1424 			*ocur = rcur;
1425 		} else {
1426 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1427 		}
1428 	} else if (j == 1) {
1429 		/* only the right record is valid */
1430 		*rec = rrec;
1431 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1432 		*ocur = rcur;
1433 	} else if (i == 1) {
1434 		/* only the left record is valid */
1435 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1436 	}
1437 
1438 	return 0;
1439 
1440 error_rcur:
1441 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1442 	return error;
1443 }
1444 
1445 /*
1446  * Use the free inode btree to find a free inode based on a newino hint. If
1447  * the hint is NULL, find the first free inode in the AG.
1448  */
1449 STATIC int
1450 xfs_dialloc_ag_finobt_newino(
1451 	struct xfs_agi			*agi,
1452 	struct xfs_btree_cur		*cur,
1453 	struct xfs_inobt_rec_incore	*rec)
1454 {
1455 	int error;
1456 	int i;
1457 
1458 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1459 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1460 					 XFS_LOOKUP_EQ, &i);
1461 		if (error)
1462 			return error;
1463 		if (i == 1) {
1464 			error = xfs_inobt_get_rec(cur, rec, &i);
1465 			if (error)
1466 				return error;
1467 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1468 			return 0;
1469 		}
1470 	}
1471 
1472 	/*
1473 	 * Find the first inode available in the AG.
1474 	 */
1475 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1476 	if (error)
1477 		return error;
1478 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1479 
1480 	error = xfs_inobt_get_rec(cur, rec, &i);
1481 	if (error)
1482 		return error;
1483 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1484 
1485 	return 0;
1486 }
1487 
1488 /*
1489  * Update the inobt based on a modification made to the finobt. Also ensure that
1490  * the records from both trees are equivalent post-modification.
1491  */
1492 STATIC int
1493 xfs_dialloc_ag_update_inobt(
1494 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1495 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1496 	int				offset) /* inode offset */
1497 {
1498 	struct xfs_inobt_rec_incore	rec;
1499 	int				error;
1500 	int				i;
1501 
1502 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1503 	if (error)
1504 		return error;
1505 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1506 
1507 	error = xfs_inobt_get_rec(cur, &rec, &i);
1508 	if (error)
1509 		return error;
1510 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1511 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1512 				   XFS_INODES_PER_CHUNK) == 0);
1513 
1514 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1515 	rec.ir_freecount--;
1516 
1517 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1518 				  (rec.ir_freecount == frec->ir_freecount));
1519 
1520 	return xfs_inobt_update(cur, &rec);
1521 }
1522 
1523 /*
1524  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1525  * back to the inobt search algorithm.
1526  *
1527  * The caller selected an AG for us, and made sure that free inodes are
1528  * available.
1529  */
1530 STATIC int
1531 xfs_dialloc_ag(
1532 	struct xfs_trans	*tp,
1533 	struct xfs_buf		*agbp,
1534 	xfs_ino_t		parent,
1535 	xfs_ino_t		*inop)
1536 {
1537 	struct xfs_mount		*mp = tp->t_mountp;
1538 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1539 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1540 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1541 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1542 	struct xfs_perag		*pag;
1543 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1544 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1545 	struct xfs_inobt_rec_incore	rec;
1546 	xfs_ino_t			ino;
1547 	int				error;
1548 	int				offset;
1549 	int				i;
1550 
1551 	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1552 		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1553 
1554 	pag = xfs_perag_get(mp, agno);
1555 
1556 	/*
1557 	 * If pagino is 0 (this is the root inode allocation) use newino.
1558 	 * This must work because we've just allocated some.
1559 	 */
1560 	if (!pagino)
1561 		pagino = be32_to_cpu(agi->agi_newino);
1562 
1563 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1564 
1565 	error = xfs_check_agi_freecount(cur, agi);
1566 	if (error)
1567 		goto error_cur;
1568 
1569 	/*
1570 	 * The search algorithm depends on whether we're in the same AG as the
1571 	 * parent. If so, find the closest available inode to the parent. If
1572 	 * not, consider the agi hint or find the first free inode in the AG.
1573 	 */
1574 	if (agno == pagno)
1575 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1576 	else
1577 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1578 	if (error)
1579 		goto error_cur;
1580 
1581 	offset = xfs_inobt_first_free_inode(&rec);
1582 	ASSERT(offset >= 0);
1583 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1584 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1585 				   XFS_INODES_PER_CHUNK) == 0);
1586 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1587 
1588 	/*
1589 	 * Modify or remove the finobt record.
1590 	 */
1591 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1592 	rec.ir_freecount--;
1593 	if (rec.ir_freecount)
1594 		error = xfs_inobt_update(cur, &rec);
1595 	else
1596 		error = xfs_btree_delete(cur, &i);
1597 	if (error)
1598 		goto error_cur;
1599 
1600 	/*
1601 	 * The finobt has now been updated appropriately. We haven't updated the
1602 	 * agi and superblock yet, so we can create an inobt cursor and validate
1603 	 * the original freecount. If all is well, make the equivalent update to
1604 	 * the inobt using the finobt record and offset information.
