1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * Copyright (c) 2013 Red Hat, Inc. 4 * All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it would be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include "xfs.h" 20 #include "xfs_fs.h" 21 #include "xfs_shared.h" 22 #include "xfs_format.h" 23 #include "xfs_log_format.h" 24 #include "xfs_trans_resv.h" 25 #include "xfs_bit.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_dir2.h" 30 #include "xfs_dir2_priv.h" 31 #include "xfs_inode.h" 32 #include "xfs_trans.h" 33 #include "xfs_inode_item.h" 34 #include "xfs_alloc.h" 35 #include "xfs_bmap.h" 36 #include "xfs_attr.h" 37 #include "xfs_attr_leaf.h" 38 #include "xfs_error.h" 39 #include "xfs_trace.h" 40 #include "xfs_cksum.h" 41 #include "xfs_buf_item.h" 42 #include "xfs_log.h" 43 44 /* 45 * xfs_da_btree.c 46 * 47 * Routines to implement directories as Btrees of hashed names. 48 */ 49 50 /*======================================================================== 51 * Function prototypes for the kernel. 52 *========================================================================*/ 53 54 /* 55 * Routines used for growing the Btree. 56 */ 57 STATIC int xfs_da3_root_split(xfs_da_state_t *state, 58 xfs_da_state_blk_t *existing_root, 59 xfs_da_state_blk_t *new_child); 60 STATIC int xfs_da3_node_split(xfs_da_state_t *state, 61 xfs_da_state_blk_t *existing_blk, 62 xfs_da_state_blk_t *split_blk, 63 xfs_da_state_blk_t *blk_to_add, 64 int treelevel, 65 int *result); 66 STATIC void xfs_da3_node_rebalance(xfs_da_state_t *state, 67 xfs_da_state_blk_t *node_blk_1, 68 xfs_da_state_blk_t *node_blk_2); 69 STATIC void xfs_da3_node_add(xfs_da_state_t *state, 70 xfs_da_state_blk_t *old_node_blk, 71 xfs_da_state_blk_t *new_node_blk); 72 73 /* 74 * Routines used for shrinking the Btree. 75 */ 76 STATIC int xfs_da3_root_join(xfs_da_state_t *state, 77 xfs_da_state_blk_t *root_blk); 78 STATIC int xfs_da3_node_toosmall(xfs_da_state_t *state, int *retval); 79 STATIC void xfs_da3_node_remove(xfs_da_state_t *state, 80 xfs_da_state_blk_t *drop_blk); 81 STATIC void xfs_da3_node_unbalance(xfs_da_state_t *state, 82 xfs_da_state_blk_t *src_node_blk, 83 xfs_da_state_blk_t *dst_node_blk); 84 85 /* 86 * Utility routines. 87 */ 88 STATIC int xfs_da3_blk_unlink(xfs_da_state_t *state, 89 xfs_da_state_blk_t *drop_blk, 90 xfs_da_state_blk_t *save_blk); 91 92 93 kmem_zone_t *xfs_da_state_zone; /* anchor for state struct zone */ 94 95 /* 96 * Allocate a dir-state structure. 97 * We don't put them on the stack since they're large. 98 */ 99 xfs_da_state_t * 100 xfs_da_state_alloc(void) 101 { 102 return kmem_zone_zalloc(xfs_da_state_zone, KM_NOFS); 103 } 104 105 /* 106 * Kill the altpath contents of a da-state structure. 107 */ 108 STATIC void 109 xfs_da_state_kill_altpath(xfs_da_state_t *state) 110 { 111 int i; 112 113 for (i = 0; i < state->altpath.active; i++) 114 state->altpath.blk[i].bp = NULL; 115 state->altpath.active = 0; 116 } 117 118 /* 119 * Free a da-state structure. 120 */ 121 void 122 xfs_da_state_free(xfs_da_state_t *state) 123 { 124 xfs_da_state_kill_altpath(state); 125 #ifdef DEBUG 126 memset((char *)state, 0, sizeof(*state)); 127 #endif /* DEBUG */ 128 kmem_zone_free(xfs_da_state_zone, state); 129 } 130 131 static bool 132 xfs_da3_node_verify( 133 struct xfs_buf *bp) 134 { 135 struct xfs_mount *mp = bp->b_target->bt_mount; 136 struct xfs_da_intnode *hdr = bp->b_addr; 137 struct xfs_da3_icnode_hdr ichdr; 138 const struct xfs_dir_ops *ops; 139 140 ops = xfs_dir_get_ops(mp, NULL); 141 142 ops->node_hdr_from_disk(&ichdr, hdr); 143 144 if (xfs_sb_version_hascrc(&mp->m_sb)) { 145 struct xfs_da3_node_hdr *hdr3 = bp->b_addr; 146 147 if (ichdr.magic != XFS_DA3_NODE_MAGIC) 148 return false; 149 150 if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_meta_uuid)) 151 return false; 152 if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn) 153 return false; 154 if (!xfs_log_check_lsn(mp, be64_to_cpu(hdr3->info.lsn))) 155 return false; 156 } else { 157 if (ichdr.magic != XFS_DA_NODE_MAGIC) 158 return false; 159 } 160 if (ichdr.level == 0) 161 return false; 162 if (ichdr.level > XFS_DA_NODE_MAXDEPTH) 163 return false; 164 if (ichdr.count == 0) 165 return false; 166 167 /* 168 * we don't know if the node is for and attribute or directory tree, 169 * so only fail if the count is outside both bounds 170 */ 171 if (ichdr.count > mp->m_dir_geo->node_ents && 172 ichdr.count > mp->m_attr_geo->node_ents) 173 return false; 174 175 /* XXX: hash order check? */ 176 177 return true; 178 } 179 180 static void 181 xfs_da3_node_write_verify( 182 struct xfs_buf *bp) 183 { 184 struct xfs_mount *mp = bp->b_target->bt_mount; 185 struct xfs_buf_log_item *bip = bp->b_fspriv; 186 struct xfs_da3_node_hdr *hdr3 = bp->b_addr; 187 188 if (!xfs_da3_node_verify(bp)) { 189 xfs_buf_ioerror(bp, -EFSCORRUPTED); 190 xfs_verifier_error(bp); 191 return; 192 } 193 194 if (!xfs_sb_version_hascrc(&mp->m_sb)) 195 return; 196 197 if (bip) 198 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); 199 200 xfs_buf_update_cksum(bp, XFS_DA3_NODE_CRC_OFF); 201 } 202 203 /* 204 * leaf/node format detection on trees is sketchy, so a node read can be done on 205 * leaf level blocks when detection identifies the tree as a node format tree 206 * incorrectly. In this case, we need to swap the verifier to match the correct 207 * format of the block being read. 208 */ 209 static void 210 xfs_da3_node_read_verify( 211 struct xfs_buf *bp) 212 { 213 struct xfs_da_blkinfo *info = bp->b_addr; 214 215 switch (be16_to_cpu(info->magic)) { 216 case XFS_DA3_NODE_MAGIC: 217 if (!xfs_buf_verify_cksum(bp, XFS_DA3_NODE_CRC_OFF)) { 218 xfs_buf_ioerror(bp, -EFSBADCRC); 219 break; 220 } 221 /* fall through */ 222 case XFS_DA_NODE_MAGIC: 223 if (!xfs_da3_node_verify(bp)) { 224 xfs_buf_ioerror(bp, -EFSCORRUPTED); 225 break; 226 } 227 return; 228 case XFS_ATTR_LEAF_MAGIC: 229 case XFS_ATTR3_LEAF_MAGIC: 230 bp->b_ops = &xfs_attr3_leaf_buf_ops; 231 bp->b_ops->verify_read(bp); 232 return; 233 case XFS_DIR2_LEAFN_MAGIC: 234 case XFS_DIR3_LEAFN_MAGIC: 235 bp->b_ops = &xfs_dir3_leafn_buf_ops; 236 bp->b_ops->verify_read(bp); 237 return; 238 default: 239 xfs_buf_ioerror(bp, -EFSCORRUPTED); 240 break; 241 } 242 243 /* corrupt block */ 244 xfs_verifier_error(bp); 245 } 246 247 const struct xfs_buf_ops xfs_da3_node_buf_ops = { 248 .name = "xfs_da3_node", 249 .verify_read = xfs_da3_node_read_verify, 250 .verify_write = xfs_da3_node_write_verify, 251 }; 252 253 int 254 xfs_da3_node_read( 255 struct xfs_trans *tp, 256 struct xfs_inode *dp, 257 xfs_dablk_t bno, 258 xfs_daddr_t mappedbno, 259 struct xfs_buf **bpp, 260 int which_fork) 261 { 262 int err; 263 264 err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp, 265 which_fork, &xfs_da3_node_buf_ops); 266 if (!err && tp && *bpp) { 267 struct xfs_da_blkinfo *info = (*bpp)->b_addr; 268 int type; 269 270 switch (be16_to_cpu(info->magic)) { 271 case XFS_DA_NODE_MAGIC: 272 case XFS_DA3_NODE_MAGIC: 273 type = XFS_BLFT_DA_NODE_BUF; 274 break; 275 case XFS_ATTR_LEAF_MAGIC: 276 case XFS_ATTR3_LEAF_MAGIC: 277 type = XFS_BLFT_ATTR_LEAF_BUF; 278 break; 279 case XFS_DIR2_LEAFN_MAGIC: 280 case XFS_DIR3_LEAFN_MAGIC: 281 type = XFS_BLFT_DIR_LEAFN_BUF; 282 break; 283 default: 284 type = 0; 285 ASSERT(0); 286 break; 287 } 288 xfs_trans_buf_set_type(tp, *bpp, type); 289 } 290 return err; 291 } 292 293 /*======================================================================== 294 * Routines used for growing the Btree. 295 *========================================================================*/ 296 297 /* 298 * Create the initial contents of an intermediate node. 299 */ 300 int 301 xfs_da3_node_create( 302 struct xfs_da_args *args, 303 xfs_dablk_t blkno, 304 int level, 305 struct xfs_buf **bpp, 306 int whichfork) 307 { 308 struct xfs_da_intnode *node; 309 struct xfs_trans *tp = args->trans; 310 struct xfs_mount *mp = tp->t_mountp; 311 struct xfs_da3_icnode_hdr ichdr = {0}; 312 struct xfs_buf *bp; 313 int error; 314 struct xfs_inode *dp = args->dp; 315 316 trace_xfs_da_node_create(args); 317 ASSERT(level <= XFS_DA_NODE_MAXDEPTH); 318 319 error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, whichfork); 320 if (error) 321 return error; 322 bp->b_ops = &xfs_da3_node_buf_ops; 323 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF); 324 node = bp->b_addr; 325 326 if (xfs_sb_version_hascrc(&mp->m_sb)) { 327 struct xfs_da3_node_hdr *hdr3 = bp->b_addr; 328 329 memset(hdr3, 0, sizeof(struct xfs_da3_node_hdr)); 330 ichdr.magic = XFS_DA3_NODE_MAGIC; 331 hdr3->info.blkno = cpu_to_be64(bp->b_bn); 332 hdr3->info.owner = cpu_to_be64(args->dp->i_ino); 333 uuid_copy(&hdr3->info.uuid, &mp->m_sb.sb_meta_uuid); 334 } else { 335 ichdr.magic = XFS_DA_NODE_MAGIC; 336 } 337 ichdr.level = level; 338 339 dp->d_ops->node_hdr_to_disk(node, &ichdr); 340 xfs_trans_log_buf(tp, bp, 341 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size)); 342 343 *bpp = bp; 344 return 0; 345 } 346 347 /* 348 * Split a leaf node, rebalance, then possibly split 349 * intermediate nodes, rebalance, etc. 350 */ 351 int /* error */ 352 xfs_da3_split( 353 struct xfs_da_state *state) 354 { 355 struct xfs_da_state_blk *oldblk; 356 struct xfs_da_state_blk *newblk; 357 struct xfs_da_state_blk *addblk; 358 struct xfs_da_intnode *node; 359 int max; 360 int action = 0; 361 int error; 362 int i; 363 364 trace_xfs_da_split(state->args); 365 366 /* 367 * Walk back up the tree splitting/inserting/adjusting as necessary. 368 * If we need to insert and there isn't room, split the node, then 369 * decide which fragment to insert the new block from below into. 370 * Note that we may split the root this way, but we need more fixup. 