1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2013 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_bit.h" 14 #include "xfs_mount.h" 15 #include "xfs_da_format.h" 16 #include "xfs_da_btree.h" 17 #include "xfs_dir2.h" 18 #include "xfs_dir2_priv.h" 19 #include "xfs_inode.h" 20 #include "xfs_trans.h" 21 #include "xfs_inode_item.h" 22 #include "xfs_alloc.h" 23 #include "xfs_bmap.h" 24 #include "xfs_attr.h" 25 #include "xfs_attr_leaf.h" 26 #include "xfs_error.h" 27 #include "xfs_trace.h" 28 #include "xfs_cksum.h" 29 #include "xfs_buf_item.h" 30 #include "xfs_log.h" 31 32 /* 33 * xfs_da_btree.c 34 * 35 * Routines to implement directories as Btrees of hashed names. 36 */ 37 38 /*======================================================================== 39 * Function prototypes for the kernel. 40 *========================================================================*/ 41 42 /* 43 * Routines used for growing the Btree. 44 */ 45 STATIC int xfs_da3_root_split(xfs_da_state_t *state, 46 xfs_da_state_blk_t *existing_root, 47 xfs_da_state_blk_t *new_child); 48 STATIC int xfs_da3_node_split(xfs_da_state_t *state, 49 xfs_da_state_blk_t *existing_blk, 50 xfs_da_state_blk_t *split_blk, 51 xfs_da_state_blk_t *blk_to_add, 52 int treelevel, 53 int *result); 54 STATIC void xfs_da3_node_rebalance(xfs_da_state_t *state, 55 xfs_da_state_blk_t *node_blk_1, 56 xfs_da_state_blk_t *node_blk_2); 57 STATIC void xfs_da3_node_add(xfs_da_state_t *state, 58 xfs_da_state_blk_t *old_node_blk, 59 xfs_da_state_blk_t *new_node_blk); 60 61 /* 62 * Routines used for shrinking the Btree. 63 */ 64 STATIC int xfs_da3_root_join(xfs_da_state_t *state, 65 xfs_da_state_blk_t *root_blk); 66 STATIC int xfs_da3_node_toosmall(xfs_da_state_t *state, int *retval); 67 STATIC void xfs_da3_node_remove(xfs_da_state_t *state, 68 xfs_da_state_blk_t *drop_blk); 69 STATIC void xfs_da3_node_unbalance(xfs_da_state_t *state, 70 xfs_da_state_blk_t *src_node_blk, 71 xfs_da_state_blk_t *dst_node_blk); 72 73 /* 74 * Utility routines. 75 */ 76 STATIC int xfs_da3_blk_unlink(xfs_da_state_t *state, 77 xfs_da_state_blk_t *drop_blk, 78 xfs_da_state_blk_t *save_blk); 79 80 81 kmem_zone_t *xfs_da_state_zone; /* anchor for state struct zone */ 82 83 /* 84 * Allocate a dir-state structure. 85 * We don't put them on the stack since they're large. 86 */ 87 xfs_da_state_t * 88 xfs_da_state_alloc(void) 89 { 90 return kmem_zone_zalloc(xfs_da_state_zone, KM_NOFS); 91 } 92 93 /* 94 * Kill the altpath contents of a da-state structure. 95 */ 96 STATIC void 97 xfs_da_state_kill_altpath(xfs_da_state_t *state) 98 { 99 int i; 100 101 for (i = 0; i < state->altpath.active; i++) 102 state->altpath.blk[i].bp = NULL; 103 state->altpath.active = 0; 104 } 105 106 /* 107 * Free a da-state structure. 108 */ 109 void 110 xfs_da_state_free(xfs_da_state_t *state) 111 { 112 xfs_da_state_kill_altpath(state); 113 #ifdef DEBUG 114 memset((char *)state, 0, sizeof(*state)); 115 #endif /* DEBUG */ 116 kmem_zone_free(xfs_da_state_zone, state); 117 } 118 119 static xfs_failaddr_t 120 xfs_da3_node_verify( 121 struct xfs_buf *bp) 122 { 123 struct xfs_mount *mp = bp->b_target->bt_mount; 124 struct xfs_da_intnode *hdr = bp->b_addr; 125 struct xfs_da3_icnode_hdr ichdr; 126 const struct xfs_dir_ops *ops; 127 128 ops = xfs_dir_get_ops(mp, NULL); 129 130 ops->node_hdr_from_disk(&ichdr, hdr); 131 132 if (xfs_sb_version_hascrc(&mp->m_sb)) { 133 struct xfs_da3_node_hdr *hdr3 = bp->b_addr; 134 135 if (ichdr.magic != XFS_DA3_NODE_MAGIC) 136 return __this_address; 137 138 if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_meta_uuid)) 139 return __this_address; 140 if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn) 141 return __this_address; 142 if (!xfs_log_check_lsn(mp, be64_to_cpu(hdr3->info.lsn))) 143 return __this_address; 144 } else { 145 if (ichdr.magic != XFS_DA_NODE_MAGIC) 146 return __this_address; 147 } 148 if (ichdr.level == 0) 149 return __this_address; 150 if (ichdr.level > XFS_DA_NODE_MAXDEPTH) 151 return __this_address; 152 if (ichdr.count == 0) 153 return __this_address; 154 155 /* 156 * we don't know if the node is for and attribute or directory tree, 157 * so only fail if the count is outside both bounds 158 */ 159 if (ichdr.count > mp->m_dir_geo->node_ents && 160 ichdr.count > mp->m_attr_geo->node_ents) 161 return __this_address; 162 163 /* XXX: hash order check? */ 164 165 return NULL; 166 } 167 168 static void 169 xfs_da3_node_write_verify( 170 struct xfs_buf *bp) 171 { 172 struct xfs_mount *mp = bp->b_target->bt_mount; 173 struct xfs_buf_log_item *bip = bp->b_log_item; 174 struct xfs_da3_node_hdr *hdr3 = bp->b_addr; 175 xfs_failaddr_t fa; 176 177 fa = xfs_da3_node_verify(bp); 178 if (fa) { 179 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 180 return; 181 } 182 183 if (!xfs_sb_version_hascrc(&mp->m_sb)) 184 return; 185 186 if (bip) 187 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); 188 189 xfs_buf_update_cksum(bp, XFS_DA3_NODE_CRC_OFF); 190 } 191 192 /* 193 * leaf/node format detection on trees is sketchy, so a node read can be done on 194 * leaf level blocks when detection identifies the tree as a node format tree 195 * incorrectly. In this case, we need to swap the verifier to match the correct 196 * format of the block being read. 197 */ 198 static void 199 xfs_da3_node_read_verify( 200 struct xfs_buf *bp) 201 { 202 struct xfs_da_blkinfo *info = bp->b_addr; 203 xfs_failaddr_t fa; 204 205 switch (be16_to_cpu(info->magic)) { 206 case XFS_DA3_NODE_MAGIC: 207 if (!xfs_buf_verify_cksum(bp, XFS_DA3_NODE_CRC_OFF)) { 208 xfs_verifier_error(bp, -EFSBADCRC, 209 __this_address); 210 break; 211 } 212 /* fall through */ 213 case XFS_DA_NODE_MAGIC: 214 fa = xfs_da3_node_verify(bp); 215 if (fa) 216 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 217 return; 218 case XFS_ATTR_LEAF_MAGIC: 219 case XFS_ATTR3_LEAF_MAGIC: 220 bp->b_ops = &xfs_attr3_leaf_buf_ops; 221 bp->b_ops->verify_read(bp); 222 return; 223 case XFS_DIR2_LEAFN_MAGIC: 224 case XFS_DIR3_LEAFN_MAGIC: 225 bp->b_ops = &xfs_dir3_leafn_buf_ops; 226 bp->b_ops->verify_read(bp); 227 return; 228 default: 229 xfs_verifier_error(bp, -EFSCORRUPTED, __this_address); 230 break; 231 } 232 } 233 234 /* Verify the structure of a da3 block. */ 235 static xfs_failaddr_t 236 xfs_da3_node_verify_struct( 237 struct xfs_buf *bp) 238 { 239 struct xfs_da_blkinfo *info = bp->b_addr; 240 241 switch (be16_to_cpu(info->magic)) { 242 case XFS_DA3_NODE_MAGIC: 243 case XFS_DA_NODE_MAGIC: 244 return xfs_da3_node_verify(bp); 245 case XFS_ATTR_LEAF_MAGIC: 246 case XFS_ATTR3_LEAF_MAGIC: 247 bp->b_ops = &xfs_attr3_leaf_buf_ops; 248 return bp->b_ops->verify_struct(bp); 249 case XFS_DIR2_LEAFN_MAGIC: 250 case XFS_DIR3_LEAFN_MAGIC: 251 bp->b_ops = &xfs_dir3_leafn_buf_ops; 252 return bp->b_ops->verify_struct(bp); 253 default: 254 return __this_address; 255 } 256 } 257 258 const struct xfs_buf_ops xfs_da3_node_buf_ops = { 259 .name = "xfs_da3_node", 260 .verify_read = xfs_da3_node_read_verify, 261 .verify_write = xfs_da3_node_write_verify, 262 .verify_struct = xfs_da3_node_verify_struct, 263 }; 264 265 int 266 xfs_da3_node_read( 267 struct xfs_trans *tp, 268 struct xfs_inode *dp, 269 xfs_dablk_t bno, 270 xfs_daddr_t mappedbno, 271 struct xfs_buf **bpp, 272 int which_fork) 273 { 274 int err; 275 276 err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp, 277 which_fork, &xfs_da3_node_buf_ops); 278 if (!err && tp && *bpp) { 279 struct xfs_da_blkinfo *info = (*bpp)->b_addr; 280 int type; 281 282 switch (be16_to_cpu(info->magic)) { 283 case XFS_DA_NODE_MAGIC: 284 case XFS_DA3_NODE_MAGIC: 285 type = XFS_BLFT_DA_NODE_BUF; 286 break; 287 case XFS_ATTR_LEAF_MAGIC: 288 case XFS_ATTR3_LEAF_MAGIC: 289 type = XFS_BLFT_ATTR_LEAF_BUF; 290 break; 291 case XFS_DIR2_LEAFN_MAGIC: 292 case XFS_DIR3_LEAFN_MAGIC: 293 type = XFS_BLFT_DIR_LEAFN_BUF; 294 break; 295 default: 296 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, 297 tp->t_mountp, info, sizeof(*info)); 298 xfs_trans_brelse(tp, *bpp); 299 *bpp = NULL; 300 return -EFSCORRUPTED; 301 } 302 xfs_trans_buf_set_type(tp, *bpp, type); 303 } 304 return err; 305 } 306 307 /*======================================================================== 308 * Routines used for growing the Btree. 309 *========================================================================*/ 310 311 /* 312 * Create the initial contents of an intermediate node. 313 */ 314 int 315 xfs_da3_node_create( 316 struct xfs_da_args *args, 317 xfs_dablk_t blkno, 318 int level, 319 struct xfs_buf **bpp, 320 int whichfork) 321 { 322 struct xfs_da_intnode *node; 323 struct xfs_trans *tp = args->trans; 324 struct xfs_mount *mp = tp->t_mountp; 325 struct xfs_da3_icnode_hdr ichdr = {0}; 326 struct xfs_buf *bp; 327 int error; 328 struct xfs_inode *dp = args->dp; 329 330 trace_xfs_da_node_create(args); 331 ASSERT(level <= XFS_DA_NODE_MAXDEPTH); 332 333 error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, whichfork); 334 if (error) 335 return error; 336 bp->b_ops = &xfs_da3_node_buf_ops; 337 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF); 338 node = bp->b_addr; 339 340 if (xfs_sb_version_hascrc(&mp->m_sb)) { 341 struct xfs_da3_node_hdr *hdr3 = bp->b_addr; 342 343 memset(hdr3, 0, sizeof(struct xfs_da3_node_hdr)); 344 ichdr.magic = XFS_DA3_NODE_MAGIC; 345 hdr3->info.blkno = cpu_to_be64(bp->b_bn); 346 hdr3->info.owner = cpu_to_be64(args->dp->i_ino); 347 uuid_copy(&hdr3->info.uuid, &mp->m_sb.sb_meta_uuid); 348 } else { 349 ichdr.magic = XFS_DA_NODE_MAGIC; 350 } 351 ichdr.level = level; 352 353 dp->d_ops->node_hdr_to_disk(node, &ichdr); 354 xfs_trans_log_buf(tp, bp, 355 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size)); 356 357 *bpp = bp; 358 return 0; 359 } 360 361 /* 362 * Split a leaf node, rebalance, then possibly split 363 * intermediate nodes, rebalance, etc. 364 */ 365 int /* error */ 366 xfs_da3_split( 367 struct xfs_da_state *state) 368 { 369 struct xfs_da_state_blk *oldblk; 370 struct xfs_da_state_blk *newblk; 371 struct xfs_da_state_blk *addblk; 372 struct xfs_da_intnode *node; 373 int max; 374 int action = 0; 375 int error; 376 int i; 377 378 trace_xfs_da_split(state->args); 379 380 /* 381 * Walk back up the tree splitting/inserting/adjusting as necessary. 