1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_buf_item.h" 17 #include "xfs_btree.h" 18 #include "xfs_errortag.h" 19 #include "xfs_error.h" 20 #include "xfs_trace.h" 21 #include "xfs_alloc.h" 22 #include "xfs_log.h" 23 24 /* 25 * Cursor allocation zone. 26 */ 27 kmem_zone_t *xfs_btree_cur_zone; 28 29 /* 30 * Btree magic numbers. 31 */ 32 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = { 33 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC, 34 XFS_FIBT_MAGIC, 0 }, 35 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC, 36 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC, 37 XFS_REFC_CRC_MAGIC } 38 }; 39 40 uint32_t 41 xfs_btree_magic( 42 int crc, 43 xfs_btnum_t btnum) 44 { 45 uint32_t magic = xfs_magics[crc][btnum]; 46 47 /* Ensure we asked for crc for crc-only magics. */ 48 ASSERT(magic != 0); 49 return magic; 50 } 51 52 /* 53 * Check a long btree block header. Return the address of the failing check, 54 * or NULL if everything is ok. 55 */ 56 xfs_failaddr_t 57 __xfs_btree_check_lblock( 58 struct xfs_btree_cur *cur, 59 struct xfs_btree_block *block, 60 int level, 61 struct xfs_buf *bp) 62 { 63 struct xfs_mount *mp = cur->bc_mp; 64 xfs_btnum_t btnum = cur->bc_btnum; 65 int crc = xfs_sb_version_hascrc(&mp->m_sb); 66 67 if (crc) { 68 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) 69 return __this_address; 70 if (block->bb_u.l.bb_blkno != 71 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL)) 72 return __this_address; 73 if (block->bb_u.l.bb_pad != cpu_to_be32(0)) 74 return __this_address; 75 } 76 77 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum)) 78 return __this_address; 79 if (be16_to_cpu(block->bb_level) != level) 80 return __this_address; 81 if (be16_to_cpu(block->bb_numrecs) > 82 cur->bc_ops->get_maxrecs(cur, level)) 83 return __this_address; 84 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) && 85 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib), 86 level + 1)) 87 return __this_address; 88 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) && 89 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib), 90 level + 1)) 91 return __this_address; 92 93 return NULL; 94 } 95 96 /* Check a long btree block header. */ 97 static int 98 xfs_btree_check_lblock( 99 struct xfs_btree_cur *cur, 100 struct xfs_btree_block *block, 101 int level, 102 struct xfs_buf *bp) 103 { 104 struct xfs_mount *mp = cur->bc_mp; 105 xfs_failaddr_t fa; 106 107 fa = __xfs_btree_check_lblock(cur, block, level, bp); 108 if (XFS_IS_CORRUPT(mp, fa != NULL) || 109 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) { 110 if (bp) 111 trace_xfs_btree_corrupt(bp, _RET_IP_); 112 return -EFSCORRUPTED; 113 } 114 return 0; 115 } 116 117 /* 118 * Check a short btree block header. Return the address of the failing check, 119 * or NULL if everything is ok. 120 */ 121 xfs_failaddr_t 122 __xfs_btree_check_sblock( 123 struct xfs_btree_cur *cur, 124 struct xfs_btree_block *block, 125 int level, 126 struct xfs_buf *bp) 127 { 128 struct xfs_mount *mp = cur->bc_mp; 129 xfs_btnum_t btnum = cur->bc_btnum; 130 int crc = xfs_sb_version_hascrc(&mp->m_sb); 131 132 if (crc) { 133 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 134 return __this_address; 135 if (block->bb_u.s.bb_blkno != 136 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL)) 137 return __this_address; 138 } 139 140 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum)) 141 return __this_address; 142 if (be16_to_cpu(block->bb_level) != level) 143 return __this_address; 144 if (be16_to_cpu(block->bb_numrecs) > 145 cur->bc_ops->get_maxrecs(cur, level)) 146 return __this_address; 147 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) && 148 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib), 149 level + 1)) 150 return __this_address; 151 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) && 152 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib), 153 level + 1)) 154 return __this_address; 155 156 return NULL; 157 } 158 159 /* Check a short btree block header. */ 160 STATIC int 161 xfs_btree_check_sblock( 162 struct xfs_btree_cur *cur, 163 struct xfs_btree_block *block, 164 int level, 165 struct xfs_buf *bp) 166 { 167 struct xfs_mount *mp = cur->bc_mp; 168 xfs_failaddr_t fa; 169 170 fa = __xfs_btree_check_sblock(cur, block, level, bp); 171 if (XFS_IS_CORRUPT(mp, fa != NULL) || 172 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) { 173 if (bp) 174 trace_xfs_btree_corrupt(bp, _RET_IP_); 175 return -EFSCORRUPTED; 176 } 177 return 0; 178 } 179 180 /* 181 * Debug routine: check that block header is ok. 182 */ 183 int 184 xfs_btree_check_block( 185 struct xfs_btree_cur *cur, /* btree cursor */ 186 struct xfs_btree_block *block, /* generic btree block pointer */ 187 int level, /* level of the btree block */ 188 struct xfs_buf *bp) /* buffer containing block, if any */ 189 { 190 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 191 return xfs_btree_check_lblock(cur, block, level, bp); 192 else 193 return xfs_btree_check_sblock(cur, block, level, bp); 194 } 195 196 /* Check that this long pointer is valid and points within the fs. */ 197 bool 198 xfs_btree_check_lptr( 199 struct xfs_btree_cur *cur, 200 xfs_fsblock_t fsbno, 201 int level) 202 { 203 if (level <= 0) 204 return false; 205 return xfs_verify_fsbno(cur->bc_mp, fsbno); 206 } 207 208 /* Check that this short pointer is valid and points within the AG. */ 209 bool 210 xfs_btree_check_sptr( 211 struct xfs_btree_cur *cur, 212 xfs_agblock_t agbno, 213 int level) 214 { 215 if (level <= 0) 216 return false; 217 return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno); 218 } 219 220 /* 221 * Check that a given (indexed) btree pointer at a certain level of a 222 * btree is valid and doesn't point past where it should. 223 */ 224 static int 225 xfs_btree_check_ptr( 226 struct xfs_btree_cur *cur, 227 union xfs_btree_ptr *ptr, 228 int index, 229 int level) 230 { 231 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 232 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]), 233 level)) 234 return 0; 235 xfs_err(cur->bc_mp, 236 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.", 237 cur->bc_private.b.ip->i_ino, 238 cur->bc_private.b.whichfork, cur->bc_btnum, 239 level, index); 240 } else { 241 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]), 242 level)) 243 return 0; 244 xfs_err(cur->bc_mp, 245 "AG %u: Corrupt btree %d pointer at level %d index %d.", 246 cur->bc_private.a.agno, cur->bc_btnum, 247 level, index); 248 } 249 250 return -EFSCORRUPTED; 251 } 252 253 #ifdef DEBUG 254 # define xfs_btree_debug_check_ptr xfs_btree_check_ptr 255 #else 256 # define xfs_btree_debug_check_ptr(...) (0) 257 #endif 258 259 /* 260 * Calculate CRC on the whole btree block and stuff it into the 261 * long-form btree header. 262 * 263 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put 264 * it into the buffer so recovery knows what the last modification was that made 265 * it to disk. 266 */ 267 void 268 xfs_btree_lblock_calc_crc( 269 struct xfs_buf *bp) 270 { 271 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 272 struct xfs_buf_log_item *bip = bp->b_log_item; 273 274 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb)) 275 return; 276 if (bip) 277 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 278 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); 279 } 280 281 bool 282 xfs_btree_lblock_verify_crc( 283 struct xfs_buf *bp) 284 { 285 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 286 struct xfs_mount *mp = bp->b_mount; 287 288 if (xfs_sb_version_hascrc(&mp->m_sb)) { 289 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn))) 290 return false; 291 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); 292 } 293 294 return true; 295 } 296 297 /* 298 * Calculate CRC on the whole btree block and stuff it into the 299 * short-form btree header. 300 * 301 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put 302 * it into the buffer so recovery knows what the last modification was that made 303 * it to disk. 304 */ 305 void 306 xfs_btree_sblock_calc_crc( 307 struct xfs_buf *bp) 308 { 309 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 310 struct xfs_buf_log_item *bip = bp->b_log_item; 311 312 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb)) 313 return; 314 if (bip) 315 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 316 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); 317 } 318 319 bool 320 xfs_btree_sblock_verify_crc( 321 struct xfs_buf *bp) 322 { 323 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 324 struct xfs_mount *mp = bp->b_mount; 325 326 if (xfs_sb_version_hascrc(&mp->m_sb)) { 327 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn))) 328 return false; 329 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); 330 } 331 332 return true; 333 } 334 335 static int 336 xfs_btree_free_block( 337 struct xfs_btree_cur *cur, 338 struct xfs_buf *bp) 339 { 340 int error; 341 342 error = cur->bc_ops->free_block(cur, bp); 343 if (!error) { 344 xfs_trans_binval(cur->bc_tp, bp); 345 XFS_BTREE_STATS_INC(cur, free); 346 } 347 return error; 348 } 349 350 /* 351 * Delete the btree cursor. 352 */ 353 void 354 xfs_btree_del_cursor( 355 xfs_btree_cur_t *cur, /* btree cursor */ 356 int error) /* del because of error */ 357 { 358 int i; /* btree level */ 359 360 /* 361 * Clear the buffer pointers, and release the buffers. 362 * If we're doing this in the face of an error, we 363 * need to make sure to inspect all of the entries 364 * in the bc_bufs array for buffers to be unlocked. 365 * This is because some of the btree code works from 366 * level n down to 0, and if we get an error along 367 * the way we won't have initialized all the entries 368 * down to 0. 369 */ 370 for (i = 0; i < cur->bc_nlevels; i++) { 371 if (cur->bc_bufs[i]) 372 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]); 373 else if (!error) 374 break; 375 } 376 /* 377 * Can't free a bmap cursor without having dealt with the 378 * allocated indirect blocks' accounting. 379 */ 380 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || 381 cur->bc_private.b.allocated == 0); 382 /* 383 * Free the cursor. 384 */ 385 kmem_cache_free(xfs_btree_cur_zone, cur); 386 } 387 388 /* 389 * Duplicate the btree cursor. 390 * Allocate a new one, copy the record, re-get the buffers. 391 */ 392 int /* error */ 393 xfs_btree_dup_cursor( 394 xfs_btree_cur_t *cur, /* input cursor */ 395 xfs_btree_cur_t **ncur) /* output cursor */ 396 { 397 xfs_buf_t *bp; /* btree block's buffer pointer */ 398 int error; /* error return value */ 399 int i; /* level number of btree block */ 400 xfs_mount_t *mp; /* mount structure for filesystem */ 401 xfs_btree_cur_t *new; /* new cursor value */ 402 xfs_trans_t *tp; /* transaction pointer, can be NULL */ 403 404 tp = cur->bc_tp; 405 mp = cur->bc_mp; 406 407 /* 408 * Allocate a new cursor like the old one. 409 */ 410 new = cur->bc_ops->dup_cursor(cur); 411 412 /* 413 * Copy the record currently in the cursor. 414 */ 415 new->bc_rec = cur->bc_rec; 416 417 /* 418 * For each level current, re-get the buffer and copy the ptr value. 419 */ 420 for (i = 0; i < new->bc_nlevels; i++) { 421 new->bc_ptrs[i] = cur->bc_ptrs[i]; 422 new->bc_ra[i] = cur->bc_ra[i]; 423 bp = cur->bc_bufs[i]; 424 if (bp) { 425 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 426 XFS_BUF_ADDR(bp), mp->m_bsize, 427 0, &bp, 428 cur->bc_ops->buf_ops); 429 if (error) { 430 xfs_btree_del_cursor(new, error); 431 *ncur = NULL; 432 return error; 433 } 434 } 435 new->bc_bufs[i] = bp; 436 } 437 *ncur = new; 438 return 0; 439 } 440 441 /* 442 * XFS btree block layout and addressing: 443 * 444 * There are two types of blocks in the btree: leaf and non-leaf blocks. 445 * 446 * The leaf record start with a header then followed by records containing 447 * the values. A non-leaf block also starts with the same header, and 448 * then first contains lookup keys followed by an equal number of pointers 449 * to the btree blocks at the previous level. 