1605 	 */
1606 	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1607 
1608 	error = xfs_check_agi_freecount(icur, agi);
1609 	if (error)
1610 		goto error_icur;
1611 
1612 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1613 	if (error)
1614 		goto error_icur;
1615 
1616 	/*
1617 	 * Both trees have now been updated. We must update the perag and
1618 	 * superblock before we can check the freecount for each btree.
1619 	 */
1620 	be32_add_cpu(&agi->agi_freecount, -1);
1621 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1622 	pag->pagi_freecount--;
1623 
1624 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1625 
1626 	error = xfs_check_agi_freecount(icur, agi);
1627 	if (error)
1628 		goto error_icur;
1629 	error = xfs_check_agi_freecount(cur, agi);
1630 	if (error)
1631 		goto error_icur;
1632 
1633 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1634 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1635 	xfs_perag_put(pag);
1636 	*inop = ino;
1637 	return 0;
1638 
1639 error_icur:
1640 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1641 error_cur:
1642 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1643 	xfs_perag_put(pag);
1644 	return error;
1645 }
1646 
1647 /*
1648  * Allocate an inode on disk.
1649  *
1650  * Mode is used to tell whether the new inode will need space, and whether it
1651  * is a directory.
1652  *
1653  * This function is designed to be called twice if it has to do an allocation
1654  * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1655  * If an inode is available without having to performn an allocation, an inode
1656  * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1657  * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1658  * The caller should then commit the current transaction, allocate a
1659  * new transaction, and call xfs_dialloc() again, passing in the previous value
1660  * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1661  * buffer is locked across the two calls, the second call is guaranteed to have
1662  * a free inode available.
1663  *
1664  * Once we successfully pick an inode its number is returned and the on-disk
1665  * data structures are updated.  The inode itself is not read in, since doing so
1666  * would break ordering constraints with xfs_reclaim.
1667  */
1668 int
1669 xfs_dialloc(
1670 	struct xfs_trans	*tp,
1671 	xfs_ino_t		parent,
1672 	umode_t			mode,
1673 	int			okalloc,
1674 	struct xfs_buf		**IO_agbp,
1675 	xfs_ino_t		*inop)
1676 {
1677 	struct xfs_mount	*mp = tp->t_mountp;
1678 	struct xfs_buf		*agbp;
1679 	xfs_agnumber_t		agno;
1680 	int			error;
1681 	int			ialloced;
1682 	int			noroom = 0;
1683 	xfs_agnumber_t		start_agno;
1684 	struct xfs_perag	*pag;
1685 
1686 	if (*IO_agbp) {
1687 		/*
1688 		 * If the caller passes in a pointer to the AGI buffer,
1689 		 * continue where we left off before.  In this case, we
1690 		 * know that the allocation group has free inodes.
1691 		 */
1692 		agbp = *IO_agbp;
1693 		goto out_alloc;
1694 	}
1695 
1696 	/*
1697 	 * We do not have an agbp, so select an initial allocation
1698 	 * group for inode allocation.
1699 	 */
1700 	start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1701 	if (start_agno == NULLAGNUMBER) {
1702 		*inop = NULLFSINO;
1703 		return 0;
1704 	}
1705 
1706 	/*
1707 	 * If we have already hit the ceiling of inode blocks then clear
1708 	 * okalloc so we scan all available agi structures for a free
1709 	 * inode.
1710 	 *
1711 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1712 	 * which will sacrifice the preciseness but improve the performance.
1713 	 */
1714 	if (mp->m_maxicount &&
1715 	    percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1716 							> mp->m_maxicount) {
1717 		noroom = 1;
1718 		okalloc = 0;
1719 	}
1720 
1721 	/*
1722 	 * Loop until we find an allocation group that either has free inodes
1723 	 * or in which we can allocate some inodes.  Iterate through the
1724 	 * allocation groups upward, wrapping at the end.
1725 	 */
1726 	agno = start_agno;
1727 	for (;;) {
1728 		pag = xfs_perag_get(mp, agno);
1729 		if (!pag->pagi_inodeok) {
1730 			xfs_ialloc_next_ag(mp);
1731 			goto nextag;
1732 		}
1733 
1734 		if (!pag->pagi_init) {
1735 			error = xfs_ialloc_pagi_init(mp, tp, agno);
1736 			if (error)
1737 				goto out_error;
1738 		}
1739 
1740 		/*
1741 		 * Do a first racy fast path check if this AG is usable.
1742 		 */
1743 		if (!pag->pagi_freecount && !okalloc)
1744 			goto nextag;
1745 
1746 		/*
1747 		 * Then read in the AGI buffer and recheck with the AGI buffer
1748 		 * lock held.