371 */ 372 max = state->path.active - 1; 373 ASSERT((max >= 0) && (max < XFS_DA_NODE_MAXDEPTH)); 374 ASSERT(state->path.blk[max].magic == XFS_ATTR_LEAF_MAGIC || 375 state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC); 376 377 addblk = &state->path.blk[max]; /* initial dummy value */ 378 for (i = max; (i >= 0) && addblk; state->path.active--, i--) { 379 oldblk = &state->path.blk[i]; 380 newblk = &state->altpath.blk[i]; 381 382 /* 383 * If a leaf node then 384 * Allocate a new leaf node, then rebalance across them. 385 * else if an intermediate node then 386 * We split on the last layer, must we split the node? 387 */ 388 switch (oldblk->magic) { 389 case XFS_ATTR_LEAF_MAGIC: 390 error = xfs_attr3_leaf_split(state, oldblk, newblk); 391 if ((error != 0) && (error != -ENOSPC)) { 392 return error; /* GROT: attr is inconsistent */ 393 } 394 if (!error) { 395 addblk = newblk; 396 break; 397 } 398 /* 399 * Entry wouldn't fit, split the leaf again. The new 400 * extrablk will be consumed by xfs_da3_node_split if 401 * the node is split. 402 */ 403 state->extravalid = 1; 404 if (state->inleaf) { 405 state->extraafter = 0; /* before newblk */ 406 trace_xfs_attr_leaf_split_before(state->args); 407 error = xfs_attr3_leaf_split(state, oldblk, 408 &state->extrablk); 409 } else { 410 state->extraafter = 1; /* after newblk */ 411 trace_xfs_attr_leaf_split_after(state->args); 412 error = xfs_attr3_leaf_split(state, newblk, 413 &state->extrablk); 414 } 415 if (error) 416 return error; /* GROT: attr inconsistent */ 417 addblk = newblk; 418 break; 419 case XFS_DIR2_LEAFN_MAGIC: 420 error = xfs_dir2_leafn_split(state, oldblk, newblk); 421 if (error) 422 return error; 423 addblk = newblk; 424 break; 425 case XFS_DA_NODE_MAGIC: 426 error = xfs_da3_node_split(state, oldblk, newblk, addblk, 427 max - i, &action); 428 addblk->bp = NULL; 429 if (error) 430 return error; /* GROT: dir is inconsistent */ 431 /* 432 * Record the newly split block for the next time thru? 433 */ 434 if (action) 435 addblk = newblk; 436 else 437 addblk = NULL; 438 break; 439 } 440 441 /* 442 * Update the btree to show the new hashval for this child. 443 */ 444 xfs_da3_fixhashpath(state, &state->path); 445 } 446 if (!addblk) 447 return 0; 448 449 /* 450 * xfs_da3_node_split() should have consumed any extra blocks we added 451 * during a double leaf split in the attr fork. This is guaranteed as 452 * we can't be here if the attr fork only has a single leaf block. 453 */ 454 ASSERT(state->extravalid == 0 || 455 state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC); 456 457 /* 458 * Split the root node. 459 */ 460 ASSERT(state->path.active == 0); 461 oldblk = &state->path.blk[0]; 462 error = xfs_da3_root_split(state, oldblk, addblk); 463 if (error) { 464 addblk->bp = NULL; 465 return error; /* GROT: dir is inconsistent */ 466 } 467 468 /* 469 * Update pointers to the node which used to be block 0 and just got 470 * bumped because of the addition of a new root node. Note that the 471 * original block 0 could be at any position in the list of blocks in 472 * the tree. 473 * 474 * Note: the magic numbers and sibling pointers are in the same physical 475 * place for both v2 and v3 headers (by design). Hence it doesn't matter 476 * which version of the xfs_da_intnode structure we use here as the 477 * result will be the same using either structure. 478 */ 479 node = oldblk->bp->b_addr; 480 if (node->hdr.info.forw) { 481 ASSERT(be32_to_cpu(node->hdr.info.forw) == addblk->blkno); 482 node = addblk->bp->b_addr; 483 node->hdr.info.back = cpu_to_be32(oldblk->blkno); 484 xfs_trans_log_buf(state->args->trans, addblk->bp, 485 XFS_DA_LOGRANGE(node, &node->hdr.info, 486 sizeof(node->hdr.info))); 487 } 488 node = oldblk->bp->b_addr; 489 if (node->hdr.info.back) { 490 ASSERT(be32_to_cpu(node->hdr.info.back) == addblk->blkno); 491 node = addblk->bp->b_addr; 492 node->hdr.info.forw = cpu_to_be32(oldblk->blkno); 493 xfs_trans_log_buf(state->args->trans, addblk->bp, 494 XFS_DA_LOGRANGE(node, &node->hdr.info, 495 sizeof(node->hdr.info))); 496 } 497 addblk->bp = NULL; 498 return 0; 499 } 500 501 /* 502 * Split the root. We have to create a new root and point to the two 503 * parts (the split old root) that we just created. Copy block zero to 504 * the EOF, extending the inode in process. 505 */ 506 STATIC int /* error */ 507 xfs_da3_root_split( 508 struct xfs_da_state *state, 509 struct xfs_da_state_blk *blk1, 510 struct xfs_da_state_blk *blk2) 511 { 512 struct xfs_da_intnode *node; 513 struct xfs_da_intnode *oldroot; 514 struct xfs_da_node_entry *btree; 515 struct xfs_da3_icnode_hdr nodehdr; 516 struct xfs_da_args *args; 517 struct xfs_buf *bp; 518 struct xfs_inode *dp; 519 struct xfs_trans *tp; 520 struct xfs_dir2_leaf *leaf; 521 xfs_dablk_t blkno; 522 int level; 523 int error; 524 int size; 525 526 trace_xfs_da_root_split(state->args); 527 528 /* 529 * Copy the existing (incorrect) block from the root node position 530 * to a free space somewhere. 531 */ 532 args = state->args; 533 error = xfs_da_grow_inode(args, &blkno); 534 if (error) 535 return error; 536 537 dp = args->dp; 538 tp = args->trans; 539 error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, args->whichfork); 540 if (error) 541 return error; 542 node = bp->b_addr; 543 oldroot = blk1->bp->b_addr; 544 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) || 545 oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)) { 546 struct xfs_da3_icnode_hdr icnodehdr; 547 548 dp->d_ops->node_hdr_from_disk(&icnodehdr, oldroot); 549 btree = dp->d_ops->node_tree_p(oldroot); 550 size = (int)((char *)&btree[icnodehdr.count] - (char *)oldroot); 551 level = icnodehdr.level; 552 553 /* 554 * we are about to copy oldroot to bp, so set up the type 555 * of bp while we know exactly what it will be. 556 */ 557 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF); 558 } else { 559 struct xfs_dir3_icleaf_hdr leafhdr; 560 struct xfs_dir2_leaf_entry *ents; 561 562 leaf = (xfs_dir2_leaf_t *)oldroot; 563 dp->d_ops->leaf_hdr_from_disk(&leafhdr, leaf); 564 ents = dp->d_ops->leaf_ents_p(leaf); 565 566 ASSERT(leafhdr.magic == XFS_DIR2_LEAFN_MAGIC || 567 leafhdr.magic == XFS_DIR3_LEAFN_MAGIC); 568 size = (int)((char *)&ents[leafhdr.count] - (char *)leaf); 569 level = 0; 570 571 /* 572 * we are about to copy oldroot to bp, so set up the type 573 * of bp while we know exactly what it will be. 574 */ 575 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DIR_LEAFN_BUF); 576 } 577 578 /* 579 * we can copy most of the information in the node from one block to 580 * another, but for CRC enabled headers we have to make sure that the 581 * block specific identifiers are kept intact. We update the buffer 582 * directly for this. 583 */ 584 memcpy(node, oldroot, size); 585 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) || 586 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) { 587 struct xfs_da3_intnode *node3 = (struct xfs_da3_intnode *)node; 588 589 node3->hdr.info.blkno = cpu_to_be64(bp->b_bn); 590 } 591 xfs_trans_log_buf(tp, bp, 0, size - 1); 592 593 bp->b_ops = blk1->bp->b_ops; 594 xfs_trans_buf_copy_type(bp, blk1->bp); 595 blk1->bp = bp; 596 blk1->blkno = blkno; 597 598 /* 599 * Set up the new root node. 600 */ 601 error = xfs_da3_node_create(args, 602 (args->whichfork == XFS_DATA_FORK) ? args->geo->leafblk : 0, 603 level + 1, &bp, args->whichfork); 604 if (error) 605 return error; 606 607 node = bp->b_addr; 608 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 609 btree = dp->d_ops->node_tree_p(node); 610 btree[0].hashval = cpu_to_be32(blk1->hashval); 611 btree[0].before = cpu_to_be32(blk1->blkno); 612 btree[1].hashval = cpu_to_be32(blk2->hashval); 613 btree[1].before = cpu_to_be32(blk2->blkno); 614 nodehdr.count = 2; 615 dp->d_ops->node_hdr_to_disk(node, &nodehdr); 616 617 #ifdef DEBUG 618 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || 619 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) { 620 ASSERT(blk1->blkno >= args->geo->leafblk && 621 blk1->blkno < args->geo->freeblk); 622 ASSERT(blk2->blkno >= args->geo->leafblk && 623 blk2->blkno < args->geo->freeblk); 624 } 625 #endif 626 627 /* Header is already logged by xfs_da_node_create */ 628 xfs_trans_log_buf(tp, bp, 629 XFS_DA_LOGRANGE(node, btree, sizeof(xfs_da_node_entry_t) * 2)); 630 631 return 0; 632 } 633 634 /* 635 * Split the node, rebalance, then add the new entry. 636 */ 637 STATIC int /* error */ 638 xfs_da3_node_split( 639 struct xfs_da_state *state, 640 struct xfs_da_state_blk *oldblk, 641 struct xfs_da_state_blk *newblk, 642 struct xfs_da_state_blk *addblk, 643 int treelevel, 644 int *result) 645 { 646 struct xfs_da_intnode *node; 647 struct xfs_da3_icnode_hdr nodehdr; 648 xfs_dablk_t blkno; 649 int newcount; 650 int error; 651 int useextra; 652 struct xfs_inode *dp = state->args->dp; 653 654 trace_xfs_da_node_split(state->args); 655 656 node = oldblk->bp->b_addr; 657 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 658 659 /* 660 * With V2 dirs the extra block is data or freespace. 661 */ 662 useextra = state->extravalid && state->args->whichfork == XFS_ATTR_FORK; 663 newcount = 1 + useextra; 664 /* 665 * Do we have to split the node? 666 */ 667 if (nodehdr.count + newcount > state->args->geo->node_ents) { 668 /* 669 * Allocate a new node, add to the doubly linked chain of 670 * nodes, then move some of our excess entries into it. 671 */ 672 error = xfs_da_grow_inode(state->args, &blkno); 673 if (error) 674 return error; /* GROT: dir is inconsistent */ 675 676 error = xfs_da3_node_create(state->args, blkno, treelevel, 677 &newblk->bp, state->args->whichfork); 678 if (error) 679 return error; /* GROT: dir is inconsistent */ 680 newblk->blkno = blkno; 681 newblk->magic = XFS_DA_NODE_MAGIC; 682 xfs_da3_node_rebalance(state, oldblk, newblk); 683 error = xfs_da3_blk_link(state, oldblk, newblk); 684 if (error) 685 return error; 686 *result = 1; 687 } else { 688 *result = 0; 689 } 690 691 /* 692 * Insert the new entry(s) into the correct block 693 * (updating last hashval in the process). 