450 * 451 * +--------+-------+-------+-------+-------+-------+-------+ 452 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N | 453 * +--------+-------+-------+-------+-------+-------+-------+ 454 * 455 * +--------+-------+-------+-------+-------+-------+-------+ 456 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N | 457 * +--------+-------+-------+-------+-------+-------+-------+ 458 * 459 * The header is called struct xfs_btree_block for reasons better left unknown 460 * and comes in different versions for short (32bit) and long (64bit) block 461 * pointers. The record and key structures are defined by the btree instances 462 * and opaque to the btree core. The block pointers are simple disk endian 463 * integers, available in a short (32bit) and long (64bit) variant. 464 * 465 * The helpers below calculate the offset of a given record, key or pointer 466 * into a btree block (xfs_btree_*_offset) or return a pointer to the given 467 * record, key or pointer (xfs_btree_*_addr). Note that all addressing 468 * inside the btree block is done using indices starting at one, not zero! 469 * 470 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing 471 * overlapping intervals. In such a tree, records are still sorted lowest to 472 * highest and indexed by the smallest key value that refers to the record. 473 * However, nodes are different: each pointer has two associated keys -- one 474 * indexing the lowest key available in the block(s) below (the same behavior 475 * as the key in a regular btree) and another indexing the highest key 476 * available in the block(s) below. Because records are /not/ sorted by the 477 * highest key, all leaf block updates require us to compute the highest key 478 * that matches any record in the leaf and to recursively update the high keys 479 * in the nodes going further up in the tree, if necessary. Nodes look like 480 * this: 481 * 482 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ 483 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... | 484 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ 485 * 486 * To perform an interval query on an overlapped tree, perform the usual 487 * depth-first search and use the low and high keys to decide if we can skip 488 * that particular node. If a leaf node is reached, return the records that 489 * intersect the interval. Note that an interval query may return numerous 490 * entries. For a non-overlapped tree, simply search for the record associated 491 * with the lowest key and iterate forward until a non-matching record is 492 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by 493 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in 494 * more detail. 495 * 496 * Why do we care about overlapping intervals? Let's say you have a bunch of 497 * reverse mapping records on a reflink filesystem: 498 * 499 * 1: +- file A startblock B offset C length D -----------+ 500 * 2: +- file E startblock F offset G length H --------------+ 501 * 3: +- file I startblock F offset J length K --+ 502 * 4: +- file L... --+ 503 * 504 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally, 505 * we'd simply increment the length of record 1. But how do we find the record 506 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return 507 * record 3 because the keys are ordered first by startblock. An interval 508 * query would return records 1 and 2 because they both overlap (B+D-1), and 509 * from that we can pick out record 1 as the appropriate left neighbor. 510 * 511 * In the non-overlapped case you can do a LE lookup and decrement the cursor 512 * because a record's interval must end before the next record. 513 */ 514 515 /* 516 * Return size of the btree block header for this btree instance. 517 */ 518 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur) 519 { 520 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 521 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) 522 return XFS_BTREE_LBLOCK_CRC_LEN; 523 return XFS_BTREE_LBLOCK_LEN; 524 } 525 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) 526 return XFS_BTREE_SBLOCK_CRC_LEN; 527 return XFS_BTREE_SBLOCK_LEN; 528 } 529 530 /* 531 * Return size of btree block pointers for this btree instance. 532 */ 533 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur) 534 { 535 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ? 536 sizeof(__be64) : sizeof(__be32); 537 } 538 539 /* 540 * Calculate offset of the n-th record in a btree block. 541 */ 542 STATIC size_t 543 xfs_btree_rec_offset( 544 struct xfs_btree_cur *cur, 545 int n) 546 { 547 return xfs_btree_block_len(cur) + 548 (n - 1) * cur->bc_ops->rec_len; 549 } 550 551 /* 552 * Calculate offset of the n-th key in a btree block. 553 */ 554 STATIC size_t 555 xfs_btree_key_offset( 556 struct xfs_btree_cur *cur, 557 int n) 558 { 559 return xfs_btree_block_len(cur) + 560 (n - 1) * cur->bc_ops->key_len; 561 } 562 563 /* 564 * Calculate offset of the n-th high key in a btree block. 565 */ 566 STATIC size_t 567 xfs_btree_high_key_offset( 568 struct xfs_btree_cur *cur, 569 int n) 570 { 571 return xfs_btree_block_len(cur) + 572 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2); 573 } 574 575 /* 576 * Calculate offset of the n-th block pointer in a btree block. 577 */ 578 STATIC size_t 579 xfs_btree_ptr_offset( 580 struct xfs_btree_cur *cur, 581 int n, 582 int level) 583 { 584 return xfs_btree_block_len(cur) + 585 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len + 586 (n - 1) * xfs_btree_ptr_len(cur); 587 } 588 589 /* 590 * Return a pointer to the n-th record in the btree block. 591 */ 592 union xfs_btree_rec * 593 xfs_btree_rec_addr( 594 struct xfs_btree_cur *cur, 595 int n, 596 struct xfs_btree_block *block) 597 { 598 return (union xfs_btree_rec *) 599 ((char *)block + xfs_btree_rec_offset(cur, n)); 600 } 601 602 /* 603 * Return a pointer to the n-th key in the btree block. 604 */ 605 union xfs_btree_key * 606 xfs_btree_key_addr( 607 struct xfs_btree_cur *cur, 608 int n, 609 struct xfs_btree_block *block) 610 { 611 return (union xfs_btree_key *) 612 ((char *)block + xfs_btree_key_offset(cur, n)); 613 } 614 615 /* 616 * Return a pointer to the n-th high key in the btree block. 617 */ 618 union xfs_btree_key * 619 xfs_btree_high_key_addr( 620 struct xfs_btree_cur *cur, 621 int n, 622 struct xfs_btree_block *block) 623 { 624 return (union xfs_btree_key *) 625 ((char *)block + xfs_btree_high_key_offset(cur, n)); 626 } 627 628 /* 629 * Return a pointer to the n-th block pointer in the btree block. 630 */ 631 union xfs_btree_ptr * 632 xfs_btree_ptr_addr( 633 struct xfs_btree_cur *cur, 634 int n, 635 struct xfs_btree_block *block) 636 { 637 int level = xfs_btree_get_level(block); 638 639 ASSERT(block->bb_level != 0); 640 641 return (union xfs_btree_ptr *) 642 ((char *)block + xfs_btree_ptr_offset(cur, n, level)); 643 } 644 645 /* 646 * Get the root block which is stored in the inode. 647 * 648 * For now this btree implementation assumes the btree root is always 649 * stored in the if_broot field of an inode fork. 650 */ 651 STATIC struct xfs_btree_block * 652 xfs_btree_get_iroot( 653 struct xfs_btree_cur *cur) 654 { 655 struct xfs_ifork *ifp; 656 657 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork); 658 return (struct xfs_btree_block *)ifp->if_broot; 659 } 660 661 /* 662 * Retrieve the block pointer from the cursor at the given level. 663 * This may be an inode btree root or from a buffer. 664 */ 665 struct xfs_btree_block * /* generic btree block pointer */ 666 xfs_btree_get_block( 667 struct xfs_btree_cur *cur, /* btree cursor */ 668 int level, /* level in btree */ 669 struct xfs_buf **bpp) /* buffer containing the block */ 670 { 671 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 672 (level == cur->bc_nlevels - 1)) { 673 *bpp = NULL; 674 return xfs_btree_get_iroot(cur); 675 } 676 677 *bpp = cur->bc_bufs[level]; 678 return XFS_BUF_TO_BLOCK(*bpp); 679 } 680 681 /* 682 * Change the cursor to point to the first record at the given level. 683 * Other levels are unaffected. 684 */ 685 STATIC int /* success=1, failure=0 */ 686 xfs_btree_firstrec( 687 xfs_btree_cur_t *cur, /* btree cursor */ 688 int level) /* level to change */ 689 { 690 struct xfs_btree_block *block; /* generic btree block pointer */ 691 xfs_buf_t *bp; /* buffer containing block */ 692 693 /* 694 * Get the block pointer for this level. 695 */ 696 block = xfs_btree_get_block(cur, level, &bp); 697 if (xfs_btree_check_block(cur, block, level, bp)) 698 return 0; 699 /* 700 * It's empty, there is no such record. 701 */ 702 if (!block->bb_numrecs) 703 return 0; 704 /* 705 * Set the ptr value to 1, that's the first record/key. 706 */ 707 cur->bc_ptrs[level] = 1; 708 return 1; 709 } 710 711 /* 712 * Change the cursor to point to the last record in the current block 713 * at the given level. Other levels are unaffected. 714 */ 715 STATIC int /* success=1, failure=0 */ 716 xfs_btree_lastrec( 717 xfs_btree_cur_t *cur, /* btree cursor */ 718 int level) /* level to change */ 719 { 720 struct xfs_btree_block *block; /* generic btree block pointer */ 721 xfs_buf_t *bp; /* buffer containing block */ 722 723 /* 724 * Get the block pointer for this level. 725 */ 726 block = xfs_btree_get_block(cur, level, &bp); 727 if (xfs_btree_check_block(cur, block, level, bp)) 728 return 0; 729 /* 730 * It's empty, there is no such record. 731 */ 732 if (!block->bb_numrecs) 733 return 0; 734 /* 735 * Set the ptr value to numrecs, that's the last record/key. 736 */ 737 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs); 738 return 1; 739 } 740 741 /* 742 * Compute first and last byte offsets for the fields given. 743 * Interprets the offsets table, which contains struct field offsets. 744 */ 745 void 746 xfs_btree_offsets( 747 int64_t fields, /* bitmask of fields */ 748 const short *offsets, /* table of field offsets */ 749 int nbits, /* number of bits to inspect */ 750 int *first, /* output: first byte offset */ 751 int *last) /* output: last byte offset */ 752 { 753 int i; /* current bit number */ 754 int64_t imask; /* mask for current bit number */ 755 756 ASSERT(fields != 0); 757 /* 758 * Find the lowest bit, so the first byte offset. 759 */ 760 for (i = 0, imask = 1LL; ; i++, imask <<= 1) { 761 if (imask & fields) { 762 *first = offsets[i]; 763 break; 764 } 765 } 766 /* 767 * Find the highest bit, so the last byte offset. 768 */ 769 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) { 770 if (imask & fields) { 771 *last = offsets[i + 1] - 1; 772 break; 773 } 774 } 775 } 776 777 /* 778 * Get a buffer for the block, return it read in. 779 * Long-form addressing. 780 */ 781 int 782 xfs_btree_read_bufl( 783 struct xfs_mount *mp, /* file system mount point */ 784 struct xfs_trans *tp, /* transaction pointer */ 785 xfs_fsblock_t fsbno, /* file system block number */ 786 struct xfs_buf **bpp, /* buffer for fsbno */ 787 int refval, /* ref count value for buffer */ 788 const struct xfs_buf_ops *ops) 789 { 790 struct xfs_buf *bp; /* return value */ 791 xfs_daddr_t d; /* real disk block address */ 792 int error; 793 794 if (!xfs_verify_fsbno(mp, fsbno)) 795 return -EFSCORRUPTED; 796 d = XFS_FSB_TO_DADDR(mp, fsbno); 797 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d, 798 mp->m_bsize, 0, &bp, ops); 799 if (error) 800 return error; 801 if (bp) 802 xfs_buf_set_ref(bp, refval); 803 *bpp = bp; 804 return 0; 805 } 806 807 /* 808 * Read-ahead the block, don't wait for it, don't return a buffer. 809 * Long-form addressing. 810 */ 811 /* ARGSUSED */ 812 void 813 xfs_btree_reada_bufl( 814 struct xfs_mount *mp, /* file system mount point */ 815 xfs_fsblock_t fsbno, /* file system block number */ 816 xfs_extlen_t count, /* count of filesystem blocks */ 817 const struct xfs_buf_ops *ops) 818 { 819 xfs_daddr_t d; 820 821 ASSERT(fsbno != NULLFSBLOCK); 822 d = XFS_FSB_TO_DADDR(mp, fsbno); 823 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops); 824 } 825 826 /* 827 * Read-ahead the block, don't wait for it, don't return a buffer. 828 * Short-form addressing. 