1749 		 */
1750 		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1751 		if (error)
1752 			goto out_error;
1753 
1754 		if (pag->pagi_freecount) {
1755 			xfs_perag_put(pag);
1756 			goto out_alloc;
1757 		}
1758 
1759 		if (!okalloc)
1760 			goto nextag_relse_buffer;
1761 
1762 
1763 		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1764 		if (error) {
1765 			xfs_trans_brelse(tp, agbp);
1766 
1767 			if (error != -ENOSPC)
1768 				goto out_error;
1769 
1770 			xfs_perag_put(pag);
1771 			*inop = NULLFSINO;
1772 			return 0;
1773 		}
1774 
1775 		if (ialloced) {
1776 			/*
1777 			 * We successfully allocated some inodes, return
1778 			 * the current context to the caller so that it
1779 			 * can commit the current transaction and call
1780 			 * us again where we left off.
1781 			 */
1782 			ASSERT(pag->pagi_freecount > 0);
1783 			xfs_perag_put(pag);
1784 
1785 			*IO_agbp = agbp;
1786 			*inop = NULLFSINO;
1787 			return 0;
1788 		}
1789 
1790 nextag_relse_buffer:
1791 		xfs_trans_brelse(tp, agbp);
1792 nextag:
1793 		xfs_perag_put(pag);
1794 		if (++agno == mp->m_sb.sb_agcount)
1795 			agno = 0;
1796 		if (agno == start_agno) {
1797 			*inop = NULLFSINO;
1798 			return noroom ? -ENOSPC : 0;
1799 		}
1800 	}
1801 
1802 out_alloc:
1803 	*IO_agbp = NULL;
1804 	return xfs_dialloc_ag(tp, agbp, parent, inop);
1805 out_error:
1806 	xfs_perag_put(pag);
1807 	return error;
1808 }
1809 
1810 /*
1811  * Free the blocks of an inode chunk. We must consider that the inode chunk
1812  * might be sparse and only free the regions that are allocated as part of the
1813  * chunk.
1814  */
1815 STATIC void
1816 xfs_difree_inode_chunk(
1817 	struct xfs_mount		*mp,
1818 	xfs_agnumber_t			agno,
1819 	struct xfs_inobt_rec_incore	*rec,
1820 	struct xfs_bmap_free		*flist)
1821 {
1822 	xfs_agblock_t	sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1823 	int		startidx, endidx;
1824 	int		nextbit;
1825 	xfs_agblock_t	agbno;
1826 	int		contigblk;
1827 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1828 
1829 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1830 		/* not sparse, calculate extent info directly */
1831 		xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
1832 				  XFS_AGINO_TO_AGBNO(mp, rec->ir_startino)),
1833 				  mp->m_ialloc_blks, flist, mp);
1834 		return;
1835 	}
1836 
1837 	/* holemask is only 16-bits (fits in an unsigned long) */
1838 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1839 	holemask[0] = rec->ir_holemask;
1840 
1841 	/*
1842 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1843 	 * holemask and convert the start/end index of each range to an extent.
1844 	 * We start with the start and end index both pointing at the first 0 in
1845 	 * the mask.
1846 	 */
1847 	startidx = endidx = find_first_zero_bit(holemask,
1848 						XFS_INOBT_HOLEMASK_BITS);
1849 	nextbit = startidx + 1;
1850 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1851 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1852 					     nextbit);
1853 		/*
1854 		 * If the next zero bit is contiguous, update the end index of
1855 		 * the current range and continue.
1856 		 */
1857 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1858 		    nextbit == endidx + 1) {
1859 			endidx = nextbit;
1860 			goto next;
1861 		}
1862 
1863 		/*
1864 		 * nextbit is not contiguous with the current end index. Convert
1865 		 * the current start/end to an extent and add it to the free
1866 		 * list.
1867 		 */
1868 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1869 				  mp->m_sb.sb_inopblock;
1870 		contigblk = ((endidx - startidx + 1) *
1871 			     XFS_INODES_PER_HOLEMASK_BIT) /
1872 			    mp->m_sb.sb_inopblock;
1873 
1874 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1875 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1876 		xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1877 				  flist, mp);
1878 
1879 		/* reset range to current bit and carry on... */
1880 		startidx = endidx = nextbit;
1881 
1882 next:
1883 		nextbit++;
1884 	}
1885 }
1886 
1887 STATIC int
1888 xfs_difree_inobt(
1889 	struct xfs_mount		*mp,
1890 	struct xfs_trans		*tp,
1891 	struct xfs_buf			*agbp,
1892 	xfs_agino_t			agino,
1893 	struct xfs_bmap_free		*flist,
1894 	struct xfs_icluster		*xic,
1895 	struct xfs_inobt_rec_incore	*orec)
1896 {
1897 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1898 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1899 	struct xfs_perag		*pag;
1900 	struct xfs_btree_cur		*cur;
1901 	struct xfs_inobt_rec_incore	rec;
1902 	int				ilen;
1903 	int				error;
1904 	int				i;
1905 	int				off;
1906 
1907 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1908 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1909 
1910 	/*
1911 	 * Initialize the cursor.
