xref: /openbmc/linux/fs/xfs/libxfs/xfs_da_btree.c (revision 23c2b932)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * Copyright (c) 2013 Red Hat, Inc.
4  * All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write the Free Software Foundation,
17  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18  */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_shared.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dir2_priv.h"
31 #include "xfs_inode.h"
32 #include "xfs_trans.h"
33 #include "xfs_inode_item.h"
34 #include "xfs_alloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_attr.h"
37 #include "xfs_attr_leaf.h"
38 #include "xfs_error.h"
39 #include "xfs_trace.h"
40 #include "xfs_cksum.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_log.h"
43 
44 /*
45  * xfs_da_btree.c
46  *
47  * Routines to implement directories as Btrees of hashed names.
48  */
49 
50 /*========================================================================
51  * Function prototypes for the kernel.
52  *========================================================================*/
53 
54 /*
55  * Routines used for growing the Btree.
56  */
57 STATIC int xfs_da3_root_split(xfs_da_state_t *state,
58 					    xfs_da_state_blk_t *existing_root,
59 					    xfs_da_state_blk_t *new_child);
60 STATIC int xfs_da3_node_split(xfs_da_state_t *state,
61 					    xfs_da_state_blk_t *existing_blk,
62 					    xfs_da_state_blk_t *split_blk,
63 					    xfs_da_state_blk_t *blk_to_add,
64 					    int treelevel,
65 					    int *result);
66 STATIC void xfs_da3_node_rebalance(xfs_da_state_t *state,
67 					 xfs_da_state_blk_t *node_blk_1,
68 					 xfs_da_state_blk_t *node_blk_2);
69 STATIC void xfs_da3_node_add(xfs_da_state_t *state,
70 				   xfs_da_state_blk_t *old_node_blk,
71 				   xfs_da_state_blk_t *new_node_blk);
72 
73 /*
74  * Routines used for shrinking the Btree.
75  */
76 STATIC int xfs_da3_root_join(xfs_da_state_t *state,
77 					   xfs_da_state_blk_t *root_blk);
78 STATIC int xfs_da3_node_toosmall(xfs_da_state_t *state, int *retval);
79 STATIC void xfs_da3_node_remove(xfs_da_state_t *state,
80 					      xfs_da_state_blk_t *drop_blk);
81 STATIC void xfs_da3_node_unbalance(xfs_da_state_t *state,
82 					 xfs_da_state_blk_t *src_node_blk,
83 					 xfs_da_state_blk_t *dst_node_blk);
84 
85 /*
86  * Utility routines.
87  */
88 STATIC int	xfs_da3_blk_unlink(xfs_da_state_t *state,
89 				  xfs_da_state_blk_t *drop_blk,
90 				  xfs_da_state_blk_t *save_blk);
91 
92 
93 kmem_zone_t *xfs_da_state_zone;	/* anchor for state struct zone */
94 
95 /*
96  * Allocate a dir-state structure.
97  * We don't put them on the stack since they're large.
98  */
99 xfs_da_state_t *
100 xfs_da_state_alloc(void)
101 {
102 	return kmem_zone_zalloc(xfs_da_state_zone, KM_NOFS);
103 }
104 
105 /*
106  * Kill the altpath contents of a da-state structure.
107  */
108 STATIC void
109 xfs_da_state_kill_altpath(xfs_da_state_t *state)
110 {
111 	int	i;
112 
113 	for (i = 0; i < state->altpath.active; i++)
114 		state->altpath.blk[i].bp = NULL;
115 	state->altpath.active = 0;
116 }
117 
118 /*
119  * Free a da-state structure.
120  */
121 void
122 xfs_da_state_free(xfs_da_state_t *state)
123 {
124 	xfs_da_state_kill_altpath(state);
125 #ifdef DEBUG
126 	memset((char *)state, 0, sizeof(*state));
127 #endif /* DEBUG */
128 	kmem_zone_free(xfs_da_state_zone, state);
129 }
130 
131 static bool
132 xfs_da3_node_verify(
133 	struct xfs_buf		*bp)
134 {
135 	struct xfs_mount	*mp = bp->b_target->bt_mount;
136 	struct xfs_da_intnode	*hdr = bp->b_addr;
137 	struct xfs_da3_icnode_hdr ichdr;
138 	const struct xfs_dir_ops *ops;
139 
140 	ops = xfs_dir_get_ops(mp, NULL);
141 
142 	ops->node_hdr_from_disk(&ichdr, hdr);
143 
144 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
145 		struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
146 
147 		if (ichdr.magic != XFS_DA3_NODE_MAGIC)
148 			return false;
149 
150 		if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_meta_uuid))
151 			return false;
152 		if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn)
153 			return false;
154 		if (!xfs_log_check_lsn(mp, be64_to_cpu(hdr3->info.lsn)))
155 			return false;
156 	} else {
157 		if (ichdr.magic != XFS_DA_NODE_MAGIC)
158 			return false;
159 	}
160 	if (ichdr.level == 0)
161 		return false;
162 	if (ichdr.level > XFS_DA_NODE_MAXDEPTH)
163 		return false;
164 	if (ichdr.count == 0)
165 		return false;
166 
167 	/*
168 	 * we don't know if the node is for and attribute or directory tree,
169 	 * so only fail if the count is outside both bounds
170 	 */
171 	if (ichdr.count > mp->m_dir_geo->node_ents &&
172 	    ichdr.count > mp->m_attr_geo->node_ents)
173 		return false;
174 
175 	/* XXX: hash order check? */
176 
177 	return true;
178 }
179 
180 static void
181 xfs_da3_node_write_verify(
182 	struct xfs_buf	*bp)
183 {
184 	struct xfs_mount	*mp = bp->b_target->bt_mount;
185 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
186 	struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
187 
188 	if (!xfs_da3_node_verify(bp)) {
189 		xfs_buf_ioerror(bp, -EFSCORRUPTED);
190 		xfs_verifier_error(bp);
191 		return;
192 	}
193 
194 	if (!xfs_sb_version_hascrc(&mp->m_sb))
195 		return;
196 
197 	if (bip)
198 		hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
199 
200 	xfs_buf_update_cksum(bp, XFS_DA3_NODE_CRC_OFF);
201 }
202 
203 /*
204  * leaf/node format detection on trees is sketchy, so a node read can be done on
205  * leaf level blocks when detection identifies the tree as a node format tree
206  * incorrectly. In this case, we need to swap the verifier to match the correct
207  * format of the block being read.
208  */
209 static void
210 xfs_da3_node_read_verify(
211 	struct xfs_buf		*bp)
212 {
213 	struct xfs_da_blkinfo	*info = bp->b_addr;
214 
215 	switch (be16_to_cpu(info->magic)) {
216 		case XFS_DA3_NODE_MAGIC:
217 			if (!xfs_buf_verify_cksum(bp, XFS_DA3_NODE_CRC_OFF)) {
218 				xfs_buf_ioerror(bp, -EFSBADCRC);
219 				break;
220 			}
221 			/* fall through */
222 		case XFS_DA_NODE_MAGIC:
223 			if (!xfs_da3_node_verify(bp)) {
224 				xfs_buf_ioerror(bp, -EFSCORRUPTED);
225 				break;
226 			}
227 			return;
228 		case XFS_ATTR_LEAF_MAGIC:
229 		case XFS_ATTR3_LEAF_MAGIC:
230 			bp->b_ops = &xfs_attr3_leaf_buf_ops;
231 			bp->b_ops->verify_read(bp);
232 			return;
233 		case XFS_DIR2_LEAFN_MAGIC:
234 		case XFS_DIR3_LEAFN_MAGIC:
235 			bp->b_ops = &xfs_dir3_leafn_buf_ops;
236 			bp->b_ops->verify_read(bp);
237 			return;
238 		default:
239 			xfs_buf_ioerror(bp, -EFSCORRUPTED);
240 			break;
241 	}
242 
243 	/* corrupt block */
244 	xfs_verifier_error(bp);
245 }
246 
247 const struct xfs_buf_ops xfs_da3_node_buf_ops = {
248 	.name = "xfs_da3_node",
249 	.verify_read = xfs_da3_node_read_verify,
250 	.verify_write = xfs_da3_node_write_verify,
251 };
252 
253 int
254 xfs_da3_node_read(
255 	struct xfs_trans	*tp,
256 	struct xfs_inode	*dp,
257 	xfs_dablk_t		bno,
258 	xfs_daddr_t		mappedbno,
259 	struct xfs_buf		**bpp,
260 	int			which_fork)
261 {
262 	int			err;
263 
264 	err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp,
265 					which_fork, &xfs_da3_node_buf_ops);
266 	if (!err && tp) {
267 		struct xfs_da_blkinfo	*info = (*bpp)->b_addr;
268 		int			type;
269 
270 		switch (be16_to_cpu(info->magic)) {
271 		case XFS_DA_NODE_MAGIC:
272 		case XFS_DA3_NODE_MAGIC:
273 			type = XFS_BLFT_DA_NODE_BUF;
274 			break;
275 		case XFS_ATTR_LEAF_MAGIC:
276 		case XFS_ATTR3_LEAF_MAGIC:
277 			type = XFS_BLFT_ATTR_LEAF_BUF;
278 			break;
279 		case XFS_DIR2_LEAFN_MAGIC:
280 		case XFS_DIR3_LEAFN_MAGIC:
281 			type = XFS_BLFT_DIR_LEAFN_BUF;
282 			break;
283 		default:
284 			type = 0;
285 			ASSERT(0);
286 			break;
287 		}
288 		xfs_trans_buf_set_type(tp, *bpp, type);
289 	}
290 	return err;
291 }
292 
293 /*========================================================================
294  * Routines used for growing the Btree.
295  *========================================================================*/
296 
297 /*
298  * Create the initial contents of an intermediate node.
299  */
300 int
301 xfs_da3_node_create(
302 	struct xfs_da_args	*args,
303 	xfs_dablk_t		blkno,
304 	int			level,
305 	struct xfs_buf		**bpp,
306 	int			whichfork)
307 {
308 	struct xfs_da_intnode	*node;
309 	struct xfs_trans	*tp = args->trans;
310 	struct xfs_mount	*mp = tp->t_mountp;
311 	struct xfs_da3_icnode_hdr ichdr = {0};
312 	struct xfs_buf		*bp;
313 	int			error;
314 	struct xfs_inode	*dp = args->dp;
315 
316 	trace_xfs_da_node_create(args);
317 	ASSERT(level <= XFS_DA_NODE_MAXDEPTH);
318 
319 	error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, whichfork);
320 	if (error)
321 		return error;
322 	bp->b_ops = &xfs_da3_node_buf_ops;
323 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF);
324 	node = bp->b_addr;
325 
326 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
327 		struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
328 
329 		memset(hdr3, 0, sizeof(struct xfs_da3_node_hdr));
330 		ichdr.magic = XFS_DA3_NODE_MAGIC;
331 		hdr3->info.blkno = cpu_to_be64(bp->b_bn);
332 		hdr3->info.owner = cpu_to_be64(args->dp->i_ino);
333 		uuid_copy(&hdr3->info.uuid, &mp->m_sb.sb_meta_uuid);
334 	} else {
335 		ichdr.magic = XFS_DA_NODE_MAGIC;
336 	}
337 	ichdr.level = level;
338 
339 	dp->d_ops->node_hdr_to_disk(node, &ichdr);
340 	xfs_trans_log_buf(tp, bp,
341 		XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size));
342 
343 	*bpp = bp;
344 	return 0;
345 }
346 
347 /*
348  * Split a leaf node, rebalance, then possibly split
349  * intermediate nodes, rebalance, etc.
350  */
351 int							/* error */
352 xfs_da3_split(
353 	struct xfs_da_state	*state)
354 {
355 	struct xfs_da_state_blk	*oldblk;
356 	struct xfs_da_state_blk	*newblk;
357 	struct xfs_da_state_blk	*addblk;
358 	struct xfs_da_intnode	*node;
359 	struct xfs_buf		*bp;
360 	int			max;
361 	int			action = 0;
362 	int			error;
363 	int			i;
364 
365 	trace_xfs_da_split(state->args);
366 
367 	/*
368 	 * Walk back up the tree splitting/inserting/adjusting as necessary.
369 	 * If we need to insert and there isn't room, split the node, then
370 	 * decide which fragment to insert the new block from below into.
371 	 * Note that we may split the root this way, but we need more fixup.
372 	 */
373 	max = state->path.active - 1;
374 	ASSERT((max >= 0) && (max < XFS_DA_NODE_MAXDEPTH));
375 	ASSERT(state->path.blk[max].magic == XFS_ATTR_LEAF_MAGIC ||
376 	       state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC);
377 
378 	addblk = &state->path.blk[max];		/* initial dummy value */
379 	for (i = max; (i >= 0) && addblk; state->path.active--, i--) {
380 		oldblk = &state->path.blk[i];
381 		newblk = &state->altpath.blk[i];
382 
383 		/*
384 		 * If a leaf node then
385 		 *     Allocate a new leaf node, then rebalance across them.
386 		 * else if an intermediate node then
387 		 *     We split on the last layer, must we split the node?
