1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2013 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_bit.h" 14 #include "xfs_mount.h" 15 #include "xfs_dir2.h" 16 #include "xfs_dir2_priv.h" 17 #include "xfs_inode.h" 18 #include "xfs_trans.h" 19 #include "xfs_bmap.h" 20 #include "xfs_attr_leaf.h" 21 #include "xfs_error.h" 22 #include "xfs_trace.h" 23 #include "xfs_buf_item.h" 24 #include "xfs_log.h" 25 26 /* 27 * xfs_da_btree.c 28 * 29 * Routines to implement directories as Btrees of hashed names. 30 */ 31 32 /*======================================================================== 33 * Function prototypes for the kernel. 34 *========================================================================*/ 35 36 /* 37 * Routines used for growing the Btree. 38 */ 39 STATIC int xfs_da3_root_split(xfs_da_state_t *state, 40 xfs_da_state_blk_t *existing_root, 41 xfs_da_state_blk_t *new_child); 42 STATIC int xfs_da3_node_split(xfs_da_state_t *state, 43 xfs_da_state_blk_t *existing_blk, 44 xfs_da_state_blk_t *split_blk, 45 xfs_da_state_blk_t *blk_to_add, 46 int treelevel, 47 int *result); 48 STATIC void xfs_da3_node_rebalance(xfs_da_state_t *state, 49 xfs_da_state_blk_t *node_blk_1, 50 xfs_da_state_blk_t *node_blk_2); 51 STATIC void xfs_da3_node_add(xfs_da_state_t *state, 52 xfs_da_state_blk_t *old_node_blk, 53 xfs_da_state_blk_t *new_node_blk); 54 55 /* 56 * Routines used for shrinking the Btree. 57 */ 58 STATIC int xfs_da3_root_join(xfs_da_state_t *state, 59 xfs_da_state_blk_t *root_blk); 60 STATIC int xfs_da3_node_toosmall(xfs_da_state_t *state, int *retval); 61 STATIC void xfs_da3_node_remove(xfs_da_state_t *state, 62 xfs_da_state_blk_t *drop_blk); 63 STATIC void xfs_da3_node_unbalance(xfs_da_state_t *state, 64 xfs_da_state_blk_t *src_node_blk, 65 xfs_da_state_blk_t *dst_node_blk); 66 67 /* 68 * Utility routines. 69 */ 70 STATIC int xfs_da3_blk_unlink(xfs_da_state_t *state, 71 xfs_da_state_blk_t *drop_blk, 72 xfs_da_state_blk_t *save_blk); 73 74 75 kmem_zone_t *xfs_da_state_zone; /* anchor for state struct zone */ 76 77 /* 78 * Allocate a dir-state structure. 79 * We don't put them on the stack since they're large. 80 */ 81 xfs_da_state_t * 82 xfs_da_state_alloc(void) 83 { 84 return kmem_zone_zalloc(xfs_da_state_zone, KM_NOFS); 85 } 86 87 /* 88 * Kill the altpath contents of a da-state structure. 89 */ 90 STATIC void 91 xfs_da_state_kill_altpath(xfs_da_state_t *state) 92 { 93 int i; 94 95 for (i = 0; i < state->altpath.active; i++) 96 state->altpath.blk[i].bp = NULL; 97 state->altpath.active = 0; 98 } 99 100 /* 101 * Free a da-state structure. 102 */ 103 void 104 xfs_da_state_free(xfs_da_state_t *state) 105 { 106 xfs_da_state_kill_altpath(state); 107 #ifdef DEBUG 108 memset((char *)state, 0, sizeof(*state)); 109 #endif /* DEBUG */ 110 kmem_zone_free(xfs_da_state_zone, state); 111 } 112 113 /* 114 * Verify an xfs_da3_blkinfo structure. Note that the da3 fields are only 115 * accessible on v5 filesystems. This header format is common across da node, 116 * attr leaf and dir leaf blocks. 117 */ 118 xfs_failaddr_t 119 xfs_da3_blkinfo_verify( 120 struct xfs_buf *bp, 121 struct xfs_da3_blkinfo *hdr3) 122 { 123 struct xfs_mount *mp = bp->b_mount; 124 struct xfs_da_blkinfo *hdr = &hdr3->hdr; 125 126 if (!xfs_verify_magic16(bp, hdr->magic)) 127 return __this_address; 128 129 if (xfs_sb_version_hascrc(&mp->m_sb)) { 130 if (!uuid_equal(&hdr3->uuid, &mp->m_sb.sb_meta_uuid)) 131 return __this_address; 132 if (be64_to_cpu(hdr3->blkno) != bp->b_bn) 133 return __this_address; 134 if (!xfs_log_check_lsn(mp, be64_to_cpu(hdr3->lsn))) 135 return __this_address; 136 } 137 138 return NULL; 139 } 140 141 static xfs_failaddr_t 142 xfs_da3_node_verify( 143 struct xfs_buf *bp) 144 { 145 struct xfs_mount *mp = bp->b_mount; 146 struct xfs_da_intnode *hdr = bp->b_addr; 147 struct xfs_da3_icnode_hdr ichdr; 148 const struct xfs_dir_ops *ops; 149 xfs_failaddr_t fa; 150 151 ops = xfs_dir_get_ops(mp, NULL); 152 153 ops->node_hdr_from_disk(&ichdr, hdr); 154 155 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr); 156 if (fa) 157 return fa; 158 159 if (ichdr.level == 0) 160 return __this_address; 161 if (ichdr.level > XFS_DA_NODE_MAXDEPTH) 162 return __this_address; 163 if (ichdr.count == 0) 164 return __this_address; 165 166 /* 167 * we don't know if the node is for and attribute or directory tree, 168 * so only fail if the count is outside both bounds 169 */ 170 if (ichdr.count > mp->m_dir_geo->node_ents && 171 ichdr.count > mp->m_attr_geo->node_ents) 172 return __this_address; 173 174 /* XXX: hash order check? */ 175 176 return NULL; 177 } 178 179 static void 180 xfs_da3_node_write_verify( 181 struct xfs_buf *bp) 182 { 183 struct xfs_mount *mp = bp->b_mount; 184 struct xfs_buf_log_item *bip = bp->b_log_item; 185 struct xfs_da3_node_hdr *hdr3 = bp->b_addr; 186 xfs_failaddr_t fa; 187 188 fa = xfs_da3_node_verify(bp); 189 if (fa) { 190 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 191 return; 192 } 193 194 if (!xfs_sb_version_hascrc(&mp->m_sb)) 195 return; 196 197 if (bip) 198 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); 199 200 xfs_buf_update_cksum(bp, XFS_DA3_NODE_CRC_OFF); 201 } 202 203 /* 204 * leaf/node format detection on trees is sketchy, so a node read can be done on 205 * leaf level blocks when detection identifies the tree as a node format tree 206 * incorrectly. In this case, we need to swap the verifier to match the correct 207 * format of the block being read. 208 */ 209 static void 210 xfs_da3_node_read_verify( 211 struct xfs_buf *bp) 212 { 213 struct xfs_da_blkinfo *info = bp->b_addr; 214 xfs_failaddr_t fa; 215 216 switch (be16_to_cpu(info->magic)) { 217 case XFS_DA3_NODE_MAGIC: 218 if (!xfs_buf_verify_cksum(bp, XFS_DA3_NODE_CRC_OFF)) { 219 xfs_verifier_error(bp, -EFSBADCRC, 220 __this_address); 221 break; 222 } 223 /* fall through */ 224 case XFS_DA_NODE_MAGIC: 225 fa = xfs_da3_node_verify(bp); 226 if (fa) 227 xfs_verifier_error(bp, -EFSCORRUPTED, fa); 228 return; 229 case XFS_ATTR_LEAF_MAGIC: 230 case XFS_ATTR3_LEAF_MAGIC: 231 bp->b_ops = &xfs_attr3_leaf_buf_ops; 232 bp->b_ops->verify_read(bp); 233 return; 234 case XFS_DIR2_LEAFN_MAGIC: 235 case XFS_DIR3_LEAFN_MAGIC: 236 bp->b_ops = &xfs_dir3_leafn_buf_ops; 237 bp->b_ops->verify_read(bp); 238 return; 239 default: 240 xfs_verifier_error(bp, -EFSCORRUPTED, __this_address); 241 break; 242 } 243 } 244 245 /* Verify the structure of a da3 block. */ 246 static xfs_failaddr_t 247 xfs_da3_node_verify_struct( 248 struct xfs_buf *bp) 249 { 250 struct xfs_da_blkinfo *info = bp->b_addr; 251 252 switch (be16_to_cpu(info->magic)) { 253 case XFS_DA3_NODE_MAGIC: 254 case XFS_DA_NODE_MAGIC: 255 return xfs_da3_node_verify(bp); 256 case XFS_ATTR_LEAF_MAGIC: 257 case XFS_ATTR3_LEAF_MAGIC: 258 bp->b_ops = &xfs_attr3_leaf_buf_ops; 259 return bp->b_ops->verify_struct(bp); 260 case XFS_DIR2_LEAFN_MAGIC: 261 case XFS_DIR3_LEAFN_MAGIC: 262 bp->b_ops = &xfs_dir3_leafn_buf_ops; 263 return bp->b_ops->verify_struct(bp); 264 default: 265 return __this_address; 266 } 267 } 268 269 const struct xfs_buf_ops xfs_da3_node_buf_ops = { 270 .name = "xfs_da3_node", 271 .magic16 = { cpu_to_be16(XFS_DA_NODE_MAGIC), 272 cpu_to_be16(XFS_DA3_NODE_MAGIC) }, 273 .verify_read = xfs_da3_node_read_verify, 274 .verify_write = xfs_da3_node_write_verify, 275 .verify_struct = xfs_da3_node_verify_struct, 276 }; 277 278 int 279 xfs_da3_node_read( 280 struct xfs_trans *tp, 281 struct xfs_inode *dp, 282 xfs_dablk_t bno, 283 xfs_daddr_t mappedbno, 284 struct xfs_buf **bpp, 285 int which_fork) 286 { 287 int err; 288 289 err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp, 290 which_fork, &xfs_da3_node_buf_ops); 291 if (!err && tp && *bpp) { 292 struct xfs_da_blkinfo *info = (*bpp)->b_addr; 293 int type; 294 295 switch (be16_to_cpu(info->magic)) { 296 case XFS_DA_NODE_MAGIC: 297 case XFS_DA3_NODE_MAGIC: 298 type = XFS_BLFT_DA_NODE_BUF; 299 break; 300 case XFS_ATTR_LEAF_MAGIC: 301 case XFS_ATTR3_LEAF_MAGIC: 302 type = XFS_BLFT_ATTR_LEAF_BUF; 303 break; 304 case XFS_DIR2_LEAFN_MAGIC: 305 case XFS_DIR3_LEAFN_MAGIC: 306 type = XFS_BLFT_DIR_LEAFN_BUF; 307 break; 308 default: 309 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, 310 tp->t_mountp, info, sizeof(*info)); 311 xfs_trans_brelse(tp, *bpp); 312 *bpp = NULL; 313 return -EFSCORRUPTED; 314 } 315 xfs_trans_buf_set_type(tp, *bpp, type); 316 } 317 return err; 318 } 319 320 /*======================================================================== 321 * Routines used for growing the Btree. 322 *========================================================================*/ 323 324 /* 325 * Create the initial contents of an intermediate node. 326 */ 327 int 328 xfs_da3_node_create( 329 struct xfs_da_args *args, 330 xfs_dablk_t blkno, 331 int level, 332 struct xfs_buf **bpp, 333 int whichfork) 334 { 335 struct xfs_da_intnode *node; 336 struct xfs_trans *tp = args->trans; 337 struct xfs_mount *mp = tp->t_mountp; 338 struct xfs_da3_icnode_hdr ichdr = {0}; 339 struct xfs_buf *bp; 340 int error; 341 struct xfs_inode *dp = args->dp; 342 343 trace_xfs_da_node_create(args); 344 ASSERT(level <= XFS_DA_NODE_MAXDEPTH); 345 346 error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, whichfork); 347 if (error) 348 return error; 349 bp->b_ops = &xfs_da3_node_buf_ops; 350 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF); 351 node = bp->b_addr; 352 353 if (xfs_sb_version_hascrc(&mp->m_sb)) { 354 struct xfs_da3_node_hdr *hdr3 = bp->b_addr; 355 356 memset(hdr3, 0, sizeof(struct xfs_da3_node_hdr)); 357 ichdr.magic = XFS_DA3_NODE_MAGIC; 358 hdr3->info.blkno = cpu_to_be64(bp->b_bn); 359 hdr3->info.owner = cpu_to_be64(args->dp->i_ino); 360 uuid_copy(&hdr3->info.uuid, &mp->m_sb.sb_meta_uuid); 361 } else { 362 ichdr.magic = XFS_DA_NODE_MAGIC; 363 } 364 ichdr.level = level; 365 366 dp->d_ops->node_hdr_to_disk(node, &ichdr); 367 xfs_trans_log_buf(tp, bp, 368 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size)); 369 370 *bpp = bp; 371 return 0; 372 } 373 374 /* 375 * Split a leaf node, rebalance, then possibly split 376 * intermediate nodes, rebalance, etc. 377 */ 378 int /* error */ 379 xfs_da3_split( 380 struct xfs_da_state *state) 381 { 382 struct xfs_da_state_blk *oldblk; 383 struct xfs_da_state_blk *newblk; 384 struct xfs_da_state_blk *addblk; 385 struct xfs_da_intnode *node; 386 int max; 387 int action = 0; 388 int error; 389 int i; 390 391 trace_xfs_da_split(state->args); 392 393 /* 394 * Walk back up the tree splitting/inserting/adjusting as necessary. 