382 * If we need to insert and there isn't room, split the node, then 383 * decide which fragment to insert the new block from below into. 384 * Note that we may split the root this way, but we need more fixup. 385 */ 386 max = state->path.active - 1; 387 ASSERT((max >= 0) && (max < XFS_DA_NODE_MAXDEPTH)); 388 ASSERT(state->path.blk[max].magic == XFS_ATTR_LEAF_MAGIC || 389 state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC); 390 391 addblk = &state->path.blk[max]; /* initial dummy value */ 392 for (i = max; (i >= 0) && addblk; state->path.active--, i--) { 393 oldblk = &state->path.blk[i]; 394 newblk = &state->altpath.blk[i]; 395 396 /* 397 * If a leaf node then 398 * Allocate a new leaf node, then rebalance across them. 399 * else if an intermediate node then 400 * We split on the last layer, must we split the node? 401 */ 402 switch (oldblk->magic) { 403 case XFS_ATTR_LEAF_MAGIC: 404 error = xfs_attr3_leaf_split(state, oldblk, newblk); 405 if ((error != 0) && (error != -ENOSPC)) { 406 return error; /* GROT: attr is inconsistent */ 407 } 408 if (!error) { 409 addblk = newblk; 410 break; 411 } 412 /* 413 * Entry wouldn't fit, split the leaf again. The new 414 * extrablk will be consumed by xfs_da3_node_split if 415 * the node is split. 416 */ 417 state->extravalid = 1; 418 if (state->inleaf) { 419 state->extraafter = 0; /* before newblk */ 420 trace_xfs_attr_leaf_split_before(state->args); 421 error = xfs_attr3_leaf_split(state, oldblk, 422 &state->extrablk); 423 } else { 424 state->extraafter = 1; /* after newblk */ 425 trace_xfs_attr_leaf_split_after(state->args); 426 error = xfs_attr3_leaf_split(state, newblk, 427 &state->extrablk); 428 } 429 if (error) 430 return error; /* GROT: attr inconsistent */ 431 addblk = newblk; 432 break; 433 case XFS_DIR2_LEAFN_MAGIC: 434 error = xfs_dir2_leafn_split(state, oldblk, newblk); 435 if (error) 436 return error; 437 addblk = newblk; 438 break; 439 case XFS_DA_NODE_MAGIC: 440 error = xfs_da3_node_split(state, oldblk, newblk, addblk, 441 max - i, &action); 442 addblk->bp = NULL; 443 if (error) 444 return error; /* GROT: dir is inconsistent */ 445 /* 446 * Record the newly split block for the next time thru? 447 */ 448 if (action) 449 addblk = newblk; 450 else 451 addblk = NULL; 452 break; 453 } 454 455 /* 456 * Update the btree to show the new hashval for this child. 457 */ 458 xfs_da3_fixhashpath(state, &state->path); 459 } 460 if (!addblk) 461 return 0; 462 463 /* 464 * xfs_da3_node_split() should have consumed any extra blocks we added 465 * during a double leaf split in the attr fork. This is guaranteed as 466 * we can't be here if the attr fork only has a single leaf block. 467 */ 468 ASSERT(state->extravalid == 0 || 469 state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC); 470 471 /* 472 * Split the root node. 473 */ 474 ASSERT(state->path.active == 0); 475 oldblk = &state->path.blk[0]; 476 error = xfs_da3_root_split(state, oldblk, addblk); 477 if (error) { 478 addblk->bp = NULL; 479 return error; /* GROT: dir is inconsistent */ 480 } 481 482 /* 483 * Update pointers to the node which used to be block 0 and just got 484 * bumped because of the addition of a new root node. Note that the 485 * original block 0 could be at any position in the list of blocks in 486 * the tree. 487 * 488 * Note: the magic numbers and sibling pointers are in the same physical 489 * place for both v2 and v3 headers (by design). Hence it doesn't matter 490 * which version of the xfs_da_intnode structure we use here as the 491 * result will be the same using either structure. 492 */ 493 node = oldblk->bp->b_addr; 494 if (node->hdr.info.forw) { 495 ASSERT(be32_to_cpu(node->hdr.info.forw) == addblk->blkno); 496 node = addblk->bp->b_addr; 497 node->hdr.info.back = cpu_to_be32(oldblk->blkno); 498 xfs_trans_log_buf(state->args->trans, addblk->bp, 499 XFS_DA_LOGRANGE(node, &node->hdr.info, 500 sizeof(node->hdr.info))); 501 } 502 node = oldblk->bp->b_addr; 503 if (node->hdr.info.back) { 504 ASSERT(be32_to_cpu(node->hdr.info.back) == addblk->blkno); 505 node = addblk->bp->b_addr; 506 node->hdr.info.forw = cpu_to_be32(oldblk->blkno); 507 xfs_trans_log_buf(state->args->trans, addblk->bp, 508 XFS_DA_LOGRANGE(node, &node->hdr.info, 509 sizeof(node->hdr.info))); 510 } 511 addblk->bp = NULL; 512 return 0; 513 } 514 515 /* 516 * Split the root. We have to create a new root and point to the two 517 * parts (the split old root) that we just created. Copy block zero to 518 * the EOF, extending the inode in process. 519 */ 520 STATIC int /* error */ 521 xfs_da3_root_split( 522 struct xfs_da_state *state, 523 struct xfs_da_state_blk *blk1, 524 struct xfs_da_state_blk *blk2) 525 { 526 struct xfs_da_intnode *node; 527 struct xfs_da_intnode *oldroot; 528 struct xfs_da_node_entry *btree; 529 struct xfs_da3_icnode_hdr nodehdr; 530 struct xfs_da_args *args; 531 struct xfs_buf *bp; 532 struct xfs_inode *dp; 533 struct xfs_trans *tp; 534 struct xfs_dir2_leaf *leaf; 535 xfs_dablk_t blkno; 536 int level; 537 int error; 538 int size; 539 540 trace_xfs_da_root_split(state->args); 541 542 /* 543 * Copy the existing (incorrect) block from the root node position 544 * to a free space somewhere. 545 */ 546 args = state->args; 547 error = xfs_da_grow_inode(args, &blkno); 548 if (error) 549 return error; 550 551 dp = args->dp; 552 tp = args->trans; 553 error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, args->whichfork); 554 if (error) 555 return error; 556 node = bp->b_addr; 557 oldroot = blk1->bp->b_addr; 558 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) || 559 oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)) { 560 struct xfs_da3_icnode_hdr icnodehdr; 561 562 dp->d_ops->node_hdr_from_disk(&icnodehdr, oldroot); 563 btree = dp->d_ops->node_tree_p(oldroot); 564 size = (int)((char *)&btree[icnodehdr.count] - (char *)oldroot); 565 level = icnodehdr.level; 566 567 /* 568 * we are about to copy oldroot to bp, so set up the type 569 * of bp while we know exactly what it will be. 570 */ 571 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF); 572 } else { 573 struct xfs_dir3_icleaf_hdr leafhdr; 574 struct xfs_dir2_leaf_entry *ents; 575 576 leaf = (xfs_dir2_leaf_t *)oldroot; 577 dp->d_ops->leaf_hdr_from_disk(&leafhdr, leaf); 578 ents = dp->d_ops->leaf_ents_p(leaf); 579 580 ASSERT(leafhdr.magic == XFS_DIR2_LEAFN_MAGIC || 581 leafhdr.magic == XFS_DIR3_LEAFN_MAGIC); 582 size = (int)((char *)&ents[leafhdr.count] - (char *)leaf); 583 level = 0; 584 585 /* 586 * we are about to copy oldroot to bp, so set up the type 587 * of bp while we know exactly what it will be. 588 */ 589 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DIR_LEAFN_BUF); 590 } 591 592 /* 593 * we can copy most of the information in the node from one block to 594 * another, but for CRC enabled headers we have to make sure that the 595 * block specific identifiers are kept intact. We update the buffer 596 * directly for this. 597 */ 598 memcpy(node, oldroot, size); 599 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) || 600 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) { 601 struct xfs_da3_intnode *node3 = (struct xfs_da3_intnode *)node; 602 603 node3->hdr.info.blkno = cpu_to_be64(bp->b_bn); 604 } 605 xfs_trans_log_buf(tp, bp, 0, size - 1); 606 607 bp->b_ops = blk1->bp->b_ops; 608 xfs_trans_buf_copy_type(bp, blk1->bp); 609 blk1->bp = bp; 610 blk1->blkno = blkno; 611 612 /* 613 * Set up the new root node. 614 */ 615 error = xfs_da3_node_create(args, 616 (args->whichfork == XFS_DATA_FORK) ? args->geo->leafblk : 0, 617 level + 1, &bp, args->whichfork); 618 if (error) 619 return error; 620 621 node = bp->b_addr; 622 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 623 btree = dp->d_ops->node_tree_p(node); 624 btree[0].hashval = cpu_to_be32(blk1->hashval); 625 btree[0].before = cpu_to_be32(blk1->blkno); 626 btree[1].hashval = cpu_to_be32(blk2->hashval); 627 btree[1].before = cpu_to_be32(blk2->blkno); 628 nodehdr.count = 2; 629 dp->d_ops->node_hdr_to_disk(node, &nodehdr); 630 631 #ifdef DEBUG 632 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || 633 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) { 634 ASSERT(blk1->blkno >= args->geo->leafblk && 635 blk1->blkno < args->geo->freeblk); 636 ASSERT(blk2->blkno >= args->geo->leafblk && 637 blk2->blkno < args->geo->freeblk); 638 } 639 #endif 640 641 /* Header is already logged by xfs_da_node_create */ 642 xfs_trans_log_buf(tp, bp, 643 XFS_DA_LOGRANGE(node, btree, sizeof(xfs_da_node_entry_t) * 2)); 644 645 return 0; 646 } 647 648 /* 649 * Split the node, rebalance, then add the new entry. 650 */ 651 STATIC int /* error */ 652 xfs_da3_node_split( 653 struct xfs_da_state *state, 654 struct xfs_da_state_blk *oldblk, 655 struct xfs_da_state_blk *newblk, 656 struct xfs_da_state_blk *addblk, 657 int treelevel, 658 int *result) 659 { 660 struct xfs_da_intnode *node; 661 struct xfs_da3_icnode_hdr nodehdr; 662 xfs_dablk_t blkno; 663 int newcount; 664 int error; 665 int useextra; 666 struct xfs_inode *dp = state->args->dp; 667 668 trace_xfs_da_node_split(state->args); 669 670 node = oldblk->bp->b_addr; 671 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 672 673 /* 674 * With V2 dirs the extra block is data or freespace. 675 */ 676 useextra = state->extravalid && state->args->whichfork == XFS_ATTR_FORK; 677 newcount = 1 + useextra; 678 /* 679 * Do we have to split the node? 680 */ 681 if (nodehdr.count + newcount > state->args->geo->node_ents) { 682 /* 683 * Allocate a new node, add to the doubly linked chain of 684 * nodes, then move some of our excess entries into it. 685 */ 686 error = xfs_da_grow_inode(state->args, &blkno); 687 if (error) 688 return error; /* GROT: dir is inconsistent */ 689 690 error = xfs_da3_node_create(state->args, blkno, treelevel, 691 &newblk->bp, state->args->whichfork); 692 if (error) 693 return error; /* GROT: dir is inconsistent */ 694 newblk->blkno = blkno; 695 newblk->magic = XFS_DA_NODE_MAGIC; 696 xfs_da3_node_rebalance(state, oldblk, newblk); 697 error = xfs_da3_blk_link(state, oldblk, newblk); 698 if (error) 699 return error; 700 *result = 1; 701 } else { 702 *result = 0; 703 } 704 705 /* 706 * Insert the new entry(s) into the correct block 707 * (updating last hashval in the process). 