1912 	 */
1913 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1914 
1915 	error = xfs_check_agi_freecount(cur, agi);
1916 	if (error)
1917 		goto error0;
1918 
1919 	/*
1920 	 * Look for the entry describing this inode.
1921 	 */
1922 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1923 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1924 			__func__, error);
1925 		goto error0;
1926 	}
1927 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1928 	error = xfs_inobt_get_rec(cur, &rec, &i);
1929 	if (error) {
1930 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1931 			__func__, error);
1932 		goto error0;
1933 	}
1934 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1935 	/*
1936 	 * Get the offset in the inode chunk.
1937 	 */
1938 	off = agino - rec.ir_startino;
1939 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1940 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1941 	/*
1942 	 * Mark the inode free & increment the count.
1943 	 */
1944 	rec.ir_free |= XFS_INOBT_MASK(off);
1945 	rec.ir_freecount++;
1946 
1947 	/*
1948 	 * When an inode chunk is free, it becomes eligible for removal. Don't
1949 	 * remove the chunk if the block size is large enough for multiple inode
1950 	 * chunks (that might not be free).
1951 	 */
1952 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1953 	    rec.ir_free == XFS_INOBT_ALL_FREE &&
1954 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1955 		xic->deleted = 1;
1956 		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1957 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1958 
1959 		/*
1960 		 * Remove the inode cluster from the AGI B+Tree, adjust the
1961 		 * AGI and Superblock inode counts, and mark the disk space
1962 		 * to be freed when the transaction is committed.
1963 		 */
1964 		ilen = rec.ir_freecount;
1965 		be32_add_cpu(&agi->agi_count, -ilen);
1966 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1967 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1968 		pag = xfs_perag_get(mp, agno);
1969 		pag->pagi_freecount -= ilen - 1;
1970 		xfs_perag_put(pag);
1971 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1972 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1973 
1974 		if ((error = xfs_btree_delete(cur, &i))) {
1975 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1976 				__func__, error);
1977 			goto error0;
1978 		}
1979 
1980 		xfs_difree_inode_chunk(mp, agno, &rec, flist);
1981 	} else {
1982 		xic->deleted = 0;
1983 
1984 		error = xfs_inobt_update(cur, &rec);
1985 		if (error) {
1986 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1987 				__func__, error);
1988 			goto error0;
1989 		}
1990 
1991 		/*
1992 		 * Change the inode free counts and log the ag/sb changes.
1993 		 */
1994 		be32_add_cpu(&agi->agi_freecount, 1);
1995 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1996 		pag = xfs_perag_get(mp, agno);
1997 		pag->pagi_freecount++;
1998 		xfs_perag_put(pag);
1999 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2000 	}
2001 
2002 	error = xfs_check_agi_freecount(cur, agi);
2003 	if (error)
2004 		goto error0;
2005 
2006 	*orec = rec;
2007 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2008 	return 0;
2009 
2010 error0:
2011 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2012 	return error;
2013 }
2014 
2015 /*
2016  * Free an inode in the free inode btree.
2017  */
2018 STATIC int
2019 xfs_difree_finobt(
2020 	struct xfs_mount		*mp,
2021 	struct xfs_trans		*tp,
2022 	struct xfs_buf			*agbp,
2023 	xfs_agino_t			agino,
2024 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2025 {
2026 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
2027 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
2028 	struct xfs_btree_cur		*cur;
2029 	struct xfs_inobt_rec_incore	rec;
2030 	int				offset = agino - ibtrec->ir_startino;
2031 	int				error;
2032 	int				i;
2033 
2034 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2035 
2036 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2037 	if (error)
2038 		goto error;
2039 	if (i == 0) {
2040 		/*
2041 		 * If the record does not exist in the finobt, we must have just
2042 		 * freed an inode in a previously fully allocated chunk. If not,
2043 		 * something is out of sync.
2044 		 */
2045 		XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2046 
2047 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2048 					     ibtrec->ir_count,
2049 					     ibtrec->ir_freecount,
2050 					     ibtrec->ir_free, &i);
2051 		if (error)
2052 			goto error;
2053 		ASSERT(i == 1);
2054 
2055 		goto out;
2056 	}
2057 
2058 	/*
2059 	 * Read and update the existing record. We could just copy the ibtrec
2060 	 * across here, but that would defeat the purpose of having redundant
2061 	 * metadata. By making the modifications independently, we can catch
2062 	 * corruptions that we wouldn't see if we just copied from one record
2063 	 * to another.