395 * If we need to insert and there isn't room, split the node, then 396 * decide which fragment to insert the new block from below into. 397 * Note that we may split the root this way, but we need more fixup. 398 */ 399 max = state->path.active - 1; 400 ASSERT((max >= 0) && (max < XFS_DA_NODE_MAXDEPTH)); 401 ASSERT(state->path.blk[max].magic == XFS_ATTR_LEAF_MAGIC || 402 state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC); 403 404 addblk = &state->path.blk[max]; /* initial dummy value */ 405 for (i = max; (i >= 0) && addblk; state->path.active--, i--) { 406 oldblk = &state->path.blk[i]; 407 newblk = &state->altpath.blk[i]; 408 409 /* 410 * If a leaf node then 411 * Allocate a new leaf node, then rebalance across them. 412 * else if an intermediate node then 413 * We split on the last layer, must we split the node? 414 */ 415 switch (oldblk->magic) { 416 case XFS_ATTR_LEAF_MAGIC: 417 error = xfs_attr3_leaf_split(state, oldblk, newblk); 418 if ((error != 0) && (error != -ENOSPC)) { 419 return error; /* GROT: attr is inconsistent */ 420 } 421 if (!error) { 422 addblk = newblk; 423 break; 424 } 425 /* 426 * Entry wouldn't fit, split the leaf again. The new 427 * extrablk will be consumed by xfs_da3_node_split if 428 * the node is split. 429 */ 430 state->extravalid = 1; 431 if (state->inleaf) { 432 state->extraafter = 0; /* before newblk */ 433 trace_xfs_attr_leaf_split_before(state->args); 434 error = xfs_attr3_leaf_split(state, oldblk, 435 &state->extrablk); 436 } else { 437 state->extraafter = 1; /* after newblk */ 438 trace_xfs_attr_leaf_split_after(state->args); 439 error = xfs_attr3_leaf_split(state, newblk, 440 &state->extrablk); 441 } 442 if (error) 443 return error; /* GROT: attr inconsistent */ 444 addblk = newblk; 445 break; 446 case XFS_DIR2_LEAFN_MAGIC: 447 error = xfs_dir2_leafn_split(state, oldblk, newblk); 448 if (error) 449 return error; 450 addblk = newblk; 451 break; 452 case XFS_DA_NODE_MAGIC: 453 error = xfs_da3_node_split(state, oldblk, newblk, addblk, 454 max - i, &action); 455 addblk->bp = NULL; 456 if (error) 457 return error; /* GROT: dir is inconsistent */ 458 /* 459 * Record the newly split block for the next time thru? 460 */ 461 if (action) 462 addblk = newblk; 463 else 464 addblk = NULL; 465 break; 466 } 467 468 /* 469 * Update the btree to show the new hashval for this child. 470 */ 471 xfs_da3_fixhashpath(state, &state->path); 472 } 473 if (!addblk) 474 return 0; 475 476 /* 477 * xfs_da3_node_split() should have consumed any extra blocks we added 478 * during a double leaf split in the attr fork. This is guaranteed as 479 * we can't be here if the attr fork only has a single leaf block. 480 */ 481 ASSERT(state->extravalid == 0 || 482 state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC); 483 484 /* 485 * Split the root node. 486 */ 487 ASSERT(state->path.active == 0); 488 oldblk = &state->path.blk[0]; 489 error = xfs_da3_root_split(state, oldblk, addblk); 490 if (error) { 491 addblk->bp = NULL; 492 return error; /* GROT: dir is inconsistent */ 493 } 494 495 /* 496 * Update pointers to the node which used to be block 0 and just got 497 * bumped because of the addition of a new root node. Note that the 498 * original block 0 could be at any position in the list of blocks in 499 * the tree. 500 * 501 * Note: the magic numbers and sibling pointers are in the same physical 502 * place for both v2 and v3 headers (by design). Hence it doesn't matter 503 * which version of the xfs_da_intnode structure we use here as the 504 * result will be the same using either structure. 505 */ 506 node = oldblk->bp->b_addr; 507 if (node->hdr.info.forw) { 508 ASSERT(be32_to_cpu(node->hdr.info.forw) == addblk->blkno); 509 node = addblk->bp->b_addr; 510 node->hdr.info.back = cpu_to_be32(oldblk->blkno); 511 xfs_trans_log_buf(state->args->trans, addblk->bp, 512 XFS_DA_LOGRANGE(node, &node->hdr.info, 513 sizeof(node->hdr.info))); 514 } 515 node = oldblk->bp->b_addr; 516 if (node->hdr.info.back) { 517 ASSERT(be32_to_cpu(node->hdr.info.back) == addblk->blkno); 518 node = addblk->bp->b_addr; 519 node->hdr.info.forw = cpu_to_be32(oldblk->blkno); 520 xfs_trans_log_buf(state->args->trans, addblk->bp, 521 XFS_DA_LOGRANGE(node, &node->hdr.info, 522 sizeof(node->hdr.info))); 523 } 524 addblk->bp = NULL; 525 return 0; 526 } 527 528 /* 529 * Split the root. We have to create a new root and point to the two 530 * parts (the split old root) that we just created. Copy block zero to 531 * the EOF, extending the inode in process. 532 */ 533 STATIC int /* error */ 534 xfs_da3_root_split( 535 struct xfs_da_state *state, 536 struct xfs_da_state_blk *blk1, 537 struct xfs_da_state_blk *blk2) 538 { 539 struct xfs_da_intnode *node; 540 struct xfs_da_intnode *oldroot; 541 struct xfs_da_node_entry *btree; 542 struct xfs_da3_icnode_hdr nodehdr; 543 struct xfs_da_args *args; 544 struct xfs_buf *bp; 545 struct xfs_inode *dp; 546 struct xfs_trans *tp; 547 struct xfs_dir2_leaf *leaf; 548 xfs_dablk_t blkno; 549 int level; 550 int error; 551 int size; 552 553 trace_xfs_da_root_split(state->args); 554 555 /* 556 * Copy the existing (incorrect) block from the root node position 557 * to a free space somewhere. 558 */ 559 args = state->args; 560 error = xfs_da_grow_inode(args, &blkno); 561 if (error) 562 return error; 563 564 dp = args->dp; 565 tp = args->trans; 566 error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, args->whichfork); 567 if (error) 568 return error; 569 node = bp->b_addr; 570 oldroot = blk1->bp->b_addr; 571 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) || 572 oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)) { 573 struct xfs_da3_icnode_hdr icnodehdr; 574 575 dp->d_ops->node_hdr_from_disk(&icnodehdr, oldroot); 576 btree = dp->d_ops->node_tree_p(oldroot); 577 size = (int)((char *)&btree[icnodehdr.count] - (char *)oldroot); 578 level = icnodehdr.level; 579 580 /* 581 * we are about to copy oldroot to bp, so set up the type 582 * of bp while we know exactly what it will be. 583 */ 584 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF); 585 } else { 586 struct xfs_dir3_icleaf_hdr leafhdr; 587 struct xfs_dir2_leaf_entry *ents; 588 589 leaf = (xfs_dir2_leaf_t *)oldroot; 590 dp->d_ops->leaf_hdr_from_disk(&leafhdr, leaf); 591 ents = dp->d_ops->leaf_ents_p(leaf); 592 593 ASSERT(leafhdr.magic == XFS_DIR2_LEAFN_MAGIC || 594 leafhdr.magic == XFS_DIR3_LEAFN_MAGIC); 595 size = (int)((char *)&ents[leafhdr.count] - (char *)leaf); 596 level = 0; 597 598 /* 599 * we are about to copy oldroot to bp, so set up the type 600 * of bp while we know exactly what it will be. 601 */ 602 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DIR_LEAFN_BUF); 603 } 604 605 /* 606 * we can copy most of the information in the node from one block to 607 * another, but for CRC enabled headers we have to make sure that the 608 * block specific identifiers are kept intact. We update the buffer 609 * directly for this. 610 */ 611 memcpy(node, oldroot, size); 612 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) || 613 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) { 614 struct xfs_da3_intnode *node3 = (struct xfs_da3_intnode *)node; 615 616 node3->hdr.info.blkno = cpu_to_be64(bp->b_bn); 617 } 618 xfs_trans_log_buf(tp, bp, 0, size - 1); 619 620 bp->b_ops = blk1->bp->b_ops; 621 xfs_trans_buf_copy_type(bp, blk1->bp); 622 blk1->bp = bp; 623 blk1->blkno = blkno; 624 625 /* 626 * Set up the new root node. 627 */ 628 error = xfs_da3_node_create(args, 629 (args->whichfork == XFS_DATA_FORK) ? args->geo->leafblk : 0, 630 level + 1, &bp, args->whichfork); 631 if (error) 632 return error; 633 634 node = bp->b_addr; 635 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 636 btree = dp->d_ops->node_tree_p(node); 637 btree[0].hashval = cpu_to_be32(blk1->hashval); 638 btree[0].before = cpu_to_be32(blk1->blkno); 639 btree[1].hashval = cpu_to_be32(blk2->hashval); 640 btree[1].before = cpu_to_be32(blk2->blkno); 641 nodehdr.count = 2; 642 dp->d_ops->node_hdr_to_disk(node, &nodehdr); 643 644 #ifdef DEBUG 645 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || 646 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) { 647 ASSERT(blk1->blkno >= args->geo->leafblk && 648 blk1->blkno < args->geo->freeblk); 649 ASSERT(blk2->blkno >= args->geo->leafblk && 650 blk2->blkno < args->geo->freeblk); 651 } 652 #endif 653 654 /* Header is already logged by xfs_da_node_create */ 655 xfs_trans_log_buf(tp, bp, 656 XFS_DA_LOGRANGE(node, btree, sizeof(xfs_da_node_entry_t) * 2)); 657 658 return 0; 659 } 660 661 /* 662 * Split the node, rebalance, then add the new entry. 663 */ 664 STATIC int /* error */ 665 xfs_da3_node_split( 666 struct xfs_da_state *state, 667 struct xfs_da_state_blk *oldblk, 668 struct xfs_da_state_blk *newblk, 669 struct xfs_da_state_blk *addblk, 670 int treelevel, 671 int *result) 672 { 673 struct xfs_da_intnode *node; 674 struct xfs_da3_icnode_hdr nodehdr; 675 xfs_dablk_t blkno; 676 int newcount; 677 int error; 678 int useextra; 679 struct xfs_inode *dp = state->args->dp; 680 681 trace_xfs_da_node_split(state->args); 682 683 node = oldblk->bp->b_addr; 684 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 685 686 /* 687 * With V2 dirs the extra block is data or freespace. 