708 * 709 * xfs_da3_node_add() inserts BEFORE the given index, 710 * and as a result of using node_lookup_int() we always 711 * point to a valid entry (not after one), but a split 712 * operation always results in a new block whose hashvals 713 * FOLLOW the current block. 714 * 715 * If we had double-split op below us, then add the extra block too. 716 */ 717 node = oldblk->bp->b_addr; 718 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 719 if (oldblk->index <= nodehdr.count) { 720 oldblk->index++; 721 xfs_da3_node_add(state, oldblk, addblk); 722 if (useextra) { 723 if (state->extraafter) 724 oldblk->index++; 725 xfs_da3_node_add(state, oldblk, &state->extrablk); 726 state->extravalid = 0; 727 } 728 } else { 729 newblk->index++; 730 xfs_da3_node_add(state, newblk, addblk); 731 if (useextra) { 732 if (state->extraafter) 733 newblk->index++; 734 xfs_da3_node_add(state, newblk, &state->extrablk); 735 state->extravalid = 0; 736 } 737 } 738 739 return 0; 740 } 741 742 /* 743 * Balance the btree elements between two intermediate nodes, 744 * usually one full and one empty. 745 * 746 * NOTE: if blk2 is empty, then it will get the upper half of blk1. 747 */ 748 STATIC void 749 xfs_da3_node_rebalance( 750 struct xfs_da_state *state, 751 struct xfs_da_state_blk *blk1, 752 struct xfs_da_state_blk *blk2) 753 { 754 struct xfs_da_intnode *node1; 755 struct xfs_da_intnode *node2; 756 struct xfs_da_intnode *tmpnode; 757 struct xfs_da_node_entry *btree1; 758 struct xfs_da_node_entry *btree2; 759 struct xfs_da_node_entry *btree_s; 760 struct xfs_da_node_entry *btree_d; 761 struct xfs_da3_icnode_hdr nodehdr1; 762 struct xfs_da3_icnode_hdr nodehdr2; 763 struct xfs_trans *tp; 764 int count; 765 int tmp; 766 int swap = 0; 767 struct xfs_inode *dp = state->args->dp; 768 769 trace_xfs_da_node_rebalance(state->args); 770 771 node1 = blk1->bp->b_addr; 772 node2 = blk2->bp->b_addr; 773 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1); 774 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2); 775 btree1 = dp->d_ops->node_tree_p(node1); 776 btree2 = dp->d_ops->node_tree_p(node2); 777 778 /* 779 * Figure out how many entries need to move, and in which direction. 780 * Swap the nodes around if that makes it simpler. 781 */ 782 if (nodehdr1.count > 0 && nodehdr2.count > 0 && 783 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) || 784 (be32_to_cpu(btree2[nodehdr2.count - 1].hashval) < 785 be32_to_cpu(btree1[nodehdr1.count - 1].hashval)))) { 786 tmpnode = node1; 787 node1 = node2; 788 node2 = tmpnode; 789 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1); 790 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2); 791 btree1 = dp->d_ops->node_tree_p(node1); 792 btree2 = dp->d_ops->node_tree_p(node2); 793 swap = 1; 794 } 795 796 count = (nodehdr1.count - nodehdr2.count) / 2; 797 if (count == 0) 798 return; 799 tp = state->args->trans; 800 /* 801 * Two cases: high-to-low and low-to-high. 802 */ 803 if (count > 0) { 804 /* 805 * Move elements in node2 up to make a hole. 806 */ 807 tmp = nodehdr2.count; 808 if (tmp > 0) { 809 tmp *= (uint)sizeof(xfs_da_node_entry_t); 810 btree_s = &btree2[0]; 811 btree_d = &btree2[count]; 812 memmove(btree_d, btree_s, tmp); 813 } 814 815 /* 816 * Move the req'd B-tree elements from high in node1 to 817 * low in node2. 818 */ 819 nodehdr2.count += count; 820 tmp = count * (uint)sizeof(xfs_da_node_entry_t); 821 btree_s = &btree1[nodehdr1.count - count]; 822 btree_d = &btree2[0]; 823 memcpy(btree_d, btree_s, tmp); 824 nodehdr1.count -= count; 825 } else { 826 /* 827 * Move the req'd B-tree elements from low in node2 to 828 * high in node1. 829 */ 830 count = -count; 831 tmp = count * (uint)sizeof(xfs_da_node_entry_t); 832 btree_s = &btree2[0]; 833 btree_d = &btree1[nodehdr1.count]; 834 memcpy(btree_d, btree_s, tmp); 835 nodehdr1.count += count; 836 837 xfs_trans_log_buf(tp, blk1->bp, 838 XFS_DA_LOGRANGE(node1, btree_d, tmp)); 839 840 /* 841 * Move elements in node2 down to fill the hole. 842 */ 843 tmp = nodehdr2.count - count; 844 tmp *= (uint)sizeof(xfs_da_node_entry_t); 845 btree_s = &btree2[count]; 846 btree_d = &btree2[0]; 847 memmove(btree_d, btree_s, tmp); 848 nodehdr2.count -= count; 849 } 850 851 /* 852 * Log header of node 1 and all current bits of node 2. 853 */ 854 dp->d_ops->node_hdr_to_disk(node1, &nodehdr1); 855 xfs_trans_log_buf(tp, blk1->bp, 856 XFS_DA_LOGRANGE(node1, &node1->hdr, dp->d_ops->node_hdr_size)); 857 858 dp->d_ops->node_hdr_to_disk(node2, &nodehdr2); 859 xfs_trans_log_buf(tp, blk2->bp, 860 XFS_DA_LOGRANGE(node2, &node2->hdr, 861 dp->d_ops->node_hdr_size + 862 (sizeof(btree2[0]) * nodehdr2.count))); 863 864 /* 865 * Record the last hashval from each block for upward propagation. 866 * (note: don't use the swapped node pointers) 867 */ 868 if (swap) { 869 node1 = blk1->bp->b_addr; 870 node2 = blk2->bp->b_addr; 871 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1); 872 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2); 873 btree1 = dp->d_ops->node_tree_p(node1); 874 btree2 = dp->d_ops->node_tree_p(node2); 875 } 876 blk1->hashval = be32_to_cpu(btree1[nodehdr1.count - 1].hashval); 877 blk2->hashval = be32_to_cpu(btree2[nodehdr2.count - 1].hashval); 878 879 /* 880 * Adjust the expected index for insertion. 881 */ 882 if (blk1->index >= nodehdr1.count) { 883 blk2->index = blk1->index - nodehdr1.count; 884 blk1->index = nodehdr1.count + 1; /* make it invalid */ 885 } 886 } 887 888 /* 889 * Add a new entry to an intermediate node. 890 */ 891 STATIC void 892 xfs_da3_node_add( 893 struct xfs_da_state *state, 894 struct xfs_da_state_blk *oldblk, 895 struct xfs_da_state_blk *newblk) 896 { 897 struct xfs_da_intnode *node; 898 struct xfs_da3_icnode_hdr nodehdr; 899 struct xfs_da_node_entry *btree; 900 int tmp; 901 struct xfs_inode *dp = state->args->dp; 902 903 trace_xfs_da_node_add(state->args); 904 905 node = oldblk->bp->b_addr; 906 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 907 btree = dp->d_ops->node_tree_p(node); 908 909 ASSERT(oldblk->index >= 0 && oldblk->index <= nodehdr.count); 910 ASSERT(newblk->blkno != 0); 911 if (state->args->whichfork == XFS_DATA_FORK) 912 ASSERT(newblk->blkno >= state->args->geo->leafblk && 913 newblk->blkno < state->args->geo->freeblk); 914 915 /* 916 * We may need to make some room before we insert the new node. 917 */ 918 tmp = 0; 919 if (oldblk->index < nodehdr.count) { 920 tmp = (nodehdr.count - oldblk->index) * (uint)sizeof(*btree); 921 memmove(&btree[oldblk->index + 1], &btree[oldblk->index], tmp); 922 } 923 btree[oldblk->index].hashval = cpu_to_be32(newblk->hashval); 924 btree[oldblk->index].before = cpu_to_be32(newblk->blkno); 925 xfs_trans_log_buf(state->args->trans, oldblk->bp, 926 XFS_DA_LOGRANGE(node, &btree[oldblk->index], 927 tmp + sizeof(*btree))); 928 929 nodehdr.count += 1; 930 dp->d_ops->node_hdr_to_disk(node, &nodehdr); 931 xfs_trans_log_buf(state->args->trans, oldblk->bp, 932 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size)); 933 934 /* 935 * Copy the last hash value from the oldblk to propagate upwards. 936 */ 937 oldblk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval); 938 } 939 940 /*======================================================================== 941 * Routines used for shrinking the Btree. 942 *========================================================================*/ 943 944 /* 945 * Deallocate an empty leaf node, remove it from its parent, 946 * possibly deallocating that block, etc... 947 */ 948 int 949 xfs_da3_join( 950 struct xfs_da_state *state) 951 { 952 struct xfs_da_state_blk *drop_blk; 953 struct xfs_da_state_blk *save_blk; 954 int action = 0; 955 int error; 956 957 trace_xfs_da_join(state->args); 958 959 drop_blk = &state->path.blk[ state->path.active-1 ]; 960 save_blk = &state->altpath.blk[ state->path.active-1 ]; 961 ASSERT(state->path.blk[0].magic == XFS_DA_NODE_MAGIC); 962 ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC || 963 drop_blk->magic == XFS_DIR2_LEAFN_MAGIC); 964 965 /* 966 * Walk back up the tree joining/deallocating as necessary. 967 * When we stop dropping blocks, break out. 968 */ 969 for ( ; state->path.active >= 2; drop_blk--, save_blk--, 970 state->path.active--) { 971 /* 972 * See if we can combine the block with a neighbor. 973 * (action == 0) => no options, just leave 974 * (action == 1) => coalesce, then unlink 975 * (action == 2) => block empty, unlink it 976 */ 977 switch (drop_blk->magic) { 978 case XFS_ATTR_LEAF_MAGIC: 979 error = xfs_attr3_leaf_toosmall(state, &action); 980 if (error) 981 return error; 982 if (action == 0) 983 return 0; 984 xfs_attr3_leaf_unbalance(state, drop_blk, save_blk); 985 break; 986 case XFS_DIR2_LEAFN_MAGIC: 987 error = xfs_dir2_leafn_toosmall(state, &action); 988 if (error) 989 return error; 990 if (action == 0) 991 return 0; 992 xfs_dir2_leafn_unbalance(state, drop_blk, save_blk); 993 break; 994 case XFS_DA_NODE_MAGIC: 995 /* 996 * Remove the offending node, fixup hashvals, 997 * check for a toosmall neighbor. 