2064 	 */
2065 	error = xfs_inobt_get_rec(cur, &rec, &i);
2066 	if (error)
2067 		goto error;
2068 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2069 
2070 	rec.ir_free |= XFS_INOBT_MASK(offset);
2071 	rec.ir_freecount++;
2072 
2073 	XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2074 				(rec.ir_freecount == ibtrec->ir_freecount),
2075 				error);
2076 
2077 	/*
2078 	 * The content of inobt records should always match between the inobt
2079 	 * and finobt. The lifecycle of records in the finobt is different from
2080 	 * the inobt in that the finobt only tracks records with at least one
2081 	 * free inode. Hence, if all of the inodes are free and we aren't
2082 	 * keeping inode chunks permanently on disk, remove the record.
2083 	 * Otherwise, update the record with the new information.
2084 	 *
2085 	 * Note that we currently can't free chunks when the block size is large
2086 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2087 	 * with the inobt.
2088 	 */
2089 	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2090 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2091 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2092 		error = xfs_btree_delete(cur, &i);
2093 		if (error)
2094 			goto error;
2095 		ASSERT(i == 1);
2096 	} else {
2097 		error = xfs_inobt_update(cur, &rec);
2098 		if (error)
2099 			goto error;
2100 	}
2101 
2102 out:
2103 	error = xfs_check_agi_freecount(cur, agi);
2104 	if (error)
2105 		goto error;
2106 
2107 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2108 	return 0;
2109 
2110 error:
2111 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2112 	return error;
2113 }
2114 
2115 /*
2116  * Free disk inode.  Carefully avoids touching the incore inode, all
2117  * manipulations incore are the caller's responsibility.
2118  * The on-disk inode is not changed by this operation, only the
2119  * btree (free inode mask) is changed.
2120  */
2121 int
2122 xfs_difree(
2123 	struct xfs_trans	*tp,		/* transaction pointer */
2124 	xfs_ino_t		inode,		/* inode to be freed */
2125 	struct xfs_bmap_free	*flist,		/* extents to free */
2126 	struct xfs_icluster	*xic)	/* cluster info if deleted */
2127 {
2128 	/* REFERENCED */
2129 	xfs_agblock_t		agbno;	/* block number containing inode */
2130 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2131 	xfs_agino_t		agino;	/* allocation group inode number */
2132 	xfs_agnumber_t		agno;	/* allocation group number */
2133 	int			error;	/* error return value */
2134 	struct xfs_mount	*mp;	/* mount structure for filesystem */
2135 	struct xfs_inobt_rec_incore rec;/* btree record */
2136 
2137 	mp = tp->t_mountp;
2138 
2139 	/*
2140 	 * Break up inode number into its components.
2141 	 */
2142 	agno = XFS_INO_TO_AGNO(mp, inode);
2143 	if (agno >= mp->m_sb.sb_agcount)  {
2144 		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2145 			__func__, agno, mp->m_sb.sb_agcount);
2146 		ASSERT(0);
2147 		return -EINVAL;
2148 	}
2149 	agino = XFS_INO_TO_AGINO(mp, inode);
2150 	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2151 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2152 			__func__, (unsigned long long)inode,
2153 			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2154 		ASSERT(0);
2155 		return -EINVAL;
2156 	}
2157 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2158 	if (agbno >= mp->m_sb.sb_agblocks)  {
2159 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2160 			__func__, agbno, mp->m_sb.sb_agblocks);
2161 		ASSERT(0);
2162 		return -EINVAL;
2163 	}
2164 	/*
2165 	 * Get the allocation group header.
2166 	 */
2167 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2168 	if (error) {
2169 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2170 			__func__, error);
2171 		return error;
2172 	}
2173 
2174 	/*
2175 	 * Fix up the inode allocation btree.
2176 	 */
2177 	error = xfs_difree_inobt(mp, tp, agbp, agino, flist, xic, &rec);
2178 	if (error)
2179 		goto error0;
2180 
2181 	/*
2182 	 * Fix up the free inode btree.
2183 	 */
2184 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2185 		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2186 		if (error)
2187 			goto error0;
2188 	}
2189 
2190 	return 0;
2191 
2192 error0:
2193 	return error;
2194 }
2195 
2196 STATIC int
2197 xfs_imap_lookup(
2198 	struct xfs_mount	*mp,
2199 	struct xfs_trans	*tp,
2200 	xfs_agnumber_t		agno,
2201 	xfs_agino_t		agino,
2202 	xfs_agblock_t		agbno,
2203 	xfs_agblock_t		*chunk_agbno,
2204 	xfs_agblock_t		*offset_agbno,
2205 	int			flags)
2206 {
2207 	struct xfs_inobt_rec_incore rec;
2208 	struct xfs_btree_cur	*cur;
2209 	struct xfs_buf		*agbp;
2210 	int			error;
2211 	int			i;
2212 
2213 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2214 	if (error) {
2215 		xfs_alert(mp,
2216 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2217 			__func__, error, agno);
2218 		return error;
2219 	}
2220 
2221 	/*
2222 	 * Lookup the inode record for the given agino. If the record cannot be
2223 	 * found, then it's an invalid inode number and we should abort. Once
2224 	 * we have a record, we need to ensure it contains the inode number
2225 	 * we are looking up.