688 */ 689 useextra = state->extravalid && state->args->whichfork == XFS_ATTR_FORK; 690 newcount = 1 + useextra; 691 /* 692 * Do we have to split the node? 693 */ 694 if (nodehdr.count + newcount > state->args->geo->node_ents) { 695 /* 696 * Allocate a new node, add to the doubly linked chain of 697 * nodes, then move some of our excess entries into it. 698 */ 699 error = xfs_da_grow_inode(state->args, &blkno); 700 if (error) 701 return error; /* GROT: dir is inconsistent */ 702 703 error = xfs_da3_node_create(state->args, blkno, treelevel, 704 &newblk->bp, state->args->whichfork); 705 if (error) 706 return error; /* GROT: dir is inconsistent */ 707 newblk->blkno = blkno; 708 newblk->magic = XFS_DA_NODE_MAGIC; 709 xfs_da3_node_rebalance(state, oldblk, newblk); 710 error = xfs_da3_blk_link(state, oldblk, newblk); 711 if (error) 712 return error; 713 *result = 1; 714 } else { 715 *result = 0; 716 } 717 718 /* 719 * Insert the new entry(s) into the correct block 720 * (updating last hashval in the process). 721 * 722 * xfs_da3_node_add() inserts BEFORE the given index, 723 * and as a result of using node_lookup_int() we always 724 * point to a valid entry (not after one), but a split 725 * operation always results in a new block whose hashvals 726 * FOLLOW the current block. 727 * 728 * If we had double-split op below us, then add the extra block too. 729 */ 730 node = oldblk->bp->b_addr; 731 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 732 if (oldblk->index <= nodehdr.count) { 733 oldblk->index++; 734 xfs_da3_node_add(state, oldblk, addblk); 735 if (useextra) { 736 if (state->extraafter) 737 oldblk->index++; 738 xfs_da3_node_add(state, oldblk, &state->extrablk); 739 state->extravalid = 0; 740 } 741 } else { 742 newblk->index++; 743 xfs_da3_node_add(state, newblk, addblk); 744 if (useextra) { 745 if (state->extraafter) 746 newblk->index++; 747 xfs_da3_node_add(state, newblk, &state->extrablk); 748 state->extravalid = 0; 749 } 750 } 751 752 return 0; 753 } 754 755 /* 756 * Balance the btree elements between two intermediate nodes, 757 * usually one full and one empty. 758 * 759 * NOTE: if blk2 is empty, then it will get the upper half of blk1. 760 */ 761 STATIC void 762 xfs_da3_node_rebalance( 763 struct xfs_da_state *state, 764 struct xfs_da_state_blk *blk1, 765 struct xfs_da_state_blk *blk2) 766 { 767 struct xfs_da_intnode *node1; 768 struct xfs_da_intnode *node2; 769 struct xfs_da_intnode *tmpnode; 770 struct xfs_da_node_entry *btree1; 771 struct xfs_da_node_entry *btree2; 772 struct xfs_da_node_entry *btree_s; 773 struct xfs_da_node_entry *btree_d; 774 struct xfs_da3_icnode_hdr nodehdr1; 775 struct xfs_da3_icnode_hdr nodehdr2; 776 struct xfs_trans *tp; 777 int count; 778 int tmp; 779 int swap = 0; 780 struct xfs_inode *dp = state->args->dp; 781 782 trace_xfs_da_node_rebalance(state->args); 783 784 node1 = blk1->bp->b_addr; 785 node2 = blk2->bp->b_addr; 786 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1); 787 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2); 788 btree1 = dp->d_ops->node_tree_p(node1); 789 btree2 = dp->d_ops->node_tree_p(node2); 790 791 /* 792 * Figure out how many entries need to move, and in which direction. 793 * Swap the nodes around if that makes it simpler. 794 */ 795 if (nodehdr1.count > 0 && nodehdr2.count > 0 && 796 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) || 797 (be32_to_cpu(btree2[nodehdr2.count - 1].hashval) < 798 be32_to_cpu(btree1[nodehdr1.count - 1].hashval)))) { 799 tmpnode = node1; 800 node1 = node2; 801 node2 = tmpnode; 802 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1); 803 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2); 804 btree1 = dp->d_ops->node_tree_p(node1); 805 btree2 = dp->d_ops->node_tree_p(node2); 806 swap = 1; 807 } 808 809 count = (nodehdr1.count - nodehdr2.count) / 2; 810 if (count == 0) 811 return; 812 tp = state->args->trans; 813 /* 814 * Two cases: high-to-low and low-to-high. 815 */ 816 if (count > 0) { 817 /* 818 * Move elements in node2 up to make a hole. 819 */ 820 tmp = nodehdr2.count; 821 if (tmp > 0) { 822 tmp *= (uint)sizeof(xfs_da_node_entry_t); 823 btree_s = &btree2[0]; 824 btree_d = &btree2[count]; 825 memmove(btree_d, btree_s, tmp); 826 } 827 828 /* 829 * Move the req'd B-tree elements from high in node1 to 830 * low in node2. 831 */ 832 nodehdr2.count += count; 833 tmp = count * (uint)sizeof(xfs_da_node_entry_t); 834 btree_s = &btree1[nodehdr1.count - count]; 835 btree_d = &btree2[0]; 836 memcpy(btree_d, btree_s, tmp); 837 nodehdr1.count -= count; 838 } else { 839 /* 840 * Move the req'd B-tree elements from low in node2 to 841 * high in node1. 842 */ 843 count = -count; 844 tmp = count * (uint)sizeof(xfs_da_node_entry_t); 845 btree_s = &btree2[0]; 846 btree_d = &btree1[nodehdr1.count]; 847 memcpy(btree_d, btree_s, tmp); 848 nodehdr1.count += count; 849 850 xfs_trans_log_buf(tp, blk1->bp, 851 XFS_DA_LOGRANGE(node1, btree_d, tmp)); 852 853 /* 854 * Move elements in node2 down to fill the hole. 855 */ 856 tmp = nodehdr2.count - count; 857 tmp *= (uint)sizeof(xfs_da_node_entry_t); 858 btree_s = &btree2[count]; 859 btree_d = &btree2[0]; 860 memmove(btree_d, btree_s, tmp); 861 nodehdr2.count -= count; 862 } 863 864 /* 865 * Log header of node 1 and all current bits of node 2. 866 */ 867 dp->d_ops->node_hdr_to_disk(node1, &nodehdr1); 868 xfs_trans_log_buf(tp, blk1->bp, 869 XFS_DA_LOGRANGE(node1, &node1->hdr, dp->d_ops->node_hdr_size)); 870 871 dp->d_ops->node_hdr_to_disk(node2, &nodehdr2); 872 xfs_trans_log_buf(tp, blk2->bp, 873 XFS_DA_LOGRANGE(node2, &node2->hdr, 874 dp->d_ops->node_hdr_size + 875 (sizeof(btree2[0]) * nodehdr2.count))); 876 877 /* 878 * Record the last hashval from each block for upward propagation. 879 * (note: don't use the swapped node pointers) 880 */ 881 if (swap) { 882 node1 = blk1->bp->b_addr; 883 node2 = blk2->bp->b_addr; 884 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1); 885 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2); 886 btree1 = dp->d_ops->node_tree_p(node1); 887 btree2 = dp->d_ops->node_tree_p(node2); 888 } 889 blk1->hashval = be32_to_cpu(btree1[nodehdr1.count - 1].hashval); 890 blk2->hashval = be32_to_cpu(btree2[nodehdr2.count - 1].hashval); 891 892 /* 893 * Adjust the expected index for insertion. 894 */ 895 if (blk1->index >= nodehdr1.count) { 896 blk2->index = blk1->index - nodehdr1.count; 897 blk1->index = nodehdr1.count + 1; /* make it invalid */ 898 } 899 } 900 901 /* 902 * Add a new entry to an intermediate node. 903 */ 904 STATIC void 905 xfs_da3_node_add( 906 struct xfs_da_state *state, 907 struct xfs_da_state_blk *oldblk, 908 struct xfs_da_state_blk *newblk) 909 { 910 struct xfs_da_intnode *node; 911 struct xfs_da3_icnode_hdr nodehdr; 912 struct xfs_da_node_entry *btree; 913 int tmp; 914 struct xfs_inode *dp = state->args->dp; 915 916 trace_xfs_da_node_add(state->args); 917 918 node = oldblk->bp->b_addr; 919 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 920 btree = dp->d_ops->node_tree_p(node); 921 922 ASSERT(oldblk->index >= 0 && oldblk->index <= nodehdr.count); 923 ASSERT(newblk->blkno != 0); 924 if (state->args->whichfork == XFS_DATA_FORK) 925 ASSERT(newblk->blkno >= state->args->geo->leafblk && 926 newblk->blkno < state->args->geo->freeblk); 927 928 /* 929 * We may need to make some room before we insert the new node. 930 */ 931 tmp = 0; 932 if (oldblk->index < nodehdr.count) { 933 tmp = (nodehdr.count - oldblk->index) * (uint)sizeof(*btree); 934 memmove(&btree[oldblk->index + 1], &btree[oldblk->index], tmp); 935 } 936 btree[oldblk->index].hashval = cpu_to_be32(newblk->hashval); 937 btree[oldblk->index].before = cpu_to_be32(newblk->blkno); 938 xfs_trans_log_buf(state->args->trans, oldblk->bp, 939 XFS_DA_LOGRANGE(node, &btree[oldblk->index], 940 tmp + sizeof(*btree))); 941 942 nodehdr.count += 1; 943 dp->d_ops->node_hdr_to_disk(node, &nodehdr); 944 xfs_trans_log_buf(state->args->trans, oldblk->bp, 945 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size)); 946 947 /* 948 * Copy the last hash value from the oldblk to propagate upwards. 949 */ 950 oldblk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval); 951 } 952 953 /*======================================================================== 954 * Routines used for shrinking the Btree. 955 *========================================================================*/ 956 957 /* 958 * Deallocate an empty leaf node, remove it from its parent, 959 * possibly deallocating that block, etc... 960 */ 961 int 962 xfs_da3_join( 963 struct xfs_da_state *state) 964 { 965 struct xfs_da_state_blk *drop_blk; 966 struct xfs_da_state_blk *save_blk; 967 int action = 0; 968 int error; 969 970 trace_xfs_da_join(state->args); 971 972 drop_blk = &state->path.blk[ state->path.active-1 ]; 973 save_blk = &state->altpath.blk[ state->path.active-1 ]; 974 ASSERT(state->path.blk[0].magic == XFS_DA_NODE_MAGIC); 975 ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC || 976 drop_blk->magic == XFS_DIR2_LEAFN_MAGIC); 977 978 /* 979 * Walk back up the tree joining/deallocating as necessary. 980 * When we stop dropping blocks, break out. 981 */ 982 for ( ; state->path.active >= 2; drop_blk--, save_blk--, 983 state->path.active--) { 984 /* 985 * See if we can combine the block with a neighbor. 986 * (action == 0) => no options, just leave 987 * (action == 1) => coalesce, then unlink 988 * (action == 2) => block empty, unlink it 989 */ 990 switch (drop_blk->magic) { 991 case XFS_ATTR_LEAF_MAGIC: 992 error = xfs_attr3_leaf_toosmall(state, &action); 993 if (error) 994 return error; 995 if (action == 0) 996 return 0; 997 xfs_attr3_leaf_unbalance(state, drop_blk, save_blk); 998 break; 999 case XFS_DIR2_LEAFN_MAGIC: 1000 error = xfs_dir2_leafn_toosmall(state, &action); 1001 if (error) 1002 return error; 1003 if (action == 0) 1004 return 0; 1005 xfs_dir2_leafn_unbalance(state, drop_blk, save_blk); 1006 break; 1007 case XFS_DA_NODE_MAGIC: 1008 /* 1009 * Remove the offending node, fixup hashvals, 1010 * check for a toosmall neighbor. 