998 */ 999 xfs_da3_node_remove(state, drop_blk); 1000 xfs_da3_fixhashpath(state, &state->path); 1001 error = xfs_da3_node_toosmall(state, &action); 1002 if (error) 1003 return error; 1004 if (action == 0) 1005 return 0; 1006 xfs_da3_node_unbalance(state, drop_blk, save_blk); 1007 break; 1008 } 1009 xfs_da3_fixhashpath(state, &state->altpath); 1010 error = xfs_da3_blk_unlink(state, drop_blk, save_blk); 1011 xfs_da_state_kill_altpath(state); 1012 if (error) 1013 return error; 1014 error = xfs_da_shrink_inode(state->args, drop_blk->blkno, 1015 drop_blk->bp); 1016 drop_blk->bp = NULL; 1017 if (error) 1018 return error; 1019 } 1020 /* 1021 * We joined all the way to the top. If it turns out that 1022 * we only have one entry in the root, make the child block 1023 * the new root. 1024 */ 1025 xfs_da3_node_remove(state, drop_blk); 1026 xfs_da3_fixhashpath(state, &state->path); 1027 error = xfs_da3_root_join(state, &state->path.blk[0]); 1028 return error; 1029 } 1030 1031 #ifdef DEBUG 1032 static void 1033 xfs_da_blkinfo_onlychild_validate(struct xfs_da_blkinfo *blkinfo, __u16 level) 1034 { 1035 __be16 magic = blkinfo->magic; 1036 1037 if (level == 1) { 1038 ASSERT(magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || 1039 magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) || 1040 magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 1041 magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 1042 } else { 1043 ASSERT(magic == cpu_to_be16(XFS_DA_NODE_MAGIC) || 1044 magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)); 1045 } 1046 ASSERT(!blkinfo->forw); 1047 ASSERT(!blkinfo->back); 1048 } 1049 #else /* !DEBUG */ 1050 #define xfs_da_blkinfo_onlychild_validate(blkinfo, level) 1051 #endif /* !DEBUG */ 1052 1053 /* 1054 * We have only one entry in the root. Copy the only remaining child of 1055 * the old root to block 0 as the new root node. 1056 */ 1057 STATIC int 1058 xfs_da3_root_join( 1059 struct xfs_da_state *state, 1060 struct xfs_da_state_blk *root_blk) 1061 { 1062 struct xfs_da_intnode *oldroot; 1063 struct xfs_da_args *args; 1064 xfs_dablk_t child; 1065 struct xfs_buf *bp; 1066 struct xfs_da3_icnode_hdr oldroothdr; 1067 struct xfs_da_node_entry *btree; 1068 int error; 1069 struct xfs_inode *dp = state->args->dp; 1070 1071 trace_xfs_da_root_join(state->args); 1072 1073 ASSERT(root_blk->magic == XFS_DA_NODE_MAGIC); 1074 1075 args = state->args; 1076 oldroot = root_blk->bp->b_addr; 1077 dp->d_ops->node_hdr_from_disk(&oldroothdr, oldroot); 1078 ASSERT(oldroothdr.forw == 0); 1079 ASSERT(oldroothdr.back == 0); 1080 1081 /* 1082 * If the root has more than one child, then don't do anything. 1083 */ 1084 if (oldroothdr.count > 1) 1085 return 0; 1086 1087 /* 1088 * Read in the (only) child block, then copy those bytes into 1089 * the root block's buffer and free the original child block. 1090 */ 1091 btree = dp->d_ops->node_tree_p(oldroot); 1092 child = be32_to_cpu(btree[0].before); 1093 ASSERT(child != 0); 1094 error = xfs_da3_node_read(args->trans, dp, child, -1, &bp, 1095 args->whichfork); 1096 if (error) 1097 return error; 1098 xfs_da_blkinfo_onlychild_validate(bp->b_addr, oldroothdr.level); 1099 1100 /* 1101 * This could be copying a leaf back into the root block in the case of 1102 * there only being a single leaf block left in the tree. Hence we have 1103 * to update the b_ops pointer as well to match the buffer type change 1104 * that could occur. For dir3 blocks we also need to update the block 1105 * number in the buffer header. 1106 */ 1107 memcpy(root_blk->bp->b_addr, bp->b_addr, args->geo->blksize); 1108 root_blk->bp->b_ops = bp->b_ops; 1109 xfs_trans_buf_copy_type(root_blk->bp, bp); 1110 if (oldroothdr.magic == XFS_DA3_NODE_MAGIC) { 1111 struct xfs_da3_blkinfo *da3 = root_blk->bp->b_addr; 1112 da3->blkno = cpu_to_be64(root_blk->bp->b_bn); 1113 } 1114 xfs_trans_log_buf(args->trans, root_blk->bp, 0, 1115 args->geo->blksize - 1); 1116 error = xfs_da_shrink_inode(args, child, bp); 1117 return error; 1118 } 1119 1120 /* 1121 * Check a node block and its neighbors to see if the block should be 1122 * collapsed into one or the other neighbor. Always keep the block 1123 * with the smaller block number. 1124 * If the current block is over 50% full, don't try to join it, return 0. 1125 * If the block is empty, fill in the state structure and return 2. 1126 * If it can be collapsed, fill in the state structure and return 1. 1127 * If nothing can be done, return 0. 1128 */ 1129 STATIC int 1130 xfs_da3_node_toosmall( 1131 struct xfs_da_state *state, 1132 int *action) 1133 { 1134 struct xfs_da_intnode *node; 1135 struct xfs_da_state_blk *blk; 1136 struct xfs_da_blkinfo *info; 1137 xfs_dablk_t blkno; 1138 struct xfs_buf *bp; 1139 struct xfs_da3_icnode_hdr nodehdr; 1140 int count; 1141 int forward; 1142 int error; 1143 int retval; 1144 int i; 1145 struct xfs_inode *dp = state->args->dp; 1146 1147 trace_xfs_da_node_toosmall(state->args); 1148 1149 /* 1150 * Check for the degenerate case of the block being over 50% full. 1151 * If so, it's not worth even looking to see if we might be able 1152 * to coalesce with a sibling. 1153 */ 1154 blk = &state->path.blk[ state->path.active-1 ]; 1155 info = blk->bp->b_addr; 1156 node = (xfs_da_intnode_t *)info; 1157 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1158 if (nodehdr.count > (state->args->geo->node_ents >> 1)) { 1159 *action = 0; /* blk over 50%, don't try to join */ 1160 return 0; /* blk over 50%, don't try to join */ 1161 } 1162 1163 /* 1164 * Check for the degenerate case of the block being empty. 1165 * If the block is empty, we'll simply delete it, no need to 1166 * coalesce it with a sibling block. We choose (arbitrarily) 1167 * to merge with the forward block unless it is NULL. 1168 */ 1169 if (nodehdr.count == 0) { 1170 /* 1171 * Make altpath point to the block we want to keep and 1172 * path point to the block we want to drop (this one). 1173 */ 1174 forward = (info->forw != 0); 1175 memcpy(&state->altpath, &state->path, sizeof(state->path)); 1176 error = xfs_da3_path_shift(state, &state->altpath, forward, 1177 0, &retval); 1178 if (error) 1179 return error; 1180 if (retval) { 1181 *action = 0; 1182 } else { 1183 *action = 2; 1184 } 1185 return 0; 1186 } 1187 1188 /* 1189 * Examine each sibling block to see if we can coalesce with 1190 * at least 25% free space to spare. We need to figure out 1191 * whether to merge with the forward or the backward block. 1192 * We prefer coalescing with the lower numbered sibling so as 1193 * to shrink a directory over time. 1194 */ 1195 count = state->args->geo->node_ents; 1196 count -= state->args->geo->node_ents >> 2; 1197 count -= nodehdr.count; 1198 1199 /* start with smaller blk num */ 1200 forward = nodehdr.forw < nodehdr.back; 1201 for (i = 0; i < 2; forward = !forward, i++) { 1202 struct xfs_da3_icnode_hdr thdr; 1203 if (forward) 1204 blkno = nodehdr.forw; 1205 else 1206 blkno = nodehdr.back; 1207 if (blkno == 0) 1208 continue; 1209 error = xfs_da3_node_read(state->args->trans, dp, 1210 blkno, -1, &bp, state->args->whichfork); 1211 if (error) 1212 return error; 1213 1214 node = bp->b_addr; 1215 dp->d_ops->node_hdr_from_disk(&thdr, node); 1216 xfs_trans_brelse(state->args->trans, bp); 1217 1218 if (count - thdr.count >= 0) 1219 break; /* fits with at least 25% to spare */ 1220 } 1221 if (i >= 2) { 1222 *action = 0; 1223 return 0; 1224 } 1225 1226 /* 1227 * Make altpath point to the block we want to keep (the lower 1228 * numbered block) and path point to the block we want to drop. 1229 */ 1230 memcpy(&state->altpath, &state->path, sizeof(state->path)); 1231 if (blkno < blk->blkno) { 1232 error = xfs_da3_path_shift(state, &state->altpath, forward, 1233 0, &retval); 1234 } else { 1235 error = xfs_da3_path_shift(state, &state->path, forward, 1236 0, &retval); 1237 } 1238 if (error) 1239 return error; 1240 if (retval) { 1241 *action = 0; 1242 return 0; 1243 } 1244 *action = 1; 1245 return 0; 1246 } 1247 1248 /* 1249 * Pick up the last hashvalue from an intermediate node. 1250 */ 1251 STATIC uint 1252 xfs_da3_node_lasthash( 1253 struct xfs_inode *dp, 1254 struct xfs_buf *bp, 1255 int *count) 1256 { 1257 struct xfs_da_intnode *node; 1258 struct xfs_da_node_entry *btree; 1259 struct xfs_da3_icnode_hdr nodehdr; 1260 1261 node = bp->b_addr; 1262 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1263 if (count) 1264 *count = nodehdr.count; 1265 if (!nodehdr.count) 1266 return 0; 1267 btree = dp->d_ops->node_tree_p(node); 1268 return be32_to_cpu(btree[nodehdr.count - 1].hashval); 1269 } 1270 1271 /* 1272 * Walk back up the tree adjusting hash values as necessary, 1273 * when we stop making changes, return. 1274 */ 1275 void 1276 xfs_da3_fixhashpath( 1277 struct xfs_da_state *state, 1278 struct xfs_da_state_path *path) 1279 { 1280 struct xfs_da_state_blk *blk; 1281 struct xfs_da_intnode *node; 1282 struct xfs_da_node_entry *btree; 1283 xfs_dahash_t lasthash=0; 1284 int level; 1285 int count; 1286 struct xfs_inode *dp = state->args->dp; 1287 1288 trace_xfs_da_fixhashpath(state->args); 1289 1290 level = path->active-1; 1291 blk = &path->blk[ level ]; 1292 switch (blk->magic) { 1293 case XFS_ATTR_LEAF_MAGIC: 1294 lasthash = xfs_attr_leaf_lasthash(blk->bp, &count); 1295 if (count == 0) 1296 return; 1297 break; 1298 case XFS_DIR2_LEAFN_MAGIC: 1299 lasthash = xfs_dir2_leaf_lasthash(dp, blk->bp, &count); 1300 if (count == 0) 1301 return; 1302 break; 1303 case XFS_DA_NODE_MAGIC: 1304 lasthash = xfs_da3_node_lasthash(dp, blk->bp, &count); 1305 if (count == 0) 1306 return; 1307 break; 1308 } 1309 for (blk--, level--; level >= 0; blk--, level--) { 1310 struct xfs_da3_icnode_hdr nodehdr; 1311 1312 node = blk->bp->b_addr; 1313 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1314 btree = dp->d_ops->node_tree_p(node); 1315 if (be32_to_cpu(btree[blk->index].hashval) == lasthash) 1316 break; 1317 blk->hashval = lasthash; 1318 btree[blk->index].hashval = cpu_to_be32(lasthash); 1319 xfs_trans_log_buf(state->args->trans, blk->bp, 1320 XFS_DA_LOGRANGE(node, &btree[blk->index], 1321 sizeof(*btree))); 1322 1323 lasthash = be32_to_cpu(btree[nodehdr.count - 1].hashval); 1324 } 1325 } 1326 1327 /* 1328 * Remove an entry from an intermediate node. 1329 */ 1330 STATIC void 1331 xfs_da3_node_remove( 1332 struct xfs_da_state *state, 1333 struct xfs_da_state_blk *drop_blk) 1334 { 1335 struct xfs_da_intnode *node; 1336 struct xfs_da3_icnode_hdr nodehdr; 1337 struct xfs_da_node_entry *btree; 1338 int index; 1339 int tmp; 1340 struct xfs_inode *dp = state->args->dp; 1341 1342 trace_xfs_da_node_remove(state->args); 1343 1344 node = drop_blk->bp->b_addr; 1345 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1346 ASSERT(drop_blk->index < nodehdr.count); 1347 ASSERT(drop_blk->index >= 0); 1348 1349 /* 1350 * Copy over the offending entry, or just zero it out. 1351 */ 1352 index = drop_blk->index; 1353 btree = dp->d_ops->node_tree_p(node); 1354 if (index < nodehdr.count - 1) { 1355 tmp = nodehdr.count - index - 1; 1356 tmp *= (uint)sizeof(xfs_da_node_entry_t); 1357 memmove(&btree[index], &btree[index + 1], tmp); 1358 xfs_trans_log_buf(state->args->trans, drop_blk->bp, 1359 XFS_DA_LOGRANGE(node, &btree[index], tmp)); 1360 index = nodehdr.count - 1; 1361 } 1362 memset(&btree[index], 0, sizeof(xfs_da_node_entry_t)); 1363 xfs_trans_log_buf(state->args->trans, drop_blk->bp, 1364 XFS_DA_LOGRANGE(node, &btree[index], sizeof(btree[index]))); 1365 nodehdr.count -= 1; 1366 dp->d_ops->node_hdr_to_disk(node, &nodehdr); 1367 xfs_trans_log_buf(state->args->trans, drop_blk->bp, 1368 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size)); 1369 1370 /* 1371 * Copy the last hash value from the block to propagate upwards. 