2226 	 */
2227 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2228 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2229 	if (!error) {
2230 		if (i)
2231 			error = xfs_inobt_get_rec(cur, &rec, &i);
2232 		if (!error && i == 0)
2233 			error = -EINVAL;
2234 	}
2235 
2236 	xfs_trans_brelse(tp, agbp);
2237 	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2238 	if (error)
2239 		return error;
2240 
2241 	/* check that the returned record contains the required inode */
2242 	if (rec.ir_startino > agino ||
2243 	    rec.ir_startino + mp->m_ialloc_inos <= agino)
2244 		return -EINVAL;
2245 
2246 	/* for untrusted inodes check it is allocated first */
2247 	if ((flags & XFS_IGET_UNTRUSTED) &&
2248 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2249 		return -EINVAL;
2250 
2251 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2252 	*offset_agbno = agbno - *chunk_agbno;
2253 	return 0;
2254 }
2255 
2256 /*
2257  * Return the location of the inode in imap, for mapping it into a buffer.
2258  */
2259 int
2260 xfs_imap(
2261 	xfs_mount_t	 *mp,	/* file system mount structure */
2262 	xfs_trans_t	 *tp,	/* transaction pointer */
2263 	xfs_ino_t	ino,	/* inode to locate */
2264 	struct xfs_imap	*imap,	/* location map structure */
2265 	uint		flags)	/* flags for inode btree lookup */
2266 {
2267 	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
2268 	xfs_agino_t	agino;	/* inode number within alloc group */
2269 	xfs_agnumber_t	agno;	/* allocation group number */
2270 	int		blks_per_cluster; /* num blocks per inode cluster */
2271 	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
2272 	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
2273 	int		error;	/* error code */
2274 	int		offset;	/* index of inode in its buffer */
2275 	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
2276 
2277 	ASSERT(ino != NULLFSINO);
2278 
2279 	/*
2280 	 * Split up the inode number into its parts.
2281 	 */
2282 	agno = XFS_INO_TO_AGNO(mp, ino);
2283 	agino = XFS_INO_TO_AGINO(mp, ino);
2284 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2285 	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2286 	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2287 #ifdef DEBUG
2288 		/*
2289 		 * Don't output diagnostic information for untrusted inodes
2290 		 * as they can be invalid without implying corruption.
2291 		 */
2292 		if (flags & XFS_IGET_UNTRUSTED)
2293 			return -EINVAL;
2294 		if (agno >= mp->m_sb.sb_agcount) {
2295 			xfs_alert(mp,
2296 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2297 				__func__, agno, mp->m_sb.sb_agcount);
2298 		}
2299 		if (agbno >= mp->m_sb.sb_agblocks) {
2300 			xfs_alert(mp,
2301 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2302 				__func__, (unsigned long long)agbno,
2303 				(unsigned long)mp->m_sb.sb_agblocks);
2304 		}
2305 		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2306 			xfs_alert(mp,
2307 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2308 				__func__, ino,
2309 				XFS_AGINO_TO_INO(mp, agno, agino));
2310 		}
2311 		xfs_stack_trace();
2312 #endif /* DEBUG */
2313 		return -EINVAL;
2314 	}
2315 
2316 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2317 
2318 	/*
2319 	 * For bulkstat and handle lookups, we have an untrusted inode number
2320 	 * that we have to verify is valid. We cannot do this just by reading
2321 	 * the inode buffer as it may have been unlinked and removed leaving
2322 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2323 	 * in all cases where an untrusted inode number is passed.
2324 	 */
2325 	if (flags & XFS_IGET_UNTRUSTED) {
2326 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2327 					&chunk_agbno, &offset_agbno, flags);
2328 		if (error)
2329 			return error;
2330 		goto out_map;
2331 	}
2332 
2333 	/*
2334 	 * If the inode cluster size is the same as the blocksize or
2335 	 * smaller we get to the buffer by simple arithmetics.
2336 	 */
2337 	if (blks_per_cluster == 1) {
2338 		offset = XFS_INO_TO_OFFSET(mp, ino);
2339 		ASSERT(offset < mp->m_sb.sb_inopblock);
2340 
2341 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2342 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2343 		imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2344 		return 0;
2345 	}
2346 
2347 	/*
2348 	 * If the inode chunks are aligned then use simple maths to
2349 	 * find the location. Otherwise we have to do a btree
2350 	 * lookup to find the location.