1011 */ 1012 xfs_da3_node_remove(state, drop_blk); 1013 xfs_da3_fixhashpath(state, &state->path); 1014 error = xfs_da3_node_toosmall(state, &action); 1015 if (error) 1016 return error; 1017 if (action == 0) 1018 return 0; 1019 xfs_da3_node_unbalance(state, drop_blk, save_blk); 1020 break; 1021 } 1022 xfs_da3_fixhashpath(state, &state->altpath); 1023 error = xfs_da3_blk_unlink(state, drop_blk, save_blk); 1024 xfs_da_state_kill_altpath(state); 1025 if (error) 1026 return error; 1027 error = xfs_da_shrink_inode(state->args, drop_blk->blkno, 1028 drop_blk->bp); 1029 drop_blk->bp = NULL; 1030 if (error) 1031 return error; 1032 } 1033 /* 1034 * We joined all the way to the top. If it turns out that 1035 * we only have one entry in the root, make the child block 1036 * the new root. 1037 */ 1038 xfs_da3_node_remove(state, drop_blk); 1039 xfs_da3_fixhashpath(state, &state->path); 1040 error = xfs_da3_root_join(state, &state->path.blk[0]); 1041 return error; 1042 } 1043 1044 #ifdef DEBUG 1045 static void 1046 xfs_da_blkinfo_onlychild_validate(struct xfs_da_blkinfo *blkinfo, __u16 level) 1047 { 1048 __be16 magic = blkinfo->magic; 1049 1050 if (level == 1) { 1051 ASSERT(magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || 1052 magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) || 1053 magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 1054 magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 1055 } else { 1056 ASSERT(magic == cpu_to_be16(XFS_DA_NODE_MAGIC) || 1057 magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)); 1058 } 1059 ASSERT(!blkinfo->forw); 1060 ASSERT(!blkinfo->back); 1061 } 1062 #else /* !DEBUG */ 1063 #define xfs_da_blkinfo_onlychild_validate(blkinfo, level) 1064 #endif /* !DEBUG */ 1065 1066 /* 1067 * We have only one entry in the root. Copy the only remaining child of 1068 * the old root to block 0 as the new root node. 1069 */ 1070 STATIC int 1071 xfs_da3_root_join( 1072 struct xfs_da_state *state, 1073 struct xfs_da_state_blk *root_blk) 1074 { 1075 struct xfs_da_intnode *oldroot; 1076 struct xfs_da_args *args; 1077 xfs_dablk_t child; 1078 struct xfs_buf *bp; 1079 struct xfs_da3_icnode_hdr oldroothdr; 1080 struct xfs_da_node_entry *btree; 1081 int error; 1082 struct xfs_inode *dp = state->args->dp; 1083 1084 trace_xfs_da_root_join(state->args); 1085 1086 ASSERT(root_blk->magic == XFS_DA_NODE_MAGIC); 1087 1088 args = state->args; 1089 oldroot = root_blk->bp->b_addr; 1090 dp->d_ops->node_hdr_from_disk(&oldroothdr, oldroot); 1091 ASSERT(oldroothdr.forw == 0); 1092 ASSERT(oldroothdr.back == 0); 1093 1094 /* 1095 * If the root has more than one child, then don't do anything. 1096 */ 1097 if (oldroothdr.count > 1) 1098 return 0; 1099 1100 /* 1101 * Read in the (only) child block, then copy those bytes into 1102 * the root block's buffer and free the original child block. 1103 */ 1104 btree = dp->d_ops->node_tree_p(oldroot); 1105 child = be32_to_cpu(btree[0].before); 1106 ASSERT(child != 0); 1107 error = xfs_da3_node_read(args->trans, dp, child, -1, &bp, 1108 args->whichfork); 1109 if (error) 1110 return error; 1111 xfs_da_blkinfo_onlychild_validate(bp->b_addr, oldroothdr.level); 1112 1113 /* 1114 * This could be copying a leaf back into the root block in the case of 1115 * there only being a single leaf block left in the tree. Hence we have 1116 * to update the b_ops pointer as well to match the buffer type change 1117 * that could occur. For dir3 blocks we also need to update the block 1118 * number in the buffer header. 1119 */ 1120 memcpy(root_blk->bp->b_addr, bp->b_addr, args->geo->blksize); 1121 root_blk->bp->b_ops = bp->b_ops; 1122 xfs_trans_buf_copy_type(root_blk->bp, bp); 1123 if (oldroothdr.magic == XFS_DA3_NODE_MAGIC) { 1124 struct xfs_da3_blkinfo *da3 = root_blk->bp->b_addr; 1125 da3->blkno = cpu_to_be64(root_blk->bp->b_bn); 1126 } 1127 xfs_trans_log_buf(args->trans, root_blk->bp, 0, 1128 args->geo->blksize - 1); 1129 error = xfs_da_shrink_inode(args, child, bp); 1130 return error; 1131 } 1132 1133 /* 1134 * Check a node block and its neighbors to see if the block should be 1135 * collapsed into one or the other neighbor. Always keep the block 1136 * with the smaller block number. 1137 * If the current block is over 50% full, don't try to join it, return 0. 1138 * If the block is empty, fill in the state structure and return 2. 1139 * If it can be collapsed, fill in the state structure and return 1. 1140 * If nothing can be done, return 0. 1141 */ 1142 STATIC int 1143 xfs_da3_node_toosmall( 1144 struct xfs_da_state *state, 1145 int *action) 1146 { 1147 struct xfs_da_intnode *node; 1148 struct xfs_da_state_blk *blk; 1149 struct xfs_da_blkinfo *info; 1150 xfs_dablk_t blkno; 1151 struct xfs_buf *bp; 1152 struct xfs_da3_icnode_hdr nodehdr; 1153 int count; 1154 int forward; 1155 int error; 1156 int retval; 1157 int i; 1158 struct xfs_inode *dp = state->args->dp; 1159 1160 trace_xfs_da_node_toosmall(state->args); 1161 1162 /* 1163 * Check for the degenerate case of the block being over 50% full. 1164 * If so, it's not worth even looking to see if we might be able 1165 * to coalesce with a sibling. 1166 */ 1167 blk = &state->path.blk[ state->path.active-1 ]; 1168 info = blk->bp->b_addr; 1169 node = (xfs_da_intnode_t *)info; 1170 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1171 if (nodehdr.count > (state->args->geo->node_ents >> 1)) { 1172 *action = 0; /* blk over 50%, don't try to join */ 1173 return 0; /* blk over 50%, don't try to join */ 1174 } 1175 1176 /* 1177 * Check for the degenerate case of the block being empty. 1178 * If the block is empty, we'll simply delete it, no need to 1179 * coalesce it with a sibling block. We choose (arbitrarily) 1180 * to merge with the forward block unless it is NULL. 1181 */ 1182 if (nodehdr.count == 0) { 1183 /* 1184 * Make altpath point to the block we want to keep and 1185 * path point to the block we want to drop (this one). 1186 */ 1187 forward = (info->forw != 0); 1188 memcpy(&state->altpath, &state->path, sizeof(state->path)); 1189 error = xfs_da3_path_shift(state, &state->altpath, forward, 1190 0, &retval); 1191 if (error) 1192 return error; 1193 if (retval) { 1194 *action = 0; 1195 } else { 1196 *action = 2; 1197 } 1198 return 0; 1199 } 1200 1201 /* 1202 * Examine each sibling block to see if we can coalesce with 1203 * at least 25% free space to spare. We need to figure out 1204 * whether to merge with the forward or the backward block. 1205 * We prefer coalescing with the lower numbered sibling so as 1206 * to shrink a directory over time. 1207 */ 1208 count = state->args->geo->node_ents; 1209 count -= state->args->geo->node_ents >> 2; 1210 count -= nodehdr.count; 1211 1212 /* start with smaller blk num */ 1213 forward = nodehdr.forw < nodehdr.back; 1214 for (i = 0; i < 2; forward = !forward, i++) { 1215 struct xfs_da3_icnode_hdr thdr; 1216 if (forward) 1217 blkno = nodehdr.forw; 1218 else 1219 blkno = nodehdr.back; 1220 if (blkno == 0) 1221 continue; 1222 error = xfs_da3_node_read(state->args->trans, dp, 1223 blkno, -1, &bp, state->args->whichfork); 1224 if (error) 1225 return error; 1226 1227 node = bp->b_addr; 1228 dp->d_ops->node_hdr_from_disk(&thdr, node); 1229 xfs_trans_brelse(state->args->trans, bp); 1230 1231 if (count - thdr.count >= 0) 1232 break; /* fits with at least 25% to spare */ 1233 } 1234 if (i >= 2) { 1235 *action = 0; 1236 return 0; 1237 } 1238 1239 /* 1240 * Make altpath point to the block we want to keep (the lower 1241 * numbered block) and path point to the block we want to drop. 1242 */ 1243 memcpy(&state->altpath, &state->path, sizeof(state->path)); 1244 if (blkno < blk->blkno) { 1245 error = xfs_da3_path_shift(state, &state->altpath, forward, 1246 0, &retval); 1247 } else { 1248 error = xfs_da3_path_shift(state, &state->path, forward, 1249 0, &retval); 1250 } 1251 if (error) 1252 return error; 1253 if (retval) { 1254 *action = 0; 1255 return 0; 1256 } 1257 *action = 1; 1258 return 0; 1259 } 1260 1261 /* 1262 * Pick up the last hashvalue from an intermediate node. 1263 */ 1264 STATIC uint 1265 xfs_da3_node_lasthash( 1266 struct xfs_inode *dp, 1267 struct xfs_buf *bp, 1268 int *count) 1269 { 1270 struct xfs_da_intnode *node; 1271 struct xfs_da_node_entry *btree; 1272 struct xfs_da3_icnode_hdr nodehdr; 1273 1274 node = bp->b_addr; 1275 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1276 if (count) 1277 *count = nodehdr.count; 1278 if (!nodehdr.count) 1279 return 0; 1280 btree = dp->d_ops->node_tree_p(node); 1281 return be32_to_cpu(btree[nodehdr.count - 1].hashval); 1282 } 1283 1284 /* 1285 * Walk back up the tree adjusting hash values as necessary, 1286 * when we stop making changes, return. 1287 */ 1288 void 1289 xfs_da3_fixhashpath( 1290 struct xfs_da_state *state, 1291 struct xfs_da_state_path *path) 1292 { 1293 struct xfs_da_state_blk *blk; 1294 struct xfs_da_intnode *node; 1295 struct xfs_da_node_entry *btree; 1296 xfs_dahash_t lasthash=0; 1297 int level; 1298 int count; 1299 struct xfs_inode *dp = state->args->dp; 1300 1301 trace_xfs_da_fixhashpath(state->args); 1302 1303 level = path->active-1; 1304 blk = &path->blk[ level ]; 1305 switch (blk->magic) { 1306 case XFS_ATTR_LEAF_MAGIC: 1307 lasthash = xfs_attr_leaf_lasthash(blk->bp, &count); 1308 if (count == 0) 1309 return; 1310 break; 1311 case XFS_DIR2_LEAFN_MAGIC: 1312 lasthash = xfs_dir2_leaf_lasthash(dp, blk->bp, &count); 1313 if (count == 0) 1314 return; 1315 break; 1316 case XFS_DA_NODE_MAGIC: 1317 lasthash = xfs_da3_node_lasthash(dp, blk->bp, &count); 1318 if (count == 0) 1319 return; 1320 break; 1321 } 1322 for (blk--, level--; level >= 0; blk--, level--) { 1323 struct xfs_da3_icnode_hdr nodehdr; 1324 1325 node = blk->bp->b_addr; 1326 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1327 btree = dp->d_ops->node_tree_p(node); 1328 if (be32_to_cpu(btree[blk->index].hashval) == lasthash) 1329 break; 1330 blk->hashval = lasthash; 1331 btree[blk->index].hashval = cpu_to_be32(lasthash); 1332 xfs_trans_log_buf(state->args->trans, blk->bp, 1333 XFS_DA_LOGRANGE(node, &btree[blk->index], 1334 sizeof(*btree))); 1335 1336 lasthash = be32_to_cpu(btree[nodehdr.count - 1].hashval); 1337 } 1338 } 1339 1340 /* 1341 * Remove an entry from an intermediate node. 1342 */ 1343 STATIC void 1344 xfs_da3_node_remove( 1345 struct xfs_da_state *state, 1346 struct xfs_da_state_blk *drop_blk) 1347 { 1348 struct xfs_da_intnode *node; 1349 struct xfs_da3_icnode_hdr nodehdr; 1350 struct xfs_da_node_entry *btree; 1351 int index; 1352 int tmp; 1353 struct xfs_inode *dp = state->args->dp; 1354 1355 trace_xfs_da_node_remove(state->args); 1356 1357 node = drop_blk->bp->b_addr; 1358 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1359 ASSERT(drop_blk->index < nodehdr.count); 1360 ASSERT(drop_blk->index >= 0); 1361 1362 /* 1363 * Copy over the offending entry, or just zero it out. 1364 */ 1365 index = drop_blk->index; 1366 btree = dp->d_ops->node_tree_p(node); 1367 if (index < nodehdr.count - 1) { 1368 tmp = nodehdr.count - index - 1; 1369 tmp *= (uint)sizeof(xfs_da_node_entry_t); 1370 memmove(&btree[index], &btree[index + 1], tmp); 1371 xfs_trans_log_buf(state->args->trans, drop_blk->bp, 1372 XFS_DA_LOGRANGE(node, &btree[index], tmp)); 1373 index = nodehdr.count - 1; 1374 } 1375 memset(&btree[index], 0, sizeof(xfs_da_node_entry_t)); 1376 xfs_trans_log_buf(state->args->trans, drop_blk->bp, 1377 XFS_DA_LOGRANGE(node, &btree[index], sizeof(btree[index]))); 1378 nodehdr.count -= 1; 1379 dp->d_ops->node_hdr_to_disk(node, &nodehdr); 1380 xfs_trans_log_buf(state->args->trans, drop_blk->bp, 1381 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size)); 1382 1383 /* 1384 * Copy the last hash value from the block to propagate upwards. 