694 * 695 * xfs_da3_node_add() inserts BEFORE the given index, 696 * and as a result of using node_lookup_int() we always 697 * point to a valid entry (not after one), but a split 698 * operation always results in a new block whose hashvals 699 * FOLLOW the current block. 700 * 701 * If we had double-split op below us, then add the extra block too. 702 */ 703 node = oldblk->bp->b_addr; 704 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 705 if (oldblk->index <= nodehdr.count) { 706 oldblk->index++; 707 xfs_da3_node_add(state, oldblk, addblk); 708 if (useextra) { 709 if (state->extraafter) 710 oldblk->index++; 711 xfs_da3_node_add(state, oldblk, &state->extrablk); 712 state->extravalid = 0; 713 } 714 } else { 715 newblk->index++; 716 xfs_da3_node_add(state, newblk, addblk); 717 if (useextra) { 718 if (state->extraafter) 719 newblk->index++; 720 xfs_da3_node_add(state, newblk, &state->extrablk); 721 state->extravalid = 0; 722 } 723 } 724 725 return 0; 726 } 727 728 /* 729 * Balance the btree elements between two intermediate nodes, 730 * usually one full and one empty. 731 * 732 * NOTE: if blk2 is empty, then it will get the upper half of blk1. 733 */ 734 STATIC void 735 xfs_da3_node_rebalance( 736 struct xfs_da_state *state, 737 struct xfs_da_state_blk *blk1, 738 struct xfs_da_state_blk *blk2) 739 { 740 struct xfs_da_intnode *node1; 741 struct xfs_da_intnode *node2; 742 struct xfs_da_intnode *tmpnode; 743 struct xfs_da_node_entry *btree1; 744 struct xfs_da_node_entry *btree2; 745 struct xfs_da_node_entry *btree_s; 746 struct xfs_da_node_entry *btree_d; 747 struct xfs_da3_icnode_hdr nodehdr1; 748 struct xfs_da3_icnode_hdr nodehdr2; 749 struct xfs_trans *tp; 750 int count; 751 int tmp; 752 int swap = 0; 753 struct xfs_inode *dp = state->args->dp; 754 755 trace_xfs_da_node_rebalance(state->args); 756 757 node1 = blk1->bp->b_addr; 758 node2 = blk2->bp->b_addr; 759 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1); 760 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2); 761 btree1 = dp->d_ops->node_tree_p(node1); 762 btree2 = dp->d_ops->node_tree_p(node2); 763 764 /* 765 * Figure out how many entries need to move, and in which direction. 766 * Swap the nodes around if that makes it simpler. 767 */ 768 if (nodehdr1.count > 0 && nodehdr2.count > 0 && 769 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) || 770 (be32_to_cpu(btree2[nodehdr2.count - 1].hashval) < 771 be32_to_cpu(btree1[nodehdr1.count - 1].hashval)))) { 772 tmpnode = node1; 773 node1 = node2; 774 node2 = tmpnode; 775 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1); 776 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2); 777 btree1 = dp->d_ops->node_tree_p(node1); 778 btree2 = dp->d_ops->node_tree_p(node2); 779 swap = 1; 780 } 781 782 count = (nodehdr1.count - nodehdr2.count) / 2; 783 if (count == 0) 784 return; 785 tp = state->args->trans; 786 /* 787 * Two cases: high-to-low and low-to-high. 788 */ 789 if (count > 0) { 790 /* 791 * Move elements in node2 up to make a hole. 792 */ 793 tmp = nodehdr2.count; 794 if (tmp > 0) { 795 tmp *= (uint)sizeof(xfs_da_node_entry_t); 796 btree_s = &btree2[0]; 797 btree_d = &btree2[count]; 798 memmove(btree_d, btree_s, tmp); 799 } 800 801 /* 802 * Move the req'd B-tree elements from high in node1 to 803 * low in node2. 804 */ 805 nodehdr2.count += count; 806 tmp = count * (uint)sizeof(xfs_da_node_entry_t); 807 btree_s = &btree1[nodehdr1.count - count]; 808 btree_d = &btree2[0]; 809 memcpy(btree_d, btree_s, tmp); 810 nodehdr1.count -= count; 811 } else { 812 /* 813 * Move the req'd B-tree elements from low in node2 to 814 * high in node1. 815 */ 816 count = -count; 817 tmp = count * (uint)sizeof(xfs_da_node_entry_t); 818 btree_s = &btree2[0]; 819 btree_d = &btree1[nodehdr1.count]; 820 memcpy(btree_d, btree_s, tmp); 821 nodehdr1.count += count; 822 823 xfs_trans_log_buf(tp, blk1->bp, 824 XFS_DA_LOGRANGE(node1, btree_d, tmp)); 825 826 /* 827 * Move elements in node2 down to fill the hole. 828 */ 829 tmp = nodehdr2.count - count; 830 tmp *= (uint)sizeof(xfs_da_node_entry_t); 831 btree_s = &btree2[count]; 832 btree_d = &btree2[0]; 833 memmove(btree_d, btree_s, tmp); 834 nodehdr2.count -= count; 835 } 836 837 /* 838 * Log header of node 1 and all current bits of node 2. 839 */ 840 dp->d_ops->node_hdr_to_disk(node1, &nodehdr1); 841 xfs_trans_log_buf(tp, blk1->bp, 842 XFS_DA_LOGRANGE(node1, &node1->hdr, dp->d_ops->node_hdr_size)); 843 844 dp->d_ops->node_hdr_to_disk(node2, &nodehdr2); 845 xfs_trans_log_buf(tp, blk2->bp, 846 XFS_DA_LOGRANGE(node2, &node2->hdr, 847 dp->d_ops->node_hdr_size + 848 (sizeof(btree2[0]) * nodehdr2.count))); 849 850 /* 851 * Record the last hashval from each block for upward propagation. 852 * (note: don't use the swapped node pointers) 853 */ 854 if (swap) { 855 node1 = blk1->bp->b_addr; 856 node2 = blk2->bp->b_addr; 857 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1); 858 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2); 859 btree1 = dp->d_ops->node_tree_p(node1); 860 btree2 = dp->d_ops->node_tree_p(node2); 861 } 862 blk1->hashval = be32_to_cpu(btree1[nodehdr1.count - 1].hashval); 863 blk2->hashval = be32_to_cpu(btree2[nodehdr2.count - 1].hashval); 864 865 /* 866 * Adjust the expected index for insertion. 867 */ 868 if (blk1->index >= nodehdr1.count) { 869 blk2->index = blk1->index - nodehdr1.count; 870 blk1->index = nodehdr1.count + 1; /* make it invalid */ 871 } 872 } 873 874 /* 875 * Add a new entry to an intermediate node. 876 */ 877 STATIC void 878 xfs_da3_node_add( 879 struct xfs_da_state *state, 880 struct xfs_da_state_blk *oldblk, 881 struct xfs_da_state_blk *newblk) 882 { 883 struct xfs_da_intnode *node; 884 struct xfs_da3_icnode_hdr nodehdr; 885 struct xfs_da_node_entry *btree; 886 int tmp; 887 struct xfs_inode *dp = state->args->dp; 888 889 trace_xfs_da_node_add(state->args); 890 891 node = oldblk->bp->b_addr; 892 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 893 btree = dp->d_ops->node_tree_p(node); 894 895 ASSERT(oldblk->index >= 0 && oldblk->index <= nodehdr.count); 896 ASSERT(newblk->blkno != 0); 897 if (state->args->whichfork == XFS_DATA_FORK) 898 ASSERT(newblk->blkno >= state->args->geo->leafblk && 899 newblk->blkno < state->args->geo->freeblk); 900 901 /* 902 * We may need to make some room before we insert the new node. 903 */ 904 tmp = 0; 905 if (oldblk->index < nodehdr.count) { 906 tmp = (nodehdr.count - oldblk->index) * (uint)sizeof(*btree); 907 memmove(&btree[oldblk->index + 1], &btree[oldblk->index], tmp); 908 } 909 btree[oldblk->index].hashval = cpu_to_be32(newblk->hashval); 910 btree[oldblk->index].before = cpu_to_be32(newblk->blkno); 911 xfs_trans_log_buf(state->args->trans, oldblk->bp, 912 XFS_DA_LOGRANGE(node, &btree[oldblk->index], 913 tmp + sizeof(*btree))); 914 915 nodehdr.count += 1; 916 dp->d_ops->node_hdr_to_disk(node, &nodehdr); 917 xfs_trans_log_buf(state->args->trans, oldblk->bp, 918 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size)); 919 920 /* 921 * Copy the last hash value from the oldblk to propagate upwards. 922 */ 923 oldblk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval); 924 } 925 926 /*======================================================================== 927 * Routines used for shrinking the Btree. 928 *========================================================================*/ 929 930 /* 931 * Deallocate an empty leaf node, remove it from its parent, 932 * possibly deallocating that block, etc... 933 */ 934 int 935 xfs_da3_join( 936 struct xfs_da_state *state) 937 { 938 struct xfs_da_state_blk *drop_blk; 939 struct xfs_da_state_blk *save_blk; 940 int action = 0; 941 int error; 942 943 trace_xfs_da_join(state->args); 944 945 drop_blk = &state->path.blk[ state->path.active-1 ]; 946 save_blk = &state->altpath.blk[ state->path.active-1 ]; 947 ASSERT(state->path.blk[0].magic == XFS_DA_NODE_MAGIC); 948 ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC || 949 drop_blk->magic == XFS_DIR2_LEAFN_MAGIC); 950 951 /* 952 * Walk back up the tree joining/deallocating as necessary. 953 * When we stop dropping blocks, break out. 954 */ 955 for ( ; state->path.active >= 2; drop_blk--, save_blk--, 956 state->path.active--) { 957 /* 958 * See if we can combine the block with a neighbor. 959 * (action == 0) => no options, just leave 960 * (action == 1) => coalesce, then unlink 961 * (action == 2) => block empty, unlink it 962 */ 963 switch (drop_blk->magic) { 964 case XFS_ATTR_LEAF_MAGIC: 965 error = xfs_attr3_leaf_toosmall(state, &action); 966 if (error) 967 return error; 968 if (action == 0) 969 return 0; 970 xfs_attr3_leaf_unbalance(state, drop_blk, save_blk); 971 break; 972 case XFS_DIR2_LEAFN_MAGIC: 973 error = xfs_dir2_leafn_toosmall(state, &action); 974 if (error) 975 return error; 976 if (action == 0) 977 return 0; 978 xfs_dir2_leafn_unbalance(state, drop_blk, save_blk); 979 break; 980 case XFS_DA_NODE_MAGIC: 981 /* 982 * Remove the offending node, fixup hashvals, 983 * check for a toosmall neighbor. 