388 		 */
389 		switch (oldblk->magic) {
390 		case XFS_ATTR_LEAF_MAGIC:
391 			error = xfs_attr3_leaf_split(state, oldblk, newblk);
392 			if ((error != 0) && (error != -ENOSPC)) {
393 				return error;	/* GROT: attr is inconsistent */
394 			}
395 			if (!error) {
396 				addblk = newblk;
397 				break;
398 			}
399 			/*
400 			 * Entry wouldn't fit, split the leaf again.
401 			 */
402 			state->extravalid = 1;
403 			if (state->inleaf) {
404 				state->extraafter = 0;	/* before newblk */
405 				trace_xfs_attr_leaf_split_before(state->args);
406 				error = xfs_attr3_leaf_split(state, oldblk,
407 							    &state->extrablk);
408 			} else {
409 				state->extraafter = 1;	/* after newblk */
410 				trace_xfs_attr_leaf_split_after(state->args);
411 				error = xfs_attr3_leaf_split(state, newblk,
412 							    &state->extrablk);
413 			}
414 			if (error)
415 				return error;	/* GROT: attr inconsistent */
416 			addblk = newblk;
417 			break;
418 		case XFS_DIR2_LEAFN_MAGIC:
419 			error = xfs_dir2_leafn_split(state, oldblk, newblk);
420 			if (error)
421 				return error;
422 			addblk = newblk;
423 			break;
424 		case XFS_DA_NODE_MAGIC:
425 			error = xfs_da3_node_split(state, oldblk, newblk, addblk,
426 							 max - i, &action);
427 			addblk->bp = NULL;
428 			if (error)
429 				return error;	/* GROT: dir is inconsistent */
430 			/*
431 			 * Record the newly split block for the next time thru?
432 			 */
433 			if (action)
434 				addblk = newblk;
435 			else
436 				addblk = NULL;
437 			break;
438 		}
439 
440 		/*
441 		 * Update the btree to show the new hashval for this child.
442 		 */
443 		xfs_da3_fixhashpath(state, &state->path);
444 	}
445 	if (!addblk)
446 		return 0;
447 
448 	/*
449 	 * Split the root node.
450 	 */
451 	ASSERT(state->path.active == 0);
452 	oldblk = &state->path.blk[0];
453 	error = xfs_da3_root_split(state, oldblk, addblk);
454 	if (error) {
455 		addblk->bp = NULL;
456 		return error;	/* GROT: dir is inconsistent */
457 	}
458 
459 	/*
460 	 * Update pointers to the node which used to be block 0 and
461 	 * just got bumped because of the addition of a new root node.
462 	 * There might be three blocks involved if a double split occurred,
463 	 * and the original block 0 could be at any position in the list.
464 	 *
465 	 * Note: the magic numbers and sibling pointers are in the same
466 	 * physical place for both v2 and v3 headers (by design). Hence it
467 	 * doesn't matter which version of the xfs_da_intnode structure we use
468 	 * here as the result will be the same using either structure.
469 	 */
470 	node = oldblk->bp->b_addr;
471 	if (node->hdr.info.forw) {
472 		if (be32_to_cpu(node->hdr.info.forw) == addblk->blkno) {
473 			bp = addblk->bp;
474 		} else {
475 			ASSERT(state->extravalid);
476 			bp = state->extrablk.bp;
477 		}
478 		node = bp->b_addr;
479 		node->hdr.info.back = cpu_to_be32(oldblk->blkno);
480 		xfs_trans_log_buf(state->args->trans, bp,
481 		    XFS_DA_LOGRANGE(node, &node->hdr.info,
482 		    sizeof(node->hdr.info)));
483 	}
484 	node = oldblk->bp->b_addr;
485 	if (node->hdr.info.back) {
486 		if (be32_to_cpu(node->hdr.info.back) == addblk->blkno) {
487 			bp = addblk->bp;
488 		} else {
489 			ASSERT(state->extravalid);
490 			bp = state->extrablk.bp;
491 		}
492 		node = bp->b_addr;
493 		node->hdr.info.forw = cpu_to_be32(oldblk->blkno);
494 		xfs_trans_log_buf(state->args->trans, bp,
495 		    XFS_DA_LOGRANGE(node, &node->hdr.info,
496 		    sizeof(node->hdr.info)));
497 	}
498 	addblk->bp = NULL;
499 	return 0;
500 }
501 
502 /*
503  * Split the root.  We have to create a new root and point to the two
504  * parts (the split old root) that we just created.  Copy block zero to
505  * the EOF, extending the inode in process.
506  */
507 STATIC int						/* error */
508 xfs_da3_root_split(
509 	struct xfs_da_state	*state,
510 	struct xfs_da_state_blk	*blk1,
511 	struct xfs_da_state_blk	*blk2)
512 {
513 	struct xfs_da_intnode	*node;
514 	struct xfs_da_intnode	*oldroot;
515 	struct xfs_da_node_entry *btree;
516 	struct xfs_da3_icnode_hdr nodehdr;
517 	struct xfs_da_args	*args;
518 	struct xfs_buf		*bp;
519 	struct xfs_inode	*dp;
520 	struct xfs_trans	*tp;
521 	struct xfs_dir2_leaf	*leaf;
522 	xfs_dablk_t		blkno;
523 	int			level;
524 	int			error;
525 	int			size;
526 
527 	trace_xfs_da_root_split(state->args);
528 
529 	/*
530 	 * Copy the existing (incorrect) block from the root node position
531 	 * to a free space somewhere.
532 	 */
533 	args = state->args;
534 	error = xfs_da_grow_inode(args, &blkno);
535 	if (error)
536 		return error;
537 
538 	dp = args->dp;
539 	tp = args->trans;
540 	error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, args->whichfork);
541 	if (error)
542 		return error;
543 	node = bp->b_addr;
544 	oldroot = blk1->bp->b_addr;
545 	if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
546 	    oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)) {
547 		struct xfs_da3_icnode_hdr icnodehdr;
548 
549 		dp->d_ops->node_hdr_from_disk(&icnodehdr, oldroot);
550 		btree = dp->d_ops->node_tree_p(oldroot);
551 		size = (int)((char *)&btree[icnodehdr.count] - (char *)oldroot);
552 		level = icnodehdr.level;
553 
554 		/*
555 		 * we are about to copy oldroot to bp, so set up the type
556 		 * of bp while we know exactly what it will be.
557 		 */
558 		xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF);
559 	} else {
560 		struct xfs_dir3_icleaf_hdr leafhdr;
561 		struct xfs_dir2_leaf_entry *ents;
562 
563 		leaf = (xfs_dir2_leaf_t *)oldroot;
564 		dp->d_ops->leaf_hdr_from_disk(&leafhdr, leaf);
565 		ents = dp->d_ops->leaf_ents_p(leaf);
566 
567 		ASSERT(leafhdr.magic == XFS_DIR2_LEAFN_MAGIC ||
568 		       leafhdr.magic == XFS_DIR3_LEAFN_MAGIC);
569 		size = (int)((char *)&ents[leafhdr.count] - (char *)leaf);
570 		level = 0;
571 
572 		/*
573 		 * we are about to copy oldroot to bp, so set up the type
574 		 * of bp while we know exactly what it will be.
575 		 */
576 		xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DIR_LEAFN_BUF);
577 	}
578 
579 	/*
580 	 * we can copy most of the information in the node from one block to
581 	 * another, but for CRC enabled headers we have to make sure that the
582 	 * block specific identifiers are kept intact. We update the buffer
583 	 * directly for this.
584 	 */
585 	memcpy(node, oldroot, size);
586 	if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) ||
587 	    oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
588 		struct xfs_da3_intnode *node3 = (struct xfs_da3_intnode *)node;
589 
590 		node3->hdr.info.blkno = cpu_to_be64(bp->b_bn);
591 	}
592 	xfs_trans_log_buf(tp, bp, 0, size - 1);
593 
594 	bp->b_ops = blk1->bp->b_ops;
595 	xfs_trans_buf_copy_type(bp, blk1->bp);
596 	blk1->bp = bp;
597 	blk1->blkno = blkno;
598 
599 	/*
600 	 * Set up the new root node.
601 	 */
602 	error = xfs_da3_node_create(args,
603 		(args->whichfork == XFS_DATA_FORK) ? args->geo->leafblk : 0,
604 		level + 1, &bp, args->whichfork);
605 	if (error)
606 		return error;
607 
608 	node = bp->b_addr;
609 	dp->d_ops->node_hdr_from_disk(&nodehdr, node);
610 	btree = dp->d_ops->node_tree_p(node);
611 	btree[0].hashval = cpu_to_be32(blk1->hashval);
612 	btree[0].before = cpu_to_be32(blk1->blkno);
613 	btree[1].hashval = cpu_to_be32(blk2->hashval);
614 	btree[1].before = cpu_to_be32(blk2->blkno);
615 	nodehdr.count = 2;
616 	dp->d_ops->node_hdr_to_disk(node, &nodehdr);
617 
618 #ifdef DEBUG
619 	if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
620 	    oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
621 		ASSERT(blk1->blkno >= args->geo->leafblk &&
622 		       blk1->blkno < args->geo->freeblk);
623 		ASSERT(blk2->blkno >= args->geo->leafblk &&
624 		       blk2->blkno < args->geo->freeblk);
625 	}
626 #endif
627 
628 	/* Header is already logged by xfs_da_node_create */
629 	xfs_trans_log_buf(tp, bp,
630 		XFS_DA_LOGRANGE(node, btree, sizeof(xfs_da_node_entry_t) * 2));
631 
632 	return 0;
633 }
634 
635 /*
636  * Split the node, rebalance, then add the new entry.
637  */
638 STATIC int						/* error */
639 xfs_da3_node_split(
640 	struct xfs_da_state	*state,
641 	struct xfs_da_state_blk	*oldblk,
642 	struct xfs_da_state_blk	*newblk,
643 	struct xfs_da_state_blk	*addblk,
644 	int			treelevel,
645 	int			*result)
646 {
647 	struct xfs_da_intnode	*node;
648 	struct xfs_da3_icnode_hdr nodehdr;
649 	xfs_dablk_t		blkno;
650 	int			newcount;
651 	int			error;
652 	int			useextra;
653 	struct xfs_inode	*dp = state->args->dp;
654 
655 	trace_xfs_da_node_split(state->args);
656 
657 	node = oldblk->bp->b_addr;
658 	dp->d_ops->node_hdr_from_disk(&nodehdr, node);
659 
660 	/*
661 	 * With V2 dirs the extra block is data or freespace.
662 	 */
663 	useextra = state->extravalid && state->args->whichfork == XFS_ATTR_FORK;
664 	newcount = 1 + useextra;
665 	/*
666 	 * Do we have to split the node?
667 	 */
668 	if (nodehdr.count + newcount > state->args->geo->node_ents) {
669 		/*
670 		 * Allocate a new node, add to the doubly linked chain of
671 		 * nodes, then move some of our excess entries into it.
672 		 */
673 		error = xfs_da_grow_inode(state->args, &blkno);
674 		if (error)
675 			return error;	/* GROT: dir is inconsistent */
676 
677 		error = xfs_da3_node_create(state->args, blkno, treelevel,
678 					   &newblk->bp, state->args->whichfork);
679 		if (error)
680 			return error;	/* GROT: dir is inconsistent */
681 		newblk->blkno = blkno;
682 		newblk->magic = XFS_DA_NODE_MAGIC;
683 		xfs_da3_node_rebalance(state, oldblk, newblk);
684 		error = xfs_da3_blk_link(state, oldblk, newblk);
685 		if (error)
686 			return error;
687 		*result = 1;
688 	} else {
689 		*result = 0;
690 	}
691 
692 	/*
693 	 * Insert the new entry(s) into the correct block
694 	 * (updating last hashval in the process).
695 	 *
696 	 * xfs_da3_node_add() inserts BEFORE the given index,
697 	 * and as a result of using node_lookup_int() we always
698 	 * point to a valid entry (not after one), but a split
699 	 * operation always results in a new block whose hashvals
700 	 * FOLLOW the current block.
701 	 *
702 	 * If we had double-split op below us, then add the extra block too.
703 	 */
704 	node = oldblk->bp->b_addr;
705 	dp->d_ops->node_hdr_from_disk(&nodehdr, node);
706 	if (oldblk->index <= nodehdr.count) {
707 		oldblk->index++;
708 		xfs_da3_node_add(state, oldblk, addblk);
709 		if (useextra) {
710 			if (state->extraafter)
711 				oldblk->index++;
712 			xfs_da3_node_add(state, oldblk, &state->extrablk);
713 			state->extravalid = 0;
714 		}
715 	} else {
716 		newblk->index++;
717 		xfs_da3_node_add(state, newblk, addblk);
718 		if (useextra) {
719 			if (state->extraafter)
720 				newblk->index++;
721 			xfs_da3_node_add(state, newblk, &state->extrablk);
722 			state->extravalid = 0;
723 		}
724 	}
725 
726 	return 0;
727 }
728 
729 /*
730  * Balance the btree elements between two intermediate nodes,
731  * usually one full and one empty.
732  *
733  * NOTE: if blk2 is empty, then it will get the upper half of blk1.