2351 	 */
2352 	if (mp->m_inoalign_mask) {
2353 		offset_agbno = agbno & mp->m_inoalign_mask;
2354 		chunk_agbno = agbno - offset_agbno;
2355 	} else {
2356 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2357 					&chunk_agbno, &offset_agbno, flags);
2358 		if (error)
2359 			return error;
2360 	}
2361 
2362 out_map:
2363 	ASSERT(agbno >= chunk_agbno);
2364 	cluster_agbno = chunk_agbno +
2365 		((offset_agbno / blks_per_cluster) * blks_per_cluster);
2366 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2367 		XFS_INO_TO_OFFSET(mp, ino);
2368 
2369 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2370 	imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2371 	imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2372 
2373 	/*
2374 	 * If the inode number maps to a block outside the bounds
2375 	 * of the file system then return NULL rather than calling
2376 	 * read_buf and panicing when we get an error from the
2377 	 * driver.
2378 	 */
2379 	if ((imap->im_blkno + imap->im_len) >
2380 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2381 		xfs_alert(mp,
2382 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2383 			__func__, (unsigned long long) imap->im_blkno,
2384 			(unsigned long long) imap->im_len,
2385 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2386 		return -EINVAL;
2387 	}
2388 	return 0;
2389 }
2390 
2391 /*
2392  * Compute and fill in value of m_in_maxlevels.
2393  */
2394 void
2395 xfs_ialloc_compute_maxlevels(
2396 	xfs_mount_t	*mp)		/* file system mount structure */
2397 {
2398 	int		level;
2399 	uint		maxblocks;
2400 	uint		maxleafents;
2401 	int		minleafrecs;
2402 	int		minnoderecs;
2403 
2404 	maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
2405 		XFS_INODES_PER_CHUNK_LOG;
2406 	minleafrecs = mp->m_alloc_mnr[0];
2407 	minnoderecs = mp->m_alloc_mnr[1];
2408 	maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
2409 	for (level = 1; maxblocks > 1; level++)
2410 		maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
2411 	mp->m_in_maxlevels = level;
2412 }
2413 
2414 /*
2415  * Log specified fields for the ag hdr (inode section). The growth of the agi
2416  * structure over time requires that we interpret the buffer as two logical
2417  * regions delineated by the end of the unlinked list. This is due to the size
2418  * of the hash table and its location in the middle of the agi.
2419  *
2420  * For example, a request to log a field before agi_unlinked and a field after
2421  * agi_unlinked could cause us to log the entire hash table and use an excessive
2422  * amount of log space. To avoid this behavior, log the region up through
2423  * agi_unlinked in one call and the region after agi_unlinked through the end of
2424  * the structure in another.
2425  */
2426 void
2427 xfs_ialloc_log_agi(
2428 	xfs_trans_t	*tp,		/* transaction pointer */
2429 	xfs_buf_t	*bp,		/* allocation group header buffer */
2430 	int		fields)		/* bitmask of fields to log */
2431 {
2432 	int			first;		/* first byte number */
2433 	int			last;		/* last byte number */
2434 	static const short	offsets[] = {	/* field starting offsets */
2435 					/* keep in sync with bit definitions */
2436 		offsetof(xfs_agi_t, agi_magicnum),
2437 		offsetof(xfs_agi_t, agi_versionnum),
2438 		offsetof(xfs_agi_t, agi_seqno),
2439 		offsetof(xfs_agi_t, agi_length),
2440 		offsetof(xfs_agi_t, agi_count),
2441 		offsetof(xfs_agi_t, agi_root),
2442 		offsetof(xfs_agi_t, agi_level),
2443 		offsetof(xfs_agi_t, agi_freecount),
2444 		offsetof(xfs_agi_t, agi_newino),
2445 		offsetof(xfs_agi_t, agi_dirino),
2446 		offsetof(xfs_agi_t, agi_unlinked),
2447 		offsetof(xfs_agi_t, agi_free_root),
2448 		offsetof(xfs_agi_t, agi_free_level),
2449 		sizeof(xfs_agi_t)
2450 	};
2451 #ifdef DEBUG
2452 	xfs_agi_t		*agi;	/* allocation group header */
2453 
2454 	agi = XFS_BUF_TO_AGI(bp);
2455 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2456 #endif
2457 
2458 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2459 
2460 	/*
2461 	 * Compute byte offsets for the first and last fields in the first
2462 	 * region and log the agi buffer. This only logs up through
2463 	 * agi_unlinked.
2464 	 */
2465 	if (fields & XFS_AGI_ALL_BITS_R1) {
2466 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2467 				  &first, &last);
2468 		xfs_trans_log_buf(tp, bp, first, last);
2469 	}
2470 
2471 	/*
2472 	 * Mask off the bits in the first region and calculate the first and
2473 	 * last field offsets for any bits in the second region.