984 */ 985 xfs_da3_node_remove(state, drop_blk); 986 xfs_da3_fixhashpath(state, &state->path); 987 error = xfs_da3_node_toosmall(state, &action); 988 if (error) 989 return error; 990 if (action == 0) 991 return 0; 992 xfs_da3_node_unbalance(state, drop_blk, save_blk); 993 break; 994 } 995 xfs_da3_fixhashpath(state, &state->altpath); 996 error = xfs_da3_blk_unlink(state, drop_blk, save_blk); 997 xfs_da_state_kill_altpath(state); 998 if (error) 999 return error; 1000 error = xfs_da_shrink_inode(state->args, drop_blk->blkno, 1001 drop_blk->bp); 1002 drop_blk->bp = NULL; 1003 if (error) 1004 return error; 1005 } 1006 /* 1007 * We joined all the way to the top. If it turns out that 1008 * we only have one entry in the root, make the child block 1009 * the new root. 1010 */ 1011 xfs_da3_node_remove(state, drop_blk); 1012 xfs_da3_fixhashpath(state, &state->path); 1013 error = xfs_da3_root_join(state, &state->path.blk[0]); 1014 return error; 1015 } 1016 1017 #ifdef DEBUG 1018 static void 1019 xfs_da_blkinfo_onlychild_validate(struct xfs_da_blkinfo *blkinfo, __u16 level) 1020 { 1021 __be16 magic = blkinfo->magic; 1022 1023 if (level == 1) { 1024 ASSERT(magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || 1025 magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) || 1026 magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 1027 magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 1028 } else { 1029 ASSERT(magic == cpu_to_be16(XFS_DA_NODE_MAGIC) || 1030 magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)); 1031 } 1032 ASSERT(!blkinfo->forw); 1033 ASSERT(!blkinfo->back); 1034 } 1035 #else /* !DEBUG */ 1036 #define xfs_da_blkinfo_onlychild_validate(blkinfo, level) 1037 #endif /* !DEBUG */ 1038 1039 /* 1040 * We have only one entry in the root. Copy the only remaining child of 1041 * the old root to block 0 as the new root node. 1042 */ 1043 STATIC int 1044 xfs_da3_root_join( 1045 struct xfs_da_state *state, 1046 struct xfs_da_state_blk *root_blk) 1047 { 1048 struct xfs_da_intnode *oldroot; 1049 struct xfs_da_args *args; 1050 xfs_dablk_t child; 1051 struct xfs_buf *bp; 1052 struct xfs_da3_icnode_hdr oldroothdr; 1053 struct xfs_da_node_entry *btree; 1054 int error; 1055 struct xfs_inode *dp = state->args->dp; 1056 1057 trace_xfs_da_root_join(state->args); 1058 1059 ASSERT(root_blk->magic == XFS_DA_NODE_MAGIC); 1060 1061 args = state->args; 1062 oldroot = root_blk->bp->b_addr; 1063 dp->d_ops->node_hdr_from_disk(&oldroothdr, oldroot); 1064 ASSERT(oldroothdr.forw == 0); 1065 ASSERT(oldroothdr.back == 0); 1066 1067 /* 1068 * If the root has more than one child, then don't do anything. 1069 */ 1070 if (oldroothdr.count > 1) 1071 return 0; 1072 1073 /* 1074 * Read in the (only) child block, then copy those bytes into 1075 * the root block's buffer and free the original child block. 1076 */ 1077 btree = dp->d_ops->node_tree_p(oldroot); 1078 child = be32_to_cpu(btree[0].before); 1079 ASSERT(child != 0); 1080 error = xfs_da3_node_read(args->trans, dp, child, -1, &bp, 1081 args->whichfork); 1082 if (error) 1083 return error; 1084 xfs_da_blkinfo_onlychild_validate(bp->b_addr, oldroothdr.level); 1085 1086 /* 1087 * This could be copying a leaf back into the root block in the case of 1088 * there only being a single leaf block left in the tree. Hence we have 1089 * to update the b_ops pointer as well to match the buffer type change 1090 * that could occur. For dir3 blocks we also need to update the block 1091 * number in the buffer header. 1092 */ 1093 memcpy(root_blk->bp->b_addr, bp->b_addr, args->geo->blksize); 1094 root_blk->bp->b_ops = bp->b_ops; 1095 xfs_trans_buf_copy_type(root_blk->bp, bp); 1096 if (oldroothdr.magic == XFS_DA3_NODE_MAGIC) { 1097 struct xfs_da3_blkinfo *da3 = root_blk->bp->b_addr; 1098 da3->blkno = cpu_to_be64(root_blk->bp->b_bn); 1099 } 1100 xfs_trans_log_buf(args->trans, root_blk->bp, 0, 1101 args->geo->blksize - 1); 1102 error = xfs_da_shrink_inode(args, child, bp); 1103 return error; 1104 } 1105 1106 /* 1107 * Check a node block and its neighbors to see if the block should be 1108 * collapsed into one or the other neighbor. Always keep the block 1109 * with the smaller block number. 1110 * If the current block is over 50% full, don't try to join it, return 0. 1111 * If the block is empty, fill in the state structure and return 2. 1112 * If it can be collapsed, fill in the state structure and return 1. 1113 * If nothing can be done, return 0. 1114 */ 1115 STATIC int 1116 xfs_da3_node_toosmall( 1117 struct xfs_da_state *state, 1118 int *action) 1119 { 1120 struct xfs_da_intnode *node; 1121 struct xfs_da_state_blk *blk; 1122 struct xfs_da_blkinfo *info; 1123 xfs_dablk_t blkno; 1124 struct xfs_buf *bp; 1125 struct xfs_da3_icnode_hdr nodehdr; 1126 int count; 1127 int forward; 1128 int error; 1129 int retval; 1130 int i; 1131 struct xfs_inode *dp = state->args->dp; 1132 1133 trace_xfs_da_node_toosmall(state->args); 1134 1135 /* 1136 * Check for the degenerate case of the block being over 50% full. 1137 * If so, it's not worth even looking to see if we might be able 1138 * to coalesce with a sibling. 1139 */ 1140 blk = &state->path.blk[ state->path.active-1 ]; 1141 info = blk->bp->b_addr; 1142 node = (xfs_da_intnode_t *)info; 1143 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1144 if (nodehdr.count > (state->args->geo->node_ents >> 1)) { 1145 *action = 0; /* blk over 50%, don't try to join */ 1146 return 0; /* blk over 50%, don't try to join */ 1147 } 1148 1149 /* 1150 * Check for the degenerate case of the block being empty. 1151 * If the block is empty, we'll simply delete it, no need to 1152 * coalesce it with a sibling block. We choose (arbitrarily) 1153 * to merge with the forward block unless it is NULL. 1154 */ 1155 if (nodehdr.count == 0) { 1156 /* 1157 * Make altpath point to the block we want to keep and 1158 * path point to the block we want to drop (this one). 1159 */ 1160 forward = (info->forw != 0); 1161 memcpy(&state->altpath, &state->path, sizeof(state->path)); 1162 error = xfs_da3_path_shift(state, &state->altpath, forward, 1163 0, &retval); 1164 if (error) 1165 return error; 1166 if (retval) { 1167 *action = 0; 1168 } else { 1169 *action = 2; 1170 } 1171 return 0; 1172 } 1173 1174 /* 1175 * Examine each sibling block to see if we can coalesce with 1176 * at least 25% free space to spare. We need to figure out 1177 * whether to merge with the forward or the backward block. 1178 * We prefer coalescing with the lower numbered sibling so as 1179 * to shrink a directory over time. 1180 */ 1181 count = state->args->geo->node_ents; 1182 count -= state->args->geo->node_ents >> 2; 1183 count -= nodehdr.count; 1184 1185 /* start with smaller blk num */ 1186 forward = nodehdr.forw < nodehdr.back; 1187 for (i = 0; i < 2; forward = !forward, i++) { 1188 struct xfs_da3_icnode_hdr thdr; 1189 if (forward) 1190 blkno = nodehdr.forw; 1191 else 1192 blkno = nodehdr.back; 1193 if (blkno == 0) 1194 continue; 1195 error = xfs_da3_node_read(state->args->trans, dp, 1196 blkno, -1, &bp, state->args->whichfork); 1197 if (error) 1198 return error; 1199 1200 node = bp->b_addr; 1201 dp->d_ops->node_hdr_from_disk(&thdr, node); 1202 xfs_trans_brelse(state->args->trans, bp); 1203 1204 if (count - thdr.count >= 0) 1205 break; /* fits with at least 25% to spare */ 1206 } 1207 if (i >= 2) { 1208 *action = 0; 1209 return 0; 1210 } 1211 1212 /* 1213 * Make altpath point to the block we want to keep (the lower 1214 * numbered block) and path point to the block we want to drop. 1215 */ 1216 memcpy(&state->altpath, &state->path, sizeof(state->path)); 1217 if (blkno < blk->blkno) { 1218 error = xfs_da3_path_shift(state, &state->altpath, forward, 1219 0, &retval); 1220 } else { 1221 error = xfs_da3_path_shift(state, &state->path, forward, 1222 0, &retval); 1223 } 1224 if (error) 1225 return error; 1226 if (retval) { 1227 *action = 0; 1228 return 0; 1229 } 1230 *action = 1; 1231 return 0; 1232 } 1233 1234 /* 1235 * Pick up the last hashvalue from an intermediate node. 1236 */ 1237 STATIC uint 1238 xfs_da3_node_lasthash( 1239 struct xfs_inode *dp, 1240 struct xfs_buf *bp, 1241 int *count) 1242 { 1243 struct xfs_da_intnode *node; 1244 struct xfs_da_node_entry *btree; 1245 struct xfs_da3_icnode_hdr nodehdr; 1246 1247 node = bp->b_addr; 1248 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1249 if (count) 1250 *count = nodehdr.count; 1251 if (!nodehdr.count) 1252 return 0; 1253 btree = dp->d_ops->node_tree_p(node); 1254 return be32_to_cpu(btree[nodehdr.count - 1].hashval); 1255 } 1256 1257 /* 1258 * Walk back up the tree adjusting hash values as necessary, 1259 * when we stop making changes, return. 1260 */ 1261 void 1262 xfs_da3_fixhashpath( 1263 struct xfs_da_state *state, 1264 struct xfs_da_state_path *path) 1265 { 1266 struct xfs_da_state_blk *blk; 1267 struct xfs_da_intnode *node; 1268 struct xfs_da_node_entry *btree; 1269 xfs_dahash_t lasthash=0; 1270 int level; 1271 int count; 1272 struct xfs_inode *dp = state->args->dp; 1273 1274 trace_xfs_da_fixhashpath(state->args); 1275 1276 level = path->active-1; 1277 blk = &path->blk[ level ]; 1278 switch (blk->magic) { 1279 case XFS_ATTR_LEAF_MAGIC: 1280 lasthash = xfs_attr_leaf_lasthash(blk->bp, &count); 1281 if (count == 0) 1282 return; 1283 break; 1284 case XFS_DIR2_LEAFN_MAGIC: 1285 lasthash = xfs_dir2_leaf_lasthash(dp, blk->bp, &count); 1286 if (count == 0) 1287 return; 1288 break; 1289 case XFS_DA_NODE_MAGIC: 1290 lasthash = xfs_da3_node_lasthash(dp, blk->bp, &count); 1291 if (count == 0) 1292 return; 1293 break; 1294 } 1295 for (blk--, level--; level >= 0; blk--, level--) { 1296 struct xfs_da3_icnode_hdr nodehdr; 1297 1298 node = blk->bp->b_addr; 1299 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1300 btree = dp->d_ops->node_tree_p(node); 1301 if (be32_to_cpu(btree[blk->index].hashval) == lasthash) 1302 break; 1303 blk->hashval = lasthash; 1304 btree[blk->index].hashval = cpu_to_be32(lasthash); 1305 xfs_trans_log_buf(state->args->trans, blk->bp, 1306 XFS_DA_LOGRANGE(node, &btree[blk->index], 1307 sizeof(*btree))); 1308 1309 lasthash = be32_to_cpu(btree[nodehdr.count - 1].hashval); 1310 } 1311 } 1312 1313 /* 1314 * Remove an entry from an intermediate node. 1315 */ 1316 STATIC void 1317 xfs_da3_node_remove( 1318 struct xfs_da_state *state, 1319 struct xfs_da_state_blk *drop_blk) 1320 { 1321 struct xfs_da_intnode *node; 1322 struct xfs_da3_icnode_hdr nodehdr; 1323 struct xfs_da_node_entry *btree; 1324 int index; 1325 int tmp; 1326 struct xfs_inode *dp = state->args->dp; 1327 1328 trace_xfs_da_node_remove(state->args); 1329 1330 node = drop_blk->bp->b_addr; 1331 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1332 ASSERT(drop_blk->index < nodehdr.count); 1333 ASSERT(drop_blk->index >= 0); 1334 1335 /* 1336 * Copy over the offending entry, or just zero it out. 1337 */ 1338 index = drop_blk->index; 1339 btree = dp->d_ops->node_tree_p(node); 1340 if (index < nodehdr.count - 1) { 1341 tmp = nodehdr.count - index - 1; 1342 tmp *= (uint)sizeof(xfs_da_node_entry_t); 1343 memmove(&btree[index], &btree[index + 1], tmp); 1344 xfs_trans_log_buf(state->args->trans, drop_blk->bp, 1345 XFS_DA_LOGRANGE(node, &btree[index], tmp)); 1346 index = nodehdr.count - 1; 1347 } 1348 memset(&btree[index], 0, sizeof(xfs_da_node_entry_t)); 1349 xfs_trans_log_buf(state->args->trans, drop_blk->bp, 1350 XFS_DA_LOGRANGE(node, &btree[index], sizeof(btree[index]))); 1351 nodehdr.count -= 1; 1352 dp->d_ops->node_hdr_to_disk(node, &nodehdr); 1353 xfs_trans_log_buf(state->args->trans, drop_blk->bp, 1354 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size)); 1355 1356 /* 1357 * Copy the last hash value from the block to propagate upwards. 