734  */
735 STATIC void
736 xfs_da3_node_rebalance(
737 	struct xfs_da_state	*state,
738 	struct xfs_da_state_blk	*blk1,
739 	struct xfs_da_state_blk	*blk2)
740 {
741 	struct xfs_da_intnode	*node1;
742 	struct xfs_da_intnode	*node2;
743 	struct xfs_da_intnode	*tmpnode;
744 	struct xfs_da_node_entry *btree1;
745 	struct xfs_da_node_entry *btree2;
746 	struct xfs_da_node_entry *btree_s;
747 	struct xfs_da_node_entry *btree_d;
748 	struct xfs_da3_icnode_hdr nodehdr1;
749 	struct xfs_da3_icnode_hdr nodehdr2;
750 	struct xfs_trans	*tp;
751 	int			count;
752 	int			tmp;
753 	int			swap = 0;
754 	struct xfs_inode	*dp = state->args->dp;
755 
756 	trace_xfs_da_node_rebalance(state->args);
757 
758 	node1 = blk1->bp->b_addr;
759 	node2 = blk2->bp->b_addr;
760 	dp->d_ops->node_hdr_from_disk(&nodehdr1, node1);
761 	dp->d_ops->node_hdr_from_disk(&nodehdr2, node2);
762 	btree1 = dp->d_ops->node_tree_p(node1);
763 	btree2 = dp->d_ops->node_tree_p(node2);
764 
765 	/*
766 	 * Figure out how many entries need to move, and in which direction.
767 	 * Swap the nodes around if that makes it simpler.
768 	 */
769 	if (nodehdr1.count > 0 && nodehdr2.count > 0 &&
770 	    ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) ||
771 	     (be32_to_cpu(btree2[nodehdr2.count - 1].hashval) <
772 			be32_to_cpu(btree1[nodehdr1.count - 1].hashval)))) {
773 		tmpnode = node1;
774 		node1 = node2;
775 		node2 = tmpnode;
776 		dp->d_ops->node_hdr_from_disk(&nodehdr1, node1);
777 		dp->d_ops->node_hdr_from_disk(&nodehdr2, node2);
778 		btree1 = dp->d_ops->node_tree_p(node1);
779 		btree2 = dp->d_ops->node_tree_p(node2);
780 		swap = 1;
781 	}
782 
783 	count = (nodehdr1.count - nodehdr2.count) / 2;
784 	if (count == 0)
785 		return;
786 	tp = state->args->trans;
787 	/*
788 	 * Two cases: high-to-low and low-to-high.
789 	 */
790 	if (count > 0) {
791 		/*
792 		 * Move elements in node2 up to make a hole.
793 		 */
794 		tmp = nodehdr2.count;
795 		if (tmp > 0) {
796 			tmp *= (uint)sizeof(xfs_da_node_entry_t);
797 			btree_s = &btree2[0];
798 			btree_d = &btree2[count];
799 			memmove(btree_d, btree_s, tmp);
800 		}
801 
802 		/*
803 		 * Move the req'd B-tree elements from high in node1 to
804 		 * low in node2.
805 		 */
806 		nodehdr2.count += count;
807 		tmp = count * (uint)sizeof(xfs_da_node_entry_t);
808 		btree_s = &btree1[nodehdr1.count - count];
809 		btree_d = &btree2[0];
810 		memcpy(btree_d, btree_s, tmp);
811 		nodehdr1.count -= count;
812 	} else {
813 		/*
814 		 * Move the req'd B-tree elements from low in node2 to
815 		 * high in node1.
816 		 */
817 		count = -count;
818 		tmp = count * (uint)sizeof(xfs_da_node_entry_t);
819 		btree_s = &btree2[0];
820 		btree_d = &btree1[nodehdr1.count];
821 		memcpy(btree_d, btree_s, tmp);
822 		nodehdr1.count += count;
823 
824 		xfs_trans_log_buf(tp, blk1->bp,
825 			XFS_DA_LOGRANGE(node1, btree_d, tmp));
826 
827 		/*
828 		 * Move elements in node2 down to fill the hole.
829 		 */
830 		tmp  = nodehdr2.count - count;
831 		tmp *= (uint)sizeof(xfs_da_node_entry_t);
832 		btree_s = &btree2[count];
833 		btree_d = &btree2[0];
834 		memmove(btree_d, btree_s, tmp);
835 		nodehdr2.count -= count;
836 	}
837 
838 	/*
839 	 * Log header of node 1 and all current bits of node 2.
840 	 */
841 	dp->d_ops->node_hdr_to_disk(node1, &nodehdr1);
842 	xfs_trans_log_buf(tp, blk1->bp,
843 		XFS_DA_LOGRANGE(node1, &node1->hdr, dp->d_ops->node_hdr_size));
844 
845 	dp->d_ops->node_hdr_to_disk(node2, &nodehdr2);
846 	xfs_trans_log_buf(tp, blk2->bp,
847 		XFS_DA_LOGRANGE(node2, &node2->hdr,
848 				dp->d_ops->node_hdr_size +
849 				(sizeof(btree2[0]) * nodehdr2.count)));
850 
851 	/*
852 	 * Record the last hashval from each block for upward propagation.
853 	 * (note: don't use the swapped node pointers)
854 	 */
855 	if (swap) {
856 		node1 = blk1->bp->b_addr;
857 		node2 = blk2->bp->b_addr;
858 		dp->d_ops->node_hdr_from_disk(&nodehdr1, node1);
859 		dp->d_ops->node_hdr_from_disk(&nodehdr2, node2);
860 		btree1 = dp->d_ops->node_tree_p(node1);
861 		btree2 = dp->d_ops->node_tree_p(node2);
862 	}
863 	blk1->hashval = be32_to_cpu(btree1[nodehdr1.count - 1].hashval);
864 	blk2->hashval = be32_to_cpu(btree2[nodehdr2.count - 1].hashval);
865 
866 	/*
867 	 * Adjust the expected index for insertion.
868 	 */
869 	if (blk1->index >= nodehdr1.count) {
870 		blk2->index = blk1->index - nodehdr1.count;
871 		blk1->index = nodehdr1.count + 1;	/* make it invalid */
872 	}
873 }
874 
875 /*
876  * Add a new entry to an intermediate node.
877  */
878 STATIC void
879 xfs_da3_node_add(
880 	struct xfs_da_state	*state,
881 	struct xfs_da_state_blk	*oldblk,
882 	struct xfs_da_state_blk	*newblk)
883 {
884 	struct xfs_da_intnode	*node;
885 	struct xfs_da3_icnode_hdr nodehdr;
886 	struct xfs_da_node_entry *btree;
887 	int			tmp;
888 	struct xfs_inode	*dp = state->args->dp;
889 
890 	trace_xfs_da_node_add(state->args);
891 
892 	node = oldblk->bp->b_addr;
893 	dp->d_ops->node_hdr_from_disk(&nodehdr, node);
894 	btree = dp->d_ops->node_tree_p(node);
895 
896 	ASSERT(oldblk->index >= 0 && oldblk->index <= nodehdr.count);
897 	ASSERT(newblk->blkno != 0);
898 	if (state->args->whichfork == XFS_DATA_FORK)
899 		ASSERT(newblk->blkno >= state->args->geo->leafblk &&
900 		       newblk->blkno < state->args->geo->freeblk);
901 
902 	/*
903 	 * We may need to make some room before we insert the new node.
904 	 */
905 	tmp = 0;
906 	if (oldblk->index < nodehdr.count) {
907 		tmp = (nodehdr.count - oldblk->index) * (uint)sizeof(*btree);
908 		memmove(&btree[oldblk->index + 1], &btree[oldblk->index], tmp);
909 	}
910 	btree[oldblk->index].hashval = cpu_to_be32(newblk->hashval);
911 	btree[oldblk->index].before = cpu_to_be32(newblk->blkno);
912 	xfs_trans_log_buf(state->args->trans, oldblk->bp,
913 		XFS_DA_LOGRANGE(node, &btree[oldblk->index],
914 				tmp + sizeof(*btree)));
915 
916 	nodehdr.count += 1;
917 	dp->d_ops->node_hdr_to_disk(node, &nodehdr);
918 	xfs_trans_log_buf(state->args->trans, oldblk->bp,
919 		XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size));
920 
921 	/*
922 	 * Copy the last hash value from the oldblk to propagate upwards.
923 	 */
924 	oldblk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval);
925 }
926 
927 /*========================================================================
928  * Routines used for shrinking the Btree.
929  *========================================================================*/
930 
931 /*
932  * Deallocate an empty leaf node, remove it from its parent,
933  * possibly deallocating that block, etc...
934  */
935 int
936 xfs_da3_join(
937 	struct xfs_da_state	*state)
938 {
939 	struct xfs_da_state_blk	*drop_blk;
940 	struct xfs_da_state_blk	*save_blk;
941 	int			action = 0;
942 	int			error;
943 
944 	trace_xfs_da_join(state->args);
945 
946 	drop_blk = &state->path.blk[ state->path.active-1 ];
947 	save_blk = &state->altpath.blk[ state->path.active-1 ];
948 	ASSERT(state->path.blk[0].magic == XFS_DA_NODE_MAGIC);
949 	ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC ||
950 	       drop_blk->magic == XFS_DIR2_LEAFN_MAGIC);
951 
952 	/*
953 	 * Walk back up the tree joining/deallocating as necessary.
954 	 * When we stop dropping blocks, break out.
955 	 */
956 	for (  ; state->path.active >= 2; drop_blk--, save_blk--,
957 		 state->path.active--) {
958 		/*
959 		 * See if we can combine the block with a neighbor.
960 		 *   (action == 0) => no options, just leave
961 		 *   (action == 1) => coalesce, then unlink
962 		 *   (action == 2) => block empty, unlink it
963 		 */
964 		switch (drop_blk->magic) {
965 		case XFS_ATTR_LEAF_MAGIC:
966 			error = xfs_attr3_leaf_toosmall(state, &action);
967 			if (error)
968 				return error;
969 			if (action == 0)
970 				return 0;
971 			xfs_attr3_leaf_unbalance(state, drop_blk, save_blk);
972 			break;
973 		case XFS_DIR2_LEAFN_MAGIC:
974 			error = xfs_dir2_leafn_toosmall(state, &action);
975 			if (error)
976 				return error;
977 			if (action == 0)
978 				return 0;
979 			xfs_dir2_leafn_unbalance(state, drop_blk, save_blk);
980 			break;
981 		case XFS_DA_NODE_MAGIC:
982 			/*
983 			 * Remove the offending node, fixup hashvals,
984 			 * check for a toosmall neighbor.
985 			 */
986 			xfs_da3_node_remove(state, drop_blk);
987 			xfs_da3_fixhashpath(state, &state->path);
988 			error = xfs_da3_node_toosmall(state, &action);
989 			if (error)
990 				return error;
991 			if (action == 0)
992 				return 0;
993 			xfs_da3_node_unbalance(state, drop_blk, save_blk);
994 			break;
995 		}
996 		xfs_da3_fixhashpath(state, &state->altpath);
997 		error = xfs_da3_blk_unlink(state, drop_blk, save_blk);
998 		xfs_da_state_kill_altpath(state);
999 		if (error)
1000 			return error;
1001 		error = xfs_da_shrink_inode(state->args, drop_blk->blkno,
1002 							 drop_blk->bp);
1003 		drop_blk->bp = NULL;
1004 		if (error)
1005 			return error;
1006 	}
1007 	/*
1008 	 * We joined all the way to the top.  If it turns out that
1009 	 * we only have one entry in the root, make the child block
1010 	 * the new root.
1011 	 */
1012 	xfs_da3_node_remove(state, drop_blk);
1013 	xfs_da3_fixhashpath(state, &state->path);
1014 	error = xfs_da3_root_join(state, &state->path.blk[0]);
1015 	return error;
1016 }
1017 
1018 #ifdef	DEBUG
1019 static void
1020 xfs_da_blkinfo_onlychild_validate(struct xfs_da_blkinfo *blkinfo, __u16 level)
1021 {
1022 	__be16	magic = blkinfo->magic;
1023 
1024 	if (level == 1) {
1025 		ASSERT(magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
1026 		       magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) ||
1027 		       magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
1028 		       magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
1029 	} else {
1030 		ASSERT(magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
1031 		       magic == cpu_to_be16(XFS_DA3_NODE_MAGIC));
1032 	}
1033 	ASSERT(!blkinfo->forw);
1034 	ASSERT(!blkinfo->back);
1035 }
1036 #else	/* !DEBUG */
1037 #define	xfs_da_blkinfo_onlychild_validate(blkinfo, level)
1038 #endif	/* !DEBUG */
1039 
1040 /*
1041  * We have only one entry in the root.  Copy the only remaining child of
1042  * the old root to block 0 as the new root node.