1372 */ 1373 drop_blk->hashval = be32_to_cpu(btree[index - 1].hashval); 1374 } 1375 1376 /* 1377 * Unbalance the elements between two intermediate nodes, 1378 * move all Btree elements from one node into another. 1379 */ 1380 STATIC void 1381 xfs_da3_node_unbalance( 1382 struct xfs_da_state *state, 1383 struct xfs_da_state_blk *drop_blk, 1384 struct xfs_da_state_blk *save_blk) 1385 { 1386 struct xfs_da_intnode *drop_node; 1387 struct xfs_da_intnode *save_node; 1388 struct xfs_da_node_entry *drop_btree; 1389 struct xfs_da_node_entry *save_btree; 1390 struct xfs_da3_icnode_hdr drop_hdr; 1391 struct xfs_da3_icnode_hdr save_hdr; 1392 struct xfs_trans *tp; 1393 int sindex; 1394 int tmp; 1395 struct xfs_inode *dp = state->args->dp; 1396 1397 trace_xfs_da_node_unbalance(state->args); 1398 1399 drop_node = drop_blk->bp->b_addr; 1400 save_node = save_blk->bp->b_addr; 1401 dp->d_ops->node_hdr_from_disk(&drop_hdr, drop_node); 1402 dp->d_ops->node_hdr_from_disk(&save_hdr, save_node); 1403 drop_btree = dp->d_ops->node_tree_p(drop_node); 1404 save_btree = dp->d_ops->node_tree_p(save_node); 1405 tp = state->args->trans; 1406 1407 /* 1408 * If the dying block has lower hashvals, then move all the 1409 * elements in the remaining block up to make a hole. 1410 */ 1411 if ((be32_to_cpu(drop_btree[0].hashval) < 1412 be32_to_cpu(save_btree[0].hashval)) || 1413 (be32_to_cpu(drop_btree[drop_hdr.count - 1].hashval) < 1414 be32_to_cpu(save_btree[save_hdr.count - 1].hashval))) { 1415 /* XXX: check this - is memmove dst correct? */ 1416 tmp = save_hdr.count * sizeof(xfs_da_node_entry_t); 1417 memmove(&save_btree[drop_hdr.count], &save_btree[0], tmp); 1418 1419 sindex = 0; 1420 xfs_trans_log_buf(tp, save_blk->bp, 1421 XFS_DA_LOGRANGE(save_node, &save_btree[0], 1422 (save_hdr.count + drop_hdr.count) * 1423 sizeof(xfs_da_node_entry_t))); 1424 } else { 1425 sindex = save_hdr.count; 1426 xfs_trans_log_buf(tp, save_blk->bp, 1427 XFS_DA_LOGRANGE(save_node, &save_btree[sindex], 1428 drop_hdr.count * sizeof(xfs_da_node_entry_t))); 1429 } 1430 1431 /* 1432 * Move all the B-tree elements from drop_blk to save_blk. 1433 */ 1434 tmp = drop_hdr.count * (uint)sizeof(xfs_da_node_entry_t); 1435 memcpy(&save_btree[sindex], &drop_btree[0], tmp); 1436 save_hdr.count += drop_hdr.count; 1437 1438 dp->d_ops->node_hdr_to_disk(save_node, &save_hdr); 1439 xfs_trans_log_buf(tp, save_blk->bp, 1440 XFS_DA_LOGRANGE(save_node, &save_node->hdr, 1441 dp->d_ops->node_hdr_size)); 1442 1443 /* 1444 * Save the last hashval in the remaining block for upward propagation. 1445 */ 1446 save_blk->hashval = be32_to_cpu(save_btree[save_hdr.count - 1].hashval); 1447 } 1448 1449 /*======================================================================== 1450 * Routines used for finding things in the Btree. 1451 *========================================================================*/ 1452 1453 /* 1454 * Walk down the Btree looking for a particular filename, filling 1455 * in the state structure as we go. 1456 * 1457 * We will set the state structure to point to each of the elements 1458 * in each of the nodes where either the hashval is or should be. 1459 * 1460 * We support duplicate hashval's so for each entry in the current 1461 * node that could contain the desired hashval, descend. This is a 1462 * pruned depth-first tree search. 1463 */ 1464 int /* error */ 1465 xfs_da3_node_lookup_int( 1466 struct xfs_da_state *state, 1467 int *result) 1468 { 1469 struct xfs_da_state_blk *blk; 1470 struct xfs_da_blkinfo *curr; 1471 struct xfs_da_intnode *node; 1472 struct xfs_da_node_entry *btree; 1473 struct xfs_da3_icnode_hdr nodehdr; 1474 struct xfs_da_args *args; 1475 xfs_dablk_t blkno; 1476 xfs_dahash_t hashval; 1477 xfs_dahash_t btreehashval; 1478 int probe; 1479 int span; 1480 int max; 1481 int error; 1482 int retval; 1483 unsigned int expected_level = 0; 1484 uint16_t magic; 1485 struct xfs_inode *dp = state->args->dp; 1486 1487 args = state->args; 1488 1489 /* 1490 * Descend thru the B-tree searching each level for the right 1491 * node to use, until the right hashval is found. 1492 */ 1493 blkno = args->geo->leafblk; 1494 for (blk = &state->path.blk[0], state->path.active = 1; 1495 state->path.active <= XFS_DA_NODE_MAXDEPTH; 1496 blk++, state->path.active++) { 1497 /* 1498 * Read the next node down in the tree. 1499 */ 1500 blk->blkno = blkno; 1501 error = xfs_da3_node_read(args->trans, args->dp, blkno, 1502 -1, &blk->bp, args->whichfork); 1503 if (error) { 1504 blk->blkno = 0; 1505 state->path.active--; 1506 return error; 1507 } 1508 curr = blk->bp->b_addr; 1509 magic = be16_to_cpu(curr->magic); 1510 1511 if (magic == XFS_ATTR_LEAF_MAGIC || 1512 magic == XFS_ATTR3_LEAF_MAGIC) { 1513 blk->magic = XFS_ATTR_LEAF_MAGIC; 1514 blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL); 1515 break; 1516 } 1517 1518 if (magic == XFS_DIR2_LEAFN_MAGIC || 1519 magic == XFS_DIR3_LEAFN_MAGIC) { 1520 blk->magic = XFS_DIR2_LEAFN_MAGIC; 1521 blk->hashval = xfs_dir2_leaf_lasthash(args->dp, 1522 blk->bp, NULL); 1523 break; 1524 } 1525 1526 if (magic != XFS_DA_NODE_MAGIC && magic != XFS_DA3_NODE_MAGIC) 1527 return -EFSCORRUPTED; 1528 1529 blk->magic = XFS_DA_NODE_MAGIC; 1530 1531 /* 1532 * Search an intermediate node for a match. 1533 */ 1534 node = blk->bp->b_addr; 1535 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1536 btree = dp->d_ops->node_tree_p(node); 1537 1538 /* Tree taller than we can handle; bail out! */ 1539 if (nodehdr.level >= XFS_DA_NODE_MAXDEPTH) 1540 return -EFSCORRUPTED; 1541 1542 /* Check the level from the root. */ 1543 if (blkno == args->geo->leafblk) 1544 expected_level = nodehdr.level - 1; 1545 else if (expected_level != nodehdr.level) 1546 return -EFSCORRUPTED; 1547 else 1548 expected_level--; 1549 1550 max = nodehdr.count; 1551 blk->hashval = be32_to_cpu(btree[max - 1].hashval); 1552 1553 /* 1554 * Binary search. (note: small blocks will skip loop) 1555 */ 1556 probe = span = max / 2; 1557 hashval = args->hashval; 1558 while (span > 4) { 1559 span /= 2; 1560 btreehashval = be32_to_cpu(btree[probe].hashval); 1561 if (btreehashval < hashval) 1562 probe += span; 1563 else if (btreehashval > hashval) 1564 probe -= span; 1565 else 1566 break; 1567 } 1568 ASSERT((probe >= 0) && (probe < max)); 1569 ASSERT((span <= 4) || 1570 (be32_to_cpu(btree[probe].hashval) == hashval)); 1571 1572 /* 1573 * Since we may have duplicate hashval's, find the first 1574 * matching hashval in the node. 1575 */ 1576 while (probe > 0 && 1577 be32_to_cpu(btree[probe].hashval) >= hashval) { 1578 probe--; 1579 } 1580 while (probe < max && 1581 be32_to_cpu(btree[probe].hashval) < hashval) { 1582 probe++; 1583 } 1584 1585 /* 1586 * Pick the right block to descend on. 1587 */ 1588 if (probe == max) { 1589 blk->index = max - 1; 1590 blkno = be32_to_cpu(btree[max - 1].before); 1591 } else { 1592 blk->index = probe; 1593 blkno = be32_to_cpu(btree[probe].before); 1594 } 1595 1596 /* We can't point back to the root. */ 1597 if (blkno == args->geo->leafblk) 1598 return -EFSCORRUPTED; 1599 } 1600 1601 if (expected_level != 0) 1602 return -EFSCORRUPTED; 1603 1604 /* 1605 * A leaf block that ends in the hashval that we are interested in 1606 * (final hashval == search hashval) means that the next block may 1607 * contain more entries with the same hashval, shift upward to the 1608 * next leaf and keep searching. 1609 */ 1610 for (;;) { 1611 if (blk->magic == XFS_DIR2_LEAFN_MAGIC) { 1612 retval = xfs_dir2_leafn_lookup_int(blk->bp, args, 1613 &blk->index, state); 1614 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) { 1615 retval = xfs_attr3_leaf_lookup_int(blk->bp, args); 1616 blk->index = args->index; 1617 args->blkno = blk->blkno; 1618 } else { 1619 ASSERT(0); 1620 return -EFSCORRUPTED; 1621 } 1622 if (((retval == -ENOENT) || (retval == -ENOATTR)) && 1623 (blk->hashval == args->hashval)) { 1624 error = xfs_da3_path_shift(state, &state->path, 1, 1, 1625 &retval); 1626 if (error) 1627 return error; 1628 if (retval == 0) { 1629 continue; 1630 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) { 1631 /* path_shift() gives ENOENT */ 1632 retval = -ENOATTR; 1633 } 1634 } 1635 break; 1636 } 1637 *result = retval; 1638 return 0; 1639 } 1640 1641 /*======================================================================== 1642 * Utility routines. 1643 *========================================================================*/ 1644 1645 /* 1646 * Compare two intermediate nodes for "order". 