1358 */ 1359 drop_blk->hashval = be32_to_cpu(btree[index - 1].hashval); 1360 } 1361 1362 /* 1363 * Unbalance the elements between two intermediate nodes, 1364 * move all Btree elements from one node into another. 1365 */ 1366 STATIC void 1367 xfs_da3_node_unbalance( 1368 struct xfs_da_state *state, 1369 struct xfs_da_state_blk *drop_blk, 1370 struct xfs_da_state_blk *save_blk) 1371 { 1372 struct xfs_da_intnode *drop_node; 1373 struct xfs_da_intnode *save_node; 1374 struct xfs_da_node_entry *drop_btree; 1375 struct xfs_da_node_entry *save_btree; 1376 struct xfs_da3_icnode_hdr drop_hdr; 1377 struct xfs_da3_icnode_hdr save_hdr; 1378 struct xfs_trans *tp; 1379 int sindex; 1380 int tmp; 1381 struct xfs_inode *dp = state->args->dp; 1382 1383 trace_xfs_da_node_unbalance(state->args); 1384 1385 drop_node = drop_blk->bp->b_addr; 1386 save_node = save_blk->bp->b_addr; 1387 dp->d_ops->node_hdr_from_disk(&drop_hdr, drop_node); 1388 dp->d_ops->node_hdr_from_disk(&save_hdr, save_node); 1389 drop_btree = dp->d_ops->node_tree_p(drop_node); 1390 save_btree = dp->d_ops->node_tree_p(save_node); 1391 tp = state->args->trans; 1392 1393 /* 1394 * If the dying block has lower hashvals, then move all the 1395 * elements in the remaining block up to make a hole. 1396 */ 1397 if ((be32_to_cpu(drop_btree[0].hashval) < 1398 be32_to_cpu(save_btree[0].hashval)) || 1399 (be32_to_cpu(drop_btree[drop_hdr.count - 1].hashval) < 1400 be32_to_cpu(save_btree[save_hdr.count - 1].hashval))) { 1401 /* XXX: check this - is memmove dst correct? */ 1402 tmp = save_hdr.count * sizeof(xfs_da_node_entry_t); 1403 memmove(&save_btree[drop_hdr.count], &save_btree[0], tmp); 1404 1405 sindex = 0; 1406 xfs_trans_log_buf(tp, save_blk->bp, 1407 XFS_DA_LOGRANGE(save_node, &save_btree[0], 1408 (save_hdr.count + drop_hdr.count) * 1409 sizeof(xfs_da_node_entry_t))); 1410 } else { 1411 sindex = save_hdr.count; 1412 xfs_trans_log_buf(tp, save_blk->bp, 1413 XFS_DA_LOGRANGE(save_node, &save_btree[sindex], 1414 drop_hdr.count * sizeof(xfs_da_node_entry_t))); 1415 } 1416 1417 /* 1418 * Move all the B-tree elements from drop_blk to save_blk. 1419 */ 1420 tmp = drop_hdr.count * (uint)sizeof(xfs_da_node_entry_t); 1421 memcpy(&save_btree[sindex], &drop_btree[0], tmp); 1422 save_hdr.count += drop_hdr.count; 1423 1424 dp->d_ops->node_hdr_to_disk(save_node, &save_hdr); 1425 xfs_trans_log_buf(tp, save_blk->bp, 1426 XFS_DA_LOGRANGE(save_node, &save_node->hdr, 1427 dp->d_ops->node_hdr_size)); 1428 1429 /* 1430 * Save the last hashval in the remaining block for upward propagation. 1431 */ 1432 save_blk->hashval = be32_to_cpu(save_btree[save_hdr.count - 1].hashval); 1433 } 1434 1435 /*======================================================================== 1436 * Routines used for finding things in the Btree. 1437 *========================================================================*/ 1438 1439 /* 1440 * Walk down the Btree looking for a particular filename, filling 1441 * in the state structure as we go. 1442 * 1443 * We will set the state structure to point to each of the elements 1444 * in each of the nodes where either the hashval is or should be. 1445 * 1446 * We support duplicate hashval's so for each entry in the current 1447 * node that could contain the desired hashval, descend. This is a 1448 * pruned depth-first tree search. 1449 */ 1450 int /* error */ 1451 xfs_da3_node_lookup_int( 1452 struct xfs_da_state *state, 1453 int *result) 1454 { 1455 struct xfs_da_state_blk *blk; 1456 struct xfs_da_blkinfo *curr; 1457 struct xfs_da_intnode *node; 1458 struct xfs_da_node_entry *btree; 1459 struct xfs_da3_icnode_hdr nodehdr; 1460 struct xfs_da_args *args; 1461 xfs_dablk_t blkno; 1462 xfs_dahash_t hashval; 1463 xfs_dahash_t btreehashval; 1464 int probe; 1465 int span; 1466 int max; 1467 int error; 1468 int retval; 1469 unsigned int expected_level = 0; 1470 struct xfs_inode *dp = state->args->dp; 1471 1472 args = state->args; 1473 1474 /* 1475 * Descend thru the B-tree searching each level for the right 1476 * node to use, until the right hashval is found. 1477 */ 1478 blkno = args->geo->leafblk; 1479 for (blk = &state->path.blk[0], state->path.active = 1; 1480 state->path.active <= XFS_DA_NODE_MAXDEPTH; 1481 blk++, state->path.active++) { 1482 /* 1483 * Read the next node down in the tree. 1484 */ 1485 blk->blkno = blkno; 1486 error = xfs_da3_node_read(args->trans, args->dp, blkno, 1487 -1, &blk->bp, args->whichfork); 1488 if (error) { 1489 blk->blkno = 0; 1490 state->path.active--; 1491 return error; 1492 } 1493 curr = blk->bp->b_addr; 1494 blk->magic = be16_to_cpu(curr->magic); 1495 1496 if (blk->magic == XFS_ATTR_LEAF_MAGIC || 1497 blk->magic == XFS_ATTR3_LEAF_MAGIC) { 1498 blk->magic = XFS_ATTR_LEAF_MAGIC; 1499 blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL); 1500 break; 1501 } 1502 1503 if (blk->magic == XFS_DIR2_LEAFN_MAGIC || 1504 blk->magic == XFS_DIR3_LEAFN_MAGIC) { 1505 blk->magic = XFS_DIR2_LEAFN_MAGIC; 1506 blk->hashval = xfs_dir2_leaf_lasthash(args->dp, 1507 blk->bp, NULL); 1508 break; 1509 } 1510 1511 blk->magic = XFS_DA_NODE_MAGIC; 1512 1513 1514 /* 1515 * Search an intermediate node for a match. 1516 */ 1517 node = blk->bp->b_addr; 1518 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1519 btree = dp->d_ops->node_tree_p(node); 1520 1521 /* Tree taller than we can handle; bail out! */ 1522 if (nodehdr.level >= XFS_DA_NODE_MAXDEPTH) 1523 return -EFSCORRUPTED; 1524 1525 /* Check the level from the root. */ 1526 if (blkno == args->geo->leafblk) 1527 expected_level = nodehdr.level - 1; 1528 else if (expected_level != nodehdr.level) 1529 return -EFSCORRUPTED; 1530 else 1531 expected_level--; 1532 1533 max = nodehdr.count; 1534 blk->hashval = be32_to_cpu(btree[max - 1].hashval); 1535 1536 /* 1537 * Binary search. (note: small blocks will skip loop) 1538 */ 1539 probe = span = max / 2; 1540 hashval = args->hashval; 1541 while (span > 4) { 1542 span /= 2; 1543 btreehashval = be32_to_cpu(btree[probe].hashval); 1544 if (btreehashval < hashval) 1545 probe += span; 1546 else if (btreehashval > hashval) 1547 probe -= span; 1548 else 1549 break; 1550 } 1551 ASSERT((probe >= 0) && (probe < max)); 1552 ASSERT((span <= 4) || 1553 (be32_to_cpu(btree[probe].hashval) == hashval)); 1554 1555 /* 1556 * Since we may have duplicate hashval's, find the first 1557 * matching hashval in the node. 1558 */ 1559 while (probe > 0 && 1560 be32_to_cpu(btree[probe].hashval) >= hashval) { 1561 probe--; 1562 } 1563 while (probe < max && 1564 be32_to_cpu(btree[probe].hashval) < hashval) { 1565 probe++; 1566 } 1567 1568 /* 1569 * Pick the right block to descend on. 1570 */ 1571 if (probe == max) { 1572 blk->index = max - 1; 1573 blkno = be32_to_cpu(btree[max - 1].before); 1574 } else { 1575 blk->index = probe; 1576 blkno = be32_to_cpu(btree[probe].before); 1577 } 1578 1579 /* We can't point back to the root. */ 1580 if (blkno == args->geo->leafblk) 1581 return -EFSCORRUPTED; 1582 } 1583 1584 if (expected_level != 0) 1585 return -EFSCORRUPTED; 1586 1587 /* 1588 * A leaf block that ends in the hashval that we are interested in 1589 * (final hashval == search hashval) means that the next block may 1590 * contain more entries with the same hashval, shift upward to the 1591 * next leaf and keep searching. 1592 */ 1593 for (;;) { 1594 if (blk->magic == XFS_DIR2_LEAFN_MAGIC) { 1595 retval = xfs_dir2_leafn_lookup_int(blk->bp, args, 1596 &blk->index, state); 1597 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) { 1598 retval = xfs_attr3_leaf_lookup_int(blk->bp, args); 1599 blk->index = args->index; 1600 args->blkno = blk->blkno; 1601 } else { 1602 ASSERT(0); 1603 return -EFSCORRUPTED; 1604 } 1605 if (((retval == -ENOENT) || (retval == -ENOATTR)) && 1606 (blk->hashval == args->hashval)) { 1607 error = xfs_da3_path_shift(state, &state->path, 1, 1, 1608 &retval); 1609 if (error) 1610 return error; 1611 if (retval == 0) { 1612 continue; 1613 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) { 1614 /* path_shift() gives ENOENT */ 1615 retval = -ENOATTR; 1616 } 1617 } 1618 break; 1619 } 1620 *result = retval; 1621 return 0; 1622 } 1623 1624 /*======================================================================== 1625 * Utility routines. 1626 *========================================================================*/ 1627 1628 /* 1629 * Compare two intermediate nodes for "order". 1630 */ 1631 STATIC int 1632 xfs_da3_node_order( 1633 struct xfs_inode *dp, 1634 struct xfs_buf *node1_bp, 1635 struct xfs_buf *node2_bp) 1636 { 1637 struct xfs_da_intnode *node1; 1638 struct xfs_da_intnode *node2; 1639 struct xfs_da_node_entry *btree1; 1640 struct xfs_da_node_entry *btree2; 1641 struct xfs_da3_icnode_hdr node1hdr; 1642 struct xfs_da3_icnode_hdr node2hdr; 1643 1644 node1 = node1_bp->b_addr; 1645 node2 = node2_bp->b_addr; 1646 dp->d_ops->node_hdr_from_disk(&node1hdr, node1); 1647 dp->d_ops->node_hdr_from_disk(&node2hdr, node2); 1648 btree1 = dp->d_ops->node_tree_p(node1); 1649 btree2 = dp->d_ops->node_tree_p(node2); 1650 1651 if (node1hdr.count > 0 && node2hdr.count > 0 && 1652 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) || 1653 (be32_to_cpu(btree2[node2hdr.count - 1].hashval) < 1654 be32_to_cpu(btree1[node1hdr.count - 1].hashval)))) { 1655 return 1; 1656 } 1657 return 0; 1658 } 1659 1660 /* 1661 * Link a new block into a doubly linked list of blocks (of whatever type). 