1043  */
1044 STATIC int
1045 xfs_da3_root_join(
1046 	struct xfs_da_state	*state,
1047 	struct xfs_da_state_blk	*root_blk)
1048 {
1049 	struct xfs_da_intnode	*oldroot;
1050 	struct xfs_da_args	*args;
1051 	xfs_dablk_t		child;
1052 	struct xfs_buf		*bp;
1053 	struct xfs_da3_icnode_hdr oldroothdr;
1054 	struct xfs_da_node_entry *btree;
1055 	int			error;
1056 	struct xfs_inode	*dp = state->args->dp;
1057 
1058 	trace_xfs_da_root_join(state->args);
1059 
1060 	ASSERT(root_blk->magic == XFS_DA_NODE_MAGIC);
1061 
1062 	args = state->args;
1063 	oldroot = root_blk->bp->b_addr;
1064 	dp->d_ops->node_hdr_from_disk(&oldroothdr, oldroot);
1065 	ASSERT(oldroothdr.forw == 0);
1066 	ASSERT(oldroothdr.back == 0);
1067 
1068 	/*
1069 	 * If the root has more than one child, then don't do anything.
1070 	 */
1071 	if (oldroothdr.count > 1)
1072 		return 0;
1073 
1074 	/*
1075 	 * Read in the (only) child block, then copy those bytes into
1076 	 * the root block's buffer and free the original child block.
1077 	 */
1078 	btree = dp->d_ops->node_tree_p(oldroot);
1079 	child = be32_to_cpu(btree[0].before);
1080 	ASSERT(child != 0);
1081 	error = xfs_da3_node_read(args->trans, dp, child, -1, &bp,
1082 					     args->whichfork);
1083 	if (error)
1084 		return error;
1085 	xfs_da_blkinfo_onlychild_validate(bp->b_addr, oldroothdr.level);
1086 
1087 	/*
1088 	 * This could be copying a leaf back into the root block in the case of
1089 	 * there only being a single leaf block left in the tree. Hence we have
1090 	 * to update the b_ops pointer as well to match the buffer type change
1091 	 * that could occur. For dir3 blocks we also need to update the block
1092 	 * number in the buffer header.
1093 	 */
1094 	memcpy(root_blk->bp->b_addr, bp->b_addr, args->geo->blksize);
1095 	root_blk->bp->b_ops = bp->b_ops;
1096 	xfs_trans_buf_copy_type(root_blk->bp, bp);
1097 	if (oldroothdr.magic == XFS_DA3_NODE_MAGIC) {
1098 		struct xfs_da3_blkinfo *da3 = root_blk->bp->b_addr;
1099 		da3->blkno = cpu_to_be64(root_blk->bp->b_bn);
1100 	}
1101 	xfs_trans_log_buf(args->trans, root_blk->bp, 0,
1102 			  args->geo->blksize - 1);
1103 	error = xfs_da_shrink_inode(args, child, bp);
1104 	return error;
1105 }
1106 
1107 /*
1108  * Check a node block and its neighbors to see if the block should be
1109  * collapsed into one or the other neighbor.  Always keep the block
1110  * with the smaller block number.
1111  * If the current block is over 50% full, don't try to join it, return 0.
1112  * If the block is empty, fill in the state structure and return 2.
1113  * If it can be collapsed, fill in the state structure and return 1.
1114  * If nothing can be done, return 0.
1115  */
1116 STATIC int
1117 xfs_da3_node_toosmall(
1118 	struct xfs_da_state	*state,
1119 	int			*action)
1120 {
1121 	struct xfs_da_intnode	*node;
1122 	struct xfs_da_state_blk	*blk;
1123 	struct xfs_da_blkinfo	*info;
1124 	xfs_dablk_t		blkno;
1125 	struct xfs_buf		*bp;
1126 	struct xfs_da3_icnode_hdr nodehdr;
1127 	int			count;
1128 	int			forward;
1129 	int			error;
1130 	int			retval;
1131 	int			i;
1132 	struct xfs_inode	*dp = state->args->dp;
1133 
1134 	trace_xfs_da_node_toosmall(state->args);
1135 
1136 	/*
1137 	 * Check for the degenerate case of the block being over 50% full.
1138 	 * If so, it's not worth even looking to see if we might be able
1139 	 * to coalesce with a sibling.
1140 	 */
1141 	blk = &state->path.blk[ state->path.active-1 ];
1142 	info = blk->bp->b_addr;
1143 	node = (xfs_da_intnode_t *)info;
1144 	dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1145 	if (nodehdr.count > (state->args->geo->node_ents >> 1)) {
1146 		*action = 0;	/* blk over 50%, don't try to join */
1147 		return 0;	/* blk over 50%, don't try to join */
1148 	}
1149 
1150 	/*
1151 	 * Check for the degenerate case of the block being empty.
1152 	 * If the block is empty, we'll simply delete it, no need to
1153 	 * coalesce it with a sibling block.  We choose (arbitrarily)
1154 	 * to merge with the forward block unless it is NULL.
1155 	 */
1156 	if (nodehdr.count == 0) {
1157 		/*
1158 		 * Make altpath point to the block we want to keep and
1159 		 * path point to the block we want to drop (this one).
1160 		 */
1161 		forward = (info->forw != 0);
1162 		memcpy(&state->altpath, &state->path, sizeof(state->path));
1163 		error = xfs_da3_path_shift(state, &state->altpath, forward,
1164 						 0, &retval);
1165 		if (error)
1166 			return error;
1167 		if (retval) {
1168 			*action = 0;
1169 		} else {
1170 			*action = 2;
1171 		}
1172 		return 0;
1173 	}
1174 
1175 	/*
1176 	 * Examine each sibling block to see if we can coalesce with
1177 	 * at least 25% free space to spare.  We need to figure out
1178 	 * whether to merge with the forward or the backward block.
1179 	 * We prefer coalescing with the lower numbered sibling so as
1180 	 * to shrink a directory over time.
1181 	 */
1182 	count  = state->args->geo->node_ents;
1183 	count -= state->args->geo->node_ents >> 2;
1184 	count -= nodehdr.count;
1185 
1186 	/* start with smaller blk num */
1187 	forward = nodehdr.forw < nodehdr.back;
1188 	for (i = 0; i < 2; forward = !forward, i++) {
1189 		struct xfs_da3_icnode_hdr thdr;
1190 		if (forward)
1191 			blkno = nodehdr.forw;
1192 		else
1193 			blkno = nodehdr.back;
1194 		if (blkno == 0)
1195 			continue;
1196 		error = xfs_da3_node_read(state->args->trans, dp,
1197 					blkno, -1, &bp, state->args->whichfork);
1198 		if (error)
1199 			return error;
1200 
1201 		node = bp->b_addr;
1202 		dp->d_ops->node_hdr_from_disk(&thdr, node);
1203 		xfs_trans_brelse(state->args->trans, bp);
1204 
1205 		if (count - thdr.count >= 0)
1206 			break;	/* fits with at least 25% to spare */
1207 	}
1208 	if (i >= 2) {
1209 		*action = 0;
1210 		return 0;
1211 	}
1212 
1213 	/*
1214 	 * Make altpath point to the block we want to keep (the lower
1215 	 * numbered block) and path point to the block we want to drop.
1216 	 */
1217 	memcpy(&state->altpath, &state->path, sizeof(state->path));
1218 	if (blkno < blk->blkno) {
1219 		error = xfs_da3_path_shift(state, &state->altpath, forward,
1220 						 0, &retval);
1221 	} else {
1222 		error = xfs_da3_path_shift(state, &state->path, forward,
1223 						 0, &retval);
1224 	}
1225 	if (error)
1226 		return error;
1227 	if (retval) {
1228 		*action = 0;
1229 		return 0;
1230 	}
1231 	*action = 1;
1232 	return 0;
1233 }
1234 
1235 /*
1236  * Pick up the last hashvalue from an intermediate node.
1237  */
1238 STATIC uint
1239 xfs_da3_node_lasthash(
1240 	struct xfs_inode	*dp,
1241 	struct xfs_buf		*bp,
1242 	int			*count)
1243 {
1244 	struct xfs_da_intnode	 *node;
1245 	struct xfs_da_node_entry *btree;
1246 	struct xfs_da3_icnode_hdr nodehdr;
1247 
1248 	node = bp->b_addr;
1249 	dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1250 	if (count)
1251 		*count = nodehdr.count;
1252 	if (!nodehdr.count)
1253 		return 0;
1254 	btree = dp->d_ops->node_tree_p(node);
1255 	return be32_to_cpu(btree[nodehdr.count - 1].hashval);
1256 }
1257 
1258 /*
1259  * Walk back up the tree adjusting hash values as necessary,
1260  * when we stop making changes, return.
1261  */
1262 void
1263 xfs_da3_fixhashpath(
1264 	struct xfs_da_state	*state,
1265 	struct xfs_da_state_path *path)
1266 {
1267 	struct xfs_da_state_blk	*blk;
1268 	struct xfs_da_intnode	*node;
1269 	struct xfs_da_node_entry *btree;
1270 	xfs_dahash_t		lasthash=0;
1271 	int			level;
1272 	int			count;
1273 	struct xfs_inode	*dp = state->args->dp;
1274 
1275 	trace_xfs_da_fixhashpath(state->args);
1276 
1277 	level = path->active-1;
1278 	blk = &path->blk[ level ];
1279 	switch (blk->magic) {
1280 	case XFS_ATTR_LEAF_MAGIC:
1281 		lasthash = xfs_attr_leaf_lasthash(blk->bp, &count);
1282 		if (count == 0)
1283 			return;
1284 		break;
1285 	case XFS_DIR2_LEAFN_MAGIC:
1286 		lasthash = xfs_dir2_leafn_lasthash(dp, blk->bp, &count);
1287 		if (count == 0)
1288 			return;
1289 		break;
1290 	case XFS_DA_NODE_MAGIC:
1291 		lasthash = xfs_da3_node_lasthash(dp, blk->bp, &count);
1292 		if (count == 0)
1293 			return;
1294 		break;
1295 	}
1296 	for (blk--, level--; level >= 0; blk--, level--) {
1297 		struct xfs_da3_icnode_hdr nodehdr;
1298 
1299 		node = blk->bp->b_addr;
1300 		dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1301 		btree = dp->d_ops->node_tree_p(node);
1302 		if (be32_to_cpu(btree[blk->index].hashval) == lasthash)
1303 			break;
1304 		blk->hashval = lasthash;
1305 		btree[blk->index].hashval = cpu_to_be32(lasthash);
1306 		xfs_trans_log_buf(state->args->trans, blk->bp,
1307 				  XFS_DA_LOGRANGE(node, &btree[blk->index],
1308 						  sizeof(*btree)));
1309 
1310 		lasthash = be32_to_cpu(btree[nodehdr.count - 1].hashval);
1311 	}
1312 }
1313 
1314 /*
1315  * Remove an entry from an intermediate node.
1316  */
1317 STATIC void
1318 xfs_da3_node_remove(
1319 	struct xfs_da_state	*state,
1320 	struct xfs_da_state_blk	*drop_blk)
1321 {
1322 	struct xfs_da_intnode	*node;
1323 	struct xfs_da3_icnode_hdr nodehdr;
1324 	struct xfs_da_node_entry *btree;
1325 	int			index;
1326 	int			tmp;
1327 	struct xfs_inode	*dp = state->args->dp;
1328 
1329 	trace_xfs_da_node_remove(state->args);
1330 
1331 	node = drop_blk->bp->b_addr;
1332 	dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1333 	ASSERT(drop_blk->index < nodehdr.count);
1334 	ASSERT(drop_blk->index >= 0);
1335 
1336 	/*
1337 	 * Copy over the offending entry, or just zero it out.
1338 	 */
1339 	index = drop_blk->index;
1340 	btree = dp->d_ops->node_tree_p(node);
1341 	if (index < nodehdr.count - 1) {
1342 		tmp  = nodehdr.count - index - 1;
1343 		tmp *= (uint)sizeof(xfs_da_node_entry_t);
1344 		memmove(&btree[index], &btree[index + 1], tmp);
1345 		xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1346 		    XFS_DA_LOGRANGE(node, &btree[index], tmp));
1347 		index = nodehdr.count - 1;
1348 	}
1349 	memset(&btree[index], 0, sizeof(xfs_da_node_entry_t));
1350 	xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1351 	    XFS_DA_LOGRANGE(node, &btree[index], sizeof(btree[index])));
1352 	nodehdr.count -= 1;
1353 	dp->d_ops->node_hdr_to_disk(node, &nodehdr);
1354 	xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1355 	    XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size));
1356 
1357 	/*
1358 	 * Copy the last hash value from the block to propagate upwards.
1359 	 */
1360 	drop_blk->hashval = be32_to_cpu(btree[index - 1].hashval);
1361 }
1362 
1363 /*
1364  * Unbalance the elements between two intermediate nodes,
1365  * move all Btree elements from one node into another.