1385 */ 1386 drop_blk->hashval = be32_to_cpu(btree[index - 1].hashval); 1387 } 1388 1389 /* 1390 * Unbalance the elements between two intermediate nodes, 1391 * move all Btree elements from one node into another. 1392 */ 1393 STATIC void 1394 xfs_da3_node_unbalance( 1395 struct xfs_da_state *state, 1396 struct xfs_da_state_blk *drop_blk, 1397 struct xfs_da_state_blk *save_blk) 1398 { 1399 struct xfs_da_intnode *drop_node; 1400 struct xfs_da_intnode *save_node; 1401 struct xfs_da_node_entry *drop_btree; 1402 struct xfs_da_node_entry *save_btree; 1403 struct xfs_da3_icnode_hdr drop_hdr; 1404 struct xfs_da3_icnode_hdr save_hdr; 1405 struct xfs_trans *tp; 1406 int sindex; 1407 int tmp; 1408 struct xfs_inode *dp = state->args->dp; 1409 1410 trace_xfs_da_node_unbalance(state->args); 1411 1412 drop_node = drop_blk->bp->b_addr; 1413 save_node = save_blk->bp->b_addr; 1414 dp->d_ops->node_hdr_from_disk(&drop_hdr, drop_node); 1415 dp->d_ops->node_hdr_from_disk(&save_hdr, save_node); 1416 drop_btree = dp->d_ops->node_tree_p(drop_node); 1417 save_btree = dp->d_ops->node_tree_p(save_node); 1418 tp = state->args->trans; 1419 1420 /* 1421 * If the dying block has lower hashvals, then move all the 1422 * elements in the remaining block up to make a hole. 1423 */ 1424 if ((be32_to_cpu(drop_btree[0].hashval) < 1425 be32_to_cpu(save_btree[0].hashval)) || 1426 (be32_to_cpu(drop_btree[drop_hdr.count - 1].hashval) < 1427 be32_to_cpu(save_btree[save_hdr.count - 1].hashval))) { 1428 /* XXX: check this - is memmove dst correct? */ 1429 tmp = save_hdr.count * sizeof(xfs_da_node_entry_t); 1430 memmove(&save_btree[drop_hdr.count], &save_btree[0], tmp); 1431 1432 sindex = 0; 1433 xfs_trans_log_buf(tp, save_blk->bp, 1434 XFS_DA_LOGRANGE(save_node, &save_btree[0], 1435 (save_hdr.count + drop_hdr.count) * 1436 sizeof(xfs_da_node_entry_t))); 1437 } else { 1438 sindex = save_hdr.count; 1439 xfs_trans_log_buf(tp, save_blk->bp, 1440 XFS_DA_LOGRANGE(save_node, &save_btree[sindex], 1441 drop_hdr.count * sizeof(xfs_da_node_entry_t))); 1442 } 1443 1444 /* 1445 * Move all the B-tree elements from drop_blk to save_blk. 1446 */ 1447 tmp = drop_hdr.count * (uint)sizeof(xfs_da_node_entry_t); 1448 memcpy(&save_btree[sindex], &drop_btree[0], tmp); 1449 save_hdr.count += drop_hdr.count; 1450 1451 dp->d_ops->node_hdr_to_disk(save_node, &save_hdr); 1452 xfs_trans_log_buf(tp, save_blk->bp, 1453 XFS_DA_LOGRANGE(save_node, &save_node->hdr, 1454 dp->d_ops->node_hdr_size)); 1455 1456 /* 1457 * Save the last hashval in the remaining block for upward propagation. 1458 */ 1459 save_blk->hashval = be32_to_cpu(save_btree[save_hdr.count - 1].hashval); 1460 } 1461 1462 /*======================================================================== 1463 * Routines used for finding things in the Btree. 1464 *========================================================================*/ 1465 1466 /* 1467 * Walk down the Btree looking for a particular filename, filling 1468 * in the state structure as we go. 1469 * 1470 * We will set the state structure to point to each of the elements 1471 * in each of the nodes where either the hashval is or should be. 1472 * 1473 * We support duplicate hashval's so for each entry in the current 1474 * node that could contain the desired hashval, descend. This is a 1475 * pruned depth-first tree search. 1476 */ 1477 int /* error */ 1478 xfs_da3_node_lookup_int( 1479 struct xfs_da_state *state, 1480 int *result) 1481 { 1482 struct xfs_da_state_blk *blk; 1483 struct xfs_da_blkinfo *curr; 1484 struct xfs_da_intnode *node; 1485 struct xfs_da_node_entry *btree; 1486 struct xfs_da3_icnode_hdr nodehdr; 1487 struct xfs_da_args *args; 1488 xfs_dablk_t blkno; 1489 xfs_dahash_t hashval; 1490 xfs_dahash_t btreehashval; 1491 int probe; 1492 int span; 1493 int max; 1494 int error; 1495 int retval; 1496 unsigned int expected_level = 0; 1497 uint16_t magic; 1498 struct xfs_inode *dp = state->args->dp; 1499 1500 args = state->args; 1501 1502 /* 1503 * Descend thru the B-tree searching each level for the right 1504 * node to use, until the right hashval is found. 1505 */ 1506 blkno = args->geo->leafblk; 1507 for (blk = &state->path.blk[0], state->path.active = 1; 1508 state->path.active <= XFS_DA_NODE_MAXDEPTH; 1509 blk++, state->path.active++) { 1510 /* 1511 * Read the next node down in the tree. 1512 */ 1513 blk->blkno = blkno; 1514 error = xfs_da3_node_read(args->trans, args->dp, blkno, 1515 -1, &blk->bp, args->whichfork); 1516 if (error) { 1517 blk->blkno = 0; 1518 state->path.active--; 1519 return error; 1520 } 1521 curr = blk->bp->b_addr; 1522 magic = be16_to_cpu(curr->magic); 1523 1524 if (magic == XFS_ATTR_LEAF_MAGIC || 1525 magic == XFS_ATTR3_LEAF_MAGIC) { 1526 blk->magic = XFS_ATTR_LEAF_MAGIC; 1527 blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL); 1528 break; 1529 } 1530 1531 if (magic == XFS_DIR2_LEAFN_MAGIC || 1532 magic == XFS_DIR3_LEAFN_MAGIC) { 1533 blk->magic = XFS_DIR2_LEAFN_MAGIC; 1534 blk->hashval = xfs_dir2_leaf_lasthash(args->dp, 1535 blk->bp, NULL); 1536 break; 1537 } 1538 1539 if (magic != XFS_DA_NODE_MAGIC && magic != XFS_DA3_NODE_MAGIC) 1540 return -EFSCORRUPTED; 1541 1542 blk->magic = XFS_DA_NODE_MAGIC; 1543 1544 /* 1545 * Search an intermediate node for a match. 1546 */ 1547 node = blk->bp->b_addr; 1548 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1549 btree = dp->d_ops->node_tree_p(node); 1550 1551 /* Tree taller than we can handle; bail out! */ 1552 if (nodehdr.level >= XFS_DA_NODE_MAXDEPTH) 1553 return -EFSCORRUPTED; 1554 1555 /* Check the level from the root. */ 1556 if (blkno == args->geo->leafblk) 1557 expected_level = nodehdr.level - 1; 1558 else if (expected_level != nodehdr.level) 1559 return -EFSCORRUPTED; 1560 else 1561 expected_level--; 1562 1563 max = nodehdr.count; 1564 blk->hashval = be32_to_cpu(btree[max - 1].hashval); 1565 1566 /* 1567 * Binary search. (note: small blocks will skip loop) 1568 */ 1569 probe = span = max / 2; 1570 hashval = args->hashval; 1571 while (span > 4) { 1572 span /= 2; 1573 btreehashval = be32_to_cpu(btree[probe].hashval); 1574 if (btreehashval < hashval) 1575 probe += span; 1576 else if (btreehashval > hashval) 1577 probe -= span; 1578 else 1579 break; 1580 } 1581 ASSERT((probe >= 0) && (probe < max)); 1582 ASSERT((span <= 4) || 1583 (be32_to_cpu(btree[probe].hashval) == hashval)); 1584 1585 /* 1586 * Since we may have duplicate hashval's, find the first 1587 * matching hashval in the node. 1588 */ 1589 while (probe > 0 && 1590 be32_to_cpu(btree[probe].hashval) >= hashval) { 1591 probe--; 1592 } 1593 while (probe < max && 1594 be32_to_cpu(btree[probe].hashval) < hashval) { 1595 probe++; 1596 } 1597 1598 /* 1599 * Pick the right block to descend on. 1600 */ 1601 if (probe == max) { 1602 blk->index = max - 1; 1603 blkno = be32_to_cpu(btree[max - 1].before); 1604 } else { 1605 blk->index = probe; 1606 blkno = be32_to_cpu(btree[probe].before); 1607 } 1608 1609 /* We can't point back to the root. */ 1610 if (blkno == args->geo->leafblk) 1611 return -EFSCORRUPTED; 1612 } 1613 1614 if (expected_level != 0) 1615 return -EFSCORRUPTED; 1616 1617 /* 1618 * A leaf block that ends in the hashval that we are interested in 1619 * (final hashval == search hashval) means that the next block may 1620 * contain more entries with the same hashval, shift upward to the 1621 * next leaf and keep searching. 1622 */ 1623 for (;;) { 1624 if (blk->magic == XFS_DIR2_LEAFN_MAGIC) { 1625 retval = xfs_dir2_leafn_lookup_int(blk->bp, args, 1626 &blk->index, state); 1627 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) { 1628 retval = xfs_attr3_leaf_lookup_int(blk->bp, args); 1629 blk->index = args->index; 1630 args->blkno = blk->blkno; 1631 } else { 1632 ASSERT(0); 1633 return -EFSCORRUPTED; 1634 } 1635 if (((retval == -ENOENT) || (retval == -ENOATTR)) && 1636 (blk->hashval == args->hashval)) { 1637 error = xfs_da3_path_shift(state, &state->path, 1, 1, 1638 &retval); 1639 if (error) 1640 return error; 1641 if (retval == 0) { 1642 continue; 1643 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) { 1644 /* path_shift() gives ENOENT */ 1645 retval = -ENOATTR; 1646 } 1647 } 1648 break; 1649 } 1650 *result = retval; 1651 return 0; 1652 } 1653 1654 /*======================================================================== 1655 * Utility routines. 1656 *========================================================================*/ 1657 1658 /* 1659 * Compare two intermediate nodes for "order". 