1662 */ 1663 int /* error */ 1664 xfs_da3_blk_link( 1665 struct xfs_da_state *state, 1666 struct xfs_da_state_blk *old_blk, 1667 struct xfs_da_state_blk *new_blk) 1668 { 1669 struct xfs_da_blkinfo *old_info; 1670 struct xfs_da_blkinfo *new_info; 1671 struct xfs_da_blkinfo *tmp_info; 1672 struct xfs_da_args *args; 1673 struct xfs_buf *bp; 1674 int before = 0; 1675 int error; 1676 struct xfs_inode *dp = state->args->dp; 1677 1678 /* 1679 * Set up environment. 1680 */ 1681 args = state->args; 1682 ASSERT(args != NULL); 1683 old_info = old_blk->bp->b_addr; 1684 new_info = new_blk->bp->b_addr; 1685 ASSERT(old_blk->magic == XFS_DA_NODE_MAGIC || 1686 old_blk->magic == XFS_DIR2_LEAFN_MAGIC || 1687 old_blk->magic == XFS_ATTR_LEAF_MAGIC); 1688 1689 switch (old_blk->magic) { 1690 case XFS_ATTR_LEAF_MAGIC: 1691 before = xfs_attr_leaf_order(old_blk->bp, new_blk->bp); 1692 break; 1693 case XFS_DIR2_LEAFN_MAGIC: 1694 before = xfs_dir2_leafn_order(dp, old_blk->bp, new_blk->bp); 1695 break; 1696 case XFS_DA_NODE_MAGIC: 1697 before = xfs_da3_node_order(dp, old_blk->bp, new_blk->bp); 1698 break; 1699 } 1700 1701 /* 1702 * Link blocks in appropriate order. 1703 */ 1704 if (before) { 1705 /* 1706 * Link new block in before existing block. 1707 */ 1708 trace_xfs_da_link_before(args); 1709 new_info->forw = cpu_to_be32(old_blk->blkno); 1710 new_info->back = old_info->back; 1711 if (old_info->back) { 1712 error = xfs_da3_node_read(args->trans, dp, 1713 be32_to_cpu(old_info->back), 1714 -1, &bp, args->whichfork); 1715 if (error) 1716 return error; 1717 ASSERT(bp != NULL); 1718 tmp_info = bp->b_addr; 1719 ASSERT(tmp_info->magic == old_info->magic); 1720 ASSERT(be32_to_cpu(tmp_info->forw) == old_blk->blkno); 1721 tmp_info->forw = cpu_to_be32(new_blk->blkno); 1722 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1); 1723 } 1724 old_info->back = cpu_to_be32(new_blk->blkno); 1725 } else { 1726 /* 1727 * Link new block in after existing block. 1728 */ 1729 trace_xfs_da_link_after(args); 1730 new_info->forw = old_info->forw; 1731 new_info->back = cpu_to_be32(old_blk->blkno); 1732 if (old_info->forw) { 1733 error = xfs_da3_node_read(args->trans, dp, 1734 be32_to_cpu(old_info->forw), 1735 -1, &bp, args->whichfork); 1736 if (error) 1737 return error; 1738 ASSERT(bp != NULL); 1739 tmp_info = bp->b_addr; 1740 ASSERT(tmp_info->magic == old_info->magic); 1741 ASSERT(be32_to_cpu(tmp_info->back) == old_blk->blkno); 1742 tmp_info->back = cpu_to_be32(new_blk->blkno); 1743 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1); 1744 } 1745 old_info->forw = cpu_to_be32(new_blk->blkno); 1746 } 1747 1748 xfs_trans_log_buf(args->trans, old_blk->bp, 0, sizeof(*tmp_info) - 1); 1749 xfs_trans_log_buf(args->trans, new_blk->bp, 0, sizeof(*tmp_info) - 1); 1750 return 0; 1751 } 1752 1753 /* 1754 * Unlink a block from a doubly linked list of blocks. 1755 */ 1756 STATIC int /* error */ 1757 xfs_da3_blk_unlink( 1758 struct xfs_da_state *state, 1759 struct xfs_da_state_blk *drop_blk, 1760 struct xfs_da_state_blk *save_blk) 1761 { 1762 struct xfs_da_blkinfo *drop_info; 1763 struct xfs_da_blkinfo *save_info; 1764 struct xfs_da_blkinfo *tmp_info; 1765 struct xfs_da_args *args; 1766 struct xfs_buf *bp; 1767 int error; 1768 1769 /* 1770 * Set up environment. 1771 */ 1772 args = state->args; 1773 ASSERT(args != NULL); 1774 save_info = save_blk->bp->b_addr; 1775 drop_info = drop_blk->bp->b_addr; 1776 ASSERT(save_blk->magic == XFS_DA_NODE_MAGIC || 1777 save_blk->magic == XFS_DIR2_LEAFN_MAGIC || 1778 save_blk->magic == XFS_ATTR_LEAF_MAGIC); 1779 ASSERT(save_blk->magic == drop_blk->magic); 1780 ASSERT((be32_to_cpu(save_info->forw) == drop_blk->blkno) || 1781 (be32_to_cpu(save_info->back) == drop_blk->blkno)); 1782 ASSERT((be32_to_cpu(drop_info->forw) == save_blk->blkno) || 1783 (be32_to_cpu(drop_info->back) == save_blk->blkno)); 1784 1785 /* 1786 * Unlink the leaf block from the doubly linked chain of leaves. 1787 */ 1788 if (be32_to_cpu(save_info->back) == drop_blk->blkno) { 1789 trace_xfs_da_unlink_back(args); 1790 save_info->back = drop_info->back; 1791 if (drop_info->back) { 1792 error = xfs_da3_node_read(args->trans, args->dp, 1793 be32_to_cpu(drop_info->back), 1794 -1, &bp, args->whichfork); 1795 if (error) 1796 return error; 1797 ASSERT(bp != NULL); 1798 tmp_info = bp->b_addr; 1799 ASSERT(tmp_info->magic == save_info->magic); 1800 ASSERT(be32_to_cpu(tmp_info->forw) == drop_blk->blkno); 1801 tmp_info->forw = cpu_to_be32(save_blk->blkno); 1802 xfs_trans_log_buf(args->trans, bp, 0, 1803 sizeof(*tmp_info) - 1); 1804 } 1805 } else { 1806 trace_xfs_da_unlink_forward(args); 1807 save_info->forw = drop_info->forw; 1808 if (drop_info->forw) { 1809 error = xfs_da3_node_read(args->trans, args->dp, 1810 be32_to_cpu(drop_info->forw), 1811 -1, &bp, args->whichfork); 1812 if (error) 1813 return error; 1814 ASSERT(bp != NULL); 1815 tmp_info = bp->b_addr; 1816 ASSERT(tmp_info->magic == save_info->magic); 1817 ASSERT(be32_to_cpu(tmp_info->back) == drop_blk->blkno); 1818 tmp_info->back = cpu_to_be32(save_blk->blkno); 1819 xfs_trans_log_buf(args->trans, bp, 0, 1820 sizeof(*tmp_info) - 1); 1821 } 1822 } 1823 1824 xfs_trans_log_buf(args->trans, save_blk->bp, 0, sizeof(*save_info) - 1); 1825 return 0; 1826 } 1827 1828 /* 1829 * Move a path "forward" or "!forward" one block at the current level. 1830 * 1831 * This routine will adjust a "path" to point to the next block 1832 * "forward" (higher hashvalues) or "!forward" (lower hashvals) in the 1833 * Btree, including updating pointers to the intermediate nodes between 1834 * the new bottom and the root. 1835 */ 1836 int /* error */ 1837 xfs_da3_path_shift( 1838 struct xfs_da_state *state, 1839 struct xfs_da_state_path *path, 1840 int forward, 1841 int release, 1842 int *result) 1843 { 1844 struct xfs_da_state_blk *blk; 1845 struct xfs_da_blkinfo *info; 1846 struct xfs_da_intnode *node; 1847 struct xfs_da_args *args; 1848 struct xfs_da_node_entry *btree; 1849 struct xfs_da3_icnode_hdr nodehdr; 1850 struct xfs_buf *bp; 1851 xfs_dablk_t blkno = 0; 1852 int level; 1853 int error; 1854 struct xfs_inode *dp = state->args->dp; 1855 1856 trace_xfs_da_path_shift(state->args); 1857 1858 /* 1859 * Roll up the Btree looking for the first block where our 1860 * current index is not at the edge of the block. Note that 1861 * we skip the bottom layer because we want the sibling block. 1862 */ 1863 args = state->args; 1864 ASSERT(args != NULL); 1865 ASSERT(path != NULL); 1866 ASSERT((path->active > 0) && (path->active < XFS_DA_NODE_MAXDEPTH)); 1867 level = (path->active-1) - 1; /* skip bottom layer in path */ 1868 for (blk = &path->blk[level]; level >= 0; blk--, level--) { 1869 node = blk->bp->b_addr; 1870 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1871 btree = dp->d_ops->node_tree_p(node); 1872 1873 if (forward && (blk->index < nodehdr.count - 1)) { 1874 blk->index++; 1875 blkno = be32_to_cpu(btree[blk->index].before); 1876 break; 1877 } else if (!forward && (blk->index > 0)) { 1878 blk->index--; 1879 blkno = be32_to_cpu(btree[blk->index].before); 1880 break; 1881 } 1882 } 1883 if (level < 0) { 1884 *result = -ENOENT; /* we're out of our tree */ 1885 ASSERT(args->op_flags & XFS_DA_OP_OKNOENT); 1886 return 0; 1887 } 1888 1889 /* 1890 * Roll down the edge of the subtree until we reach the 1891 * same depth we were at originally. 1892 */ 1893 for (blk++, level++; level < path->active; blk++, level++) { 1894 /* 1895 * Read the next child block into a local buffer. 1896 */ 1897 error = xfs_da3_node_read(args->trans, dp, blkno, -1, &bp, 1898 args->whichfork); 1899 if (error) 1900 return error; 1901 1902 /* 1903 * Release the old block (if it's dirty, the trans doesn't 1904 * actually let go) and swap the local buffer into the path 1905 * structure. This ensures failure of the above read doesn't set 1906 * a NULL buffer in an active slot in the path. 1907 */ 1908 if (release) 1909 xfs_trans_brelse(args->trans, blk->bp); 1910 blk->blkno = blkno; 1911 blk->bp = bp; 1912 1913 info = blk->bp->b_addr; 1914 ASSERT(info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC) || 1915 info->magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) || 1916 info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || 1917 info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) || 1918 info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || 1919 info->magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); 1920 1921 1922 /* 1923 * Note: we flatten the magic number to a single type so we 1924 * don't have to compare against crc/non-crc types elsewhere. 1925 */ 1926 switch (be16_to_cpu(info->magic)) { 1927 case XFS_DA_NODE_MAGIC: 1928 case XFS_DA3_NODE_MAGIC: 1929 blk->magic = XFS_DA_NODE_MAGIC; 1930 node = (xfs_da_intnode_t *)info; 1931 dp->d_ops->node_hdr_from_disk(&nodehdr, node); 1932 btree = dp->d_ops->node_tree_p(node); 1933 blk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval); 1934 if (forward) 1935 blk->index = 0; 1936 else 1937 blk->index = nodehdr.count - 1; 1938 blkno = be32_to_cpu(btree[blk->index].before); 1939 break; 1940 case XFS_ATTR_LEAF_MAGIC: 1941 case XFS_ATTR3_LEAF_MAGIC: 1942 blk->magic = XFS_ATTR_LEAF_MAGIC; 1943 ASSERT(level == path->active-1); 1944 blk->index = 0; 1945 blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL); 1946 break; 1947 case XFS_DIR2_LEAFN_MAGIC: 1948 case XFS_DIR3_LEAFN_MAGIC: 1949 blk->magic = XFS_DIR2_LEAFN_MAGIC; 1950 ASSERT(level == path->active-1); 1951 blk->index = 0; 1952 blk->hashval = xfs_dir2_leaf_lasthash(args->dp, 1953 blk->bp, NULL); 1954 break; 1955 default: 1956 ASSERT(0); 1957 break; 1958 } 1959 } 1960 *result = 0; 1961 return 0; 1962 } 1963 1964 1965 /*======================================================================== 1966 * Utility routines. 