1647 */ 1648 STATIC int 1649 xfs_da3_node_order( 1650 struct xfs_inode *dp, 1651 struct xfs_buf *node1_bp, 1652 struct xfs_buf *node2_bp) 1653 { 1654 struct xfs_da_intnode *node1; 1655 struct xfs_da_intnode *node2; 1656 struct xfs_da_node_entry *btree1; 1657 struct xfs_da_node_entry *btree2; 1658 struct xfs_da3_icnode_hdr node1hdr; 1659 struct xfs_da3_icnode_hdr node2hdr; 1660 1661 node1 = node1_bp->b_addr; 1662 node2 = node2_bp->b_addr; 1663 dp->d_ops->node_hdr_from_disk(&node1hdr, node1); 1664 dp->d_ops->node_hdr_from_disk(&node2hdr, node2); 1665 btree1 = dp->d_ops->node_tree_p(node1); 1666 btree2 = dp->d_ops->node_tree_p(node2); 1667 1668 if (node1hdr.count > 0 && node2hdr.count > 0 && 1669 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) || 1670 (be32_to_cpu(btree2[node2hdr.count - 1].hashval) < 1671 be32_to_cpu(btree1[node1hdr.count - 1].hashval)))) { 1672 return 1; 1673 } 1674 return 0; 1675 } 1676 1677 /* 1678 * Link a new block into a doubly linked list of blocks (of whatever type). 1679 */ 1680 int /* error */ 1681 xfs_da3_blk_link( 1682 struct xfs_da_state *state, 1683 struct xfs_da_state_blk *old_blk, 1684 struct xfs_da_state_blk *new_blk) 1685 { 1686 struct xfs_da_blkinfo *old_info; 1687 struct xfs_da_blkinfo *new_info; 1688 struct xfs_da_blkinfo *tmp_info; 1689 struct xfs_da_args *args; 1690 struct xfs_buf *bp; 1691 int before = 0; 1692 int error; 1693 struct xfs_inode *dp = state->args->dp; 1694 1695 /* 1696 * Set up environment. 1697 */ 1698 args = state->args; 1699 ASSERT(args != NULL); 1700 old_info = old_blk->bp->b_addr; 1701 new_info = new_blk->bp->b_addr; 1702 ASSERT(old_blk->magic == XFS_DA_NODE_MAGIC || 1703 old_blk->magic == XFS_DIR2_LEAFN_MAGIC || 1704 old_blk->magic == XFS_ATTR_LEAF_MAGIC); 1705 1706 switch (old_blk->magic) { 1707 case XFS_ATTR_LEAF_MAGIC: 1708 before = xfs_attr_leaf_order(old_blk->bp, new_blk->bp); 1709 break; 1710 case XFS_DIR2_LEAFN_MAGIC: 1711 before = xfs_dir2_leafn_order(dp, old_blk->bp, new_blk->bp); 1712 break; 1713 case XFS_DA_NODE_MAGIC: 1714 before = xfs_da3_node_order(dp, old_blk->bp, new_blk->bp); 1715 break; 1716 } 1717 1718 /* 1719 * Link blocks in appropriate order. 1720 */ 1721 if (before) { 1722 /* 1723 * Link new block in before existing block. 1724 */ 1725 trace_xfs_da_link_before(args); 1726 new_info->forw = cpu_to_be32(old_blk->blkno); 1727 new_info->back = old_info->back; 1728 if (old_info->back) { 1729 error = xfs_da3_node_read(args->trans, dp, 1730 be32_to_cpu(old_info->back), 1731 -1, &bp, args->whichfork); 1732 if (error) 1733 return error; 1734 ASSERT(bp != NULL); 1735 tmp_info = bp->b_addr; 1736 ASSERT(tmp_info->magic == old_info->magic); 1737 ASSERT(be32_to_cpu(tmp_info->forw) == old_blk->blkno); 1738 tmp_info->forw = cpu_to_be32(new_blk->blkno); 1739 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1); 1740 } 1741 old_info->back = cpu_to_be32(new_blk->blkno); 1742 } else { 1743 /* 1744 * Link new block in after existing block. 1745 */ 1746 trace_xfs_da_link_after(args); 1747 new_info->forw = old_info->forw; 1748 new_info->back = cpu_to_be32(old_blk->blkno); 1749 if (old_info->forw) { 1750 error = xfs_da3_node_read(args->trans, dp, 1751 be32_to_cpu(old_info->forw), 1752 -1, &bp, args->whichfork); 1753 if (error) 1754 return error; 1755 ASSERT(bp != NULL); 1756 tmp_info = bp->b_addr; 1757 ASSERT(tmp_info->magic == old_info->magic); 1758 ASSERT(be32_to_cpu(tmp_info->back) == old_blk->blkno); 1759 tmp_info->back = cpu_to_be32(new_blk->blkno); 1760 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1); 1761 } 1762 old_info->forw = cpu_to_be32(new_blk->blkno); 1763 } 1764 1765 xfs_trans_log_buf(args->trans, old_blk->bp, 0, sizeof(*tmp_info) - 1); 1766 xfs_trans_log_buf(args->trans, new_blk->bp, 0, sizeof(*tmp_info) - 1); 1767 return 0; 1768 } 1769 1770 /* 1771 * Unlink a block from a doubly linked list of blocks. 1772 */ 1773 STATIC int /* error */ 1774 xfs_da3_blk_unlink( 1775 struct xfs_da_state *state, 1776 struct xfs_da_state_blk *drop_blk, 1777 struct xfs_da_state_blk *save_blk) 1778 { 1779 struct xfs_da_blkinfo *drop_info; 1780 struct xfs_da_blkinfo *save_info; 1781 struct xfs_da_blkinfo *tmp_info; 1782 struct xfs_da_args *args; 1783 struct xfs_buf *bp; 1784 int error; 1785 1786 /* 1787 * Set up environment. 1788 */ 1789 args = state->args; 1790 ASSERT(args != NULL); 1791 save_info = save_blk->bp->b_addr; 1792 drop_info = drop_blk->bp->b_addr; 1793 ASSERT(save_blk->magic == XFS_DA_NODE_MAGIC || 1794 save_blk->magic == XFS_DIR2_LEAFN_MAGIC || 1795 save_blk->magic == XFS_ATTR_LEAF_MAGIC); 1796 ASSERT(save_blk->magic == drop_blk->magic); 1797 ASSERT((be32_to_cpu(save_info->forw) == drop_blk->blkno) || 1798 (be32_to_cpu(save_info->back) == drop_blk->blkno)); 1799 ASSERT((be32_to_cpu(drop_info->forw) == save_blk->blkno) || 1800 (be32_to_cpu(drop_info->back) == save_blk->blkno)); 1801 1802 /* 1803 * Unlink the leaf block from the doubly linked chain of leaves. 1804 */ 1805 if (be32_to_cpu(save_info->back) == drop_blk->blkno) { 1806 trace_xfs_da_unlink_back(args); 1807 save_info->back = drop_info->back; 1808 if (drop_info->back) { 1809 error = xfs_da3_node_read(args->trans, args->dp, 1810 be32_to_cpu(drop_info->back), 1811 -1, &bp, args->whichfork); 1812 if (error) 1813 return error; 1814 ASSERT(bp != NULL); 1815 tmp_info = bp->b_addr; 1816 ASSERT(tmp_info->magic == save_info->magic); 1817 ASSERT(be32_to_cpu(tmp_info->forw) == drop_blk->blkno); 1818 tmp_info->forw = cpu_to_be32(save_blk->blkno); 1819 xfs_trans_log_buf(args->trans, bp, 0, 1820 sizeof(*tmp_info) - 1); 1821 } 1822 } else { 1823 trace_xfs_da_unlink_forward(args); 1824 save_info->forw = drop_info->forw; 1825 if (drop_info->forw) { 1826 error = xfs_da3_node_read(args->trans, args->dp, 1827 be32_to_cpu(drop_info->forw), 1828 -1, &bp, args->whichfork); 1829 if (error) 1830 return error; 1831 ASSERT(bp != NULL); 1832 tmp_info = bp->b_addr; 1833 ASSERT(tmp_info->magic == save_info->magic); 1834 ASSERT(be32_to_cpu(tmp_info->back) == drop_blk->blkno); 1835 tmp_info->back = cpu_to_be32(save_blk->blkno); 1836 xfs_trans_log_buf(args->trans, bp, 0, 1837 sizeof(*tmp_info) - 1); 1838 } 1839 } 1840 1841 xfs_trans_log_buf(args->trans, save_blk->bp, 0, sizeof(*save_info) - 1); 1842 return 0; 1843 } 1844 1845 /* 1846 * Move a path "forward" or "!forward" one block at the current level. 1847 * 1848 * This routine will adjust a "path" to point to the next block 1849 * "forward" (higher hashvalues) or "!forward" (lower hashvals) in the 1850 * Btree, including updating pointers to the intermediate nodes between 1851 * the new bottom and the root. 1852 */ 1853 int /* error */ 1854 xfs_da3_path_shift( 1855 struct xfs_da_state *state, 1856 struct xfs_da_state_path *path, 1857 int forward, 1858 int release, 1859 int *result) 1860 { 1861 struct xfs_da_state_blk *blk; 1862 struct xfs_da_blkinfo *info; 1863 struct xfs_da_intnode *node; 1864 struct xfs_da_args *args; 1865 struct xfs_da_node_entry *btree; 1866 struct xfs_da3_icnode_hdr nodehdr; 1867 struct xfs_buf *bp; 1868 xfs_dablk_t blkno = 0; 1869 int level; 1870 int error; 1871 struct xfs_inode *dp = state->args->dp; 1872 1873 trace_xfs_da_path_shift(state->args); 1874 1875 /* 1876 * Roll up the Btree looking for the first block where our 1877 * current index is not at the edge of the block. Note that 1878 * we skip the bottom layer because we want the sibling block. 1879 */ 1880 args = state->args; 1881 ASSERT(args != NULL); 1882 ASSERT(path != NULL); 1883 ASSERT((path->active > 0) && (path->active < XFS_DA_NODE_MAXDEPTH)); 1884 level = (path->active-1) - 1; /* skip bottom layer in path */ 1885 for (blk = &path->blk[level]; level >= 0; blk--, level--) { 1886 node = blk->bp->b_addr; 1887 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1888 btree = dp->d_ops->node_tree_p(node); 1889 1890 if (forward && (blk->index < nodehdr.count - 1)) { 1891 blk->index++; 1892 blkno = be32_to_cpu(btree[blk->index].before); 1893 break; 1894 } else if (!forward && (blk->index > 0)) { 1895 blk->index--; 1896 blkno = be32_to_cpu(btree[blk->index].before); 1897 break; 1898 } 1899 } 1900 if (level < 0) { 1901 *result = -ENOENT; /* we're out of our tree */ 1902 ASSERT(args->op_flags & XFS_DA_OP_OKNOENT); 1903 return 0; 1904 } 1905 1906 /* 1907 * Roll down the edge of the subtree until we reach the 1908 * same depth we were at originally. 1909 */ 1910 for (blk++, level++; level < path->active; blk++, level++) { 1911 /* 1912 * Read the next child block into a local buffer. 1913 */ 1914 error = xfs_da3_node_read(args->trans, dp, blkno, -1, &bp, 1915 args->whichfork); 1916 if (error) 1917 return error; 1918 1919 /* 1920 * Release the old block (if it's dirty, the trans doesn't 1921 * actually let go) and swap the local buffer into the path 1922 * structure. This ensures failure of the above read doesn't set 1923 * a NULL buffer in an active slot in the path. 1924 */ 1925 if (release) 1926 xfs_trans_brelse(args->trans, blk->bp); 1927 blk->blkno = blkno; 1928 blk->bp = bp; 1929 1930 info = blk->bp->b_addr; 1931 ASSERT(info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC) || 1932 info->magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) || 1933 info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || 1934 info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) || 1935 info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 1936 info->magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 1937 1938 1939 /* 1940 * Note: we flatten the magic number to a single type so we 1941 * don't have to compare against crc/non-crc types elsewhere. 1942 */ 1943 switch (be16_to_cpu(info->magic)) { 1944 case XFS_DA_NODE_MAGIC: 1945 case XFS_DA3_NODE_MAGIC: 1946 blk->magic = XFS_DA_NODE_MAGIC; 1947 node = (xfs_da_intnode_t *)info; 1948 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1949 btree = dp->d_ops->node_tree_p(node); 1950 blk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval); 1951 if (forward) 1952 blk->index = 0; 1953 else 1954 blk->index = nodehdr.count - 1; 1955 blkno = be32_to_cpu(btree[blk->index].before); 1956 break; 1957 case XFS_ATTR_LEAF_MAGIC: 1958 case XFS_ATTR3_LEAF_MAGIC: 1959 blk->magic = XFS_ATTR_LEAF_MAGIC; 1960 ASSERT(level == path->active-1); 1961 blk->index = 0; 1962 blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL); 1963 break; 1964 case XFS_DIR2_LEAFN_MAGIC: 1965 case XFS_DIR3_LEAFN_MAGIC: 1966 blk->magic = XFS_DIR2_LEAFN_MAGIC; 1967 ASSERT(level == path->active-1); 1968 blk->index = 0; 1969 blk->hashval = xfs_dir2_leaf_lasthash(args->dp, 1970 blk->bp, NULL); 1971 break; 1972 default: 1973 ASSERT(0); 1974 break; 1975 } 1976 } 1977 *result = 0; 1978 return 0; 1979 } 1980 1981 1982 /*======================================================================== 1983 * Utility routines. 