829 */ 830 /* ARGSUSED */ 831 void 832 xfs_btree_reada_bufs( 833 struct xfs_mount *mp, /* file system mount point */ 834 xfs_agnumber_t agno, /* allocation group number */ 835 xfs_agblock_t agbno, /* allocation group block number */ 836 xfs_extlen_t count, /* count of filesystem blocks */ 837 const struct xfs_buf_ops *ops) 838 { 839 xfs_daddr_t d; 840 841 ASSERT(agno != NULLAGNUMBER); 842 ASSERT(agbno != NULLAGBLOCK); 843 d = XFS_AGB_TO_DADDR(mp, agno, agbno); 844 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops); 845 } 846 847 STATIC int 848 xfs_btree_readahead_lblock( 849 struct xfs_btree_cur *cur, 850 int lr, 851 struct xfs_btree_block *block) 852 { 853 int rval = 0; 854 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib); 855 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib); 856 857 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) { 858 xfs_btree_reada_bufl(cur->bc_mp, left, 1, 859 cur->bc_ops->buf_ops); 860 rval++; 861 } 862 863 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) { 864 xfs_btree_reada_bufl(cur->bc_mp, right, 1, 865 cur->bc_ops->buf_ops); 866 rval++; 867 } 868 869 return rval; 870 } 871 872 STATIC int 873 xfs_btree_readahead_sblock( 874 struct xfs_btree_cur *cur, 875 int lr, 876 struct xfs_btree_block *block) 877 { 878 int rval = 0; 879 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib); 880 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib); 881 882 883 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) { 884 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno, 885 left, 1, cur->bc_ops->buf_ops); 886 rval++; 887 } 888 889 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) { 890 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno, 891 right, 1, cur->bc_ops->buf_ops); 892 rval++; 893 } 894 895 return rval; 896 } 897 898 /* 899 * Read-ahead btree blocks, at the given level. 900 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA. 901 */ 902 STATIC int 903 xfs_btree_readahead( 904 struct xfs_btree_cur *cur, /* btree cursor */ 905 int lev, /* level in btree */ 906 int lr) /* left/right bits */ 907 { 908 struct xfs_btree_block *block; 909 910 /* 911 * No readahead needed if we are at the root level and the 912 * btree root is stored in the inode. 913 */ 914 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 915 (lev == cur->bc_nlevels - 1)) 916 return 0; 917 918 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev]) 919 return 0; 920 921 cur->bc_ra[lev] |= lr; 922 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]); 923 924 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 925 return xfs_btree_readahead_lblock(cur, lr, block); 926 return xfs_btree_readahead_sblock(cur, lr, block); 927 } 928 929 STATIC int 930 xfs_btree_ptr_to_daddr( 931 struct xfs_btree_cur *cur, 932 union xfs_btree_ptr *ptr, 933 xfs_daddr_t *daddr) 934 { 935 xfs_fsblock_t fsbno; 936 xfs_agblock_t agbno; 937 int error; 938 939 error = xfs_btree_check_ptr(cur, ptr, 0, 1); 940 if (error) 941 return error; 942 943 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 944 fsbno = be64_to_cpu(ptr->l); 945 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno); 946 } else { 947 agbno = be32_to_cpu(ptr->s); 948 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno, 949 agbno); 950 } 951 952 return 0; 953 } 954 955 /* 956 * Readahead @count btree blocks at the given @ptr location. 957 * 958 * We don't need to care about long or short form btrees here as we have a 959 * method of converting the ptr directly to a daddr available to us. 960 */ 961 STATIC void 962 xfs_btree_readahead_ptr( 963 struct xfs_btree_cur *cur, 964 union xfs_btree_ptr *ptr, 965 xfs_extlen_t count) 966 { 967 xfs_daddr_t daddr; 968 969 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr)) 970 return; 971 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr, 972 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops); 973 } 974 975 /* 976 * Set the buffer for level "lev" in the cursor to bp, releasing 977 * any previous buffer. 978 */ 979 STATIC void 980 xfs_btree_setbuf( 981 xfs_btree_cur_t *cur, /* btree cursor */ 982 int lev, /* level in btree */ 983 xfs_buf_t *bp) /* new buffer to set */ 984 { 985 struct xfs_btree_block *b; /* btree block */ 986 987 if (cur->bc_bufs[lev]) 988 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]); 989 cur->bc_bufs[lev] = bp; 990 cur->bc_ra[lev] = 0; 991 992 b = XFS_BUF_TO_BLOCK(bp); 993 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 994 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)) 995 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA; 996 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)) 997 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA; 998 } else { 999 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK)) 1000 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA; 1001 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 1002 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA; 1003 } 1004 } 1005 1006 bool 1007 xfs_btree_ptr_is_null( 1008 struct xfs_btree_cur *cur, 1009 union xfs_btree_ptr *ptr) 1010 { 1011 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1012 return ptr->l == cpu_to_be64(NULLFSBLOCK); 1013 else 1014 return ptr->s == cpu_to_be32(NULLAGBLOCK); 1015 } 1016 1017 STATIC void 1018 xfs_btree_set_ptr_null( 1019 struct xfs_btree_cur *cur, 1020 union xfs_btree_ptr *ptr) 1021 { 1022 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1023 ptr->l = cpu_to_be64(NULLFSBLOCK); 1024 else 1025 ptr->s = cpu_to_be32(NULLAGBLOCK); 1026 } 1027 1028 /* 1029 * Get/set/init sibling pointers 1030 */ 1031 void 1032 xfs_btree_get_sibling( 1033 struct xfs_btree_cur *cur, 1034 struct xfs_btree_block *block, 1035 union xfs_btree_ptr *ptr, 1036 int lr) 1037 { 1038 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); 1039 1040 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1041 if (lr == XFS_BB_RIGHTSIB) 1042 ptr->l = block->bb_u.l.bb_rightsib; 1043 else 1044 ptr->l = block->bb_u.l.bb_leftsib; 1045 } else { 1046 if (lr == XFS_BB_RIGHTSIB) 1047 ptr->s = block->bb_u.s.bb_rightsib; 1048 else 1049 ptr->s = block->bb_u.s.bb_leftsib; 1050 } 1051 } 1052 1053 STATIC void 1054 xfs_btree_set_sibling( 1055 struct xfs_btree_cur *cur, 1056 struct xfs_btree_block *block, 1057 union xfs_btree_ptr *ptr, 1058 int lr) 1059 { 1060 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); 1061 1062 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1063 if (lr == XFS_BB_RIGHTSIB) 1064 block->bb_u.l.bb_rightsib = ptr->l; 1065 else 1066 block->bb_u.l.bb_leftsib = ptr->l; 1067 } else { 1068 if (lr == XFS_BB_RIGHTSIB) 1069 block->bb_u.s.bb_rightsib = ptr->s; 1070 else 1071 block->bb_u.s.bb_leftsib = ptr->s; 1072 } 1073 } 1074 1075 void 1076 xfs_btree_init_block_int( 1077 struct xfs_mount *mp, 1078 struct xfs_btree_block *buf, 1079 xfs_daddr_t blkno, 1080 xfs_btnum_t btnum, 1081 __u16 level, 1082 __u16 numrecs, 1083 __u64 owner, 1084 unsigned int flags) 1085 { 1086 int crc = xfs_sb_version_hascrc(&mp->m_sb); 1087 __u32 magic = xfs_btree_magic(crc, btnum); 1088 1089 buf->bb_magic = cpu_to_be32(magic); 1090 buf->bb_level = cpu_to_be16(level); 1091 buf->bb_numrecs = cpu_to_be16(numrecs); 1092 1093 if (flags & XFS_BTREE_LONG_PTRS) { 1094 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK); 1095 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK); 1096 if (crc) { 1097 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno); 1098 buf->bb_u.l.bb_owner = cpu_to_be64(owner); 1099 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid); 1100 buf->bb_u.l.bb_pad = 0; 1101 buf->bb_u.l.bb_lsn = 0; 1102 } 1103 } else { 1104 /* owner is a 32 bit value on short blocks */ 1105 __u32 __owner = (__u32)owner; 1106 1107 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK); 1108 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK); 1109 if (crc) { 1110 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno); 1111 buf->bb_u.s.bb_owner = cpu_to_be32(__owner); 1112 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid); 1113 buf->bb_u.s.bb_lsn = 0; 1114 } 1115 } 1116 } 1117 1118 void 1119 xfs_btree_init_block( 1120 struct xfs_mount *mp, 1121 struct xfs_buf *bp, 1122 xfs_btnum_t btnum, 1123 __u16 level, 1124 __u16 numrecs, 1125 __u64 owner) 1126 { 1127 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn, 1128 btnum, level, numrecs, owner, 0); 1129 } 1130 1131 STATIC void 1132 xfs_btree_init_block_cur( 1133 struct xfs_btree_cur *cur, 1134 struct xfs_buf *bp, 1135 int level, 1136 int numrecs) 1137 { 1138 __u64 owner; 1139 1140 /* 1141 * we can pull the owner from the cursor right now as the different 1142 * owners align directly with the pointer size of the btree. This may 1143 * change in future, but is safe for current users of the generic btree 1144 * code. 1145 */ 1146 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1147 owner = cur->bc_private.b.ip->i_ino; 1148 else 1149 owner = cur->bc_private.a.agno; 1150 1151 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn, 1152 cur->bc_btnum, level, numrecs, 1153 owner, cur->bc_flags); 1154 } 1155 1156 /* 1157 * Return true if ptr is the last record in the btree and 1158 * we need to track updates to this record. The decision 1159 * will be further refined in the update_lastrec method. 1160 */ 1161 STATIC int 1162 xfs_btree_is_lastrec( 1163 struct xfs_btree_cur *cur, 1164 struct xfs_btree_block *block, 1165 int level) 1166 { 1167 union xfs_btree_ptr ptr; 1168 1169 if (level > 0) 1170 return 0; 1171 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE)) 1172 return 0; 1173 1174 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1175 if (!xfs_btree_ptr_is_null(cur, &ptr)) 1176 return 0; 1177 return 1; 1178 } 1179 1180 STATIC void 1181 xfs_btree_buf_to_ptr( 1182 struct xfs_btree_cur *cur, 1183 struct xfs_buf *bp, 1184 union xfs_btree_ptr *ptr) 1185 { 1186 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1187 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp, 1188 XFS_BUF_ADDR(bp))); 1189 else { 1190 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp, 1191 XFS_BUF_ADDR(bp))); 1192 } 1193 } 1194 1195 STATIC void 1196 xfs_btree_set_refs( 1197 struct xfs_btree_cur *cur, 1198 struct xfs_buf *bp) 1199 { 1200 switch (cur->bc_btnum) { 1201 case XFS_BTNUM_BNO: 1202 case XFS_BTNUM_CNT: 1203 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF); 1204 break; 1205 case XFS_BTNUM_INO: 1206 case XFS_BTNUM_FINO: 1207 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF); 1208 break; 1209 case XFS_BTNUM_BMAP: 1210 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF); 1211 break; 1212 case XFS_BTNUM_RMAP: 1213 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF); 1214 break; 1215 case XFS_BTNUM_REFC: 1216 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF); 1217 break; 1218 default: 1219 ASSERT(0); 1220 } 1221 } 1222 1223 STATIC int 1224 xfs_btree_get_buf_block( 1225 struct xfs_btree_cur *cur, 1226 union xfs_btree_ptr *ptr, 1227 struct xfs_btree_block **block, 1228 struct xfs_buf **bpp) 1229 { 1230 struct xfs_mount *mp = cur->bc_mp; 1231 xfs_daddr_t d; 1232 int error; 1233 1234 error = xfs_btree_ptr_to_daddr(cur, ptr, &d); 1235 if (error) 1236 return error; 1237 error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize, 1238 0, bpp); 1239 if (error) 1240 return error; 1241 1242 (*bpp)->b_ops = cur->bc_ops->buf_ops; 1243 *block = XFS_BUF_TO_BLOCK(*bpp); 1244 return 0; 1245 } 1246 1247 /* 1248 * Read in the buffer at the given ptr and return the buffer and 1249 * the block pointer within the buffer. 1250 */ 1251 STATIC int 1252 xfs_btree_read_buf_block( 1253 struct xfs_btree_cur *cur, 1254 union xfs_btree_ptr *ptr, 1255 int flags, 1256 struct xfs_btree_block **block, 1257 struct xfs_buf **bpp) 1258 { 1259 struct xfs_mount *mp = cur->bc_mp; 1260 xfs_daddr_t d; 1261 int error; 1262 1263 /* need to sort out how callers deal with failures first */ 1264 ASSERT(!