1660 */ 1661 STATIC int 1662 xfs_da3_node_order( 1663 struct xfs_inode *dp, 1664 struct xfs_buf *node1_bp, 1665 struct xfs_buf *node2_bp) 1666 { 1667 struct xfs_da_intnode *node1; 1668 struct xfs_da_intnode *node2; 1669 struct xfs_da_node_entry *btree1; 1670 struct xfs_da_node_entry *btree2; 1671 struct xfs_da3_icnode_hdr node1hdr; 1672 struct xfs_da3_icnode_hdr node2hdr; 1673 1674 node1 = node1_bp->b_addr; 1675 node2 = node2_bp->b_addr; 1676 dp->d_ops->node_hdr_from_disk(&node1hdr, node1); 1677 dp->d_ops->node_hdr_from_disk(&node2hdr, node2); 1678 btree1 = dp->d_ops->node_tree_p(node1); 1679 btree2 = dp->d_ops->node_tree_p(node2); 1680 1681 if (node1hdr.count > 0 && node2hdr.count > 0 && 1682 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) || 1683 (be32_to_cpu(btree2[node2hdr.count - 1].hashval) < 1684 be32_to_cpu(btree1[node1hdr.count - 1].hashval)))) { 1685 return 1; 1686 } 1687 return 0; 1688 } 1689 1690 /* 1691 * Link a new block into a doubly linked list of blocks (of whatever type). 1692 */ 1693 int /* error */ 1694 xfs_da3_blk_link( 1695 struct xfs_da_state *state, 1696 struct xfs_da_state_blk *old_blk, 1697 struct xfs_da_state_blk *new_blk) 1698 { 1699 struct xfs_da_blkinfo *old_info; 1700 struct xfs_da_blkinfo *new_info; 1701 struct xfs_da_blkinfo *tmp_info; 1702 struct xfs_da_args *args; 1703 struct xfs_buf *bp; 1704 int before = 0; 1705 int error; 1706 struct xfs_inode *dp = state->args->dp; 1707 1708 /* 1709 * Set up environment. 1710 */ 1711 args = state->args; 1712 ASSERT(args != NULL); 1713 old_info = old_blk->bp->b_addr; 1714 new_info = new_blk->bp->b_addr; 1715 ASSERT(old_blk->magic == XFS_DA_NODE_MAGIC || 1716 old_blk->magic == XFS_DIR2_LEAFN_MAGIC || 1717 old_blk->magic == XFS_ATTR_LEAF_MAGIC); 1718 1719 switch (old_blk->magic) { 1720 case XFS_ATTR_LEAF_MAGIC: 1721 before = xfs_attr_leaf_order(old_blk->bp, new_blk->bp); 1722 break; 1723 case XFS_DIR2_LEAFN_MAGIC: 1724 before = xfs_dir2_leafn_order(dp, old_blk->bp, new_blk->bp); 1725 break; 1726 case XFS_DA_NODE_MAGIC: 1727 before = xfs_da3_node_order(dp, old_blk->bp, new_blk->bp); 1728 break; 1729 } 1730 1731 /* 1732 * Link blocks in appropriate order. 1733 */ 1734 if (before) { 1735 /* 1736 * Link new block in before existing block. 1737 */ 1738 trace_xfs_da_link_before(args); 1739 new_info->forw = cpu_to_be32(old_blk->blkno); 1740 new_info->back = old_info->back; 1741 if (old_info->back) { 1742 error = xfs_da3_node_read(args->trans, dp, 1743 be32_to_cpu(old_info->back), 1744 -1, &bp, args->whichfork); 1745 if (error) 1746 return error; 1747 ASSERT(bp != NULL); 1748 tmp_info = bp->b_addr; 1749 ASSERT(tmp_info->magic == old_info->magic); 1750 ASSERT(be32_to_cpu(tmp_info->forw) == old_blk->blkno); 1751 tmp_info->forw = cpu_to_be32(new_blk->blkno); 1752 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1); 1753 } 1754 old_info->back = cpu_to_be32(new_blk->blkno); 1755 } else { 1756 /* 1757 * Link new block in after existing block. 1758 */ 1759 trace_xfs_da_link_after(args); 1760 new_info->forw = old_info->forw; 1761 new_info->back = cpu_to_be32(old_blk->blkno); 1762 if (old_info->forw) { 1763 error = xfs_da3_node_read(args->trans, dp, 1764 be32_to_cpu(old_info->forw), 1765 -1, &bp, args->whichfork); 1766 if (error) 1767 return error; 1768 ASSERT(bp != NULL); 1769 tmp_info = bp->b_addr; 1770 ASSERT(tmp_info->magic == old_info->magic); 1771 ASSERT(be32_to_cpu(tmp_info->back) == old_blk->blkno); 1772 tmp_info->back = cpu_to_be32(new_blk->blkno); 1773 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1); 1774 } 1775 old_info->forw = cpu_to_be32(new_blk->blkno); 1776 } 1777 1778 xfs_trans_log_buf(args->trans, old_blk->bp, 0, sizeof(*tmp_info) - 1); 1779 xfs_trans_log_buf(args->trans, new_blk->bp, 0, sizeof(*tmp_info) - 1); 1780 return 0; 1781 } 1782 1783 /* 1784 * Unlink a block from a doubly linked list of blocks. 1785 */ 1786 STATIC int /* error */ 1787 xfs_da3_blk_unlink( 1788 struct xfs_da_state *state, 1789 struct xfs_da_state_blk *drop_blk, 1790 struct xfs_da_state_blk *save_blk) 1791 { 1792 struct xfs_da_blkinfo *drop_info; 1793 struct xfs_da_blkinfo *save_info; 1794 struct xfs_da_blkinfo *tmp_info; 1795 struct xfs_da_args *args; 1796 struct xfs_buf *bp; 1797 int error; 1798 1799 /* 1800 * Set up environment. 1801 */ 1802 args = state->args; 1803 ASSERT(args != NULL); 1804 save_info = save_blk->bp->b_addr; 1805 drop_info = drop_blk->bp->b_addr; 1806 ASSERT(save_blk->magic == XFS_DA_NODE_MAGIC || 1807 save_blk->magic == XFS_DIR2_LEAFN_MAGIC || 1808 save_blk->magic == XFS_ATTR_LEAF_MAGIC); 1809 ASSERT(save_blk->magic == drop_blk->magic); 1810 ASSERT((be32_to_cpu(save_info->forw) == drop_blk->blkno) || 1811 (be32_to_cpu(save_info->back) == drop_blk->blkno)); 1812 ASSERT((be32_to_cpu(drop_info->forw) == save_blk->blkno) || 1813 (be32_to_cpu(drop_info->back) == save_blk->blkno)); 1814 1815 /* 1816 * Unlink the leaf block from the doubly linked chain of leaves. 1817 */ 1818 if (be32_to_cpu(save_info->back) == drop_blk->blkno) { 1819 trace_xfs_da_unlink_back(args); 1820 save_info->back = drop_info->back; 1821 if (drop_info->back) { 1822 error = xfs_da3_node_read(args->trans, args->dp, 1823 be32_to_cpu(drop_info->back), 1824 -1, &bp, args->whichfork); 1825 if (error) 1826 return error; 1827 ASSERT(bp != NULL); 1828 tmp_info = bp->b_addr; 1829 ASSERT(tmp_info->magic == save_info->magic); 1830 ASSERT(be32_to_cpu(tmp_info->forw) == drop_blk->blkno); 1831 tmp_info->forw = cpu_to_be32(save_blk->blkno); 1832 xfs_trans_log_buf(args->trans, bp, 0, 1833 sizeof(*tmp_info) - 1); 1834 } 1835 } else { 1836 trace_xfs_da_unlink_forward(args); 1837 save_info->forw = drop_info->forw; 1838 if (drop_info->forw) { 1839 error = xfs_da3_node_read(args->trans, args->dp, 1840 be32_to_cpu(drop_info->forw), 1841 -1, &bp, args->whichfork); 1842 if (error) 1843 return error; 1844 ASSERT(bp != NULL); 1845 tmp_info = bp->b_addr; 1846 ASSERT(tmp_info->magic == save_info->magic); 1847 ASSERT(be32_to_cpu(tmp_info->back) == drop_blk->blkno); 1848 tmp_info->back = cpu_to_be32(save_blk->blkno); 1849 xfs_trans_log_buf(args->trans, bp, 0, 1850 sizeof(*tmp_info) - 1); 1851 } 1852 } 1853 1854 xfs_trans_log_buf(args->trans, save_blk->bp, 0, sizeof(*save_info) - 1); 1855 return 0; 1856 } 1857 1858 /* 1859 * Move a path "forward" or "!forward" one block at the current level. 1860 * 1861 * This routine will adjust a "path" to point to the next block 1862 * "forward" (higher hashvalues) or "!forward" (lower hashvals) in the 1863 * Btree, including updating pointers to the intermediate nodes between 1864 * the new bottom and the root. 1865 */ 1866 int /* error */ 1867 xfs_da3_path_shift( 1868 struct xfs_da_state *state, 1869 struct xfs_da_state_path *path, 1870 int forward, 1871 int release, 1872 int *result) 1873 { 1874 struct xfs_da_state_blk *blk; 1875 struct xfs_da_blkinfo *info; 1876 struct xfs_da_intnode *node; 1877 struct xfs_da_args *args; 1878 struct xfs_da_node_entry *btree; 1879 struct xfs_da3_icnode_hdr nodehdr; 1880 struct xfs_buf *bp; 1881 xfs_dablk_t blkno = 0; 1882 int level; 1883 int error; 1884 struct xfs_inode *dp = state->args->dp; 1885 1886 trace_xfs_da_path_shift(state->args); 1887 1888 /* 1889 * Roll up the Btree looking for the first block where our 1890 * current index is not at the edge of the block. Note that 1891 * we skip the bottom layer because we want the sibling block. 1892 */ 1893 args = state->args; 1894 ASSERT(args != NULL); 1895 ASSERT(path != NULL); 1896 ASSERT((path->active > 0) && (path->active < XFS_DA_NODE_MAXDEPTH)); 1897 level = (path->active-1) - 1; /* skip bottom layer in path */ 1898 for (blk = &path->blk[level]; level >= 0; blk--, level--) { 1899 node = blk->bp->b_addr; 1900 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1901 btree = dp->d_ops->node_tree_p(node); 1902 1903 if (forward && (blk->index < nodehdr.count - 1)) { 1904 blk->index++; 1905 blkno = be32_to_cpu(btree[blk->index].before); 1906 break; 1907 } else if (!forward && (blk->index > 0)) { 1908 blk->index--; 1909 blkno = be32_to_cpu(btree[blk->index].before); 1910 break; 1911 } 1912 } 1913 if (level < 0) { 1914 *result = -ENOENT; /* we're out of our tree */ 1915 ASSERT(args->op_flags & XFS_DA_OP_OKNOENT); 1916 return 0; 1917 } 1918 1919 /* 1920 * Roll down the edge of the subtree until we reach the 1921 * same depth we were at originally. 1922 */ 1923 for (blk++, level++; level < path->active; blk++, level++) { 1924 /* 1925 * Read the next child block into a local buffer. 1926 */ 1927 error = xfs_da3_node_read(args->trans, dp, blkno, -1, &bp, 1928 args->whichfork); 1929 if (error) 1930 return error; 1931 1932 /* 1933 * Release the old block (if it's dirty, the trans doesn't 1934 * actually let go) and swap the local buffer into the path 1935 * structure. This ensures failure of the above read doesn't set 1936 * a NULL buffer in an active slot in the path. 1937 */ 1938 if (release) 1939 xfs_trans_brelse(args->trans, blk->bp); 1940 blk->blkno = blkno; 1941 blk->bp = bp; 1942 1943 info = blk->bp->b_addr; 1944 ASSERT(info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC) || 1945 info->magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) || 1946 info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || 1947 info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) || 1948 info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 1949 info->magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 1950 1951 1952 /* 1953 * Note: we flatten the magic number to a single type so we 1954 * don't have to compare against crc/non-crc types elsewhere. 1955 */ 1956 switch (be16_to_cpu(info->magic)) { 1957 case XFS_DA_NODE_MAGIC: 1958 case XFS_DA3_NODE_MAGIC: 1959 blk->magic = XFS_DA_NODE_MAGIC; 1960 node = (xfs_da_intnode_t *)info; 1961 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1962 btree = dp->d_ops->node_tree_p(node); 1963 blk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval); 1964 if (forward) 1965 blk->index = 0; 1966 else 1967 blk->index = nodehdr.count - 1; 1968 blkno = be32_to_cpu(btree[blk->index].before); 1969 break; 1970 case XFS_ATTR_LEAF_MAGIC: 1971 case XFS_ATTR3_LEAF_MAGIC: 1972 blk->magic = XFS_ATTR_LEAF_MAGIC; 1973 ASSERT(level == path->active-1); 1974 blk->index = 0; 1975 blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL); 1976 break; 1977 case XFS_DIR2_LEAFN_MAGIC: 1978 case XFS_DIR3_LEAFN_MAGIC: 1979 blk->magic = XFS_DIR2_LEAFN_MAGIC; 1980 ASSERT(level == path->active-1); 1981 blk->index = 0; 1982 blk->hashval = xfs_dir2_leaf_lasthash(args->dp, 1983 blk->bp, NULL); 1984 break; 1985 default: 1986 ASSERT(0); 1987 break; 1988 } 1989 } 1990 *result = 0; 1991 return 0; 1992 } 1993 1994 1995 /*======================================================================== 1996 * Utility routines. 