1984 *========================================================================*/ 1985 1986 /* 1987 * Implement a simple hash on a character string. 1988 * Rotate the hash value by 7 bits, then XOR each character in. 1989 * This is implemented with some source-level loop unrolling. 1990 */ 1991 xfs_dahash_t 1992 xfs_da_hashname(const uint8_t *name, int namelen) 1993 { 1994 xfs_dahash_t hash; 1995 1996 /* 1997 * Do four characters at a time as long as we can. 1998 */ 1999 for (hash = 0; namelen >= 4; namelen -= 4, name += 4) 2000 hash = (name[0] << 21) ^ (name[1] << 14) ^ (name[2] << 7) ^ 2001 (name[3] << 0) ^ rol32(hash, 7 * 4); 2002 2003 /* 2004 * Now do the rest of the characters. 2005 */ 2006 switch (namelen) { 2007 case 3: 2008 return (name[0] << 14) ^ (name[1] << 7) ^ (name[2] << 0) ^ 2009 rol32(hash, 7 * 3); 2010 case 2: 2011 return (name[0] << 7) ^ (name[1] << 0) ^ rol32(hash, 7 * 2); 2012 case 1: 2013 return (name[0] << 0) ^ rol32(hash, 7 * 1); 2014 default: /* case 0: */ 2015 return hash; 2016 } 2017 } 2018 2019 enum xfs_dacmp 2020 xfs_da_compname( 2021 struct xfs_da_args *args, 2022 const unsigned char *name, 2023 int len) 2024 { 2025 return (args->namelen == len && memcmp(args->name, name, len) == 0) ? 2026 XFS_CMP_EXACT : XFS_CMP_DIFFERENT; 2027 } 2028 2029 static xfs_dahash_t 2030 xfs_default_hashname( 2031 struct xfs_name *name) 2032 { 2033 return xfs_da_hashname(name->name, name->len); 2034 } 2035 2036 const struct xfs_nameops xfs_default_nameops = { 2037 .hashname = xfs_default_hashname, 2038 .compname = xfs_da_compname 2039 }; 2040 2041 int 2042 xfs_da_grow_inode_int( 2043 struct xfs_da_args *args, 2044 xfs_fileoff_t *bno, 2045 int count) 2046 { 2047 struct xfs_trans *tp = args->trans; 2048 struct xfs_inode *dp = args->dp; 2049 int w = args->whichfork; 2050 xfs_rfsblock_t nblks = dp->i_d.di_nblocks; 2051 struct xfs_bmbt_irec map, *mapp; 2052 int nmap, error, got, i, mapi; 2053 2054 /* 2055 * Find a spot in the file space to put the new block. 2056 */ 2057 error = xfs_bmap_first_unused(tp, dp, count, bno, w); 2058 if (error) 2059 return error; 2060 2061 /* 2062 * Try mapping it in one filesystem block. 2063 */ 2064 nmap = 1; 2065 error = xfs_bmapi_write(tp, dp, *bno, count, 2066 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA|XFS_BMAPI_CONTIG, 2067 args->total, &map, &nmap); 2068 if (error) 2069 return error; 2070 2071 ASSERT(nmap <= 1); 2072 if (nmap == 1) { 2073 mapp = ↦ 2074 mapi = 1; 2075 } else if (nmap == 0 && count > 1) { 2076 xfs_fileoff_t b; 2077 int c; 2078 2079 /* 2080 * If we didn't get it and the block might work if fragmented, 2081 * try without the CONTIG flag. Loop until we get it all. 2082 */ 2083 mapp = kmem_alloc(sizeof(*mapp) * count, KM_SLEEP); 2084 for (b = *bno, mapi = 0; b < *bno + count; ) { 2085 nmap = min(XFS_BMAP_MAX_NMAP, count); 2086 c = (int)(*bno + count - b); 2087 error = xfs_bmapi_write(tp, dp, b, c, 2088 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA, 2089 args->total, &mapp[mapi], &nmap); 2090 if (error) 2091 goto out_free_map; 2092 if (nmap < 1) 2093 break; 2094 mapi += nmap; 2095 b = mapp[mapi - 1].br_startoff + 2096 mapp[mapi - 1].br_blockcount; 2097 } 2098 } else { 2099 mapi = 0; 2100 mapp = NULL; 2101 } 2102 2103 /* 2104 * Count the blocks we got, make sure it matches the total. 2105 */ 2106 for (i = 0, got = 0; i < mapi; i++) 2107 got += mapp[i].br_blockcount; 2108 if (got != count || mapp[0].br_startoff != *bno || 2109 mapp[mapi - 1].br_startoff + mapp[mapi - 1].br_blockcount != 2110 *bno + count) { 2111 error = -ENOSPC; 2112 goto out_free_map; 2113 } 2114 2115 /* account for newly allocated blocks in reserved blocks total */ 2116 args->total -= dp->i_d.di_nblocks - nblks; 2117 2118 out_free_map: 2119 if (mapp != &map) 2120 kmem_free(mapp); 2121 return error; 2122 } 2123 2124 /* 2125 * Add a block to the btree ahead of the file. 2126 * Return the new block number to the caller. 2127 */ 2128 int 2129 xfs_da_grow_inode( 2130 struct xfs_da_args *args, 2131 xfs_dablk_t *new_blkno) 2132 { 2133 xfs_fileoff_t bno; 2134 int error; 2135 2136 trace_xfs_da_grow_inode(args); 2137 2138 bno = args->geo->leafblk; 2139 error = xfs_da_grow_inode_int(args, &bno, args->geo->fsbcount); 2140 if (!error) 2141 *new_blkno = (xfs_dablk_t)bno; 2142 return error; 2143 } 2144 2145 /* 2146 * Ick. We need to always be able to remove a btree block, even 2147 * if there's no space reservation because the filesystem is full. 2148 * This is called if xfs_bunmapi on a btree block fails due to ENOSPC. 2149 * It swaps the target block with the last block in the file. The 2150 * last block in the file can always be removed since it can't cause 2151 * a bmap btree split to do that. 2152 */ 2153 STATIC int 2154 xfs_da3_swap_lastblock( 2155 struct xfs_da_args *args, 2156 xfs_dablk_t *dead_blknop, 2157 struct xfs_buf **dead_bufp) 2158 { 2159 struct xfs_da_blkinfo *dead_info; 2160 struct xfs_da_blkinfo *sib_info; 2161 struct xfs_da_intnode *par_node; 2162 struct xfs_da_intnode *dead_node; 2163 struct xfs_dir2_leaf *dead_leaf2; 2164 struct xfs_da_node_entry *btree; 2165 struct xfs_da3_icnode_hdr par_hdr; 2166 struct xfs_inode *dp; 2167 struct xfs_trans *tp; 2168 struct xfs_mount *mp; 2169 struct xfs_buf *dead_buf; 2170 struct xfs_buf *last_buf; 2171 struct xfs_buf *sib_buf; 2172 struct xfs_buf *par_buf; 2173 xfs_dahash_t dead_hash; 2174 xfs_fileoff_t lastoff; 2175 xfs_dablk_t dead_blkno; 2176 xfs_dablk_t last_blkno; 2177 xfs_dablk_t sib_blkno; 2178 xfs_dablk_t par_blkno; 2179 int error; 2180 int w; 2181 int entno; 2182 int level; 2183 int dead_level; 2184 2185 trace_xfs_da_swap_lastblock(args); 2186 2187 dead_buf = *dead_bufp; 2188 dead_blkno = *dead_blknop; 2189 tp = args->trans; 2190 dp = args->dp; 2191 w = args->whichfork; 2192 ASSERT(w == XFS_DATA_FORK); 2193 mp = dp->i_mount; 2194 lastoff = args->geo->freeblk; 2195 error = xfs_bmap_last_before(tp, dp, &lastoff, w); 2196 if (error) 2197 return error; 2198 if (unlikely(lastoff == 0)) { 2199 XFS_ERROR_REPORT("xfs_da_swap_lastblock(1)", XFS_ERRLEVEL_LOW, 2200 mp); 2201 return -EFSCORRUPTED; 2202 } 2203 /* 2204 * Read the last block in the btree space. 2205 */ 2206 last_blkno = (xfs_dablk_t)lastoff - args->geo->fsbcount; 2207 error = xfs_da3_node_read(tp, dp, last_blkno, -1, &last_buf, w); 2208 if (error) 2209 return error; 2210 /* 2211 * Copy the last block into the dead buffer and log it. 2212 */ 2213 memcpy(dead_buf->b_addr, last_buf->b_addr, args->geo->blksize); 2214 xfs_trans_log_buf(tp, dead_buf, 0, args->geo->blksize - 1); 2215 dead_info = dead_buf->b_addr; 2216 /* 2217 * Get values from the moved block. 2218 */ 2219 if (dead_info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || 2220 dead_info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) { 2221 struct xfs_dir3_icleaf_hdr leafhdr; 2222 struct xfs_dir2_leaf_entry *ents; 2223 2224 dead_leaf2 = (xfs_dir2_leaf_t *)dead_info; 2225 dp->d_ops->leaf_hdr_from_disk(&leafhdr, dead_leaf2); 2226 ents = dp->d_ops->leaf_ents_p(dead_leaf2); 2227 dead_level = 0; 2228 dead_hash = be32_to_cpu(ents[leafhdr.count - 1].hashval); 2229 } else { 2230 struct xfs_da3_icnode_hdr deadhdr; 2231 2232 dead_node = (xfs_da_intnode_t *)dead_info; 2233 dp->d_ops->node_hdr_from_disk(&deadhdr, dead_node); 2234 btree = dp->d_ops->node_tree_p(dead_node); 2235 dead_level = deadhdr.level; 2236 dead_hash = be32_to_cpu(btree[deadhdr.count - 1].hashval); 2237 } 2238 sib_buf = par_buf = NULL; 2239 /* 2240 * If the moved block has a left sibling, fix up the pointers. 2241 */ 2242 if ((sib_blkno = be32_to_cpu(dead_info->back))) { 2243 error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w); 2244 if (error) 2245 goto done; 2246 sib_info = sib_buf->b_addr; 2247 if (unlikely( 2248 be32_to_cpu(sib_info->forw) != last_blkno || 2249 sib_info->magic != dead_info->magic)) { 2250 XFS_ERROR_REPORT("xfs_da_swap_lastblock(2)", 2251 XFS_ERRLEVEL_LOW, mp); 2252 error = -EFSCORRUPTED; 2253 goto done; 2254 } 2255 sib_info->forw = cpu_to_be32(dead_blkno); 2256 xfs_trans_log_buf(tp, sib_buf, 2257 XFS_DA_LOGRANGE(sib_info, &sib_info->forw, 2258 sizeof(sib_info->forw))); 2259 sib_buf = NULL; 2260 } 2261 /* 2262 * If the moved block has a right sibling, fix up the pointers. 2263 */ 2264 if ((sib_blkno = be32_to_cpu(dead_info->forw))) { 2265 error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w); 2266 if (error) 2267 goto done; 2268 sib_info = sib_buf->b_addr; 2269 if (unlikely( 2270 be32_to_cpu(sib_info->back) != last_blkno || 2271 sib_info->magic != dead_info->magic)) { 2272 XFS_ERROR_REPORT("xfs_da_swap_lastblock(3)", 2273 XFS_ERRLEVEL_LOW, mp); 2274 error = -EFSCORRUPTED; 2275 goto done; 2276 } 2277 sib_info->back = cpu_to_be32(dead_blkno); 2278 xfs_trans_log_buf(tp, sib_buf, 2279 XFS_DA_LOGRANGE(sib_info, &sib_info->back, 2280 sizeof(sib_info->back))); 2281 sib_buf = NULL; 2282 } 2283 par_blkno = args->geo->leafblk; 2284 level = -1; 2285 /* 2286 * Walk down the tree looking for the parent of the moved block. 2287 */ 2288 for (;;) { 2289 error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w); 2290 if (error) 2291 goto done; 2292 par_node = par_buf->b_addr; 2293 dp->d_ops->node_hdr_from_disk(&par_hdr, par_node); 2294 if (level >= 0 && level != par_hdr.level + 1) { 2295 XFS_ERROR_REPORT("xfs_da_swap_lastblock(4)", 2296 XFS_ERRLEVEL_LOW, mp); 2297 error = -EFSCORRUPTED; 2298 goto done; 2299 } 2300 level = par_hdr.level; 2301 btree = dp->d_ops->node_tree_p(par_node); 2302 for (entno = 0; 2303 entno < par_hdr.count && 2304 be32_to_cpu(btree[entno].hashval) < dead_hash; 2305 entno++) 2306 continue; 2307 if (entno == par_hdr.count) { 2308 XFS_ERROR_REPORT("xfs_da_swap_lastblock(5)", 2309 XFS_ERRLEVEL_LOW, mp); 2310 error = -EFSCORRUPTED; 2311 goto done; 2312 } 2313 par_blkno = be32_to_cpu(btree[entno].before); 2314 if (level == dead_level + 1) 2315 break; 2316 xfs_trans_brelse(tp, par_buf); 2317 par_buf = NULL; 2318 } 2319 /* 2320 * We're in the right parent block. 