(flags & XBF_TRYLOCK)); 1265 1266 error = xfs_btree_ptr_to_daddr(cur, ptr, &d); 1267 if (error) 1268 return error; 1269 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d, 1270 mp->m_bsize, flags, bpp, 1271 cur->bc_ops->buf_ops); 1272 if (error) 1273 return error; 1274 1275 xfs_btree_set_refs(cur, *bpp); 1276 *block = XFS_BUF_TO_BLOCK(*bpp); 1277 return 0; 1278 } 1279 1280 /* 1281 * Copy keys from one btree block to another. 1282 */ 1283 STATIC void 1284 xfs_btree_copy_keys( 1285 struct xfs_btree_cur *cur, 1286 union xfs_btree_key *dst_key, 1287 union xfs_btree_key *src_key, 1288 int numkeys) 1289 { 1290 ASSERT(numkeys >= 0); 1291 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len); 1292 } 1293 1294 /* 1295 * Copy records from one btree block to another. 1296 */ 1297 STATIC void 1298 xfs_btree_copy_recs( 1299 struct xfs_btree_cur *cur, 1300 union xfs_btree_rec *dst_rec, 1301 union xfs_btree_rec *src_rec, 1302 int numrecs) 1303 { 1304 ASSERT(numrecs >= 0); 1305 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len); 1306 } 1307 1308 /* 1309 * Copy block pointers from one btree block to another. 1310 */ 1311 STATIC void 1312 xfs_btree_copy_ptrs( 1313 struct xfs_btree_cur *cur, 1314 union xfs_btree_ptr *dst_ptr, 1315 union xfs_btree_ptr *src_ptr, 1316 int numptrs) 1317 { 1318 ASSERT(numptrs >= 0); 1319 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur)); 1320 } 1321 1322 /* 1323 * Shift keys one index left/right inside a single btree block. 1324 */ 1325 STATIC void 1326 xfs_btree_shift_keys( 1327 struct xfs_btree_cur *cur, 1328 union xfs_btree_key *key, 1329 int dir, 1330 int numkeys) 1331 { 1332 char *dst_key; 1333 1334 ASSERT(numkeys >= 0); 1335 ASSERT(dir == 1 || dir == -1); 1336 1337 dst_key = (char *)key + (dir * cur->bc_ops->key_len); 1338 memmove(dst_key, key, numkeys * cur->bc_ops->key_len); 1339 } 1340 1341 /* 1342 * Shift records one index left/right inside a single btree block. 1343 */ 1344 STATIC void 1345 xfs_btree_shift_recs( 1346 struct xfs_btree_cur *cur, 1347 union xfs_btree_rec *rec, 1348 int dir, 1349 int numrecs) 1350 { 1351 char *dst_rec; 1352 1353 ASSERT(numrecs >= 0); 1354 ASSERT(dir == 1 || dir == -1); 1355 1356 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len); 1357 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len); 1358 } 1359 1360 /* 1361 * Shift block pointers one index left/right inside a single btree block. 1362 */ 1363 STATIC void 1364 xfs_btree_shift_ptrs( 1365 struct xfs_btree_cur *cur, 1366 union xfs_btree_ptr *ptr, 1367 int dir, 1368 int numptrs) 1369 { 1370 char *dst_ptr; 1371 1372 ASSERT(numptrs >= 0); 1373 ASSERT(dir == 1 || dir == -1); 1374 1375 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur)); 1376 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur)); 1377 } 1378 1379 /* 1380 * Log key values from the btree block. 1381 */ 1382 STATIC void 1383 xfs_btree_log_keys( 1384 struct xfs_btree_cur *cur, 1385 struct xfs_buf *bp, 1386 int first, 1387 int last) 1388 { 1389 1390 if (bp) { 1391 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1392 xfs_trans_log_buf(cur->bc_tp, bp, 1393 xfs_btree_key_offset(cur, first), 1394 xfs_btree_key_offset(cur, last + 1) - 1); 1395 } else { 1396 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip, 1397 xfs_ilog_fbroot(cur->bc_private.b.whichfork)); 1398 } 1399 } 1400 1401 /* 1402 * Log record values from the btree block. 1403 */ 1404 void 1405 xfs_btree_log_recs( 1406 struct xfs_btree_cur *cur, 1407 struct xfs_buf *bp, 1408 int first, 1409 int last) 1410 { 1411 1412 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1413 xfs_trans_log_buf(cur->bc_tp, bp, 1414 xfs_btree_rec_offset(cur, first), 1415 xfs_btree_rec_offset(cur, last + 1) - 1); 1416 1417 } 1418 1419 /* 1420 * Log block pointer fields from a btree block (nonleaf). 1421 */ 1422 STATIC void 1423 xfs_btree_log_ptrs( 1424 struct xfs_btree_cur *cur, /* btree cursor */ 1425 struct xfs_buf *bp, /* buffer containing btree block */ 1426 int first, /* index of first pointer to log */ 1427 int last) /* index of last pointer to log */ 1428 { 1429 1430 if (bp) { 1431 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 1432 int level = xfs_btree_get_level(block); 1433 1434 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1435 xfs_trans_log_buf(cur->bc_tp, bp, 1436 xfs_btree_ptr_offset(cur, first, level), 1437 xfs_btree_ptr_offset(cur, last + 1, level) - 1); 1438 } else { 1439 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip, 1440 xfs_ilog_fbroot(cur->bc_private.b.whichfork)); 1441 } 1442 1443 } 1444 1445 /* 1446 * Log fields from a btree block header. 1447 */ 1448 void 1449 xfs_btree_log_block( 1450 struct xfs_btree_cur *cur, /* btree cursor */ 1451 struct xfs_buf *bp, /* buffer containing btree block */ 1452 int fields) /* mask of fields: XFS_BB_... */ 1453 { 1454 int first; /* first byte offset logged */ 1455 int last; /* last byte offset logged */ 1456 static const short soffsets[] = { /* table of offsets (short) */ 1457 offsetof(struct xfs_btree_block, bb_magic), 1458 offsetof(struct xfs_btree_block, bb_level), 1459 offsetof(struct xfs_btree_block, bb_numrecs), 1460 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib), 1461 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib), 1462 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno), 1463 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn), 1464 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid), 1465 offsetof(struct xfs_btree_block, bb_u.s.bb_owner), 1466 offsetof(struct xfs_btree_block, bb_u.s.bb_crc), 1467 XFS_BTREE_SBLOCK_CRC_LEN 1468 }; 1469 static const short loffsets[] = { /* table of offsets (long) */ 1470 offsetof(struct xfs_btree_block, bb_magic), 1471 offsetof(struct xfs_btree_block, bb_level), 1472 offsetof(struct xfs_btree_block, bb_numrecs), 1473 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib), 1474 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib), 1475 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno), 1476 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn), 1477 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid), 1478 offsetof(struct xfs_btree_block, bb_u.l.bb_owner), 1479 offsetof(struct xfs_btree_block, bb_u.l.bb_crc), 1480 offsetof(struct xfs_btree_block, bb_u.l.bb_pad), 1481 XFS_BTREE_LBLOCK_CRC_LEN 1482 }; 1483 1484 if (bp) { 1485 int nbits; 1486 1487 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) { 1488 /* 1489 * We don't log the CRC when updating a btree 1490 * block but instead recreate it during log 1491 * recovery. As the log buffers have checksums 1492 * of their own this is safe and avoids logging a crc 1493 * update in a lot of places. 1494 */ 1495 if (fields == XFS_BB_ALL_BITS) 1496 fields = XFS_BB_ALL_BITS_CRC; 1497 nbits = XFS_BB_NUM_BITS_CRC; 1498 } else { 1499 nbits = XFS_BB_NUM_BITS; 1500 } 1501 xfs_btree_offsets(fields, 1502 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ? 1503 loffsets : soffsets, 1504 nbits, &first, &last); 1505 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1506 xfs_trans_log_buf(cur->bc_tp, bp, first, last); 1507 } else { 1508 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip, 1509 xfs_ilog_fbroot(cur->bc_private.b.whichfork)); 1510 } 1511 } 1512 1513 /* 1514 * Increment cursor by one record at the level. 1515 * For nonzero levels the leaf-ward information is untouched. 1516 */ 1517 int /* error */ 1518 xfs_btree_increment( 1519 struct xfs_btree_cur *cur, 1520 int level, 1521 int *stat) /* success/failure */ 1522 { 1523 struct xfs_btree_block *block; 1524 union xfs_btree_ptr ptr; 1525 struct xfs_buf *bp; 1526 int error; /* error return value */ 1527 int lev; 1528 1529 ASSERT(level < cur->bc_nlevels); 1530 1531 /* Read-ahead to the right at this level. */ 1532 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); 1533 1534 /* Get a pointer to the btree block. */ 1535 block = xfs_btree_get_block(cur, level, &bp); 1536 1537 #ifdef DEBUG 1538 error = xfs_btree_check_block(cur, block, level, bp); 1539 if (error) 1540 goto error0; 1541 #endif 1542 1543 /* We're done if we remain in the block after the increment. */ 1544 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block)) 1545 goto out1; 1546 1547 /* Fail if we just went off the right edge of the tree. */ 1548 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1549 if (xfs_btree_ptr_is_null(cur, &ptr)) 1550 goto out0; 1551 1552 XFS_BTREE_STATS_INC(cur, increment); 1553 1554 /* 1555 * March up the tree incrementing pointers. 1556 * Stop when we don't go off the right edge of a block. 1557 */ 1558 for (lev = level + 1; lev < cur->bc_nlevels; lev++) { 1559 block = xfs_btree_get_block(cur, lev, &bp); 1560 1561 #ifdef DEBUG 1562 error = xfs_btree_check_block(cur, block, lev, bp); 1563 if (error) 1564 goto error0; 1565 #endif 1566 1567 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block)) 1568 break; 1569 1570 /* Read-ahead the right block for the next loop. */ 1571 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA); 1572 } 1573 1574 /* 1575 * If we went off the root then we are either seriously 1576 * confused or have the tree root in an inode. 1577 */ 1578 if (lev == cur->bc_nlevels) { 1579 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) 1580 goto out0; 1581 ASSERT(0); 1582 error = -EFSCORRUPTED; 1583 goto error0; 1584 } 1585 ASSERT(lev < cur->bc_nlevels); 1586 1587 /* 1588 * Now walk back down the tree, fixing up the cursor's buffer 1589 * pointers and key numbers. 1590 */ 1591 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { 1592 union xfs_btree_ptr *ptrp; 1593 1594 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block); 1595 --lev; 1596 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); 1597 if (error) 1598 goto error0; 1599 1600 xfs_btree_setbuf(cur, lev, bp); 1601 cur->bc_ptrs[lev] = 1; 1602 } 1603 out1: 1604 *stat = 1; 1605 return 0; 1606 1607 out0: 1608 *stat = 0; 1609 return 0; 1610 1611 error0: 1612 return error; 1613 } 1614 1615 /* 1616 * Decrement cursor by one record at the level. 1617 * For nonzero levels the leaf-ward information is untouched. 1618 */ 1619 int /* error */ 1620 xfs_btree_decrement( 1621 struct xfs_btree_cur *cur, 1622 int level, 1623 int *stat) /* success/failure */ 1624 { 1625 struct xfs_btree_block *block; 1626 xfs_buf_t *bp; 1627 int error; /* error return value */ 1628 int lev; 1629 union xfs_btree_ptr ptr; 1630 1631 ASSERT(level < cur->bc_nlevels); 1632 1633 /* Read-ahead to the left at this level. */ 1634 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA); 1635 1636 /* We're done if we remain in the block after the decrement. */ 1637 if (--cur->bc_ptrs[level] > 0) 1638 goto out1; 1639 1640 /* Get a pointer to the btree block. */ 1641 block = xfs_btree_get_block(cur, level, &bp); 1642 1643 #ifdef DEBUG 1644 error = xfs_btree_check_block(cur, block, level, bp); 1645 if (error) 1646 goto error0; 1647 #endif 1648 1649 /* Fail if we just went off the left edge of the tree. */ 1650 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); 1651 if (xfs_btree_ptr_is_null(cur, &ptr)) 1652 goto out0; 1653 1654 XFS_BTREE_STATS_INC(cur, decrement); 1655 1656 /* 1657 * March up the tree decrementing pointers. 1658 * Stop when we don't go off the left edge of a block. 1659 */ 1660 for (lev = level + 1; lev < cur->bc_nlevels; lev++) { 1661 if (--cur->bc_ptrs[lev] > 0) 1662 break; 1663 /* Read-ahead the left block for the next loop. */ 1664 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA); 1665 } 1666 1667 /* 1668 * If we went off the root then we are seriously confused. 1669 * or the root of the tree is in an inode. 1670 */ 1671 if (lev == cur->bc_nlevels) { 1672 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) 1673 goto out0; 1674 ASSERT(0); 1675 error = -EFSCORRUPTED; 1676 goto error0; 1677 } 1678 ASSERT(lev < cur->bc_nlevels); 1679 1680 /* 1681 * Now walk back down the tree, fixing up the cursor's buffer 1682 * pointers and key numbers. 