1967 *========================================================================*/ 1968 1969 /* 1970 * Implement a simple hash on a character string. 1971 * Rotate the hash value by 7 bits, then XOR each character in. 1972 * This is implemented with some source-level loop unrolling. 1973 */ 1974 xfs_dahash_t 1975 xfs_da_hashname(const uint8_t *name, int namelen) 1976 { 1977 xfs_dahash_t hash; 1978 1979 /* 1980 * Do four characters at a time as long as we can. 1981 */ 1982 for (hash = 0; namelen >= 4; namelen -= 4, name += 4) 1983 hash = (name[0] << 21) ^ (name[1] << 14) ^ (name[2] << 7) ^ 1984 (name[3] << 0) ^ rol32(hash, 7 * 4); 1985 1986 /* 1987 * Now do the rest of the characters. 1988 */ 1989 switch (namelen) { 1990 case 3: 1991 return (name[0] << 14) ^ (name[1] << 7) ^ (name[2] << 0) ^ 1992 rol32(hash, 7 * 3); 1993 case 2: 1994 return (name[0] << 7) ^ (name[1] << 0) ^ rol32(hash, 7 * 2); 1995 case 1: 1996 return (name[0] << 0) ^ rol32(hash, 7 * 1); 1997 default: /* case 0: */ 1998 return hash; 1999 } 2000 } 2001 2002 enum xfs_dacmp 2003 xfs_da_compname( 2004 struct xfs_da_args *args, 2005 const unsigned char *name, 2006 int len) 2007 { 2008 return (args->namelen == len && memcmp(args->name, name, len) == 0) ? 2009 XFS_CMP_EXACT : XFS_CMP_DIFFERENT; 2010 } 2011 2012 static xfs_dahash_t 2013 xfs_default_hashname( 2014 struct xfs_name *name) 2015 { 2016 return xfs_da_hashname(name->name, name->len); 2017 } 2018 2019 const struct xfs_nameops xfs_default_nameops = { 2020 .hashname = xfs_default_hashname, 2021 .compname = xfs_da_compname 2022 }; 2023 2024 int 2025 xfs_da_grow_inode_int( 2026 struct xfs_da_args *args, 2027 xfs_fileoff_t *bno, 2028 int count) 2029 { 2030 struct xfs_trans *tp = args->trans; 2031 struct xfs_inode *dp = args->dp; 2032 int w = args->whichfork; 2033 xfs_rfsblock_t nblks = dp->i_d.di_nblocks; 2034 struct xfs_bmbt_irec map, *mapp; 2035 int nmap, error, got, i, mapi; 2036 2037 /* 2038 * Find a spot in the file space to put the new block. 2039 */ 2040 error = xfs_bmap_first_unused(tp, dp, count, bno, w); 2041 if (error) 2042 return error; 2043 2044 /* 2045 * Try mapping it in one filesystem block. 2046 */ 2047 nmap = 1; 2048 ASSERT(args->firstblock != NULL); 2049 error = xfs_bmapi_write(tp, dp, *bno, count, 2050 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA|XFS_BMAPI_CONTIG, 2051 args->firstblock, args->total, &map, &nmap, 2052 args->dfops); 2053 if (error) 2054 return error; 2055 2056 ASSERT(nmap <= 1); 2057 if (nmap == 1) { 2058 mapp = ↦ 2059 mapi = 1; 2060 } else if (nmap == 0 && count > 1) { 2061 xfs_fileoff_t b; 2062 int c; 2063 2064 /* 2065 * If we didn't get it and the block might work if fragmented, 2066 * try without the CONTIG flag. Loop until we get it all. 2067 */ 2068 mapp = kmem_alloc(sizeof(*mapp) * count, KM_SLEEP); 2069 for (b = *bno, mapi = 0; b < *bno + count; ) { 2070 nmap = MIN(XFS_BMAP_MAX_NMAP, count); 2071 c = (int)(*bno + count - b); 2072 error = xfs_bmapi_write(tp, dp, b, c, 2073 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA, 2074 args->firstblock, args->total, 2075 &mapp[mapi], &nmap, args->dfops); 2076 if (error) 2077 goto out_free_map; 2078 if (nmap < 1) 2079 break; 2080 mapi += nmap; 2081 b = mapp[mapi - 1].br_startoff + 2082 mapp[mapi - 1].br_blockcount; 2083 } 2084 } else { 2085 mapi = 0; 2086 mapp = NULL; 2087 } 2088 2089 /* 2090 * Count the blocks we got, make sure it matches the total. 2091 */ 2092 for (i = 0, got = 0; i < mapi; i++) 2093 got += mapp[i].br_blockcount; 2094 if (got != count || mapp[0].br_startoff != *bno || 2095 mapp[mapi - 1].br_startoff + mapp[mapi - 1].br_blockcount != 2096 *bno + count) { 2097 error = -ENOSPC; 2098 goto out_free_map; 2099 } 2100 2101 /* account for newly allocated blocks in reserved blocks total */ 2102 args->total -= dp->i_d.di_nblocks - nblks; 2103 2104 out_free_map: 2105 if (mapp != &map) 2106 kmem_free(mapp); 2107 return error; 2108 } 2109 2110 /* 2111 * Add a block to the btree ahead of the file. 2112 * Return the new block number to the caller. 2113 */ 2114 int 2115 xfs_da_grow_inode( 2116 struct xfs_da_args *args, 2117 xfs_dablk_t *new_blkno) 2118 { 2119 xfs_fileoff_t bno; 2120 int error; 2121 2122 trace_xfs_da_grow_inode(args); 2123 2124 bno = args->geo->leafblk; 2125 error = xfs_da_grow_inode_int(args, &bno, args->geo->fsbcount); 2126 if (!error) 2127 *new_blkno = (xfs_dablk_t)bno; 2128 return error; 2129 } 2130 2131 /* 2132 * Ick. We need to always be able to remove a btree block, even 2133 * if there's no space reservation because the filesystem is full. 2134 * This is called if xfs_bunmapi on a btree block fails due to ENOSPC. 2135 * It swaps the target block with the last block in the file. The 2136 * last block in the file can always be removed since it can't cause 2137 * a bmap btree split to do that. 2138 */ 2139 STATIC int 2140 xfs_da3_swap_lastblock( 2141 struct xfs_da_args *args, 2142 xfs_dablk_t *dead_blknop, 2143 struct xfs_buf **dead_bufp) 2144 { 2145 struct xfs_da_blkinfo *dead_info; 2146 struct xfs_da_blkinfo *sib_info; 2147 struct xfs_da_intnode *par_node; 2148 struct xfs_da_intnode *dead_node; 2149 struct xfs_dir2_leaf *dead_leaf2; 2150 struct xfs_da_node_entry *btree; 2151 struct xfs_da3_icnode_hdr par_hdr; 2152 struct xfs_inode *dp; 2153 struct xfs_trans *tp; 2154 struct xfs_mount *mp; 2155 struct xfs_buf *dead_buf; 2156 struct xfs_buf *last_buf; 2157 struct xfs_buf *sib_buf; 2158 struct xfs_buf *par_buf; 2159 xfs_dahash_t dead_hash; 2160 xfs_fileoff_t lastoff; 2161 xfs_dablk_t dead_blkno; 2162 xfs_dablk_t last_blkno; 2163 xfs_dablk_t sib_blkno; 2164 xfs_dablk_t par_blkno; 2165 int error; 2166 int w; 2167 int entno; 2168 int level; 2169 int dead_level; 2170 2171 trace_xfs_da_swap_lastblock(args); 2172 2173 dead_buf = *dead_bufp; 2174 dead_blkno = *dead_blknop; 2175 tp = args->trans; 2176 dp = args->dp; 2177 w = args->whichfork; 2178 ASSERT(w == XFS_DATA_FORK); 2179 mp = dp->i_mount; 2180 lastoff = args->geo->freeblk; 2181 error = xfs_bmap_last_before(tp, dp, &lastoff, w); 2182 if (error) 2183 return error; 2184 if (unlikely(lastoff == 0)) { 2185 XFS_ERROR_REPORT("xfs_da_swap_lastblock(1)", XFS_ERRLEVEL_LOW, 2186 mp); 2187 return -EFSCORRUPTED; 2188 } 2189 /* 2190 * Read the last block in the btree space. 2191 */ 2192 last_blkno = (xfs_dablk_t)lastoff - args->geo->fsbcount; 2193 error = xfs_da3_node_read(tp, dp, last_blkno, -1, &last_buf, w); 2194 if (error) 2195 return error; 2196 /* 2197 * Copy the last block into the dead buffer and log it. 2198 */ 2199 memcpy(dead_buf->b_addr, last_buf->b_addr, args->geo->blksize); 2200 xfs_trans_log_buf(tp, dead_buf, 0, args->geo->blksize - 1); 2201 dead_info = dead_buf->b_addr; 2202 /* 2203 * Get values from the moved block. 2204 */ 2205 if (dead_info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || 2206 dead_info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) { 2207 struct xfs_dir3_icleaf_hdr leafhdr; 2208 struct xfs_dir2_leaf_entry *ents; 2209 2210 dead_leaf2 = (xfs_dir2_leaf_t *)dead_info; 2211 dp->d_ops->leaf_hdr_from_disk(&leafhdr, dead_leaf2); 2212 ents = dp->d_ops->leaf_ents_p(dead_leaf2); 2213 dead_level = 0; 2214 dead_hash = be32_to_cpu(ents[leafhdr.count - 1].hashval); 2215 } else { 2216 struct xfs_da3_icnode_hdr deadhdr; 2217 2218 dead_node = (xfs_da_intnode_t *)dead_info; 2219 dp->d_ops->node_hdr_from_disk(&deadhdr, dead_node); 2220 btree = dp->d_ops->node_tree_p(dead_node); 2221 dead_level = deadhdr.level; 2222 dead_hash = be32_to_cpu(btree[deadhdr.count - 1].hashval); 2223 } 2224 sib_buf = par_buf = NULL; 2225 /* 2226 * If the moved block has a left sibling, fix up the pointers. 2227 */ 2228 if ((sib_blkno = be32_to_cpu(dead_info->back))) { 2229 error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w); 2230 if (error) 2231 goto done; 2232 sib_info = sib_buf->b_addr; 2233 if (unlikely( 2234 be32_to_cpu(sib_info->forw) != last_blkno || 2235 sib_info->magic != dead_info->magic)) { 2236 XFS_ERROR_REPORT("xfs_da_swap_lastblock(2)", 2237 XFS_ERRLEVEL_LOW, mp); 2238 error = -EFSCORRUPTED; 2239 goto done; 2240 } 2241 sib_info->forw = cpu_to_be32(dead_blkno); 2242 xfs_trans_log_buf(tp, sib_buf, 2243 XFS_DA_LOGRANGE(sib_info, &sib_info->forw, 2244 sizeof(sib_info->forw))); 2245 sib_buf = NULL; 2246 } 2247 /* 2248 * If the moved block has a right sibling, fix up the pointers. 2249 */ 2250 if ((sib_blkno = be32_to_cpu(dead_info->forw))) { 2251 error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w); 2252 if (error) 2253 goto done; 2254 sib_info = sib_buf->b_addr; 2255 if (unlikely( 2256 be32_to_cpu(sib_info->back) != last_blkno || 2257 sib_info->magic != dead_info->magic)) { 2258 XFS_ERROR_REPORT("xfs_da_swap_lastblock(3)", 2259 XFS_ERRLEVEL_LOW, mp); 2260 error = -EFSCORRUPTED; 2261 goto done; 2262 } 2263 sib_info->back = cpu_to_be32(dead_blkno); 2264 xfs_trans_log_buf(tp, sib_buf, 2265 XFS_DA_LOGRANGE(sib_info, &sib_info->back, 2266 sizeof(sib_info->back))); 2267 sib_buf = NULL; 2268 } 2269 par_blkno = args->geo->leafblk; 2270 level = -1; 2271 /* 2272 * Walk down the tree looking for the parent of the moved block. 2273 */ 2274 for (;;) { 2275 error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w); 2276 if (error) 2277 goto done; 2278 par_node = par_buf->b_addr; 2279 dp->d_ops->node_hdr_from_disk(&par_hdr, par_node); 2280 if (level >= 0 && level != par_hdr.level + 1) { 2281 XFS_ERROR_REPORT("xfs_da_swap_lastblock(4)", 2282 XFS_ERRLEVEL_LOW, mp); 2283 error = -EFSCORRUPTED; 2284 goto done; 2285 } 2286 level = par_hdr.level; 2287 btree = dp->d_ops->node_tree_p(par_node); 2288 for (entno = 0; 2289 entno < par_hdr.count && 2290 be32_to_cpu(btree[entno].hashval) < dead_hash; 2291 entno++) 2292 continue; 2293 if (entno == par_hdr.count) { 2294 XFS_ERROR_REPORT("xfs_da_swap_lastblock(5)", 2295 XFS_ERRLEVEL_LOW, mp); 2296 error = -EFSCORRUPTED; 2297 goto done; 2298 } 2299 par_blkno = be32_to_cpu(btree[entno].before); 2300 if (level == dead_level + 1) 2301 break; 2302 xfs_trans_brelse(tp, par_buf); 2303 par_buf = NULL; 2304 } 2305 /* 2306 * We're in the right parent block. 