1366  */
1367 STATIC void
1368 xfs_da3_node_unbalance(
1369 	struct xfs_da_state	*state,
1370 	struct xfs_da_state_blk	*drop_blk,
1371 	struct xfs_da_state_blk	*save_blk)
1372 {
1373 	struct xfs_da_intnode	*drop_node;
1374 	struct xfs_da_intnode	*save_node;
1375 	struct xfs_da_node_entry *drop_btree;
1376 	struct xfs_da_node_entry *save_btree;
1377 	struct xfs_da3_icnode_hdr drop_hdr;
1378 	struct xfs_da3_icnode_hdr save_hdr;
1379 	struct xfs_trans	*tp;
1380 	int			sindex;
1381 	int			tmp;
1382 	struct xfs_inode	*dp = state->args->dp;
1383 
1384 	trace_xfs_da_node_unbalance(state->args);
1385 
1386 	drop_node = drop_blk->bp->b_addr;
1387 	save_node = save_blk->bp->b_addr;
1388 	dp->d_ops->node_hdr_from_disk(&drop_hdr, drop_node);
1389 	dp->d_ops->node_hdr_from_disk(&save_hdr, save_node);
1390 	drop_btree = dp->d_ops->node_tree_p(drop_node);
1391 	save_btree = dp->d_ops->node_tree_p(save_node);
1392 	tp = state->args->trans;
1393 
1394 	/*
1395 	 * If the dying block has lower hashvals, then move all the
1396 	 * elements in the remaining block up to make a hole.
1397 	 */
1398 	if ((be32_to_cpu(drop_btree[0].hashval) <
1399 			be32_to_cpu(save_btree[0].hashval)) ||
1400 	    (be32_to_cpu(drop_btree[drop_hdr.count - 1].hashval) <
1401 			be32_to_cpu(save_btree[save_hdr.count - 1].hashval))) {
1402 		/* XXX: check this - is memmove dst correct? */
1403 		tmp = save_hdr.count * sizeof(xfs_da_node_entry_t);
1404 		memmove(&save_btree[drop_hdr.count], &save_btree[0], tmp);
1405 
1406 		sindex = 0;
1407 		xfs_trans_log_buf(tp, save_blk->bp,
1408 			XFS_DA_LOGRANGE(save_node, &save_btree[0],
1409 				(save_hdr.count + drop_hdr.count) *
1410 						sizeof(xfs_da_node_entry_t)));
1411 	} else {
1412 		sindex = save_hdr.count;
1413 		xfs_trans_log_buf(tp, save_blk->bp,
1414 			XFS_DA_LOGRANGE(save_node, &save_btree[sindex],
1415 				drop_hdr.count * sizeof(xfs_da_node_entry_t)));
1416 	}
1417 
1418 	/*
1419 	 * Move all the B-tree elements from drop_blk to save_blk.
1420 	 */
1421 	tmp = drop_hdr.count * (uint)sizeof(xfs_da_node_entry_t);
1422 	memcpy(&save_btree[sindex], &drop_btree[0], tmp);
1423 	save_hdr.count += drop_hdr.count;
1424 
1425 	dp->d_ops->node_hdr_to_disk(save_node, &save_hdr);
1426 	xfs_trans_log_buf(tp, save_blk->bp,
1427 		XFS_DA_LOGRANGE(save_node, &save_node->hdr,
1428 				dp->d_ops->node_hdr_size));
1429 
1430 	/*
1431 	 * Save the last hashval in the remaining block for upward propagation.
1432 	 */
1433 	save_blk->hashval = be32_to_cpu(save_btree[save_hdr.count - 1].hashval);
1434 }
1435 
1436 /*========================================================================
1437  * Routines used for finding things in the Btree.
1438  *========================================================================*/
1439 
1440 /*
1441  * Walk down the Btree looking for a particular filename, filling
1442  * in the state structure as we go.
1443  *
1444  * We will set the state structure to point to each of the elements
1445  * in each of the nodes where either the hashval is or should be.
1446  *
1447  * We support duplicate hashval's so for each entry in the current
1448  * node that could contain the desired hashval, descend.  This is a
1449  * pruned depth-first tree search.
1450  */
1451 int							/* error */
1452 xfs_da3_node_lookup_int(
1453 	struct xfs_da_state	*state,
1454 	int			*result)
1455 {
1456 	struct xfs_da_state_blk	*blk;
1457 	struct xfs_da_blkinfo	*curr;
1458 	struct xfs_da_intnode	*node;
1459 	struct xfs_da_node_entry *btree;
1460 	struct xfs_da3_icnode_hdr nodehdr;
1461 	struct xfs_da_args	*args;
1462 	xfs_dablk_t		blkno;
1463 	xfs_dahash_t		hashval;
1464 	xfs_dahash_t		btreehashval;
1465 	int			probe;
1466 	int			span;
1467 	int			max;
1468 	int			error;
1469 	int			retval;
1470 	struct xfs_inode	*dp = state->args->dp;
1471 
1472 	args = state->args;
1473 
1474 	/*
1475 	 * Descend thru the B-tree searching each level for the right
1476 	 * node to use, until the right hashval is found.
1477 	 */
1478 	blkno = (args->whichfork == XFS_DATA_FORK)? args->geo->leafblk : 0;
1479 	for (blk = &state->path.blk[0], state->path.active = 1;
1480 			 state->path.active <= XFS_DA_NODE_MAXDEPTH;
1481 			 blk++, state->path.active++) {
1482 		/*
1483 		 * Read the next node down in the tree.
1484 		 */
1485 		blk->blkno = blkno;
1486 		error = xfs_da3_node_read(args->trans, args->dp, blkno,
1487 					-1, &blk->bp, args->whichfork);
1488 		if (error) {
1489 			blk->blkno = 0;
1490 			state->path.active--;
1491 			return error;
1492 		}
1493 		curr = blk->bp->b_addr;
1494 		blk->magic = be16_to_cpu(curr->magic);
1495 
1496 		if (blk->magic == XFS_ATTR_LEAF_MAGIC ||
1497 		    blk->magic == XFS_ATTR3_LEAF_MAGIC) {
1498 			blk->magic = XFS_ATTR_LEAF_MAGIC;
1499 			blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL);
1500 			break;
1501 		}
1502 
1503 		if (blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1504 		    blk->magic == XFS_DIR3_LEAFN_MAGIC) {
1505 			blk->magic = XFS_DIR2_LEAFN_MAGIC;
1506 			blk->hashval = xfs_dir2_leafn_lasthash(args->dp,
1507 							       blk->bp, NULL);
1508 			break;
1509 		}
1510 
1511 		blk->magic = XFS_DA_NODE_MAGIC;
1512 
1513 
1514 		/*
1515 		 * Search an intermediate node for a match.
1516 		 */
1517 		node = blk->bp->b_addr;
1518 		dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1519 		btree = dp->d_ops->node_tree_p(node);
1520 
1521 		max = nodehdr.count;
1522 		blk->hashval = be32_to_cpu(btree[max - 1].hashval);
1523 
1524 		/*
1525 		 * Binary search.  (note: small blocks will skip loop)
1526 		 */
1527 		probe = span = max / 2;
1528 		hashval = args->hashval;
1529 		while (span > 4) {
1530 			span /= 2;
1531 			btreehashval = be32_to_cpu(btree[probe].hashval);
1532 			if (btreehashval < hashval)
1533 				probe += span;
1534 			else if (btreehashval > hashval)
1535 				probe -= span;
1536 			else
1537 				break;
1538 		}
1539 		ASSERT((probe >= 0) && (probe < max));
1540 		ASSERT((span <= 4) ||
1541 			(be32_to_cpu(btree[probe].hashval) == hashval));
1542 
1543 		/*
1544 		 * Since we may have duplicate hashval's, find the first
1545 		 * matching hashval in the node.
1546 		 */
1547 		while (probe > 0 &&
1548 		       be32_to_cpu(btree[probe].hashval) >= hashval) {
1549 			probe--;
1550 		}
1551 		while (probe < max &&
1552 		       be32_to_cpu(btree[probe].hashval) < hashval) {
1553 			probe++;
1554 		}
1555 
1556 		/*
1557 		 * Pick the right block to descend on.
1558 		 */
1559 		if (probe == max) {
1560 			blk->index = max - 1;
1561 			blkno = be32_to_cpu(btree[max - 1].before);
1562 		} else {
1563 			blk->index = probe;
1564 			blkno = be32_to_cpu(btree[probe].before);
1565 		}
1566 	}
1567 
1568 	/*
1569 	 * A leaf block that ends in the hashval that we are interested in
1570 	 * (final hashval == search hashval) means that the next block may
1571 	 * contain more entries with the same hashval, shift upward to the
1572 	 * next leaf and keep searching.
1573 	 */
1574 	for (;;) {
1575 		if (blk->magic == XFS_DIR2_LEAFN_MAGIC) {
1576 			retval = xfs_dir2_leafn_lookup_int(blk->bp, args,
1577 							&blk->index, state);
1578 		} else if (blk->magic == XFS_ATTR_LEAF_MAGIC) {
1579 			retval = xfs_attr3_leaf_lookup_int(blk->bp, args);
1580 			blk->index = args->index;
1581 			args->blkno = blk->blkno;
1582 		} else {
1583 			ASSERT(0);
1584 			return -EFSCORRUPTED;
1585 		}
1586 		if (((retval == -ENOENT) || (retval == -ENOATTR)) &&
1587 		    (blk->hashval == args->hashval)) {
1588 			error = xfs_da3_path_shift(state, &state->path, 1, 1,
1589 							 &retval);
1590 			if (error)
1591 				return error;
1592 			if (retval == 0) {
1593 				continue;
1594 			} else if (blk->magic == XFS_ATTR_LEAF_MAGIC) {
1595 				/* path_shift() gives ENOENT */
1596 				retval = -ENOATTR;
1597 			}
1598 		}
1599 		break;
1600 	}
1601 	*result = retval;
1602 	return 0;
1603 }
1604 
1605 /*========================================================================
1606  * Utility routines.
1607  *========================================================================*/
1608 
1609 /*
1610  * Compare two intermediate nodes for "order".
1611  */
1612 STATIC int
1613 xfs_da3_node_order(
1614 	struct xfs_inode *dp,
1615 	struct xfs_buf	*node1_bp,
1616 	struct xfs_buf	*node2_bp)
1617 {
1618 	struct xfs_da_intnode	*node1;
1619 	struct xfs_da_intnode	*node2;
1620 	struct xfs_da_node_entry *btree1;
1621 	struct xfs_da_node_entry *btree2;
1622 	struct xfs_da3_icnode_hdr node1hdr;
1623 	struct xfs_da3_icnode_hdr node2hdr;
1624 
1625 	node1 = node1_bp->b_addr;
1626 	node2 = node2_bp->b_addr;
1627 	dp->d_ops->node_hdr_from_disk(&node1hdr, node1);
1628 	dp->d_ops->node_hdr_from_disk(&node2hdr, node2);
1629 	btree1 = dp->d_ops->node_tree_p(node1);
1630 	btree2 = dp->d_ops->node_tree_p(node2);
1631 
1632 	if (node1hdr.count > 0 && node2hdr.count > 0 &&
1633 	    ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) ||
1634 	     (be32_to_cpu(btree2[node2hdr.count - 1].hashval) <
1635 	      be32_to_cpu(btree1[node1hdr.count - 1].hashval)))) {
1636 		return 1;
1637 	}
1638 	return 0;
1639 }
1640 
1641 /*
1642  * Link a new block into a doubly linked list of blocks (of whatever type).
1643  */
1644 int							/* error */
1645 xfs_da3_blk_link(
1646 	struct xfs_da_state	*state,
1647 	struct xfs_da_state_blk	*old_blk,
1648 	struct xfs_da_state_blk	*new_blk)
1649 {
1650 	struct xfs_da_blkinfo	*old_info;
1651 	struct xfs_da_blkinfo	*new_info;
1652 	struct xfs_da_blkinfo	*tmp_info;
1653 	struct xfs_da_args	*args;
1654 	struct xfs_buf		*bp;
1655 	int			before = 0;
1656 	int			error;
1657 	struct xfs_inode	*dp = state->args->dp;
1658 
1659 	/*
1660 	 * Set up environment.
1661 	 */
1662 	args = state->args;
1663 	ASSERT(args != NULL);
1664 	old_info = old_blk->bp->b_addr;
1665 	new_info = new_blk->bp->b_addr;
1666 	ASSERT(old_blk->magic == XFS_DA_NODE_MAGIC ||
1667 	       old_blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1668 	       old_blk->magic == XFS_ATTR_LEAF_MAGIC);
1669 
1670 	switch (old_blk->magic) {
1671 	case XFS_ATTR_LEAF_MAGIC:
1672 		before = xfs_attr_leaf_order(old_blk->bp, new_blk->bp);
1673 		break;
1674 	case XFS_DIR2_LEAFN_MAGIC:
1675 		before = xfs_dir2_leafn_order(dp, old_blk->bp, new_blk->bp);
1676 		break;
1677 	case XFS_DA_NODE_MAGIC:
1678 		before = xfs_da3_node_order(dp, old_blk->bp, new_blk->bp);
1679 		break;
1680 	}
1681 
1682 	/*
1683 	 * Link blocks in appropriate order.
1684 	 */
1685 	if (before) {
1686 		/*
1687 		 * Link new block in before existing block.