1683 */ 1684 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { 1685 union xfs_btree_ptr *ptrp; 1686 1687 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block); 1688 --lev; 1689 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); 1690 if (error) 1691 goto error0; 1692 xfs_btree_setbuf(cur, lev, bp); 1693 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block); 1694 } 1695 out1: 1696 *stat = 1; 1697 return 0; 1698 1699 out0: 1700 *stat = 0; 1701 return 0; 1702 1703 error0: 1704 return error; 1705 } 1706 1707 int 1708 xfs_btree_lookup_get_block( 1709 struct xfs_btree_cur *cur, /* btree cursor */ 1710 int level, /* level in the btree */ 1711 union xfs_btree_ptr *pp, /* ptr to btree block */ 1712 struct xfs_btree_block **blkp) /* return btree block */ 1713 { 1714 struct xfs_buf *bp; /* buffer pointer for btree block */ 1715 xfs_daddr_t daddr; 1716 int error = 0; 1717 1718 /* special case the root block if in an inode */ 1719 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 1720 (level == cur->bc_nlevels - 1)) { 1721 *blkp = xfs_btree_get_iroot(cur); 1722 return 0; 1723 } 1724 1725 /* 1726 * If the old buffer at this level for the disk address we are 1727 * looking for re-use it. 1728 * 1729 * Otherwise throw it away and get a new one. 1730 */ 1731 bp = cur->bc_bufs[level]; 1732 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr); 1733 if (error) 1734 return error; 1735 if (bp && XFS_BUF_ADDR(bp) == daddr) { 1736 *blkp = XFS_BUF_TO_BLOCK(bp); 1737 return 0; 1738 } 1739 1740 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp); 1741 if (error) 1742 return error; 1743 1744 /* Check the inode owner since the verifiers don't. */ 1745 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) && 1746 !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) && 1747 (cur->bc_flags & XFS_BTREE_LONG_PTRS) && 1748 be64_to_cpu((*blkp)->bb_u.l.bb_owner) != 1749 cur->bc_private.b.ip->i_ino) 1750 goto out_bad; 1751 1752 /* Did we get the level we were looking for? */ 1753 if (be16_to_cpu((*blkp)->bb_level) != level) 1754 goto out_bad; 1755 1756 /* Check that internal nodes have at least one record. */ 1757 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0) 1758 goto out_bad; 1759 1760 xfs_btree_setbuf(cur, level, bp); 1761 return 0; 1762 1763 out_bad: 1764 *blkp = NULL; 1765 xfs_buf_corruption_error(bp); 1766 xfs_trans_brelse(cur->bc_tp, bp); 1767 return -EFSCORRUPTED; 1768 } 1769 1770 /* 1771 * Get current search key. For level 0 we don't actually have a key 1772 * structure so we make one up from the record. For all other levels 1773 * we just return the right key. 1774 */ 1775 STATIC union xfs_btree_key * 1776 xfs_lookup_get_search_key( 1777 struct xfs_btree_cur *cur, 1778 int level, 1779 int keyno, 1780 struct xfs_btree_block *block, 1781 union xfs_btree_key *kp) 1782 { 1783 if (level == 0) { 1784 cur->bc_ops->init_key_from_rec(kp, 1785 xfs_btree_rec_addr(cur, keyno, block)); 1786 return kp; 1787 } 1788 1789 return xfs_btree_key_addr(cur, keyno, block); 1790 } 1791 1792 /* 1793 * Lookup the record. The cursor is made to point to it, based on dir. 1794 * stat is set to 0 if can't find any such record, 1 for success. 1795 */ 1796 int /* error */ 1797 xfs_btree_lookup( 1798 struct xfs_btree_cur *cur, /* btree cursor */ 1799 xfs_lookup_t dir, /* <=, ==, or >= */ 1800 int *stat) /* success/failure */ 1801 { 1802 struct xfs_btree_block *block; /* current btree block */ 1803 int64_t diff; /* difference for the current key */ 1804 int error; /* error return value */ 1805 int keyno; /* current key number */ 1806 int level; /* level in the btree */ 1807 union xfs_btree_ptr *pp; /* ptr to btree block */ 1808 union xfs_btree_ptr ptr; /* ptr to btree block */ 1809 1810 XFS_BTREE_STATS_INC(cur, lookup); 1811 1812 /* No such thing as a zero-level tree. */ 1813 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) 1814 return -EFSCORRUPTED; 1815 1816 block = NULL; 1817 keyno = 0; 1818 1819 /* initialise start pointer from cursor */ 1820 cur->bc_ops->init_ptr_from_cur(cur, &ptr); 1821 pp = &ptr; 1822 1823 /* 1824 * Iterate over each level in the btree, starting at the root. 1825 * For each level above the leaves, find the key we need, based 1826 * on the lookup record, then follow the corresponding block 1827 * pointer down to the next level. 1828 */ 1829 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) { 1830 /* Get the block we need to do the lookup on. */ 1831 error = xfs_btree_lookup_get_block(cur, level, pp, &block); 1832 if (error) 1833 goto error0; 1834 1835 if (diff == 0) { 1836 /* 1837 * If we already had a key match at a higher level, we 1838 * know we need to use the first entry in this block. 1839 */ 1840 keyno = 1; 1841 } else { 1842 /* Otherwise search this block. Do a binary search. */ 1843 1844 int high; /* high entry number */ 1845 int low; /* low entry number */ 1846 1847 /* Set low and high entry numbers, 1-based. */ 1848 low = 1; 1849 high = xfs_btree_get_numrecs(block); 1850 if (!high) { 1851 /* Block is empty, must be an empty leaf. */ 1852 if (level != 0 || cur->bc_nlevels != 1) { 1853 XFS_CORRUPTION_ERROR(__func__, 1854 XFS_ERRLEVEL_LOW, 1855 cur->bc_mp, block, 1856 sizeof(*block)); 1857 return -EFSCORRUPTED; 1858 } 1859 1860 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE; 1861 *stat = 0; 1862 return 0; 1863 } 1864 1865 /* Binary search the block. */ 1866 while (low <= high) { 1867 union xfs_btree_key key; 1868 union xfs_btree_key *kp; 1869 1870 XFS_BTREE_STATS_INC(cur, compare); 1871 1872 /* keyno is average of low and high. */ 1873 keyno = (low + high) >> 1; 1874 1875 /* Get current search key */ 1876 kp = xfs_lookup_get_search_key(cur, level, 1877 keyno, block, &key); 1878 1879 /* 1880 * Compute difference to get next direction: 1881 * - less than, move right 1882 * - greater than, move left 1883 * - equal, we're done 1884 */ 1885 diff = cur->bc_ops->key_diff(cur, kp); 1886 if (diff < 0) 1887 low = keyno + 1; 1888 else if (diff > 0) 1889 high = keyno - 1; 1890 else 1891 break; 1892 } 1893 } 1894 1895 /* 1896 * If there are more levels, set up for the next level 1897 * by getting the block number and filling in the cursor. 1898 */ 1899 if (level > 0) { 1900 /* 1901 * If we moved left, need the previous key number, 1902 * unless there isn't one. 1903 */ 1904 if (diff > 0 && --keyno < 1) 1905 keyno = 1; 1906 pp = xfs_btree_ptr_addr(cur, keyno, block); 1907 1908 error = xfs_btree_debug_check_ptr(cur, pp, 0, level); 1909 if (error) 1910 goto error0; 1911 1912 cur->bc_ptrs[level] = keyno; 1913 } 1914 } 1915 1916 /* Done with the search. See if we need to adjust the results. */ 1917 if (dir != XFS_LOOKUP_LE && diff < 0) { 1918 keyno++; 1919 /* 1920 * If ge search and we went off the end of the block, but it's 1921 * not the last block, we're in the wrong block. 1922 */ 1923 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1924 if (dir == XFS_LOOKUP_GE && 1925 keyno > xfs_btree_get_numrecs(block) && 1926 !xfs_btree_ptr_is_null(cur, &ptr)) { 1927 int i; 1928 1929 cur->bc_ptrs[0] = keyno; 1930 error = xfs_btree_increment(cur, 0, &i); 1931 if (error) 1932 goto error0; 1933 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1934 return -EFSCORRUPTED; 1935 *stat = 1; 1936 return 0; 1937 } 1938 } else if (dir == XFS_LOOKUP_LE && diff > 0) 1939 keyno--; 1940 cur->bc_ptrs[0] = keyno; 1941 1942 /* Return if we succeeded or not. */ 1943 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block)) 1944 *stat = 0; 1945 else if (dir != XFS_LOOKUP_EQ || diff == 0) 1946 *stat = 1; 1947 else 1948 *stat = 0; 1949 return 0; 1950 1951 error0: 1952 return error; 1953 } 1954 1955 /* Find the high key storage area from a regular key. */ 1956 union xfs_btree_key * 1957 xfs_btree_high_key_from_key( 1958 struct xfs_btree_cur *cur, 1959 union xfs_btree_key *key) 1960 { 1961 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING); 1962 return (union xfs_btree_key *)((char *)key + 1963 (cur->bc_ops->key_len / 2)); 1964 } 1965 1966 /* Determine the low (and high if overlapped) keys of a leaf block */ 1967 STATIC void 1968 xfs_btree_get_leaf_keys( 1969 struct xfs_btree_cur *cur, 1970 struct xfs_btree_block *block, 1971 union xfs_btree_key *key) 1972 { 1973 union xfs_btree_key max_hkey; 1974 union xfs_btree_key hkey; 1975 union xfs_btree_rec *rec; 1976 union xfs_btree_key *high; 1977 int n; 1978 1979 rec = xfs_btree_rec_addr(cur, 1, block); 1980 cur->bc_ops->init_key_from_rec(key, rec); 1981 1982 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 1983 1984 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec); 1985 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { 1986 rec = xfs_btree_rec_addr(cur, n, block); 1987 cur->bc_ops->init_high_key_from_rec(&hkey, rec); 1988 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey) 1989 > 0) 1990 max_hkey = hkey; 1991 } 1992 1993 high = xfs_btree_high_key_from_key(cur, key); 1994 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2); 1995 } 1996 } 1997 1998 /* Determine the low (and high if overlapped) keys of a node block */ 1999 STATIC void 2000 xfs_btree_get_node_keys( 2001 struct xfs_btree_cur *cur, 2002 struct xfs_btree_block *block, 2003 union xfs_btree_key *key) 2004 { 2005 union xfs_btree_key *hkey; 2006 union xfs_btree_key *max_hkey; 2007 union xfs_btree_key *high; 2008 int n; 2009 2010 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2011 memcpy(key, xfs_btree_key_addr(cur, 1, block), 2012 cur->bc_ops->key_len / 2); 2013 2014 max_hkey = xfs_btree_high_key_addr(cur, 1, block); 2015 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { 2016 hkey = xfs_btree_high_key_addr(cur, n, block); 2017 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0) 2018 max_hkey = hkey; 2019 } 2020 2021 high = xfs_btree_high_key_from_key(cur, key); 2022 memcpy(high, max_hkey, cur->bc_ops->key_len / 2); 2023 } else { 2024 memcpy(key, xfs_btree_key_addr(cur, 1, block), 2025 cur->bc_ops->key_len); 2026 } 2027 } 2028 2029 /* Derive the keys for any btree block. */ 2030 void 2031 xfs_btree_get_keys( 2032 struct xfs_btree_cur *cur, 2033 struct xfs_btree_block *block, 2034 union xfs_btree_key *key) 2035 { 2036 if (be16_to_cpu(block->bb_level) == 0) 2037 xfs_btree_get_leaf_keys(cur, block, key); 2038 else 2039 xfs_btree_get_node_keys(cur, block, key); 2040 } 2041 2042 /* 2043 * Decide if we need to update the parent keys of a btree block. For 2044 * a standard btree this is only necessary if we're updating the first 2045 * record/key. For an overlapping btree, we must always update the 2046 * keys because the highest key can be in any of the records or keys 2047 * in the block. 2048 */ 2049 static inline bool 2050 xfs_btree_needs_key_update( 2051 struct xfs_btree_cur *cur, 2052 int ptr) 2053 { 2054 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1; 2055 } 2056 2057 /* 2058 * Update the low and high parent keys of the given level, progressing 2059 * towards the root. If force_all is false, stop if the keys for a given 2060 * level do not need updating. 2061 */ 2062 STATIC int 2063 __xfs_btree_updkeys( 2064 struct xfs_btree_cur *cur, 2065 int level, 2066 struct xfs_btree_block *block, 2067 struct xfs_buf *bp0, 2068 bool force_all) 2069 { 2070 union xfs_btree_key key; /* keys from current level */ 2071 union xfs_btree_key *lkey; /* keys from the next level up */ 2072 union xfs_btree_key *hkey; 2073 union xfs_btree_key *nlkey; /* keys from the next level up */ 2074 union xfs_btree_key *nhkey; 2075 struct xfs_buf *bp; 2076 int ptr; 2077 2078 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING); 2079 2080 /* Exit if there aren't any parent levels to update. */ 2081 if (level + 1 >= cur->bc_nlevels) 2082 return 0; 2083 2084 trace_xfs_btree_updkeys(cur, level, bp0); 2085 2086 lkey = &key; 2087 hkey = xfs_btree_high_key_from_key(cur, lkey); 2088 xfs_btree_get_keys(cur, block, lkey); 2089 for (level++; level < cur->bc_nlevels; level++) { 2090 #ifdef DEBUG 2091 int error; 2092 #endif 2093 block = xfs_btree_get_block(cur, level, &bp); 2094 trace_xfs_btree_updkeys(cur, level, bp); 2095 #ifdef DEBUG 2096 error = xfs_btree_check_block(cur, block, level, bp); 2097 if (error) 2098 return error; 2099 #endif 2100 ptr = cur->bc_ptrs[level]; 2101 nlkey = xfs_btree_key_addr(cur, ptr, block); 2102 nhkey = xfs_btree_high_key_addr(cur, ptr, block); 2103 if (!force_all && 2104 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 || 2105 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0)) 2106 break; 2107 xfs_btree_copy_keys(cur, nlkey, lkey, 1); 2108 xfs_btree_log_keys(cur, bp, ptr, ptr); 2109 if (level + 1 >= cur->bc_nlevels) 2110 break; 2111 xfs_btree_get_node_keys(cur, block, lkey); 2112 } 2113 2114 return 0; 2115 } 2116 2117 /* Update all the keys from some level in cursor back to the root. */ 2118 STATIC int 2119 xfs_btree_updkeys_force( 2120 struct xfs_btree_cur *cur, 2121 int level) 2122 { 2123 struct xfs_buf *bp; 2124 struct xfs_btree_block *block; 2125 2126 block = xfs_btree_get_block(cur, level, &bp); 2127 return __xfs_btree_updkeys(cur, level, block, bp, true); 2128 } 2129 2130 /* 2131 * Update the parent keys of the given level, progressing towards the root. 2132 */ 2133 STATIC int 2134 xfs_btree_update_keys( 2135 struct xfs_btree_cur *cur, 2136 int level) 2137 { 2138 struct xfs_btree_block *block; 2139 struct xfs_buf *bp; 2140 union xfs_btree_key *kp; 2141 union xfs_btree_key key; 2142 int ptr; 2143 2144 ASSERT(level >= 0); 2145 2146 block = xfs_btree_get_block(cur, level, &bp); 2147 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) 2148 return __xfs_btree_updkeys(cur, level, block, bp, false); 2149 2150 /* 2151 * Go up the tree from this level toward the root. 2152 * At each level, update the key value to the value input. 