2474 	 */
2475 	fields &= ~XFS_AGI_ALL_BITS_R1;
2476 	if (fields) {
2477 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2478 				  &first, &last);
2479 		xfs_trans_log_buf(tp, bp, first, last);
2480 	}
2481 }
2482 
2483 #ifdef DEBUG
2484 STATIC void
2485 xfs_check_agi_unlinked(
2486 	struct xfs_agi		*agi)
2487 {
2488 	int			i;
2489 
2490 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2491 		ASSERT(agi->agi_unlinked[i]);
2492 }
2493 #else
2494 #define xfs_check_agi_unlinked(agi)
2495 #endif
2496 
2497 static bool
2498 xfs_agi_verify(
2499 	struct xfs_buf	*bp)
2500 {
2501 	struct xfs_mount *mp = bp->b_target->bt_mount;
2502 	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp);
2503 
2504 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2505 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2506 			return false;
2507 		if (!xfs_log_check_lsn(mp,
2508 				be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2509 			return false;
2510 	}
2511 
2512 	/*
2513 	 * Validate the magic number of the agi block.
2514 	 */
2515 	if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2516 		return false;
2517 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2518 		return false;
2519 
2520 	if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2521 		return false;
2522 	/*
2523 	 * during growfs operations, the perag is not fully initialised,
2524 	 * so we can't use it for any useful checking. growfs ensures we can't
2525 	 * use it by using uncached buffers that don't have the perag attached
2526 	 * so we can detect and avoid this problem.
2527 	 */
2528 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2529 		return false;
2530 
2531 	xfs_check_agi_unlinked(agi);
2532 	return true;
2533 }
2534 
2535 static void
2536 xfs_agi_read_verify(
2537 	struct xfs_buf	*bp)
2538 {
2539 	struct xfs_mount *mp = bp->b_target->bt_mount;
2540 
2541 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2542 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2543 		xfs_buf_ioerror(bp, -EFSBADCRC);
2544 	else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2545 				XFS_ERRTAG_IALLOC_READ_AGI,
2546 				XFS_RANDOM_IALLOC_READ_AGI))
2547 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2548 
2549 	if (bp->b_error)
2550 		xfs_verifier_error(bp);
2551 }
2552 
2553 static void
2554 xfs_agi_write_verify(
2555 	struct xfs_buf	*bp)
2556 {
2557 	struct xfs_mount *mp = bp->b_target->bt_mount;
2558 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
2559 
2560 	if (!xfs_agi_verify(bp)) {
2561 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2562 		xfs_verifier_error(bp);
2563 		return;
2564 	}
2565 
2566 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2567 		return;
2568 
2569 	if (bip)
2570 		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2571 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2572 }
2573 
2574 const struct xfs_buf_ops xfs_agi_buf_ops = {
2575 	.verify_read = xfs_agi_read_verify,
2576 	.verify_write = xfs_agi_write_verify,
2577 };
2578 
2579 /*
2580  * Read in the allocation group header (inode allocation section)
2581  */
2582 int
2583 xfs_read_agi(
2584 	struct xfs_mount	*mp,	/* file system mount structure */
2585 	struct xfs_trans	*tp,	/* transaction pointer */
2586 	xfs_agnumber_t		agno,	/* allocation group number */
2587 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2588 {
2589 	int			error;
2590 
2591 	trace_xfs_read_agi(mp, agno);
2592 
2593 	ASSERT(agno != NULLAGNUMBER);
2594 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2595 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2596 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2597 	if (error)
2598 		return error;
2599 
2600 	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2601 	return 0;
2602 }
2603 
2604 int
2605 xfs_ialloc_read_agi(
2606 	struct xfs_mount	*mp,	/* file system mount structure */
2607 	struct xfs_trans	*tp,	/* transaction pointer */
2608 	xfs_agnumber_t		agno,	/* allocation group number */
2609 	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2610 {
2611 	struct xfs_agi		*agi;	/* allocation group header */
2612 	struct xfs_perag	*pag;	/* per allocation group data */
2613 	int			error;
2614 
2615 	trace_xfs_ialloc_read_agi(mp, agno);
2616 
2617 	error = xfs_read_agi(mp, tp, agno, bpp);
2618 	if (error)
2619 		return error;
2620 
2621 	agi = XFS_BUF_TO_AGI(*bpp);
2622 	pag = xfs_perag_get(mp, agno);
2623 	if (!pag->pagi_init) {
2624 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2625 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2626 		pag->pagi_init = 1;
2627 	}
2628 
2629 	/*
2630 	 * It's possible for these to be out of sync if
2631 	 * we are in the middle of a forced shutdown.
2632 	 */
2633 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2634 		XFS_FORCED_SHUTDOWN(mp));
2635 	xfs_perag_put(pag);
2636 	return 0;
2637 }
2638 
2639 /*
2640  * Read in the agi to initialise the per-ag data in the mount structure
2641  */
2642 int
2643 xfs_ialloc_pagi_init(
2644 	xfs_mount_t	*mp,		/* file system mount structure */
2645 	xfs_trans_t	*tp,		/* transaction pointer */
2646 	xfs_agnumber_t	agno)		/* allocation group number */
2647 {
2648 	xfs_buf_t	*bp = NULL;
2649 	int		error;
2650 
2651 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2652 	if (error)
2653 		return error;
2654 	if (bp)
2655 		xfs_trans_brelse(tp, bp);
2656 	return 0;
2657 }
2658