1997 *========================================================================*/ 1998 1999 /* 2000 * Implement a simple hash on a character string. 2001 * Rotate the hash value by 7 bits, then XOR each character in. 2002 * This is implemented with some source-level loop unrolling. 2003 */ 2004 xfs_dahash_t 2005 xfs_da_hashname(const uint8_t *name, int namelen) 2006 { 2007 xfs_dahash_t hash; 2008 2009 /* 2010 * Do four characters at a time as long as we can. 2011 */ 2012 for (hash = 0; namelen >= 4; namelen -= 4, name += 4) 2013 hash = (name[0] << 21) ^ (name[1] << 14) ^ (name[2] << 7) ^ 2014 (name[3] << 0) ^ rol32(hash, 7 * 4); 2015 2016 /* 2017 * Now do the rest of the characters. 2018 */ 2019 switch (namelen) { 2020 case 3: 2021 return (name[0] << 14) ^ (name[1] << 7) ^ (name[2] << 0) ^ 2022 rol32(hash, 7 * 3); 2023 case 2: 2024 return (name[0] << 7) ^ (name[1] << 0) ^ rol32(hash, 7 * 2); 2025 case 1: 2026 return (name[0] << 0) ^ rol32(hash, 7 * 1); 2027 default: /* case 0: */ 2028 return hash; 2029 } 2030 } 2031 2032 enum xfs_dacmp 2033 xfs_da_compname( 2034 struct xfs_da_args *args, 2035 const unsigned char *name, 2036 int len) 2037 { 2038 return (args->namelen == len && memcmp(args->name, name, len) == 0) ? 2039 XFS_CMP_EXACT : XFS_CMP_DIFFERENT; 2040 } 2041 2042 static xfs_dahash_t 2043 xfs_default_hashname( 2044 struct xfs_name *name) 2045 { 2046 return xfs_da_hashname(name->name, name->len); 2047 } 2048 2049 const struct xfs_nameops xfs_default_nameops = { 2050 .hashname = xfs_default_hashname, 2051 .compname = xfs_da_compname 2052 }; 2053 2054 int 2055 xfs_da_grow_inode_int( 2056 struct xfs_da_args *args, 2057 xfs_fileoff_t *bno, 2058 int count) 2059 { 2060 struct xfs_trans *tp = args->trans; 2061 struct xfs_inode *dp = args->dp; 2062 int w = args->whichfork; 2063 xfs_rfsblock_t nblks = dp->i_d.di_nblocks; 2064 struct xfs_bmbt_irec map, *mapp; 2065 int nmap, error, got, i, mapi; 2066 2067 /* 2068 * Find a spot in the file space to put the new block. 2069 */ 2070 error = xfs_bmap_first_unused(tp, dp, count, bno, w); 2071 if (error) 2072 return error; 2073 2074 /* 2075 * Try mapping it in one filesystem block. 2076 */ 2077 nmap = 1; 2078 error = xfs_bmapi_write(tp, dp, *bno, count, 2079 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA|XFS_BMAPI_CONTIG, 2080 args->total, &map, &nmap); 2081 if (error) 2082 return error; 2083 2084 ASSERT(nmap <= 1); 2085 if (nmap == 1) { 2086 mapp = ↦ 2087 mapi = 1; 2088 } else if (nmap == 0 && count > 1) { 2089 xfs_fileoff_t b; 2090 int c; 2091 2092 /* 2093 * If we didn't get it and the block might work if fragmented, 2094 * try without the CONTIG flag. Loop until we get it all. 2095 */ 2096 mapp = kmem_alloc(sizeof(*mapp) * count, KM_SLEEP); 2097 for (b = *bno, mapi = 0; b < *bno + count; ) { 2098 nmap = min(XFS_BMAP_MAX_NMAP, count); 2099 c = (int)(*bno + count - b); 2100 error = xfs_bmapi_write(tp, dp, b, c, 2101 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA, 2102 args->total, &mapp[mapi], &nmap); 2103 if (error) 2104 goto out_free_map; 2105 if (nmap < 1) 2106 break; 2107 mapi += nmap; 2108 b = mapp[mapi - 1].br_startoff + 2109 mapp[mapi - 1].br_blockcount; 2110 } 2111 } else { 2112 mapi = 0; 2113 mapp = NULL; 2114 } 2115 2116 /* 2117 * Count the blocks we got, make sure it matches the total. 2118 */ 2119 for (i = 0, got = 0; i < mapi; i++) 2120 got += mapp[i].br_blockcount; 2121 if (got != count || mapp[0].br_startoff != *bno || 2122 mapp[mapi - 1].br_startoff + mapp[mapi - 1].br_blockcount != 2123 *bno + count) { 2124 error = -ENOSPC; 2125 goto out_free_map; 2126 } 2127 2128 /* account for newly allocated blocks in reserved blocks total */ 2129 args->total -= dp->i_d.di_nblocks - nblks; 2130 2131 out_free_map: 2132 if (mapp != &map) 2133 kmem_free(mapp); 2134 return error; 2135 } 2136 2137 /* 2138 * Add a block to the btree ahead of the file. 2139 * Return the new block number to the caller. 2140 */ 2141 int 2142 xfs_da_grow_inode( 2143 struct xfs_da_args *args, 2144 xfs_dablk_t *new_blkno) 2145 { 2146 xfs_fileoff_t bno; 2147 int error; 2148 2149 trace_xfs_da_grow_inode(args); 2150 2151 bno = args->geo->leafblk; 2152 error = xfs_da_grow_inode_int(args, &bno, args->geo->fsbcount); 2153 if (!error) 2154 *new_blkno = (xfs_dablk_t)bno; 2155 return error; 2156 } 2157 2158 /* 2159 * Ick. We need to always be able to remove a btree block, even 2160 * if there's no space reservation because the filesystem is full. 2161 * This is called if xfs_bunmapi on a btree block fails due to ENOSPC. 2162 * It swaps the target block with the last block in the file. The 2163 * last block in the file can always be removed since it can't cause 2164 * a bmap btree split to do that. 2165 */ 2166 STATIC int 2167 xfs_da3_swap_lastblock( 2168 struct xfs_da_args *args, 2169 xfs_dablk_t *dead_blknop, 2170 struct xfs_buf **dead_bufp) 2171 { 2172 struct xfs_da_blkinfo *dead_info; 2173 struct xfs_da_blkinfo *sib_info; 2174 struct xfs_da_intnode *par_node; 2175 struct xfs_da_intnode *dead_node; 2176 struct xfs_dir2_leaf *dead_leaf2; 2177 struct xfs_da_node_entry *btree; 2178 struct xfs_da3_icnode_hdr par_hdr; 2179 struct xfs_inode *dp; 2180 struct xfs_trans *tp; 2181 struct xfs_mount *mp; 2182 struct xfs_buf *dead_buf; 2183 struct xfs_buf *last_buf; 2184 struct xfs_buf *sib_buf; 2185 struct xfs_buf *par_buf; 2186 xfs_dahash_t dead_hash; 2187 xfs_fileoff_t lastoff; 2188 xfs_dablk_t dead_blkno; 2189 xfs_dablk_t last_blkno; 2190 xfs_dablk_t sib_blkno; 2191 xfs_dablk_t par_blkno; 2192 int error; 2193 int w; 2194 int entno; 2195 int level; 2196 int dead_level; 2197 2198 trace_xfs_da_swap_lastblock(args); 2199 2200 dead_buf = *dead_bufp; 2201 dead_blkno = *dead_blknop; 2202 tp = args->trans; 2203 dp = args->dp; 2204 w = args->whichfork; 2205 ASSERT(w == XFS_DATA_FORK); 2206 mp = dp->i_mount; 2207 lastoff = args->geo->freeblk; 2208 error = xfs_bmap_last_before(tp, dp, &lastoff, w); 2209 if (error) 2210 return error; 2211 if (unlikely(lastoff == 0)) { 2212 XFS_ERROR_REPORT("xfs_da_swap_lastblock(1)", XFS_ERRLEVEL_LOW, 2213 mp); 2214 return -EFSCORRUPTED; 2215 } 2216 /* 2217 * Read the last block in the btree space. 2218 */ 2219 last_blkno = (xfs_dablk_t)lastoff - args->geo->fsbcount; 2220 error = xfs_da3_node_read(tp, dp, last_blkno, -1, &last_buf, w); 2221 if (error) 2222 return error; 2223 /* 2224 * Copy the last block into the dead buffer and log it. 2225 */ 2226 memcpy(dead_buf->b_addr, last_buf->b_addr, args->geo->blksize); 2227 xfs_trans_log_buf(tp, dead_buf, 0, args->geo->blksize - 1); 2228 dead_info = dead_buf->b_addr; 2229 /* 2230 * Get values from the moved block. 2231 */ 2232 if (dead_info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || 2233 dead_info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) { 2234 struct xfs_dir3_icleaf_hdr leafhdr; 2235 struct xfs_dir2_leaf_entry *ents; 2236 2237 dead_leaf2 = (xfs_dir2_leaf_t *)dead_info; 2238 dp->d_ops->leaf_hdr_from_disk(&leafhdr, dead_leaf2); 2239 ents = dp->d_ops->leaf_ents_p(dead_leaf2); 2240 dead_level = 0; 2241 dead_hash = be32_to_cpu(ents[leafhdr.count - 1].hashval); 2242 } else { 2243 struct xfs_da3_icnode_hdr deadhdr; 2244 2245 dead_node = (xfs_da_intnode_t *)dead_info; 2246 dp->d_ops->node_hdr_from_disk(&deadhdr, dead_node); 2247 btree = dp->d_ops->node_tree_p(dead_node); 2248 dead_level = deadhdr.level; 2249 dead_hash = be32_to_cpu(btree[deadhdr.count - 1].hashval); 2250 } 2251 sib_buf = par_buf = NULL; 2252 /* 2253 * If the moved block has a left sibling, fix up the pointers. 2254 */ 2255 if ((sib_blkno = be32_to_cpu(dead_info->back))) { 2256 error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w); 2257 if (error) 2258 goto done; 2259 sib_info = sib_buf->b_addr; 2260 if (unlikely( 2261 be32_to_cpu(sib_info->forw) != last_blkno || 2262 sib_info->magic != dead_info->magic)) { 2263 XFS_ERROR_REPORT("xfs_da_swap_lastblock(2)", 2264 XFS_ERRLEVEL_LOW, mp); 2265 error = -EFSCORRUPTED; 2266 goto done; 2267 } 2268 sib_info->forw = cpu_to_be32(dead_blkno); 2269 xfs_trans_log_buf(tp, sib_buf, 2270 XFS_DA_LOGRANGE(sib_info, &sib_info->forw, 2271 sizeof(sib_info->forw))); 2272 sib_buf = NULL; 2273 } 2274 /* 2275 * If the moved block has a right sibling, fix up the pointers. 2276 */ 2277 if ((sib_blkno = be32_to_cpu(dead_info->forw))) { 2278 error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w); 2279 if (error) 2280 goto done; 2281 sib_info = sib_buf->b_addr; 2282 if (unlikely( 2283 be32_to_cpu(sib_info->back) != last_blkno || 2284 sib_info->magic != dead_info->magic)) { 2285 XFS_ERROR_REPORT("xfs_da_swap_lastblock(3)", 2286 XFS_ERRLEVEL_LOW, mp); 2287 error = -EFSCORRUPTED; 2288 goto done; 2289 } 2290 sib_info->back = cpu_to_be32(dead_blkno); 2291 xfs_trans_log_buf(tp, sib_buf, 2292 XFS_DA_LOGRANGE(sib_info, &sib_info->back, 2293 sizeof(sib_info->back))); 2294 sib_buf = NULL; 2295 } 2296 par_blkno = args->geo->leafblk; 2297 level = -1; 2298 /* 2299 * Walk down the tree looking for the parent of the moved block. 2300 */ 2301 for (;;) { 2302 error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w); 2303 if (error) 2304 goto done; 2305 par_node = par_buf->b_addr; 2306 dp->d_ops->node_hdr_from_disk(&par_hdr, par_node); 2307 if (level >= 0 && level != par_hdr.level + 1) { 2308 XFS_ERROR_REPORT("xfs_da_swap_lastblock(4)", 2309 XFS_ERRLEVEL_LOW, mp); 2310 error = -EFSCORRUPTED; 2311 goto done; 2312 } 2313 level = par_hdr.level; 2314 btree = dp->d_ops->node_tree_p(par_node); 2315 for (entno = 0; 2316 entno < par_hdr.count && 2317 be32_to_cpu(btree[entno].hashval) < dead_hash; 2318 entno++) 2319 continue; 2320 if (entno == par_hdr.count) { 2321 XFS_ERROR_REPORT("xfs_da_swap_lastblock(5)", 2322 XFS_ERRLEVEL_LOW, mp); 2323 error = -EFSCORRUPTED; 2324 goto done; 2325 } 2326 par_blkno = be32_to_cpu(btree[entno].before); 2327 if (level == dead_level + 1) 2328 break; 2329 xfs_trans_brelse(tp, par_buf); 2330 par_buf = NULL; 2331 } 2332 /* 2333 * We're in the right parent block. 