1688 		 */
1689 		trace_xfs_da_link_before(args);
1690 		new_info->forw = cpu_to_be32(old_blk->blkno);
1691 		new_info->back = old_info->back;
1692 		if (old_info->back) {
1693 			error = xfs_da3_node_read(args->trans, dp,
1694 						be32_to_cpu(old_info->back),
1695 						-1, &bp, args->whichfork);
1696 			if (error)
1697 				return error;
1698 			ASSERT(bp != NULL);
1699 			tmp_info = bp->b_addr;
1700 			ASSERT(tmp_info->magic == old_info->magic);
1701 			ASSERT(be32_to_cpu(tmp_info->forw) == old_blk->blkno);
1702 			tmp_info->forw = cpu_to_be32(new_blk->blkno);
1703 			xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1);
1704 		}
1705 		old_info->back = cpu_to_be32(new_blk->blkno);
1706 	} else {
1707 		/*
1708 		 * Link new block in after existing block.
1709 		 */
1710 		trace_xfs_da_link_after(args);
1711 		new_info->forw = old_info->forw;
1712 		new_info->back = cpu_to_be32(old_blk->blkno);
1713 		if (old_info->forw) {
1714 			error = xfs_da3_node_read(args->trans, dp,
1715 						be32_to_cpu(old_info->forw),
1716 						-1, &bp, args->whichfork);
1717 			if (error)
1718 				return error;
1719 			ASSERT(bp != NULL);
1720 			tmp_info = bp->b_addr;
1721 			ASSERT(tmp_info->magic == old_info->magic);
1722 			ASSERT(be32_to_cpu(tmp_info->back) == old_blk->blkno);
1723 			tmp_info->back = cpu_to_be32(new_blk->blkno);
1724 			xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1);
1725 		}
1726 		old_info->forw = cpu_to_be32(new_blk->blkno);
1727 	}
1728 
1729 	xfs_trans_log_buf(args->trans, old_blk->bp, 0, sizeof(*tmp_info) - 1);
1730 	xfs_trans_log_buf(args->trans, new_blk->bp, 0, sizeof(*tmp_info) - 1);
1731 	return 0;
1732 }
1733 
1734 /*
1735  * Unlink a block from a doubly linked list of blocks.
1736  */
1737 STATIC int						/* error */
1738 xfs_da3_blk_unlink(
1739 	struct xfs_da_state	*state,
1740 	struct xfs_da_state_blk	*drop_blk,
1741 	struct xfs_da_state_blk	*save_blk)
1742 {
1743 	struct xfs_da_blkinfo	*drop_info;
1744 	struct xfs_da_blkinfo	*save_info;
1745 	struct xfs_da_blkinfo	*tmp_info;
1746 	struct xfs_da_args	*args;
1747 	struct xfs_buf		*bp;
1748 	int			error;
1749 
1750 	/*
1751 	 * Set up environment.
1752 	 */
1753 	args = state->args;
1754 	ASSERT(args != NULL);
1755 	save_info = save_blk->bp->b_addr;
1756 	drop_info = drop_blk->bp->b_addr;
1757 	ASSERT(save_blk->magic == XFS_DA_NODE_MAGIC ||
1758 	       save_blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1759 	       save_blk->magic == XFS_ATTR_LEAF_MAGIC);
1760 	ASSERT(save_blk->magic == drop_blk->magic);
1761 	ASSERT((be32_to_cpu(save_info->forw) == drop_blk->blkno) ||
1762 	       (be32_to_cpu(save_info->back) == drop_blk->blkno));
1763 	ASSERT((be32_to_cpu(drop_info->forw) == save_blk->blkno) ||
1764 	       (be32_to_cpu(drop_info->back) == save_blk->blkno));
1765 
1766 	/*
1767 	 * Unlink the leaf block from the doubly linked chain of leaves.
1768 	 */
1769 	if (be32_to_cpu(save_info->back) == drop_blk->blkno) {
1770 		trace_xfs_da_unlink_back(args);
1771 		save_info->back = drop_info->back;
1772 		if (drop_info->back) {
1773 			error = xfs_da3_node_read(args->trans, args->dp,
1774 						be32_to_cpu(drop_info->back),
1775 						-1, &bp, args->whichfork);
1776 			if (error)
1777 				return error;
1778 			ASSERT(bp != NULL);
1779 			tmp_info = bp->b_addr;
1780 			ASSERT(tmp_info->magic == save_info->magic);
1781 			ASSERT(be32_to_cpu(tmp_info->forw) == drop_blk->blkno);
1782 			tmp_info->forw = cpu_to_be32(save_blk->blkno);
1783 			xfs_trans_log_buf(args->trans, bp, 0,
1784 						    sizeof(*tmp_info) - 1);
1785 		}
1786 	} else {
1787 		trace_xfs_da_unlink_forward(args);
1788 		save_info->forw = drop_info->forw;
1789 		if (drop_info->forw) {
1790 			error = xfs_da3_node_read(args->trans, args->dp,
1791 						be32_to_cpu(drop_info->forw),
1792 						-1, &bp, args->whichfork);
1793 			if (error)
1794 				return error;
1795 			ASSERT(bp != NULL);
1796 			tmp_info = bp->b_addr;
1797 			ASSERT(tmp_info->magic == save_info->magic);
1798 			ASSERT(be32_to_cpu(tmp_info->back) == drop_blk->blkno);
1799 			tmp_info->back = cpu_to_be32(save_blk->blkno);
1800 			xfs_trans_log_buf(args->trans, bp, 0,
1801 						    sizeof(*tmp_info) - 1);
1802 		}
1803 	}
1804 
1805 	xfs_trans_log_buf(args->trans, save_blk->bp, 0, sizeof(*save_info) - 1);
1806 	return 0;
1807 }
1808 
1809 /*
1810  * Move a path "forward" or "!forward" one block at the current level.
1811  *
1812  * This routine will adjust a "path" to point to the next block
1813  * "forward" (higher hashvalues) or "!forward" (lower hashvals) in the
1814  * Btree, including updating pointers to the intermediate nodes between
1815  * the new bottom and the root.
1816  */
1817 int							/* error */
1818 xfs_da3_path_shift(
1819 	struct xfs_da_state	*state,
1820 	struct xfs_da_state_path *path,
1821 	int			forward,
1822 	int			release,
1823 	int			*result)
1824 {
1825 	struct xfs_da_state_blk	*blk;
1826 	struct xfs_da_blkinfo	*info;
1827 	struct xfs_da_intnode	*node;
1828 	struct xfs_da_args	*args;
1829 	struct xfs_da_node_entry *btree;
1830 	struct xfs_da3_icnode_hdr nodehdr;
1831 	struct xfs_buf		*bp;
1832 	xfs_dablk_t		blkno = 0;
1833 	int			level;
1834 	int			error;
1835 	struct xfs_inode	*dp = state->args->dp;
1836 
1837 	trace_xfs_da_path_shift(state->args);
1838 
1839 	/*
1840 	 * Roll up the Btree looking for the first block where our
1841 	 * current index is not at the edge of the block.  Note that
1842 	 * we skip the bottom layer because we want the sibling block.
1843 	 */
1844 	args = state->args;
1845 	ASSERT(args != NULL);
1846 	ASSERT(path != NULL);
1847 	ASSERT((path->active > 0) && (path->active < XFS_DA_NODE_MAXDEPTH));
1848 	level = (path->active-1) - 1;	/* skip bottom layer in path */
1849 	for (blk = &path->blk[level]; level >= 0; blk--, level--) {
1850 		node = blk->bp->b_addr;
1851 		dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1852 		btree = dp->d_ops->node_tree_p(node);
1853 
1854 		if (forward && (blk->index < nodehdr.count - 1)) {
1855 			blk->index++;
1856 			blkno = be32_to_cpu(btree[blk->index].before);
1857 			break;
1858 		} else if (!forward && (blk->index > 0)) {
1859 			blk->index--;
1860 			blkno = be32_to_cpu(btree[blk->index].before);
1861 			break;
1862 		}
1863 	}
1864 	if (level < 0) {
1865 		*result = -ENOENT;	/* we're out of our tree */
1866 		ASSERT(args->op_flags & XFS_DA_OP_OKNOENT);
1867 		return 0;
1868 	}
1869 
1870 	/*
1871 	 * Roll down the edge of the subtree until we reach the
1872 	 * same depth we were at originally.
1873 	 */
1874 	for (blk++, level++; level < path->active; blk++, level++) {
1875 		/*
1876 		 * Read the next child block into a local buffer.
1877 		 */
1878 		error = xfs_da3_node_read(args->trans, dp, blkno, -1, &bp,
1879 					  args->whichfork);
1880 		if (error)
1881 			return error;
1882 
1883 		/*
1884 		 * Release the old block (if it's dirty, the trans doesn't
1885 		 * actually let go) and swap the local buffer into the path
1886 		 * structure. This ensures failure of the above read doesn't set
1887 		 * a NULL buffer in an active slot in the path.
1888 		 */
1889 		if (release)
1890 			xfs_trans_brelse(args->trans, blk->bp);
1891 		blk->blkno = blkno;
1892 		blk->bp = bp;
1893 
1894 		info = blk->bp->b_addr;
1895 		ASSERT(info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
1896 		       info->magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) ||
1897 		       info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
1898 		       info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) ||
1899 		       info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
1900 		       info->magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
1901 
1902 
1903 		/*
1904 		 * Note: we flatten the magic number to a single type so we
1905 		 * don't have to compare against crc/non-crc types elsewhere.
1906 		 */
1907 		switch (be16_to_cpu(info->magic)) {
1908 		case XFS_DA_NODE_MAGIC:
1909 		case XFS_DA3_NODE_MAGIC:
1910 			blk->magic = XFS_DA_NODE_MAGIC;
1911 			node = (xfs_da_intnode_t *)info;
1912 			dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1913 			btree = dp->d_ops->node_tree_p(node);
1914 			blk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval);
1915 			if (forward)
1916 				blk->index = 0;
1917 			else
1918 				blk->index = nodehdr.count - 1;
1919 			blkno = be32_to_cpu(btree[blk->index].before);
1920 			break;
1921 		case XFS_ATTR_LEAF_MAGIC:
1922 		case XFS_ATTR3_LEAF_MAGIC:
1923 			blk->magic = XFS_ATTR_LEAF_MAGIC;
1924 			ASSERT(level == path->active-1);
1925 			blk->index = 0;
1926 			blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL);
1927 			break;
1928 		case XFS_DIR2_LEAFN_MAGIC:
1929 		case XFS_DIR3_LEAFN_MAGIC:
1930 			blk->magic = XFS_DIR2_LEAFN_MAGIC;
1931 			ASSERT(level == path->active-1);
1932 			blk->index = 0;
1933 			blk->hashval = xfs_dir2_leafn_lasthash(args->dp,
1934 							       blk->bp, NULL);
1935 			break;
1936 		default:
1937 			ASSERT(0);
1938 			break;
1939 		}
1940 	}
1941 	*result = 0;
1942 	return 0;
1943 }
1944 
1945 
1946 /*========================================================================
1947  * Utility routines.
1948  *========================================================================*/
1949 
1950 /*
1951  * Implement a simple hash on a character string.
1952  * Rotate the hash value by 7 bits, then XOR each character in.
1953  * This is implemented with some source-level loop unrolling.
1954  */
1955 xfs_dahash_t
1956 xfs_da_hashname(const __uint8_t *name, int namelen)
1957 {
1958 	xfs_dahash_t hash;
1959 
1960 	/*
1961 	 * Do four characters at a time as long as we can.
1962 	 */
1963 	for (hash = 0; namelen >= 4; namelen -= 4, name += 4)
1964 		hash = (name[0] << 21) ^ (name[1] << 14) ^ (name[2] << 7) ^
1965 		       (name[3] << 0) ^ rol32(hash, 7 * 4);
1966 
1967 	/*
1968 	 * Now do the rest of the characters.
1969 	 */
1970 	switch (namelen) {
1971 	case 3:
1972 		return (name[0] << 14) ^ (name[1] << 7) ^ (name[2] << 0) ^
1973 		       rol32(hash, 7 * 3);
1974 	case 2:
1975 		return (name[0] << 7) ^ (name[1] << 0) ^ rol32(hash, 7 * 2);
1976 	case 1:
1977 		return (name[0] << 0) ^ rol32(hash, 7 * 1);
1978 	default: /* case 0: */
1979 		return hash;
1980 	}
1981 }
1982 
1983 enum xfs_dacmp
1984 xfs_da_compname(
1985 	struct xfs_da_args *args,
1986 	const unsigned char *name,
1987 	int		len)
1988 {
1989 	return (args->namelen == len && memcmp(args->name, name, len) == 0) ?
1990 					XFS_CMP_EXACT : XFS_CMP_DIFFERENT;
1991 }
1992 
1993 static xfs_dahash_t
1994 xfs_default_hashname(
1995 	struct xfs_name	*name)
1996 {
1997 	return xfs_da_hashname(name->name, name->len);
1998 }
1999 
2000 const struct xfs_nameops xfs_default_nameops = {
2001 	.hashname	= xfs_default_hashname,
2002 	.compname	= xfs_da_compname
2003 };
2004 
2005 int
2006 xfs_da_grow_inode_int(
2007 	struct xfs_da_args	*args,
2008 	xfs_fileoff_t		*bno,
2009 	int			count)
2010 {
2011 	struct xfs_trans	*tp = args->trans;
2012 	struct xfs_inode	*dp = args->dp;
2013 	int			w = args->whichfork;
2014 	xfs_rfsblock_t		nblks = dp->i_d.di_nblocks;
2015 	struct xfs_bmbt_irec	map, *mapp;
2016 	int			nmap, error, got, i, mapi;
2017 
2018 	/*
2019 	 * Find a spot in the file space to put the new block.