2321 * Look for the right entry. 2322 */ 2323 for (;;) { 2324 for (; 2325 entno < par_hdr.count && 2326 be32_to_cpu(btree[entno].before) != last_blkno; 2327 entno++) 2328 continue; 2329 if (entno < par_hdr.count) 2330 break; 2331 par_blkno = par_hdr.forw; 2332 xfs_trans_brelse(tp, par_buf); 2333 par_buf = NULL; 2334 if (unlikely(par_blkno == 0)) { 2335 XFS_ERROR_REPORT("xfs_da_swap_lastblock(6)", 2336 XFS_ERRLEVEL_LOW, mp); 2337 error = -EFSCORRUPTED; 2338 goto done; 2339 } 2340 error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w); 2341 if (error) 2342 goto done; 2343 par_node = par_buf->b_addr; 2344 dp->d_ops->node_hdr_from_disk(&par_hdr, par_node); 2345 if (par_hdr.level != level) { 2346 XFS_ERROR_REPORT("xfs_da_swap_lastblock(7)", 2347 XFS_ERRLEVEL_LOW, mp); 2348 error = -EFSCORRUPTED; 2349 goto done; 2350 } 2351 btree = dp->d_ops->node_tree_p(par_node); 2352 entno = 0; 2353 } 2354 /* 2355 * Update the parent entry pointing to the moved block. 2356 */ 2357 btree[entno].before = cpu_to_be32(dead_blkno); 2358 xfs_trans_log_buf(tp, par_buf, 2359 XFS_DA_LOGRANGE(par_node, &btree[entno].before, 2360 sizeof(btree[entno].before))); 2361 *dead_blknop = last_blkno; 2362 *dead_bufp = last_buf; 2363 return 0; 2364 done: 2365 if (par_buf) 2366 xfs_trans_brelse(tp, par_buf); 2367 if (sib_buf) 2368 xfs_trans_brelse(tp, sib_buf); 2369 xfs_trans_brelse(tp, last_buf); 2370 return error; 2371 } 2372 2373 /* 2374 * Remove a btree block from a directory or attribute. 2375 */ 2376 int 2377 xfs_da_shrink_inode( 2378 struct xfs_da_args *args, 2379 xfs_dablk_t dead_blkno, 2380 struct xfs_buf *dead_buf) 2381 { 2382 struct xfs_inode *dp; 2383 int done, error, w, count; 2384 struct xfs_trans *tp; 2385 2386 trace_xfs_da_shrink_inode(args); 2387 2388 dp = args->dp; 2389 w = args->whichfork; 2390 tp = args->trans; 2391 count = args->geo->fsbcount; 2392 for (;;) { 2393 /* 2394 * Remove extents. If we get ENOSPC for a dir we have to move 2395 * the last block to the place we want to kill. 2396 */ 2397 error = xfs_bunmapi(tp, dp, dead_blkno, count, 2398 xfs_bmapi_aflag(w), 0, &done); 2399 if (error == -ENOSPC) { 2400 if (w != XFS_DATA_FORK) 2401 break; 2402 error = xfs_da3_swap_lastblock(args, &dead_blkno, 2403 &dead_buf); 2404 if (error) 2405 break; 2406 } else { 2407 break; 2408 } 2409 } 2410 xfs_trans_binval(tp, dead_buf); 2411 return error; 2412 } 2413 2414 /* 2415 * See if the mapping(s) for this btree block are valid, i.e. 2416 * don't contain holes, are logically contiguous, and cover the whole range. 2417 */ 2418 STATIC int 2419 xfs_da_map_covers_blocks( 2420 int nmap, 2421 xfs_bmbt_irec_t *mapp, 2422 xfs_dablk_t bno, 2423 int count) 2424 { 2425 int i; 2426 xfs_fileoff_t off; 2427 2428 for (i = 0, off = bno; i < nmap; i++) { 2429 if (mapp[i].br_startblock == HOLESTARTBLOCK || 2430 mapp[i].br_startblock == DELAYSTARTBLOCK) { 2431 return 0; 2432 } 2433 if (off != mapp[i].br_startoff) { 2434 return 0; 2435 } 2436 off += mapp[i].br_blockcount; 2437 } 2438 return off == bno + count; 2439 } 2440 2441 /* 2442 * Convert a struct xfs_bmbt_irec to a struct xfs_buf_map. 2443 * 2444 * For the single map case, it is assumed that the caller has provided a pointer 2445 * to a valid xfs_buf_map. For the multiple map case, this function will 2446 * allocate the xfs_buf_map to hold all the maps and replace the caller's single 2447 * map pointer with the allocated map. 2448 */ 2449 static int 2450 xfs_buf_map_from_irec( 2451 struct xfs_mount *mp, 2452 struct xfs_buf_map **mapp, 2453 int *nmaps, 2454 struct xfs_bmbt_irec *irecs, 2455 int nirecs) 2456 { 2457 struct xfs_buf_map *map; 2458 int i; 2459 2460 ASSERT(*nmaps == 1); 2461 ASSERT(nirecs >= 1); 2462 2463 if (nirecs > 1) { 2464 map = kmem_zalloc(nirecs * sizeof(struct xfs_buf_map), 2465 KM_SLEEP | KM_NOFS); 2466 if (!map) 2467 return -ENOMEM; 2468 *mapp = map; 2469 } 2470 2471 *nmaps = nirecs; 2472 map = *mapp; 2473 for (i = 0; i < *nmaps; i++) { 2474 ASSERT(irecs[i].br_startblock != DELAYSTARTBLOCK && 2475 irecs[i].br_startblock != HOLESTARTBLOCK); 2476 map[i].bm_bn = XFS_FSB_TO_DADDR(mp, irecs[i].br_startblock); 2477 map[i].bm_len = XFS_FSB_TO_BB(mp, irecs[i].br_blockcount); 2478 } 2479 return 0; 2480 } 2481 2482 /* 2483 * Map the block we are given ready for reading. There are three possible return 2484 * values: 2485 * -1 - will be returned if we land in a hole and mappedbno == -2 so the 2486 * caller knows not to execute a subsequent read. 2487 * 0 - if we mapped the block successfully 2488 * >0 - positive error number if there was an error. 2489 */ 2490 static int 2491 xfs_dabuf_map( 2492 struct xfs_inode *dp, 2493 xfs_dablk_t bno, 2494 xfs_daddr_t mappedbno, 2495 int whichfork, 2496 struct xfs_buf_map **map, 2497 int *nmaps) 2498 { 2499 struct xfs_mount *mp = dp->i_mount; 2500 int nfsb; 2501 int error = 0; 2502 struct xfs_bmbt_irec irec; 2503 struct xfs_bmbt_irec *irecs = &irec; 2504 int nirecs; 2505 2506 ASSERT(map && *map); 2507 ASSERT(*nmaps == 1); 2508 2509 if (whichfork == XFS_DATA_FORK) 2510 nfsb = mp->m_dir_geo->fsbcount; 2511 else 2512 nfsb = mp->m_attr_geo->fsbcount; 2513 2514 /* 2515 * Caller doesn't have a mapping. -2 means don't complain 2516 * if we land in a hole. 2517 */ 2518 if (mappedbno == -1 || mappedbno == -2) { 2519 /* 2520 * Optimize the one-block case. 2521 */ 2522 if (nfsb != 1) 2523 irecs = kmem_zalloc(sizeof(irec) * nfsb, 2524 KM_SLEEP | KM_NOFS); 2525 2526 nirecs = nfsb; 2527 error = xfs_bmapi_read(dp, (xfs_fileoff_t)bno, nfsb, irecs, 2528 &nirecs, xfs_bmapi_aflag(whichfork)); 2529 if (error) 2530 goto out; 2531 } else { 2532 irecs->br_startblock = XFS_DADDR_TO_FSB(mp, mappedbno); 2533 irecs->br_startoff = (xfs_fileoff_t)bno; 2534 irecs->br_blockcount = nfsb; 2535 irecs->br_state = 0; 2536 nirecs = 1; 2537 } 2538 2539 if (!xfs_da_map_covers_blocks(nirecs, irecs, bno, nfsb)) { 2540 error = mappedbno == -2 ? -1 : -EFSCORRUPTED; 2541 if (unlikely(error == -EFSCORRUPTED)) { 2542 if (xfs_error_level >= XFS_ERRLEVEL_LOW) { 2543 int i; 2544 xfs_alert(mp, "%s: bno %lld dir: inode %lld", 2545 __func__, (long long)bno, 2546 (long long)dp->i_ino); 2547 for (i = 0; i < *nmaps; i++) { 2548 xfs_alert(mp, 2549 "[%02d] br_startoff %lld br_startblock %lld br_blockcount %lld br_state %d", 2550 i, 2551 (long long)irecs[i].br_startoff, 2552 (long long)irecs[i].br_startblock, 2553 (long long)irecs[i].br_blockcount, 2554 irecs[i].br_state); 2555 } 2556 } 2557 XFS_ERROR_REPORT("xfs_da_do_buf(1)", 2558 XFS_ERRLEVEL_LOW, mp); 2559 } 2560 goto out; 2561 } 2562 error = xfs_buf_map_from_irec(mp, map, nmaps, irecs, nirecs); 2563 out: 2564 if (irecs != &irec) 2565 kmem_free(irecs); 2566 return error; 2567 } 2568 2569 /* 2570 * Get a buffer for the dir/attr block. 2571 */ 2572 int 2573 xfs_da_get_buf( 2574 struct xfs_trans *trans, 2575 struct xfs_inode *dp, 2576 xfs_dablk_t bno, 2577 xfs_daddr_t mappedbno, 2578 struct xfs_buf **bpp, 2579 int whichfork) 2580 { 2581 struct xfs_buf *bp; 2582 struct xfs_buf_map map; 2583 struct xfs_buf_map *mapp; 2584 int nmap; 2585 int error; 2586 2587 *bpp = NULL; 2588 mapp = ↦ 2589 nmap = 1; 2590 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork, 2591 &mapp, &nmap); 2592 if (error) { 2593 /* mapping a hole is not an error, but we don't continue */ 2594 if (error == -1) 2595 error = 0; 2596 goto out_free; 2597 } 2598 2599 bp = xfs_trans_get_buf_map(trans, dp->i_mount->m_ddev_targp, 2600 mapp, nmap, 0); 2601 error = bp ? bp->b_error : -EIO; 2602 if (error) { 2603 if (bp) 2604 xfs_trans_brelse(trans, bp); 2605 goto out_free; 2606 } 2607 2608 *bpp = bp; 2609 2610 out_free: 2611 if (mapp != &map) 2612 kmem_free(mapp); 2613 2614 return error; 2615 } 2616 2617 /* 2618 * Get a buffer for the dir/attr block, fill in the contents. 2619 */ 2620 int 2621 xfs_da_read_buf( 2622 struct xfs_trans *trans, 2623 struct xfs_inode *dp, 2624 xfs_dablk_t bno, 2625 xfs_daddr_t mappedbno, 2626 struct xfs_buf **bpp, 2627 int whichfork, 2628 const struct xfs_buf_ops *ops) 2629 { 2630 struct xfs_buf *bp; 2631 struct xfs_buf_map map; 2632 struct xfs_buf_map *mapp; 2633 int nmap; 2634 int error; 2635 2636 *bpp = NULL; 2637 mapp = ↦ 2638 nmap = 1; 2639 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork, 2640 &mapp, &nmap); 2641 if (error) { 2642 /* mapping a hole is not an error, but we don't continue */ 2643 if (error == -1) 2644 error = 0; 2645 goto out_free; 2646 } 2647 2648 error = xfs_trans_read_buf_map(dp->i_mount, trans, 2649 dp->i_mount->m_ddev_targp, 2650 mapp, nmap, 0, &bp, ops); 2651 if (error) 2652 goto out_free; 2653 2654 if (whichfork == XFS_ATTR_FORK) 2655 xfs_buf_set_ref(bp, XFS_ATTR_BTREE_REF); 2656 else 2657 xfs_buf_set_ref(bp, XFS_DIR_BTREE_REF); 2658 *bpp = bp; 2659 out_free: 2660 if (mapp != &map) 2661 kmem_free(mapp); 2662 2663 return error; 2664 } 2665 2666 /* 2667 * Readahead the dir/attr block. 2668 */ 2669 int 2670 xfs_da_reada_buf( 2671 struct xfs_inode *dp, 2672 xfs_dablk_t bno, 2673 xfs_daddr_t mappedbno, 2674 int whichfork, 2675 const struct xfs_buf_ops *ops) 2676 { 2677 struct xfs_buf_map map; 2678 struct xfs_buf_map *mapp; 2679 int nmap; 2680 int error; 2681 2682 mapp = ↦ 2683 nmap = 1; 2684 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork, 2685 &mapp, &nmap); 2686 if (error) { 2687 /* mapping a hole is not an error, but we don't continue */ 2688 if (error == -1) 2689 error = 0; 2690 goto out_free; 2691 } 2692 2693 mappedbno = mapp[0].bm_bn; 2694 xfs_buf_readahead_map(dp->i_mount->m_ddev_targp, mapp, nmap, ops); 2695 2696 out_free: 2697 if (mapp != &map) 2698 kmem_free(mapp); 2699 2700 return error; 2701 } 2702