2334 * Look for the right entry. 2335 */ 2336 for (;;) { 2337 for (; 2338 entno < par_hdr.count && 2339 be32_to_cpu(btree[entno].before) != last_blkno; 2340 entno++) 2341 continue; 2342 if (entno < par_hdr.count) 2343 break; 2344 par_blkno = par_hdr.forw; 2345 xfs_trans_brelse(tp, par_buf); 2346 par_buf = NULL; 2347 if (unlikely(par_blkno == 0)) { 2348 XFS_ERROR_REPORT("xfs_da_swap_lastblock(6)", 2349 XFS_ERRLEVEL_LOW, mp); 2350 error = -EFSCORRUPTED; 2351 goto done; 2352 } 2353 error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w); 2354 if (error) 2355 goto done; 2356 par_node = par_buf->b_addr; 2357 dp->d_ops->node_hdr_from_disk(&par_hdr, par_node); 2358 if (par_hdr.level != level) { 2359 XFS_ERROR_REPORT("xfs_da_swap_lastblock(7)", 2360 XFS_ERRLEVEL_LOW, mp); 2361 error = -EFSCORRUPTED; 2362 goto done; 2363 } 2364 btree = dp->d_ops->node_tree_p(par_node); 2365 entno = 0; 2366 } 2367 /* 2368 * Update the parent entry pointing to the moved block. 2369 */ 2370 btree[entno].before = cpu_to_be32(dead_blkno); 2371 xfs_trans_log_buf(tp, par_buf, 2372 XFS_DA_LOGRANGE(par_node, &btree[entno].before, 2373 sizeof(btree[entno].before))); 2374 *dead_blknop = last_blkno; 2375 *dead_bufp = last_buf; 2376 return 0; 2377 done: 2378 if (par_buf) 2379 xfs_trans_brelse(tp, par_buf); 2380 if (sib_buf) 2381 xfs_trans_brelse(tp, sib_buf); 2382 xfs_trans_brelse(tp, last_buf); 2383 return error; 2384 } 2385 2386 /* 2387 * Remove a btree block from a directory or attribute. 2388 */ 2389 int 2390 xfs_da_shrink_inode( 2391 struct xfs_da_args *args, 2392 xfs_dablk_t dead_blkno, 2393 struct xfs_buf *dead_buf) 2394 { 2395 struct xfs_inode *dp; 2396 int done, error, w, count; 2397 struct xfs_trans *tp; 2398 2399 trace_xfs_da_shrink_inode(args); 2400 2401 dp = args->dp; 2402 w = args->whichfork; 2403 tp = args->trans; 2404 count = args->geo->fsbcount; 2405 for (;;) { 2406 /* 2407 * Remove extents. If we get ENOSPC for a dir we have to move 2408 * the last block to the place we want to kill. 2409 */ 2410 error = xfs_bunmapi(tp, dp, dead_blkno, count, 2411 xfs_bmapi_aflag(w), 0, &done); 2412 if (error == -ENOSPC) { 2413 if (w != XFS_DATA_FORK) 2414 break; 2415 error = xfs_da3_swap_lastblock(args, &dead_blkno, 2416 &dead_buf); 2417 if (error) 2418 break; 2419 } else { 2420 break; 2421 } 2422 } 2423 xfs_trans_binval(tp, dead_buf); 2424 return error; 2425 } 2426 2427 /* 2428 * See if the mapping(s) for this btree block are valid, i.e. 2429 * don't contain holes, are logically contiguous, and cover the whole range. 2430 */ 2431 STATIC int 2432 xfs_da_map_covers_blocks( 2433 int nmap, 2434 xfs_bmbt_irec_t *mapp, 2435 xfs_dablk_t bno, 2436 int count) 2437 { 2438 int i; 2439 xfs_fileoff_t off; 2440 2441 for (i = 0, off = bno; i < nmap; i++) { 2442 if (mapp[i].br_startblock == HOLESTARTBLOCK || 2443 mapp[i].br_startblock == DELAYSTARTBLOCK) { 2444 return 0; 2445 } 2446 if (off != mapp[i].br_startoff) { 2447 return 0; 2448 } 2449 off += mapp[i].br_blockcount; 2450 } 2451 return off == bno + count; 2452 } 2453 2454 /* 2455 * Convert a struct xfs_bmbt_irec to a struct xfs_buf_map. 2456 * 2457 * For the single map case, it is assumed that the caller has provided a pointer 2458 * to a valid xfs_buf_map. For the multiple map case, this function will 2459 * allocate the xfs_buf_map to hold all the maps and replace the caller's single 2460 * map pointer with the allocated map. 2461 */ 2462 static int 2463 xfs_buf_map_from_irec( 2464 struct xfs_mount *mp, 2465 struct xfs_buf_map **mapp, 2466 int *nmaps, 2467 struct xfs_bmbt_irec *irecs, 2468 int nirecs) 2469 { 2470 struct xfs_buf_map *map; 2471 int i; 2472 2473 ASSERT(*nmaps == 1); 2474 ASSERT(nirecs >= 1); 2475 2476 if (nirecs > 1) { 2477 map = kmem_zalloc(nirecs * sizeof(struct xfs_buf_map), 2478 KM_SLEEP | KM_NOFS); 2479 if (!map) 2480 return -ENOMEM; 2481 *mapp = map; 2482 } 2483 2484 *nmaps = nirecs; 2485 map = *mapp; 2486 for (i = 0; i < *nmaps; i++) { 2487 ASSERT(irecs[i].br_startblock != DELAYSTARTBLOCK && 2488 irecs[i].br_startblock != HOLESTARTBLOCK); 2489 map[i].bm_bn = XFS_FSB_TO_DADDR(mp, irecs[i].br_startblock); 2490 map[i].bm_len = XFS_FSB_TO_BB(mp, irecs[i].br_blockcount); 2491 } 2492 return 0; 2493 } 2494 2495 /* 2496 * Map the block we are given ready for reading. There are three possible return 2497 * values: 2498 * -1 - will be returned if we land in a hole and mappedbno == -2 so the 2499 * caller knows not to execute a subsequent read. 2500 * 0 - if we mapped the block successfully 2501 * >0 - positive error number if there was an error. 2502 */ 2503 static int 2504 xfs_dabuf_map( 2505 struct xfs_inode *dp, 2506 xfs_dablk_t bno, 2507 xfs_daddr_t mappedbno, 2508 int whichfork, 2509 struct xfs_buf_map **map, 2510 int *nmaps) 2511 { 2512 struct xfs_mount *mp = dp->i_mount; 2513 int nfsb; 2514 int error = 0; 2515 struct xfs_bmbt_irec irec; 2516 struct xfs_bmbt_irec *irecs = &irec; 2517 int nirecs; 2518 2519 ASSERT(map && *map); 2520 ASSERT(*nmaps == 1); 2521 2522 if (whichfork == XFS_DATA_FORK) 2523 nfsb = mp->m_dir_geo->fsbcount; 2524 else 2525 nfsb = mp->m_attr_geo->fsbcount; 2526 2527 /* 2528 * Caller doesn't have a mapping. -2 means don't complain 2529 * if we land in a hole. 2530 */ 2531 if (mappedbno == -1 || mappedbno == -2) { 2532 /* 2533 * Optimize the one-block case. 2534 */ 2535 if (nfsb != 1) 2536 irecs = kmem_zalloc(sizeof(irec) * nfsb, 2537 KM_SLEEP | KM_NOFS); 2538 2539 nirecs = nfsb; 2540 error = xfs_bmapi_read(dp, (xfs_fileoff_t)bno, nfsb, irecs, 2541 &nirecs, xfs_bmapi_aflag(whichfork)); 2542 if (error) 2543 goto out; 2544 } else { 2545 irecs->br_startblock = XFS_DADDR_TO_FSB(mp, mappedbno); 2546 irecs->br_startoff = (xfs_fileoff_t)bno; 2547 irecs->br_blockcount = nfsb; 2548 irecs->br_state = 0; 2549 nirecs = 1; 2550 } 2551 2552 if (!xfs_da_map_covers_blocks(nirecs, irecs, bno, nfsb)) { 2553 error = mappedbno == -2 ? -1 : -EFSCORRUPTED; 2554 if (unlikely(error == -EFSCORRUPTED)) { 2555 if (xfs_error_level >= XFS_ERRLEVEL_LOW) { 2556 int i; 2557 xfs_alert(mp, "%s: bno %lld dir: inode %lld", 2558 __func__, (long long)bno, 2559 (long long)dp->i_ino); 2560 for (i = 0; i < *nmaps; i++) { 2561 xfs_alert(mp, 2562 "[%02d] br_startoff %lld br_startblock %lld br_blockcount %lld br_state %d", 2563 i, 2564 (long long)irecs[i].br_startoff, 2565 (long long)irecs[i].br_startblock, 2566 (long long)irecs[i].br_blockcount, 2567 irecs[i].br_state); 2568 } 2569 } 2570 XFS_ERROR_REPORT("xfs_da_do_buf(1)", 2571 XFS_ERRLEVEL_LOW, mp); 2572 } 2573 goto out; 2574 } 2575 error = xfs_buf_map_from_irec(mp, map, nmaps, irecs, nirecs); 2576 out: 2577 if (irecs != &irec) 2578 kmem_free(irecs); 2579 return error; 2580 } 2581 2582 /* 2583 * Get a buffer for the dir/attr block. 2584 */ 2585 int 2586 xfs_da_get_buf( 2587 struct xfs_trans *trans, 2588 struct xfs_inode *dp, 2589 xfs_dablk_t bno, 2590 xfs_daddr_t mappedbno, 2591 struct xfs_buf **bpp, 2592 int whichfork) 2593 { 2594 struct xfs_buf *bp; 2595 struct xfs_buf_map map; 2596 struct xfs_buf_map *mapp; 2597 int nmap; 2598 int error; 2599 2600 *bpp = NULL; 2601 mapp = ↦ 2602 nmap = 1; 2603 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork, 2604 &mapp, &nmap); 2605 if (error) { 2606 /* mapping a hole is not an error, but we don't continue */ 2607 if (error == -1) 2608 error = 0; 2609 goto out_free; 2610 } 2611 2612 bp = xfs_trans_get_buf_map(trans, dp->i_mount->m_ddev_targp, 2613 mapp, nmap, 0); 2614 error = bp ? bp->b_error : -EIO; 2615 if (error) { 2616 if (bp) 2617 xfs_trans_brelse(trans, bp); 2618 goto out_free; 2619 } 2620 2621 *bpp = bp; 2622 2623 out_free: 2624 if (mapp != &map) 2625 kmem_free(mapp); 2626 2627 return error; 2628 } 2629 2630 /* 2631 * Get a buffer for the dir/attr block, fill in the contents. 2632 */ 2633 int 2634 xfs_da_read_buf( 2635 struct xfs_trans *trans, 2636 struct xfs_inode *dp, 2637 xfs_dablk_t bno, 2638 xfs_daddr_t mappedbno, 2639 struct xfs_buf **bpp, 2640 int whichfork, 2641 const struct xfs_buf_ops *ops) 2642 { 2643 struct xfs_buf *bp; 2644 struct xfs_buf_map map; 2645 struct xfs_buf_map *mapp; 2646 int nmap; 2647 int error; 2648 2649 *bpp = NULL; 2650 mapp = ↦ 2651 nmap = 1; 2652 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork, 2653 &mapp, &nmap); 2654 if (error) { 2655 /* mapping a hole is not an error, but we don't continue */ 2656 if (error == -1) 2657 error = 0; 2658 goto out_free; 2659 } 2660 2661 error = xfs_trans_read_buf_map(dp->i_mount, trans, 2662 dp->i_mount->m_ddev_targp, 2663 mapp, nmap, 0, &bp, ops); 2664 if (error) 2665 goto out_free; 2666 2667 if (whichfork == XFS_ATTR_FORK) 2668 xfs_buf_set_ref(bp, XFS_ATTR_BTREE_REF); 2669 else 2670 xfs_buf_set_ref(bp, XFS_DIR_BTREE_REF); 2671 *bpp = bp; 2672 out_free: 2673 if (mapp != &map) 2674 kmem_free(mapp); 2675 2676 return error; 2677 } 2678 2679 /* 2680 * Readahead the dir/attr block. 2681 */ 2682 int 2683 xfs_da_reada_buf( 2684 struct xfs_inode *dp, 2685 xfs_dablk_t bno, 2686 xfs_daddr_t mappedbno, 2687 int whichfork, 2688 const struct xfs_buf_ops *ops) 2689 { 2690 struct xfs_buf_map map; 2691 struct xfs_buf_map *mapp; 2692 int nmap; 2693 int error; 2694 2695 mapp = ↦ 2696 nmap = 1; 2697 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork, 2698 &mapp, &nmap); 2699 if (error) { 2700 /* mapping a hole is not an error, but we don't continue */ 2701 if (error == -1) 2702 error = 0; 2703 goto out_free; 2704 } 2705 2706 mappedbno = mapp[0].bm_bn; 2707 xfs_buf_readahead_map(dp->i_mount->m_ddev_targp, mapp, nmap, ops); 2708 2709 out_free: 2710 if (mapp != &map) 2711 kmem_free(mapp); 2712 2713 return error; 2714 } 2715