2020 	 */
2021 	error = xfs_bmap_first_unused(tp, dp, count, bno, w);
2022 	if (error)
2023 		return error;
2024 
2025 	/*
2026 	 * Try mapping it in one filesystem block.
2027 	 */
2028 	nmap = 1;
2029 	ASSERT(args->firstblock != NULL);
2030 	error = xfs_bmapi_write(tp, dp, *bno, count,
2031 			xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA|XFS_BMAPI_CONTIG,
2032 			args->firstblock, args->total, &map, &nmap,
2033 			args->flist);
2034 	if (error)
2035 		return error;
2036 
2037 	ASSERT(nmap <= 1);
2038 	if (nmap == 1) {
2039 		mapp = &map;
2040 		mapi = 1;
2041 	} else if (nmap == 0 && count > 1) {
2042 		xfs_fileoff_t		b;
2043 		int			c;
2044 
2045 		/*
2046 		 * If we didn't get it and the block might work if fragmented,
2047 		 * try without the CONTIG flag.  Loop until we get it all.
2048 		 */
2049 		mapp = kmem_alloc(sizeof(*mapp) * count, KM_SLEEP);
2050 		for (b = *bno, mapi = 0; b < *bno + count; ) {
2051 			nmap = MIN(XFS_BMAP_MAX_NMAP, count);
2052 			c = (int)(*bno + count - b);
2053 			error = xfs_bmapi_write(tp, dp, b, c,
2054 					xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA,
2055 					args->firstblock, args->total,
2056 					&mapp[mapi], &nmap, args->flist);
2057 			if (error)
2058 				goto out_free_map;
2059 			if (nmap < 1)
2060 				break;
2061 			mapi += nmap;
2062 			b = mapp[mapi - 1].br_startoff +
2063 			    mapp[mapi - 1].br_blockcount;
2064 		}
2065 	} else {
2066 		mapi = 0;
2067 		mapp = NULL;
2068 	}
2069 
2070 	/*
2071 	 * Count the blocks we got, make sure it matches the total.
2072 	 */
2073 	for (i = 0, got = 0; i < mapi; i++)
2074 		got += mapp[i].br_blockcount;
2075 	if (got != count || mapp[0].br_startoff != *bno ||
2076 	    mapp[mapi - 1].br_startoff + mapp[mapi - 1].br_blockcount !=
2077 	    *bno + count) {
2078 		error = -ENOSPC;
2079 		goto out_free_map;
2080 	}
2081 
2082 	/* account for newly allocated blocks in reserved blocks total */
2083 	args->total -= dp->i_d.di_nblocks - nblks;
2084 
2085 out_free_map:
2086 	if (mapp != &map)
2087 		kmem_free(mapp);
2088 	return error;
2089 }
2090 
2091 /*
2092  * Add a block to the btree ahead of the file.
2093  * Return the new block number to the caller.
2094  */
2095 int
2096 xfs_da_grow_inode(
2097 	struct xfs_da_args	*args,
2098 	xfs_dablk_t		*new_blkno)
2099 {
2100 	xfs_fileoff_t		bno;
2101 	int			error;
2102 
2103 	trace_xfs_da_grow_inode(args);
2104 
2105 	bno = args->geo->leafblk;
2106 	error = xfs_da_grow_inode_int(args, &bno, args->geo->fsbcount);
2107 	if (!error)
2108 		*new_blkno = (xfs_dablk_t)bno;
2109 	return error;
2110 }
2111 
2112 /*
2113  * Ick.  We need to always be able to remove a btree block, even
2114  * if there's no space reservation because the filesystem is full.
2115  * This is called if xfs_bunmapi on a btree block fails due to ENOSPC.
2116  * It swaps the target block with the last block in the file.  The
2117  * last block in the file can always be removed since it can't cause
2118  * a bmap btree split to do that.
2119  */
2120 STATIC int
2121 xfs_da3_swap_lastblock(
2122 	struct xfs_da_args	*args,
2123 	xfs_dablk_t		*dead_blknop,
2124 	struct xfs_buf		**dead_bufp)
2125 {
2126 	struct xfs_da_blkinfo	*dead_info;
2127 	struct xfs_da_blkinfo	*sib_info;
2128 	struct xfs_da_intnode	*par_node;
2129 	struct xfs_da_intnode	*dead_node;
2130 	struct xfs_dir2_leaf	*dead_leaf2;
2131 	struct xfs_da_node_entry *btree;
2132 	struct xfs_da3_icnode_hdr par_hdr;
2133 	struct xfs_inode	*dp;
2134 	struct xfs_trans	*tp;
2135 	struct xfs_mount	*mp;
2136 	struct xfs_buf		*dead_buf;
2137 	struct xfs_buf		*last_buf;
2138 	struct xfs_buf		*sib_buf;
2139 	struct xfs_buf		*par_buf;
2140 	xfs_dahash_t		dead_hash;
2141 	xfs_fileoff_t		lastoff;
2142 	xfs_dablk_t		dead_blkno;
2143 	xfs_dablk_t		last_blkno;
2144 	xfs_dablk_t		sib_blkno;
2145 	xfs_dablk_t		par_blkno;
2146 	int			error;
2147 	int			w;
2148 	int			entno;
2149 	int			level;
2150 	int			dead_level;
2151 
2152 	trace_xfs_da_swap_lastblock(args);
2153 
2154 	dead_buf = *dead_bufp;
2155 	dead_blkno = *dead_blknop;
2156 	tp = args->trans;
2157 	dp = args->dp;
2158 	w = args->whichfork;
2159 	ASSERT(w == XFS_DATA_FORK);
2160 	mp = dp->i_mount;
2161 	lastoff = args->geo->freeblk;
2162 	error = xfs_bmap_last_before(tp, dp, &lastoff, w);
2163 	if (error)
2164 		return error;
2165 	if (unlikely(lastoff == 0)) {
2166 		XFS_ERROR_REPORT("xfs_da_swap_lastblock(1)", XFS_ERRLEVEL_LOW,
2167 				 mp);
2168 		return -EFSCORRUPTED;
2169 	}
2170 	/*
2171 	 * Read the last block in the btree space.
2172 	 */
2173 	last_blkno = (xfs_dablk_t)lastoff - args->geo->fsbcount;
2174 	error = xfs_da3_node_read(tp, dp, last_blkno, -1, &last_buf, w);
2175 	if (error)
2176 		return error;
2177 	/*
2178 	 * Copy the last block into the dead buffer and log it.
2179 	 */
2180 	memcpy(dead_buf->b_addr, last_buf->b_addr, args->geo->blksize);
2181 	xfs_trans_log_buf(tp, dead_buf, 0, args->geo->blksize - 1);
2182 	dead_info = dead_buf->b_addr;
2183 	/*
2184 	 * Get values from the moved block.
2185 	 */
2186 	if (dead_info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
2187 	    dead_info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
2188 		struct xfs_dir3_icleaf_hdr leafhdr;
2189 		struct xfs_dir2_leaf_entry *ents;
2190 
2191 		dead_leaf2 = (xfs_dir2_leaf_t *)dead_info;
2192 		dp->d_ops->leaf_hdr_from_disk(&leafhdr, dead_leaf2);
2193 		ents = dp->d_ops->leaf_ents_p(dead_leaf2);
2194 		dead_level = 0;
2195 		dead_hash = be32_to_cpu(ents[leafhdr.count - 1].hashval);
2196 	} else {
2197 		struct xfs_da3_icnode_hdr deadhdr;
2198 
2199 		dead_node = (xfs_da_intnode_t *)dead_info;
2200 		dp->d_ops->node_hdr_from_disk(&deadhdr, dead_node);
2201 		btree = dp->d_ops->node_tree_p(dead_node);
2202 		dead_level = deadhdr.level;
2203 		dead_hash = be32_to_cpu(btree[deadhdr.count - 1].hashval);
2204 	}
2205 	sib_buf = par_buf = NULL;
2206 	/*
2207 	 * If the moved block has a left sibling, fix up the pointers.
2208 	 */
2209 	if ((sib_blkno = be32_to_cpu(dead_info->back))) {
2210 		error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w);
2211 		if (error)
2212 			goto done;
2213 		sib_info = sib_buf->b_addr;
2214 		if (unlikely(
2215 		    be32_to_cpu(sib_info->forw) != last_blkno ||
2216 		    sib_info->magic != dead_info->magic)) {
2217 			XFS_ERROR_REPORT("xfs_da_swap_lastblock(2)",
2218 					 XFS_ERRLEVEL_LOW, mp);
2219 			error = -EFSCORRUPTED;
2220 			goto done;
2221 		}
2222 		sib_info->forw = cpu_to_be32(dead_blkno);
2223 		xfs_trans_log_buf(tp, sib_buf,
2224 			XFS_DA_LOGRANGE(sib_info, &sib_info->forw,
2225 					sizeof(sib_info->forw)));
2226 		sib_buf = NULL;
2227 	}
2228 	/*
2229 	 * If the moved block has a right sibling, fix up the pointers.
2230 	 */
2231 	if ((sib_blkno = be32_to_cpu(dead_info->forw))) {
2232 		error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w);
2233 		if (error)
2234 			goto done;
2235 		sib_info = sib_buf->b_addr;
2236 		if (unlikely(
2237 		       be32_to_cpu(sib_info->back) != last_blkno ||
2238 		       sib_info->magic != dead_info->magic)) {
2239 			XFS_ERROR_REPORT("xfs_da_swap_lastblock(3)",
2240 					 XFS_ERRLEVEL_LOW, mp);
2241 			error = -EFSCORRUPTED;
2242 			goto done;
2243 		}
2244 		sib_info->back = cpu_to_be32(dead_blkno);
2245 		xfs_trans_log_buf(tp, sib_buf,
2246 			XFS_DA_LOGRANGE(sib_info, &sib_info->back,
2247 					sizeof(sib_info->back)));
2248 		sib_buf = NULL;
2249 	}
2250 	par_blkno = args->geo->leafblk;
2251 	level = -1;
2252 	/*
2253 	 * Walk down the tree looking for the parent of the moved block.
2254 	 */
2255 	for (;;) {
2256 		error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w);
2257 		if (error)
2258 			goto done;
2259 		par_node = par_buf->b_addr;
2260 		dp->d_ops->node_hdr_from_disk(&par_hdr, par_node);
2261 		if (level >= 0 && level != par_hdr.level + 1) {
2262 			XFS_ERROR_REPORT("xfs_da_swap_lastblock(4)",
2263 					 XFS_ERRLEVEL_LOW, mp);
2264 			error = -EFSCORRUPTED;
2265 			goto done;
2266 		}
2267 		level = par_hdr.level;
2268 		btree = dp->d_ops->node_tree_p(par_node);
2269 		for (entno = 0;
2270 		     entno < par_hdr.count &&
2271 		     be32_to_cpu(btree[entno].hashval) < dead_hash;
2272 		     entno++)
2273 			continue;
2274 		if (entno == par_hdr.count) {
2275 			XFS_ERROR_REPORT("xfs_da_swap_lastblock(5)",
2276 					 XFS_ERRLEVEL_LOW, mp);
2277 			error = -EFSCORRUPTED;
2278 			goto done;
2279 		}
2280 		par_blkno = be32_to_cpu(btree[entno].before);
2281 		if (level == dead_level + 1)
2282 			break;
2283 		xfs_trans_brelse(tp, par_buf);
2284 		par_buf = NULL;
2285 	}
2286 	/*
2287 	 * We're in the right parent block.
2288 	 * Look for the right entry.
2289 	 */
2290 	for (;;) {
2291 		for (;
2292 		     entno < par_hdr.count &&
2293 		     be32_to_cpu(btree[entno].before) != last_blkno;
2294 		     entno++)
2295 			continue;
2296 		if (entno < par_hdr.count)
2297 			break;
2298 		par_blkno = par_hdr.forw;
2299 		xfs_trans_brelse(tp, par_buf);
2300 		par_buf = NULL;
2301 		if (unlikely(par_blkno == 0)) {
2302 			XFS_ERROR_REPORT("xfs_da_swap_lastblock(6)",
2303 					 XFS_ERRLEVEL_LOW, mp);
2304 			error = -EFSCORRUPTED;
2305 			goto done;
2306 		}
2307 		error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w);
2308 		if (error)
2309 			goto done;
2310 		par_node = par_buf->b_addr;
2311 		dp->d_ops->node_hdr_from_disk(&par_hdr, par_node);
2312 		if (par_hdr.level != level) {
2313 			XFS_ERROR_REPORT("xfs_da_swap_lastblock(7)",
2314 					 XFS_ERRLEVEL_LOW, mp);
2315 			error = -EFSCORRUPTED;
2316 			goto done;
2317 		}
2318 		btree = dp->d_ops->node_tree_p(par_node);
2319 		entno = 0;
2320 	}
2321 	/*
2322 	 * Update the parent entry pointing to the moved block.