2153 * Stop when we reach a level where the cursor isn't pointing 2154 * at the first entry in the block. 2155 */ 2156 xfs_btree_get_keys(cur, block, &key); 2157 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) { 2158 #ifdef DEBUG 2159 int error; 2160 #endif 2161 block = xfs_btree_get_block(cur, level, &bp); 2162 #ifdef DEBUG 2163 error = xfs_btree_check_block(cur, block, level, bp); 2164 if (error) 2165 return error; 2166 #endif 2167 ptr = cur->bc_ptrs[level]; 2168 kp = xfs_btree_key_addr(cur, ptr, block); 2169 xfs_btree_copy_keys(cur, kp, &key, 1); 2170 xfs_btree_log_keys(cur, bp, ptr, ptr); 2171 } 2172 2173 return 0; 2174 } 2175 2176 /* 2177 * Update the record referred to by cur to the value in the 2178 * given record. This either works (return 0) or gets an 2179 * EFSCORRUPTED error. 2180 */ 2181 int 2182 xfs_btree_update( 2183 struct xfs_btree_cur *cur, 2184 union xfs_btree_rec *rec) 2185 { 2186 struct xfs_btree_block *block; 2187 struct xfs_buf *bp; 2188 int error; 2189 int ptr; 2190 union xfs_btree_rec *rp; 2191 2192 /* Pick up the current block. */ 2193 block = xfs_btree_get_block(cur, 0, &bp); 2194 2195 #ifdef DEBUG 2196 error = xfs_btree_check_block(cur, block, 0, bp); 2197 if (error) 2198 goto error0; 2199 #endif 2200 /* Get the address of the rec to be updated. */ 2201 ptr = cur->bc_ptrs[0]; 2202 rp = xfs_btree_rec_addr(cur, ptr, block); 2203 2204 /* Fill in the new contents and log them. */ 2205 xfs_btree_copy_recs(cur, rp, rec, 1); 2206 xfs_btree_log_recs(cur, bp, ptr, ptr); 2207 2208 /* 2209 * If we are tracking the last record in the tree and 2210 * we are at the far right edge of the tree, update it. 2211 */ 2212 if (xfs_btree_is_lastrec(cur, block, 0)) { 2213 cur->bc_ops->update_lastrec(cur, block, rec, 2214 ptr, LASTREC_UPDATE); 2215 } 2216 2217 /* Pass new key value up to our parent. */ 2218 if (xfs_btree_needs_key_update(cur, ptr)) { 2219 error = xfs_btree_update_keys(cur, 0); 2220 if (error) 2221 goto error0; 2222 } 2223 2224 return 0; 2225 2226 error0: 2227 return error; 2228 } 2229 2230 /* 2231 * Move 1 record left from cur/level if possible. 2232 * Update cur to reflect the new path. 2233 */ 2234 STATIC int /* error */ 2235 xfs_btree_lshift( 2236 struct xfs_btree_cur *cur, 2237 int level, 2238 int *stat) /* success/failure */ 2239 { 2240 struct xfs_buf *lbp; /* left buffer pointer */ 2241 struct xfs_btree_block *left; /* left btree block */ 2242 int lrecs; /* left record count */ 2243 struct xfs_buf *rbp; /* right buffer pointer */ 2244 struct xfs_btree_block *right; /* right btree block */ 2245 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 2246 int rrecs; /* right record count */ 2247 union xfs_btree_ptr lptr; /* left btree pointer */ 2248 union xfs_btree_key *rkp = NULL; /* right btree key */ 2249 union xfs_btree_ptr *rpp = NULL; /* right address pointer */ 2250 union xfs_btree_rec *rrp = NULL; /* right record pointer */ 2251 int error; /* error return value */ 2252 int i; 2253 2254 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 2255 level == cur->bc_nlevels - 1) 2256 goto out0; 2257 2258 /* Set up variables for this block as "right". */ 2259 right = xfs_btree_get_block(cur, level, &rbp); 2260 2261 #ifdef DEBUG 2262 error = xfs_btree_check_block(cur, right, level, rbp); 2263 if (error) 2264 goto error0; 2265 #endif 2266 2267 /* If we've got no left sibling then we can't shift an entry left. */ 2268 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 2269 if (xfs_btree_ptr_is_null(cur, &lptr)) 2270 goto out0; 2271 2272 /* 2273 * If the cursor entry is the one that would be moved, don't 2274 * do it... it's too complicated. 2275 */ 2276 if (cur->bc_ptrs[level] <= 1) 2277 goto out0; 2278 2279 /* Set up the left neighbor as "left". */ 2280 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 2281 if (error) 2282 goto error0; 2283 2284 /* If it's full, it can't take another entry. */ 2285 lrecs = xfs_btree_get_numrecs(left); 2286 if (lrecs == cur->bc_ops->get_maxrecs(cur, level)) 2287 goto out0; 2288 2289 rrecs = xfs_btree_get_numrecs(right); 2290 2291 /* 2292 * We add one entry to the left side and remove one for the right side. 2293 * Account for it here, the changes will be updated on disk and logged 2294 * later. 2295 */ 2296 lrecs++; 2297 rrecs--; 2298 2299 XFS_BTREE_STATS_INC(cur, lshift); 2300 XFS_BTREE_STATS_ADD(cur, moves, 1); 2301 2302 /* 2303 * If non-leaf, copy a key and a ptr to the left block. 2304 * Log the changes to the left block. 2305 */ 2306 if (level > 0) { 2307 /* It's a non-leaf. Move keys and pointers. */ 2308 union xfs_btree_key *lkp; /* left btree key */ 2309 union xfs_btree_ptr *lpp; /* left address pointer */ 2310 2311 lkp = xfs_btree_key_addr(cur, lrecs, left); 2312 rkp = xfs_btree_key_addr(cur, 1, right); 2313 2314 lpp = xfs_btree_ptr_addr(cur, lrecs, left); 2315 rpp = xfs_btree_ptr_addr(cur, 1, right); 2316 2317 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level); 2318 if (error) 2319 goto error0; 2320 2321 xfs_btree_copy_keys(cur, lkp, rkp, 1); 2322 xfs_btree_copy_ptrs(cur, lpp, rpp, 1); 2323 2324 xfs_btree_log_keys(cur, lbp, lrecs, lrecs); 2325 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs); 2326 2327 ASSERT(cur->bc_ops->keys_inorder(cur, 2328 xfs_btree_key_addr(cur, lrecs - 1, left), lkp)); 2329 } else { 2330 /* It's a leaf. Move records. */ 2331 union xfs_btree_rec *lrp; /* left record pointer */ 2332 2333 lrp = xfs_btree_rec_addr(cur, lrecs, left); 2334 rrp = xfs_btree_rec_addr(cur, 1, right); 2335 2336 xfs_btree_copy_recs(cur, lrp, rrp, 1); 2337 xfs_btree_log_recs(cur, lbp, lrecs, lrecs); 2338 2339 ASSERT(cur->bc_ops->recs_inorder(cur, 2340 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp)); 2341 } 2342 2343 xfs_btree_set_numrecs(left, lrecs); 2344 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); 2345 2346 xfs_btree_set_numrecs(right, rrecs); 2347 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); 2348 2349 /* 2350 * Slide the contents of right down one entry. 2351 */ 2352 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1); 2353 if (level > 0) { 2354 /* It's a nonleaf. operate on keys and ptrs */ 2355 for (i = 0; i < rrecs; i++) { 2356 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level); 2357 if (error) 2358 goto error0; 2359 } 2360 2361 xfs_btree_shift_keys(cur, 2362 xfs_btree_key_addr(cur, 2, right), 2363 -1, rrecs); 2364 xfs_btree_shift_ptrs(cur, 2365 xfs_btree_ptr_addr(cur, 2, right), 2366 -1, rrecs); 2367 2368 xfs_btree_log_keys(cur, rbp, 1, rrecs); 2369 xfs_btree_log_ptrs(cur, rbp, 1, rrecs); 2370 } else { 2371 /* It's a leaf. operate on records */ 2372 xfs_btree_shift_recs(cur, 2373 xfs_btree_rec_addr(cur, 2, right), 2374 -1, rrecs); 2375 xfs_btree_log_recs(cur, rbp, 1, rrecs); 2376 } 2377 2378 /* 2379 * Using a temporary cursor, update the parent key values of the 2380 * block on the left. 2381 */ 2382 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2383 error = xfs_btree_dup_cursor(cur, &tcur); 2384 if (error) 2385 goto error0; 2386 i = xfs_btree_firstrec(tcur, level); 2387 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) { 2388 error = -EFSCORRUPTED; 2389 goto error0; 2390 } 2391 2392 error = xfs_btree_decrement(tcur, level, &i); 2393 if (error) 2394 goto error1; 2395 2396 /* Update the parent high keys of the left block, if needed. */ 2397 error = xfs_btree_update_keys(tcur, level); 2398 if (error) 2399 goto error1; 2400 2401 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 2402 } 2403 2404 /* Update the parent keys of the right block. */ 2405 error = xfs_btree_update_keys(cur, level); 2406 if (error) 2407 goto error0; 2408 2409 /* Slide the cursor value left one. */ 2410 cur->bc_ptrs[level]--; 2411 2412 *stat = 1; 2413 return 0; 2414 2415 out0: 2416 *stat = 0; 2417 return 0; 2418 2419 error0: 2420 return error; 2421 2422 error1: 2423 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 2424 return error; 2425 } 2426 2427 /* 2428 * Move 1 record right from cur/level if possible. 2429 * Update cur to reflect the new path. 2430 */ 2431 STATIC int /* error */ 2432 xfs_btree_rshift( 2433 struct xfs_btree_cur *cur, 2434 int level, 2435 int *stat) /* success/failure */ 2436 { 2437 struct xfs_buf *lbp; /* left buffer pointer */ 2438 struct xfs_btree_block *left; /* left btree block */ 2439 struct xfs_buf *rbp; /* right buffer pointer */ 2440 struct xfs_btree_block *right; /* right btree block */ 2441 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 2442 union xfs_btree_ptr rptr; /* right block pointer */ 2443 union xfs_btree_key *rkp; /* right btree key */ 2444 int rrecs; /* right record count */ 2445 int lrecs; /* left record count */ 2446 int error; /* error return value */ 2447 int i; /* loop counter */ 2448 2449 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 2450 (level == cur->bc_nlevels - 1)) 2451 goto out0; 2452 2453 /* Set up variables for this block as "left". */ 2454 left = xfs_btree_get_block(cur, level, &lbp); 2455 2456 #ifdef DEBUG 2457 error = xfs_btree_check_block(cur, left, level, lbp); 2458 if (error) 2459 goto error0; 2460 #endif 2461 2462 /* If we've got no right sibling then we can't shift an entry right. */ 2463 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); 2464 if (xfs_btree_ptr_is_null(cur, &rptr)) 2465 goto out0; 2466 2467 /* 2468 * If the cursor entry is the one that would be moved, don't 2469 * do it... it's too complicated. 2470 */ 2471 lrecs = xfs_btree_get_numrecs(left); 2472 if (cur->bc_ptrs[level] >= lrecs) 2473 goto out0; 2474 2475 /* Set up the right neighbor as "right". */ 2476 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 2477 if (error) 2478 goto error0; 2479 2480 /* If it's full, it can't take another entry. */ 2481 rrecs = xfs_btree_get_numrecs(right); 2482 if (rrecs == cur->bc_ops->get_maxrecs(cur, level)) 2483 goto out0; 2484 2485 XFS_BTREE_STATS_INC(cur, rshift); 2486 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 2487 2488 /* 2489 * Make a hole at the start of the right neighbor block, then 2490 * copy the last left block entry to the hole. 2491 */ 2492 if (level > 0) { 2493 /* It's a nonleaf. make a hole in the keys and ptrs */ 2494 union xfs_btree_key *lkp; 2495 union xfs_btree_ptr *lpp; 2496 union xfs_btree_ptr *rpp; 2497 2498 lkp = xfs_btree_key_addr(cur, lrecs, left); 2499 lpp = xfs_btree_ptr_addr(cur, lrecs, left); 2500 rkp = xfs_btree_key_addr(cur, 1, right); 2501 rpp = xfs_btree_ptr_addr(cur, 1, right); 2502 2503 for (i = rrecs - 1; i >= 0; i--) { 2504 error = xfs_btree_debug_check_ptr(cur, rpp, i, level); 2505 if (error) 2506 goto error0; 2507 } 2508 2509 xfs_btree_shift_keys(cur, rkp, 1, rrecs); 2510 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs); 2511 2512 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level); 2513 if (error) 2514 goto error0; 2515 2516 /* Now put the new data in, and log it. */ 2517 xfs_btree_copy_keys(cur, rkp, lkp, 1); 2518 xfs_btree_copy_ptrs(cur, rpp, lpp, 1); 2519 2520 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1); 2521 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1); 2522 2523 ASSERT(cur->bc_ops->keys_inorder(cur, rkp, 2524 xfs_btree_key_addr(cur, 2, right))); 2525 } else { 2526 /* It's a leaf. make a hole in the records */ 2527 union xfs_btree_rec *lrp; 2528 union xfs_btree_rec *rrp; 2529 2530 lrp = xfs_btree_rec_addr(cur, lrecs, left); 2531 rrp = xfs_btree_rec_addr(cur, 1, right); 2532 2533 xfs_btree_shift_recs(cur, rrp, 1, rrecs); 2534 2535 /* Now put the new data in, and log it. */ 2536 xfs_btree_copy_recs(cur, rrp, lrp, 1); 2537 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1); 2538 } 2539 2540 /* 2541 * Decrement and log left's numrecs, bump and log right's numrecs. 