2307 * Look for the right entry. 2308 */ 2309 for (;;) { 2310 for (; 2311 entno < par_hdr.count && 2312 be32_to_cpu(btree[entno].before) != last_blkno; 2313 entno++) 2314 continue; 2315 if (entno < par_hdr.count) 2316 break; 2317 par_blkno = par_hdr.forw; 2318 xfs_trans_brelse(tp, par_buf); 2319 par_buf = NULL; 2320 if (unlikely(par_blkno == 0)) { 2321 XFS_ERROR_REPORT("xfs_da_swap_lastblock(6)", 2322 XFS_ERRLEVEL_LOW, mp); 2323 error = -EFSCORRUPTED; 2324 goto done; 2325 } 2326 error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w); 2327 if (error) 2328 goto done; 2329 par_node = par_buf->b_addr; 2330 dp->d_ops->node_hdr_from_disk(&par_hdr, par_node); 2331 if (par_hdr.level != level) { 2332 XFS_ERROR_REPORT("xfs_da_swap_lastblock(7)", 2333 XFS_ERRLEVEL_LOW, mp); 2334 error = -EFSCORRUPTED; 2335 goto done; 2336 } 2337 btree = dp->d_ops->node_tree_p(par_node); 2338 entno = 0; 2339 } 2340 /* 2341 * Update the parent entry pointing to the moved block. 2342 */ 2343 btree[entno].before = cpu_to_be32(dead_blkno); 2344 xfs_trans_log_buf(tp, par_buf, 2345 XFS_DA_LOGRANGE(par_node, &btree[entno].before, 2346 sizeof(btree[entno].before))); 2347 *dead_blknop = last_blkno; 2348 *dead_bufp = last_buf; 2349 return 0; 2350 done: 2351 if (par_buf) 2352 xfs_trans_brelse(tp, par_buf); 2353 if (sib_buf) 2354 xfs_trans_brelse(tp, sib_buf); 2355 xfs_trans_brelse(tp, last_buf); 2356 return error; 2357 } 2358 2359 /* 2360 * Remove a btree block from a directory or attribute. 2361 */ 2362 int 2363 xfs_da_shrink_inode( 2364 xfs_da_args_t *args, 2365 xfs_dablk_t dead_blkno, 2366 struct xfs_buf *dead_buf) 2367 { 2368 xfs_inode_t *dp; 2369 int done, error, w, count; 2370 xfs_trans_t *tp; 2371 2372 trace_xfs_da_shrink_inode(args); 2373 2374 dp = args->dp; 2375 w = args->whichfork; 2376 tp = args->trans; 2377 count = args->geo->fsbcount; 2378 for (;;) { 2379 /* 2380 * Remove extents. If we get ENOSPC for a dir we have to move 2381 * the last block to the place we want to kill. 2382 */ 2383 error = xfs_bunmapi(tp, dp, dead_blkno, count, 2384 xfs_bmapi_aflag(w), 0, args->firstblock, 2385 args->dfops, &done); 2386 if (error == -ENOSPC) { 2387 if (w != XFS_DATA_FORK) 2388 break; 2389 error = xfs_da3_swap_lastblock(args, &dead_blkno, 2390 &dead_buf); 2391 if (error) 2392 break; 2393 } else { 2394 break; 2395 } 2396 } 2397 xfs_trans_binval(tp, dead_buf); 2398 return error; 2399 } 2400 2401 /* 2402 * See if the mapping(s) for this btree block are valid, i.e. 2403 * don't contain holes, are logically contiguous, and cover the whole range. 2404 */ 2405 STATIC int 2406 xfs_da_map_covers_blocks( 2407 int nmap, 2408 xfs_bmbt_irec_t *mapp, 2409 xfs_dablk_t bno, 2410 int count) 2411 { 2412 int i; 2413 xfs_fileoff_t off; 2414 2415 for (i = 0, off = bno; i < nmap; i++) { 2416 if (mapp[i].br_startblock == HOLESTARTBLOCK || 2417 mapp[i].br_startblock == DELAYSTARTBLOCK) { 2418 return 0; 2419 } 2420 if (off != mapp[i].br_startoff) { 2421 return 0; 2422 } 2423 off += mapp[i].br_blockcount; 2424 } 2425 return off == bno + count; 2426 } 2427 2428 /* 2429 * Convert a struct xfs_bmbt_irec to a struct xfs_buf_map. 2430 * 2431 * For the single map case, it is assumed that the caller has provided a pointer 2432 * to a valid xfs_buf_map. For the multiple map case, this function will 2433 * allocate the xfs_buf_map to hold all the maps and replace the caller's single 2434 * map pointer with the allocated map. 2435 */ 2436 static int 2437 xfs_buf_map_from_irec( 2438 struct xfs_mount *mp, 2439 struct xfs_buf_map **mapp, 2440 int *nmaps, 2441 struct xfs_bmbt_irec *irecs, 2442 int nirecs) 2443 { 2444 struct xfs_buf_map *map; 2445 int i; 2446 2447 ASSERT(*nmaps == 1); 2448 ASSERT(nirecs >= 1); 2449 2450 if (nirecs > 1) { 2451 map = kmem_zalloc(nirecs * sizeof(struct xfs_buf_map), 2452 KM_SLEEP | KM_NOFS); 2453 if (!map) 2454 return -ENOMEM; 2455 *mapp = map; 2456 } 2457 2458 *nmaps = nirecs; 2459 map = *mapp; 2460 for (i = 0; i < *nmaps; i++) { 2461 ASSERT(irecs[i].br_startblock != DELAYSTARTBLOCK && 2462 irecs[i].br_startblock != HOLESTARTBLOCK); 2463 map[i].bm_bn = XFS_FSB_TO_DADDR(mp, irecs[i].br_startblock); 2464 map[i].bm_len = XFS_FSB_TO_BB(mp, irecs[i].br_blockcount); 2465 } 2466 return 0; 2467 } 2468 2469 /* 2470 * Map the block we are given ready for reading. There are three possible return 2471 * values: 2472 * -1 - will be returned if we land in a hole and mappedbno == -2 so the 2473 * caller knows not to execute a subsequent read. 2474 * 0 - if we mapped the block successfully 2475 * >0 - positive error number if there was an error. 2476 */ 2477 static int 2478 xfs_dabuf_map( 2479 struct xfs_inode *dp, 2480 xfs_dablk_t bno, 2481 xfs_daddr_t mappedbno, 2482 int whichfork, 2483 struct xfs_buf_map **map, 2484 int *nmaps) 2485 { 2486 struct xfs_mount *mp = dp->i_mount; 2487 int nfsb; 2488 int error = 0; 2489 struct xfs_bmbt_irec irec; 2490 struct xfs_bmbt_irec *irecs = &irec; 2491 int nirecs; 2492 2493 ASSERT(map && *map); 2494 ASSERT(*nmaps == 1); 2495 2496 if (whichfork == XFS_DATA_FORK) 2497 nfsb = mp->m_dir_geo->fsbcount; 2498 else 2499 nfsb = mp->m_attr_geo->fsbcount; 2500 2501 /* 2502 * Caller doesn't have a mapping. -2 means don't complain 2503 * if we land in a hole. 2504 */ 2505 if (mappedbno == -1 || mappedbno == -2) { 2506 /* 2507 * Optimize the one-block case. 2508 */ 2509 if (nfsb != 1) 2510 irecs = kmem_zalloc(sizeof(irec) * nfsb, 2511 KM_SLEEP | KM_NOFS); 2512 2513 nirecs = nfsb; 2514 error = xfs_bmapi_read(dp, (xfs_fileoff_t)bno, nfsb, irecs, 2515 &nirecs, xfs_bmapi_aflag(whichfork)); 2516 if (error) 2517 goto out; 2518 } else { 2519 irecs->br_startblock = XFS_DADDR_TO_FSB(mp, mappedbno); 2520 irecs->br_startoff = (xfs_fileoff_t)bno; 2521 irecs->br_blockcount = nfsb; 2522 irecs->br_state = 0; 2523 nirecs = 1; 2524 } 2525 2526 if (!xfs_da_map_covers_blocks(nirecs, irecs, bno, nfsb)) { 2527 error = mappedbno == -2 ? -1 : -EFSCORRUPTED; 2528 if (unlikely(error == -EFSCORRUPTED)) { 2529 if (xfs_error_level >= XFS_ERRLEVEL_LOW) { 2530 int i; 2531 xfs_alert(mp, "%s: bno %lld dir: inode %lld", 2532 __func__, (long long)bno, 2533 (long long)dp->i_ino); 2534 for (i = 0; i < *nmaps; i++) { 2535 xfs_alert(mp, 2536 "[%02d] br_startoff %lld br_startblock %lld br_blockcount %lld br_state %d", 2537 i, 2538 (long long)irecs[i].br_startoff, 2539 (long long)irecs[i].br_startblock, 2540 (long long)irecs[i].br_blockcount, 2541 irecs[i].br_state); 2542 } 2543 } 2544 XFS_ERROR_REPORT("xfs_da_do_buf(1)", 2545 XFS_ERRLEVEL_LOW, mp); 2546 } 2547 goto out; 2548 } 2549 error = xfs_buf_map_from_irec(mp, map, nmaps, irecs, nirecs); 2550 out: 2551 if (irecs != &irec) 2552 kmem_free(irecs); 2553 return error; 2554 } 2555 2556 /* 2557 * Get a buffer for the dir/attr block. 2558 */ 2559 int 2560 xfs_da_get_buf( 2561 struct xfs_trans *trans, 2562 struct xfs_inode *dp, 2563 xfs_dablk_t bno, 2564 xfs_daddr_t mappedbno, 2565 struct xfs_buf **bpp, 2566 int whichfork) 2567 { 2568 struct xfs_buf *bp; 2569 struct xfs_buf_map map; 2570 struct xfs_buf_map *mapp; 2571 int nmap; 2572 int error; 2573 2574 *bpp = NULL; 2575 mapp = ↦ 2576 nmap = 1; 2577 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork, 2578 &mapp, &nmap); 2579 if (error) { 2580 /* mapping a hole is not an error, but we don't continue */ 2581 if (error == -1) 2582 error = 0; 2583 goto out_free; 2584 } 2585 2586 bp = xfs_trans_get_buf_map(trans, dp->i_mount->m_ddev_targp, 2587 mapp, nmap, 0); 2588 error = bp ? bp->b_error : -EIO; 2589 if (error) { 2590 if (bp) 2591 xfs_trans_brelse(trans, bp); 2592 goto out_free; 2593 } 2594 2595 *bpp = bp; 2596 2597 out_free: 2598 if (mapp != &map) 2599 kmem_free(mapp); 2600 2601 return error; 2602 } 2603 2604 /* 2605 * Get a buffer for the dir/attr block, fill in the contents. 2606 */ 2607 int 2608 xfs_da_read_buf( 2609 struct xfs_trans *trans, 2610 struct xfs_inode *dp, 2611 xfs_dablk_t bno, 2612 xfs_daddr_t mappedbno, 2613 struct xfs_buf **bpp, 2614 int whichfork, 2615 const struct xfs_buf_ops *ops) 2616 { 2617 struct xfs_buf *bp; 2618 struct xfs_buf_map map; 2619 struct xfs_buf_map *mapp; 2620 int nmap; 2621 int error; 2622 2623 *bpp = NULL; 2624 mapp = ↦ 2625 nmap = 1; 2626 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork, 2627 &mapp, &nmap); 2628 if (error) { 2629 /* mapping a hole is not an error, but we don't continue */ 2630 if (error == -1) 2631 error = 0; 2632 goto out_free; 2633 } 2634 2635 error = xfs_trans_read_buf_map(dp->i_mount, trans, 2636 dp->i_mount->m_ddev_targp, 2637 mapp, nmap, 0, &bp, ops); 2638 if (error) 2639 goto out_free; 2640 2641 if (whichfork == XFS_ATTR_FORK) 2642 xfs_buf_set_ref(bp, XFS_ATTR_BTREE_REF); 2643 else 2644 xfs_buf_set_ref(bp, XFS_DIR_BTREE_REF); 2645 *bpp = bp; 2646 out_free: 2647 if (mapp != &map) 2648 kmem_free(mapp); 2649 2650 return error; 2651 } 2652 2653 /* 2654 * Readahead the dir/attr block. 2655 */ 2656 int 2657 xfs_da_reada_buf( 2658 struct xfs_inode *dp, 2659 xfs_dablk_t bno, 2660 xfs_daddr_t mappedbno, 2661 int whichfork, 2662 const struct xfs_buf_ops *ops) 2663 { 2664 struct xfs_buf_map map; 2665 struct xfs_buf_map *mapp; 2666 int nmap; 2667 int error; 2668 2669 mapp = ↦ 2670 nmap = 1; 2671 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork, 2672 &mapp, &nmap); 2673 if (error) { 2674 /* mapping a hole is not an error, but we don't continue */ 2675 if (error == -1) 2676 error = 0; 2677 goto out_free; 2678 } 2679 2680 mappedbno = mapp[0].bm_bn; 2681 xfs_buf_readahead_map(dp->i_mount->m_ddev_targp, mapp, nmap, ops); 2682 2683 out_free: 2684 if (mapp != &map) 2685 kmem_free(mapp); 2686 2687 return error; 2688 } 2689