2323 	 */
2324 	btree[entno].before = cpu_to_be32(dead_blkno);
2325 	xfs_trans_log_buf(tp, par_buf,
2326 		XFS_DA_LOGRANGE(par_node, &btree[entno].before,
2327 				sizeof(btree[entno].before)));
2328 	*dead_blknop = last_blkno;
2329 	*dead_bufp = last_buf;
2330 	return 0;
2331 done:
2332 	if (par_buf)
2333 		xfs_trans_brelse(tp, par_buf);
2334 	if (sib_buf)
2335 		xfs_trans_brelse(tp, sib_buf);
2336 	xfs_trans_brelse(tp, last_buf);
2337 	return error;
2338 }
2339 
2340 /*
2341  * Remove a btree block from a directory or attribute.
2342  */
2343 int
2344 xfs_da_shrink_inode(
2345 	xfs_da_args_t	*args,
2346 	xfs_dablk_t	dead_blkno,
2347 	struct xfs_buf	*dead_buf)
2348 {
2349 	xfs_inode_t *dp;
2350 	int done, error, w, count;
2351 	xfs_trans_t *tp;
2352 
2353 	trace_xfs_da_shrink_inode(args);
2354 
2355 	dp = args->dp;
2356 	w = args->whichfork;
2357 	tp = args->trans;
2358 	count = args->geo->fsbcount;
2359 	for (;;) {
2360 		/*
2361 		 * Remove extents.  If we get ENOSPC for a dir we have to move
2362 		 * the last block to the place we want to kill.
2363 		 */
2364 		error = xfs_bunmapi(tp, dp, dead_blkno, count,
2365 				    xfs_bmapi_aflag(w), 0, args->firstblock,
2366 				    args->flist, &done);
2367 		if (error == -ENOSPC) {
2368 			if (w != XFS_DATA_FORK)
2369 				break;
2370 			error = xfs_da3_swap_lastblock(args, &dead_blkno,
2371 						      &dead_buf);
2372 			if (error)
2373 				break;
2374 		} else {
2375 			break;
2376 		}
2377 	}
2378 	xfs_trans_binval(tp, dead_buf);
2379 	return error;
2380 }
2381 
2382 /*
2383  * See if the mapping(s) for this btree block are valid, i.e.
2384  * don't contain holes, are logically contiguous, and cover the whole range.
2385  */
2386 STATIC int
2387 xfs_da_map_covers_blocks(
2388 	int		nmap,
2389 	xfs_bmbt_irec_t	*mapp,
2390 	xfs_dablk_t	bno,
2391 	int		count)
2392 {
2393 	int		i;
2394 	xfs_fileoff_t	off;
2395 
2396 	for (i = 0, off = bno; i < nmap; i++) {
2397 		if (mapp[i].br_startblock == HOLESTARTBLOCK ||
2398 		    mapp[i].br_startblock == DELAYSTARTBLOCK) {
2399 			return 0;
2400 		}
2401 		if (off != mapp[i].br_startoff) {
2402 			return 0;
2403 		}
2404 		off += mapp[i].br_blockcount;
2405 	}
2406 	return off == bno + count;
2407 }
2408 
2409 /*
2410  * Convert a struct xfs_bmbt_irec to a struct xfs_buf_map.
2411  *
2412  * For the single map case, it is assumed that the caller has provided a pointer
2413  * to a valid xfs_buf_map.  For the multiple map case, this function will
2414  * allocate the xfs_buf_map to hold all the maps and replace the caller's single
2415  * map pointer with the allocated map.
2416  */
2417 static int
2418 xfs_buf_map_from_irec(
2419 	struct xfs_mount	*mp,
2420 	struct xfs_buf_map	**mapp,
2421 	int			*nmaps,
2422 	struct xfs_bmbt_irec	*irecs,
2423 	int			nirecs)
2424 {
2425 	struct xfs_buf_map	*map;
2426 	int			i;
2427 
2428 	ASSERT(*nmaps == 1);
2429 	ASSERT(nirecs >= 1);
2430 
2431 	if (nirecs > 1) {
2432 		map = kmem_zalloc(nirecs * sizeof(struct xfs_buf_map),
2433 				  KM_SLEEP | KM_NOFS);
2434 		if (!map)
2435 			return -ENOMEM;
2436 		*mapp = map;
2437 	}
2438 
2439 	*nmaps = nirecs;
2440 	map = *mapp;
2441 	for (i = 0; i < *nmaps; i++) {
2442 		ASSERT(irecs[i].br_startblock != DELAYSTARTBLOCK &&
2443 		       irecs[i].br_startblock != HOLESTARTBLOCK);
2444 		map[i].bm_bn = XFS_FSB_TO_DADDR(mp, irecs[i].br_startblock);
2445 		map[i].bm_len = XFS_FSB_TO_BB(mp, irecs[i].br_blockcount);
2446 	}
2447 	return 0;
2448 }
2449 
2450 /*
2451  * Map the block we are given ready for reading. There are three possible return
2452  * values:
2453  *	-1 - will be returned if we land in a hole and mappedbno == -2 so the
2454  *	     caller knows not to execute a subsequent read.
2455  *	 0 - if we mapped the block successfully
2456  *	>0 - positive error number if there was an error.
2457  */
2458 static int
2459 xfs_dabuf_map(
2460 	struct xfs_inode	*dp,
2461 	xfs_dablk_t		bno,
2462 	xfs_daddr_t		mappedbno,
2463 	int			whichfork,
2464 	struct xfs_buf_map	**map,
2465 	int			*nmaps)
2466 {
2467 	struct xfs_mount	*mp = dp->i_mount;
2468 	int			nfsb;
2469 	int			error = 0;
2470 	struct xfs_bmbt_irec	irec;
2471 	struct xfs_bmbt_irec	*irecs = &irec;
2472 	int			nirecs;
2473 
2474 	ASSERT(map && *map);
2475 	ASSERT(*nmaps == 1);
2476 
2477 	if (whichfork == XFS_DATA_FORK)
2478 		nfsb = mp->m_dir_geo->fsbcount;
2479 	else
2480 		nfsb = mp->m_attr_geo->fsbcount;
2481 
2482 	/*
2483 	 * Caller doesn't have a mapping.  -2 means don't complain
2484 	 * if we land in a hole.
2485 	 */
2486 	if (mappedbno == -1 || mappedbno == -2) {
2487 		/*
2488 		 * Optimize the one-block case.
2489 		 */
2490 		if (nfsb != 1)
2491 			irecs = kmem_zalloc(sizeof(irec) * nfsb,
2492 					    KM_SLEEP | KM_NOFS);
2493 
2494 		nirecs = nfsb;
2495 		error = xfs_bmapi_read(dp, (xfs_fileoff_t)bno, nfsb, irecs,
2496 				       &nirecs, xfs_bmapi_aflag(whichfork));
2497 		if (error)
2498 			goto out;
2499 	} else {
2500 		irecs->br_startblock = XFS_DADDR_TO_FSB(mp, mappedbno);
2501 		irecs->br_startoff = (xfs_fileoff_t)bno;
2502 		irecs->br_blockcount = nfsb;
2503 		irecs->br_state = 0;
2504 		nirecs = 1;
2505 	}
2506 
2507 	if (!xfs_da_map_covers_blocks(nirecs, irecs, bno, nfsb)) {
2508 		error = mappedbno == -2 ? -1 : -EFSCORRUPTED;
2509 		if (unlikely(error == -EFSCORRUPTED)) {
2510 			if (xfs_error_level >= XFS_ERRLEVEL_LOW) {
2511 				int i;
2512 				xfs_alert(mp, "%s: bno %lld dir: inode %lld",
2513 					__func__, (long long)bno,
2514 					(long long)dp->i_ino);
2515 				for (i = 0; i < *nmaps; i++) {
2516 					xfs_alert(mp,
2517 "[%02d] br_startoff %lld br_startblock %lld br_blockcount %lld br_state %d",
2518 						i,
2519 						(long long)irecs[i].br_startoff,
2520 						(long long)irecs[i].br_startblock,
2521 						(long long)irecs[i].br_blockcount,
2522 						irecs[i].br_state);
2523 				}
2524 			}
2525 			XFS_ERROR_REPORT("xfs_da_do_buf(1)",
2526 					 XFS_ERRLEVEL_LOW, mp);
2527 		}
2528 		goto out;
2529 	}
2530 	error = xfs_buf_map_from_irec(mp, map, nmaps, irecs, nirecs);
2531 out:
2532 	if (irecs != &irec)
2533 		kmem_free(irecs);
2534 	return error;
2535 }
2536 
2537 /*
2538  * Get a buffer for the dir/attr block.
2539  */
2540 int
2541 xfs_da_get_buf(
2542 	struct xfs_trans	*trans,
2543 	struct xfs_inode	*dp,
2544 	xfs_dablk_t		bno,
2545 	xfs_daddr_t		mappedbno,
2546 	struct xfs_buf		**bpp,
2547 	int			whichfork)
2548 {
2549 	struct xfs_buf		*bp;
2550 	struct xfs_buf_map	map;
2551 	struct xfs_buf_map	*mapp;
2552 	int			nmap;
2553 	int			error;
2554 
2555 	*bpp = NULL;
2556 	mapp = &map;
2557 	nmap = 1;
2558 	error = xfs_dabuf_map(dp, bno, mappedbno, whichfork,
2559 				&mapp, &nmap);
2560 	if (error) {
2561 		/* mapping a hole is not an error, but we don't continue */
2562 		if (error == -1)
2563 			error = 0;
2564 		goto out_free;
2565 	}
2566 
2567 	bp = xfs_trans_get_buf_map(trans, dp->i_mount->m_ddev_targp,
2568 				    mapp, nmap, 0);
2569 	error = bp ? bp->b_error : -EIO;
2570 	if (error) {
2571 		if (bp)
2572 			xfs_trans_brelse(trans, bp);
2573 		goto out_free;
2574 	}
2575 
2576 	*bpp = bp;
2577 
2578 out_free:
2579 	if (mapp != &map)
2580 		kmem_free(mapp);
2581 
2582 	return error;
2583 }
2584 
2585 /*
2586  * Get a buffer for the dir/attr block, fill in the contents.
2587  */
2588 int
2589 xfs_da_read_buf(
2590 	struct xfs_trans	*trans,
2591 	struct xfs_inode	*dp,
2592 	xfs_dablk_t		bno,
2593 	xfs_daddr_t		mappedbno,
2594 	struct xfs_buf		**bpp,
2595 	int			whichfork,
2596 	const struct xfs_buf_ops *ops)
2597 {
2598 	struct xfs_buf		*bp;
2599 	struct xfs_buf_map	map;
2600 	struct xfs_buf_map	*mapp;
2601 	int			nmap;
2602 	int			error;
2603 
2604 	*bpp = NULL;
2605 	mapp = &map;
2606 	nmap = 1;
2607 	error = xfs_dabuf_map(dp, bno, mappedbno, whichfork,
2608 				&mapp, &nmap);
2609 	if (error) {
2610 		/* mapping a hole is not an error, but we don't continue */
2611 		if (error == -1)
2612 			error = 0;
2613 		goto out_free;
2614 	}
2615 
2616 	error = xfs_trans_read_buf_map(dp->i_mount, trans,
2617 					dp->i_mount->m_ddev_targp,
2618 					mapp, nmap, 0, &bp, ops);
2619 	if (error)
2620 		goto out_free;
2621 
2622 	if (whichfork == XFS_ATTR_FORK)
2623 		xfs_buf_set_ref(bp, XFS_ATTR_BTREE_REF);
2624 	else
2625 		xfs_buf_set_ref(bp, XFS_DIR_BTREE_REF);
2626 	*bpp = bp;
2627 out_free:
2628 	if (mapp != &map)
2629 		kmem_free(mapp);
2630 
2631 	return error;
2632 }
2633 
2634 /*
2635  * Readahead the dir/attr block.
2636  */
2637 xfs_daddr_t
2638 xfs_da_reada_buf(
2639 	struct xfs_inode	*dp,
2640 	xfs_dablk_t		bno,
2641 	xfs_daddr_t		mappedbno,
2642 	int			whichfork,
2643 	const struct xfs_buf_ops *ops)
2644 {
2645 	struct xfs_buf_map	map;
2646 	struct xfs_buf_map	*mapp;
2647 	int			nmap;
2648 	int			error;
2649 
2650 	mapp = &map;
2651 	nmap = 1;
2652 	error = xfs_dabuf_map(dp, bno, mappedbno, whichfork,
2653 				&mapp, &nmap);
2654 	if (error) {
2655 		/* mapping a hole is not an error, but we don't continue */
2656 		if (error == -1)
2657 			error = 0;
2658 		goto out_free;
2659 	}
2660 
2661 	mappedbno = mapp[0].bm_bn;
2662 	xfs_buf_readahead_map(dp->i_mount->m_ddev_targp, mapp, nmap, ops);
2663 
2664 out_free:
2665 	if (mapp != &map)
2666 		kmem_free(mapp);
2667 
2668 	if (error)
2669 		return -1;
2670 	return mappedbno;
2671 }
2672