2542 */ 2543 xfs_btree_set_numrecs(left, --lrecs); 2544 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); 2545 2546 xfs_btree_set_numrecs(right, ++rrecs); 2547 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); 2548 2549 /* 2550 * Using a temporary cursor, update the parent key values of the 2551 * block on the right. 2552 */ 2553 error = xfs_btree_dup_cursor(cur, &tcur); 2554 if (error) 2555 goto error0; 2556 i = xfs_btree_lastrec(tcur, level); 2557 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) { 2558 error = -EFSCORRUPTED; 2559 goto error0; 2560 } 2561 2562 error = xfs_btree_increment(tcur, level, &i); 2563 if (error) 2564 goto error1; 2565 2566 /* Update the parent high keys of the left block, if needed. */ 2567 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2568 error = xfs_btree_update_keys(cur, level); 2569 if (error) 2570 goto error1; 2571 } 2572 2573 /* Update the parent keys of the right block. */ 2574 error = xfs_btree_update_keys(tcur, level); 2575 if (error) 2576 goto error1; 2577 2578 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 2579 2580 *stat = 1; 2581 return 0; 2582 2583 out0: 2584 *stat = 0; 2585 return 0; 2586 2587 error0: 2588 return error; 2589 2590 error1: 2591 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 2592 return error; 2593 } 2594 2595 /* 2596 * Split cur/level block in half. 2597 * Return new block number and the key to its first 2598 * record (to be inserted into parent). 2599 */ 2600 STATIC int /* error */ 2601 __xfs_btree_split( 2602 struct xfs_btree_cur *cur, 2603 int level, 2604 union xfs_btree_ptr *ptrp, 2605 union xfs_btree_key *key, 2606 struct xfs_btree_cur **curp, 2607 int *stat) /* success/failure */ 2608 { 2609 union xfs_btree_ptr lptr; /* left sibling block ptr */ 2610 struct xfs_buf *lbp; /* left buffer pointer */ 2611 struct xfs_btree_block *left; /* left btree block */ 2612 union xfs_btree_ptr rptr; /* right sibling block ptr */ 2613 struct xfs_buf *rbp; /* right buffer pointer */ 2614 struct xfs_btree_block *right; /* right btree block */ 2615 union xfs_btree_ptr rrptr; /* right-right sibling ptr */ 2616 struct xfs_buf *rrbp; /* right-right buffer pointer */ 2617 struct xfs_btree_block *rrblock; /* right-right btree block */ 2618 int lrecs; 2619 int rrecs; 2620 int src_index; 2621 int error; /* error return value */ 2622 int i; 2623 2624 XFS_BTREE_STATS_INC(cur, split); 2625 2626 /* Set up left block (current one). */ 2627 left = xfs_btree_get_block(cur, level, &lbp); 2628 2629 #ifdef DEBUG 2630 error = xfs_btree_check_block(cur, left, level, lbp); 2631 if (error) 2632 goto error0; 2633 #endif 2634 2635 xfs_btree_buf_to_ptr(cur, lbp, &lptr); 2636 2637 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 2638 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat); 2639 if (error) 2640 goto error0; 2641 if (*stat == 0) 2642 goto out0; 2643 XFS_BTREE_STATS_INC(cur, alloc); 2644 2645 /* Set up the new block as "right". */ 2646 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp); 2647 if (error) 2648 goto error0; 2649 2650 /* Fill in the btree header for the new right block. */ 2651 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0); 2652 2653 /* 2654 * Split the entries between the old and the new block evenly. 2655 * Make sure that if there's an odd number of entries now, that 2656 * each new block will have the same number of entries. 2657 */ 2658 lrecs = xfs_btree_get_numrecs(left); 2659 rrecs = lrecs / 2; 2660 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1) 2661 rrecs++; 2662 src_index = (lrecs - rrecs + 1); 2663 2664 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 2665 2666 /* Adjust numrecs for the later get_*_keys() calls. */ 2667 lrecs -= rrecs; 2668 xfs_btree_set_numrecs(left, lrecs); 2669 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs); 2670 2671 /* 2672 * Copy btree block entries from the left block over to the 2673 * new block, the right. Update the right block and log the 2674 * changes. 2675 */ 2676 if (level > 0) { 2677 /* It's a non-leaf. Move keys and pointers. */ 2678 union xfs_btree_key *lkp; /* left btree key */ 2679 union xfs_btree_ptr *lpp; /* left address pointer */ 2680 union xfs_btree_key *rkp; /* right btree key */ 2681 union xfs_btree_ptr *rpp; /* right address pointer */ 2682 2683 lkp = xfs_btree_key_addr(cur, src_index, left); 2684 lpp = xfs_btree_ptr_addr(cur, src_index, left); 2685 rkp = xfs_btree_key_addr(cur, 1, right); 2686 rpp = xfs_btree_ptr_addr(cur, 1, right); 2687 2688 for (i = src_index; i < rrecs; i++) { 2689 error = xfs_btree_debug_check_ptr(cur, lpp, i, level); 2690 if (error) 2691 goto error0; 2692 } 2693 2694 /* Copy the keys & pointers to the new block. */ 2695 xfs_btree_copy_keys(cur, rkp, lkp, rrecs); 2696 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs); 2697 2698 xfs_btree_log_keys(cur, rbp, 1, rrecs); 2699 xfs_btree_log_ptrs(cur, rbp, 1, rrecs); 2700 2701 /* Stash the keys of the new block for later insertion. */ 2702 xfs_btree_get_node_keys(cur, right, key); 2703 } else { 2704 /* It's a leaf. Move records. */ 2705 union xfs_btree_rec *lrp; /* left record pointer */ 2706 union xfs_btree_rec *rrp; /* right record pointer */ 2707 2708 lrp = xfs_btree_rec_addr(cur, src_index, left); 2709 rrp = xfs_btree_rec_addr(cur, 1, right); 2710 2711 /* Copy records to the new block. */ 2712 xfs_btree_copy_recs(cur, rrp, lrp, rrecs); 2713 xfs_btree_log_recs(cur, rbp, 1, rrecs); 2714 2715 /* Stash the keys of the new block for later insertion. */ 2716 xfs_btree_get_leaf_keys(cur, right, key); 2717 } 2718 2719 /* 2720 * Find the left block number by looking in the buffer. 2721 * Adjust sibling pointers. 2722 */ 2723 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB); 2724 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB); 2725 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 2726 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); 2727 2728 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS); 2729 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); 2730 2731 /* 2732 * If there's a block to the new block's right, make that block 2733 * point back to right instead of to left. 2734 */ 2735 if (!xfs_btree_ptr_is_null(cur, &rrptr)) { 2736 error = xfs_btree_read_buf_block(cur, &rrptr, 2737 0, &rrblock, &rrbp); 2738 if (error) 2739 goto error0; 2740 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB); 2741 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); 2742 } 2743 2744 /* Update the parent high keys of the left block, if needed. */ 2745 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2746 error = xfs_btree_update_keys(cur, level); 2747 if (error) 2748 goto error0; 2749 } 2750 2751 /* 2752 * If the cursor is really in the right block, move it there. 2753 * If it's just pointing past the last entry in left, then we'll 2754 * insert there, so don't change anything in that case. 2755 */ 2756 if (cur->bc_ptrs[level] > lrecs + 1) { 2757 xfs_btree_setbuf(cur, level, rbp); 2758 cur->bc_ptrs[level] -= lrecs; 2759 } 2760 /* 2761 * If there are more levels, we'll need another cursor which refers 2762 * the right block, no matter where this cursor was. 2763 */ 2764 if (level + 1 < cur->bc_nlevels) { 2765 error = xfs_btree_dup_cursor(cur, curp); 2766 if (error) 2767 goto error0; 2768 (*curp)->bc_ptrs[level + 1]++; 2769 } 2770 *ptrp = rptr; 2771 *stat = 1; 2772 return 0; 2773 out0: 2774 *stat = 0; 2775 return 0; 2776 2777 error0: 2778 return error; 2779 } 2780 2781 struct xfs_btree_split_args { 2782 struct xfs_btree_cur *cur; 2783 int level; 2784 union xfs_btree_ptr *ptrp; 2785 union xfs_btree_key *key; 2786 struct xfs_btree_cur **curp; 2787 int *stat; /* success/failure */ 2788 int result; 2789 bool kswapd; /* allocation in kswapd context */ 2790 struct completion *done; 2791 struct work_struct work; 2792 }; 2793 2794 /* 2795 * Stack switching interfaces for allocation 2796 */ 2797 static void 2798 xfs_btree_split_worker( 2799 struct work_struct *work) 2800 { 2801 struct xfs_btree_split_args *args = container_of(work, 2802 struct xfs_btree_split_args, work); 2803 unsigned long pflags; 2804 unsigned long new_pflags = PF_MEMALLOC_NOFS; 2805 2806 /* 2807 * we are in a transaction context here, but may also be doing work 2808 * in kswapd context, and hence we may need to inherit that state 2809 * temporarily to ensure that we don't block waiting for memory reclaim 2810 * in any way. 2811 */ 2812 if (args->kswapd) 2813 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2814 2815 current_set_flags_nested(&pflags, new_pflags); 2816 2817 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp, 2818 args->key, args->curp, args->stat); 2819 complete(args->done); 2820 2821 current_restore_flags_nested(&pflags, new_pflags); 2822 } 2823 2824 /* 2825 * BMBT split requests often come in with little stack to work on. Push 2826 * them off to a worker thread so there is lots of stack to use. For the other 2827 * btree types, just call directly to avoid the context switch overhead here. 2828 */ 2829 STATIC int /* error */ 2830 xfs_btree_split( 2831 struct xfs_btree_cur *cur, 2832 int level, 2833 union xfs_btree_ptr *ptrp, 2834 union xfs_btree_key *key, 2835 struct xfs_btree_cur **curp, 2836 int *stat) /* success/failure */ 2837 { 2838 struct xfs_btree_split_args args; 2839 DECLARE_COMPLETION_ONSTACK(done); 2840 2841 if (cur->bc_btnum != XFS_BTNUM_BMAP) 2842 return __xfs_btree_split(cur, level, ptrp, key, curp, stat); 2843 2844 args.cur = cur; 2845 args.level = level; 2846 args.ptrp = ptrp; 2847 args.key = key; 2848 args.curp = curp; 2849 args.stat = stat; 2850 args.done = &done; 2851 args.kswapd = current_is_kswapd(); 2852 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker); 2853 queue_work(xfs_alloc_wq, &args.work); 2854 wait_for_completion(&done); 2855 destroy_work_on_stack(&args.work); 2856 return args.result; 2857 } 2858 2859 2860 /* 2861 * Copy the old inode root contents into a real block and make the 2862 * broot point to it. 2863 */ 2864 int /* error */ 2865 xfs_btree_new_iroot( 2866 struct xfs_btree_cur *cur, /* btree cursor */ 2867 int *logflags, /* logging flags for inode */ 2868 int *stat) /* return status - 0 fail */ 2869 { 2870 struct xfs_buf *cbp; /* buffer for cblock */ 2871 struct xfs_btree_block *block; /* btree block */ 2872 struct xfs_btree_block *cblock; /* child btree block */ 2873 union xfs_btree_key *ckp; /* child key pointer */ 2874 union xfs_btree_ptr *cpp; /* child ptr pointer */ 2875 union xfs_btree_key *kp; /* pointer to btree key */ 2876 union xfs_btree_ptr *pp; /* pointer to block addr */ 2877 union xfs_btree_ptr nptr; /* new block addr */ 2878 int level; /* btree level */ 2879 int error; /* error return code */ 2880 int i; /* loop counter */ 2881 2882 XFS_BTREE_STATS_INC(cur, newroot); 2883 2884 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 2885 2886 level = cur->bc_nlevels - 1; 2887 2888 block = xfs_btree_get_iroot(cur); 2889 pp = xfs_btree_ptr_addr(cur, 1, block); 2890 2891 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 2892 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat); 2893 if (error) 2894 goto error0; 2895 if (*stat == 0) 2896 return 0; 2897 2898 XFS_BTREE_STATS_INC(cur, alloc); 2899 2900 /* Copy the root into a real block. */ 2901 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp); 2902 if (error) 2903 goto error0; 2904 2905 /* 2906 * we can't just memcpy() the root in for CRC enabled btree blocks. 2907 * In that case have to also ensure the blkno remains correct 2908 */ 2909 memcpy(cblock, block, xfs_btree_block_len(cur)); 2910 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) { 2911 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 2912 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn); 2913 else 2914 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn); 2915 } 2916 2917 be16_add_cpu(&block->bb_level, 1); 2918 xfs_btree_set_numrecs(block, 1); 2919 cur->bc_nlevels++; 2920 cur->bc_ptrs[level + 1] = 1; 2921 2922 kp = xfs_btree_key_addr(cur, 1, block); 2923 ckp = xfs_btree_key_addr(cur, 1, cblock); 2924 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock)); 2925 2926 cpp = xfs_btree_ptr_addr(cur, 1, cblock); 2927 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) { 2928 error = xfs_btree_debug_check_ptr(cur, pp, i, level); 2929 if (error) 2930 goto error0; 2931 } 2932 2933 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock)); 2934 2935 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level); 2936 if (error) 2937 goto error0; 2938 2939 xfs_btree_copy_ptrs(cur, pp, &nptr, 1); 2940 2941 xfs_iroot_realloc(cur->bc_private.b.ip, 2942 1 - xfs_btree_get_numrecs(cblock), 2943 cur->bc_private.b.whichfork); 2944 2945 xfs_btree_setbuf(cur, level, cbp); 2946 2947 /* 2948 * Do all this logging at the end so that 2949 * the root is at the right level. 2950 */ 2951 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS); 2952 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); 2953 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); 2954 2955 *logflags |= 2956 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork); 2957 *stat = 1; 2958 return 0; 2959 error0: 2960 return error; 2961 } 2962 2963 /* 2964 * Allocate a new root block, fill it in. 2965 */ 2966 STATIC int /* error */ 2967 xfs_btree_new_root( 2968 struct xfs_btree_cur *cur, /* btree cursor */ 2969 int *stat) /* success/failure */ 2970 { 2971 struct xfs_btree_block *block; /* one half of the old root block */ 2972 struct xfs_buf *bp; /* buffer containing block */ 2973 int error; /* error return value */ 2974 struct xfs_buf *lbp; /* left buffer pointer */ 2975 struct xfs_btree_block *left; /* left btree block */ 2976 struct xfs_buf *nbp; /* new (root) buffer */ 2977 struct xfs_btree_block *new; /* new (root) btree block */ 2978 int nptr; /* new value for key index, 1 or 2 */ 2979 struct xfs_buf *rbp; /* right buffer pointer */ 2980 struct xfs_btree_block *right; /* right btree block */ 2981 union xfs_btree_ptr rptr; 2982 union xfs_btree_ptr lptr; 2983 2984 XFS_BTREE_STATS_INC(cur, newroot); 2985 2986 /* initialise our start point from the cursor */ 2987 cur->bc_ops->init_ptr_from_cur(cur, &rptr); 2988 2989 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 2990 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat); 2991 if (error) 2992 goto error0; 2993 if (*stat == 0) 2994 goto out0; 2995 XFS_BTREE_STATS_INC(cur, alloc); 2996 2997 /* Set up the new block. */ 2998 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp); 2999 if (error) 3000 goto error0; 3001 3002 /* Set the root in the holding structure increasing the level by 1. */ 3003 cur->bc_ops->set_root(cur, &lptr, 1); 3004 3005 /* 3006 * At the previous root level there are now two blocks: the old root, 3007 * and the new block generated when it was split. We don't know which 3008 * one the cursor is pointing at, so we set up variables "left" and 3009 * "right" for each case. 3010 */ 3011 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp); 3012 3013 #ifdef DEBUG 3014 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp); 3015 if (error) 3016 goto error0; 3017 #endif 3018 3019 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 3020 if (!xfs_btree_ptr_is_null(cur, &rptr)) { 3021 /* Our block is left, pick up the right block. */ 3022 lbp = bp; 3023 xfs_btree_buf_to_ptr(cur, lbp, &lptr); 3024 left = block; 3025 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 3026 if (error) 3027 goto error0; 3028 bp = rbp; 3029 nptr = 1; 3030 } else { 3031 /* Our block is right, pick up the left block. */ 3032 rbp = bp; 3033 xfs_btree_buf_to_ptr(cur, rbp, &rptr); 3034 right = block; 3035 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 3036 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 3037 if (error) 3038 goto error0; 3039 bp = lbp; 3040 nptr = 2; 3041 } 3042 3043 /* Fill in the new block's btree header and log it. */ 3044 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2); 3045 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS); 3046 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) && 3047 !xfs_btree_ptr_is_null(cur, &rptr)); 3048 3049 /* Fill in the key data in the new root. */ 3050 if (xfs_btree_get_level(left) > 0) { 3051 /* 3052 * Get the keys for the left block's keys and put them directly 3053 * in the parent block. Do the same for the right block. 3054 */ 3055 xfs_btree_get_node_keys(cur, left, 3056 xfs_btree_key_addr(cur, 1, new)); 3057 xfs_btree_get_node_keys(cur, right, 3058 xfs_btree_key_addr(cur, 2, new)); 3059 } else { 3060 /* 3061 * Get the keys for the left block's records and put them 3062 * directly in the parent block. Do the same for the right 3063 * block. 3064 */ 3065 xfs_btree_get_leaf_keys(cur, left, 3066 xfs_btree_key_addr(cur, 1, new)); 3067 xfs_btree_get_leaf_keys(cur, right, 3068 xfs_btree_key_addr(cur, 2, new)); 3069 } 3070 xfs_btree_log_keys(cur, nbp, 1, 2); 3071 3072 /* Fill in the pointer data in the new root. */ 3073 xfs_btree_copy_ptrs(cur, 3074 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1); 3075 xfs_btree_copy_ptrs(cur, 3076 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1); 3077 xfs_btree_log_ptrs(cur, nbp, 1, 2); 3078 3079 /* Fix up the cursor. */ 3080 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp); 3081 cur->bc_ptrs[cur->bc_nlevels] = nptr; 3082 cur->bc_nlevels++; 3083 *stat = 1; 3084 return 0; 3085 error0: 3086 return error; 3087 out0: 3088 *stat = 0; 3089 return 0; 3090 } 3091 3092 STATIC int 3093 xfs_btree_make_block_unfull( 3094 struct xfs_btree_cur *cur, /* btree cursor */ 3095 int level, /* btree level */ 3096 int numrecs,/* # of recs in block */ 3097 int *oindex,/* old tree index */ 3098 int *index, /* new tree index */ 3099 union xfs_btree_ptr *nptr, /* new btree ptr */ 3100 struct xfs_btree_cur **ncur, /* new btree cursor */ 3101 union xfs_btree_key *key, /* key of new block */ 3102 int *stat) 3103 { 3104 int error = 0; 3105 3106 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 3107 level == cur->bc_nlevels - 1) { 3108 struct xfs_inode *ip = cur->bc_private.b.ip; 3109 3110 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) { 3111 /* A root block that can be made bigger. */ 3112 xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork); 3113 *stat = 1; 3114 } else { 3115 /* A root block that needs replacing */ 3116 int logflags = 0; 3117 3118 error = xfs_btree_new_iroot(cur, &logflags, stat); 3119 if (error || *stat == 0) 3120 return error; 3121 3122 xfs_trans_log_inode(cur->bc_tp, ip, logflags); 3123 } 3124 3125 return 0; 3126 } 3127 3128 /* First, try shifting an entry to the right neighbor. */ 3129 error = xfs_btree_rshift(cur, level, stat); 3130 if (error || *stat) 3131 return error; 3132 3133 /* Next, try shifting an entry to the left neighbor. */ 3134 error = xfs_btree_lshift(cur, level, stat); 3135 if (error) 3136 return error; 3137 3138 if (*stat) { 3139 *oindex = *index = cur->bc_ptrs[level]; 3140 return 0; 3141 } 3142 3143 /* 3144 * Next, try splitting the current block in half. 3145 * 3146 * If this works we have to re-set our variables because we 3147 * could be in a different block now. 3148 */ 3149 error = xfs_btree_split(cur, level, nptr, key, ncur, stat); 3150 if (error || *stat == 0) 3151 return error; 3152 3153 3154 *index = cur->bc_ptrs[level]; 3155 return 0; 3156 } 3157 3158 /* 3159 * Insert one record/level. Return information to the caller 3160 * allowing the next level up to proceed if necessary. 3161 */ 3162 STATIC int 3163 xfs_btree_insrec( 3164 struct xfs_btree_cur *cur, /* btree cursor */ 3165 int level, /* level to insert record at */ 3166 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */ 3167 union xfs_btree_rec *rec, /* record to insert */ 3168 union xfs_btree_key *key, /* i/o: block key for ptrp */ 3169 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */ 3170 int *stat) /* success/failure */ 3171 { 3172 struct xfs_btree_block *block; /* btree block */ 3173 struct xfs_buf *bp; /* buffer for block */ 3174 union xfs_btree_ptr nptr; /* new block ptr */ 3175 struct xfs_btree_cur *ncur; /* new btree cursor */ 3176 union xfs_btree_key nkey; /* new block key */ 3177 union xfs_btree_key *lkey; 3178 int optr; /* old key/record index */ 3179 int ptr; /* key/record index */ 3180 int numrecs;/* number of records */ 3181 int error; /* error return value */ 3182 int i; 3183 xfs_daddr_t old_bn; 3184 3185 ncur = NULL; 3186 lkey = &nkey; 3187 3188 /* 3189 * If we have an external root pointer, and we've made it to the 3190 * root level, allocate a new root block and we're done. 3191 */ 3192 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 3193 (level >= cur->bc_nlevels)) { 3194 error = xfs_btree_new_root(cur, stat); 3195 xfs_btree_set_ptr_null(cur, ptrp); 3196 3197 return error; 3198 } 3199 3200 /* If we're off the left edge, return failure. */ 3201 ptr = cur->bc_ptrs[level]; 3202 if (ptr == 0) { 3203 *stat = 0; 3204 return 0; 3205 } 3206 3207 optr = ptr; 3208 3209 XFS_BTREE_STATS_INC(cur, insrec); 3210 3211 /* Get pointers to the btree buffer and block. */ 3212 block = xfs_btree_get_block(cur, level, &bp); 3213 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL; 3214 numrecs = xfs_btree_get_numrecs(block); 3215 3216 #ifdef DEBUG 3217 error = xfs_btree_check_block(cur, block, level, bp); 3218 if (error) 3219 goto error0; 3220 3221 /* Check that the new entry is being inserted in the right place. */ 3222 if (ptr <= numrecs) { 3223 if (level == 0) { 3224 ASSERT(cur->bc_ops->recs_inorder(cur, rec, 3225 xfs_btree_rec_addr(cur, ptr, block))); 3226 } else { 3227 ASSERT(cur->bc_ops->keys_inorder(cur, key, 3228 xfs_btree_key_addr(cur, ptr, block))); 3229 } 3230 } 3231 #endif 3232 3233 /* 3234 * If the block is full, we can't insert the new entry until we 3235 * make the block un-full. 3236 */ 3237 xfs_btree_set_ptr_null(cur, &nptr); 3238 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) { 3239 error = xfs_btree_make_block_unfull(cur, level, numrecs, 3240 &optr, &ptr, &nptr, &ncur, lkey, stat); 3241 if (error || *stat == 0) 3242 goto error0; 3243 } 3244 3245 /* 3246 * The current block may have changed if the block was 3247 * previously full and we have just made space in it. 3248 */ 3249 block = xfs_btree_get_block(cur, level, &bp); 3250 numrecs = xfs_btree_get_numrecs(block); 3251 3252 #ifdef DEBUG 3253 error = xfs_btree_check_block(cur, block, level, bp); 3254 if (error) 3255 return error; 3256 #endif 3257 3258 /* 3259 * At this point we know there's room for our new entry in the block 3260 * we're pointing at. 3261 */ 3262 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1); 3263 3264 if (level > 0) { 3265 /* It's a nonleaf. make a hole in the keys and ptrs */ 3266 union xfs_btree_key *kp; 3267 union xfs_btree_ptr *pp; 3268 3269 kp = xfs_btree_key_addr(cur, ptr, block); 3270 pp = xfs_btree_ptr_addr(cur, ptr, block); 3271 3272 for (i = numrecs - ptr; i >= 0; i--) { 3273 error = xfs_btree_debug_check_ptr(cur, pp, i, level); 3274 if (error) 3275 return error; 3276 } 3277 3278 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1); 3279 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1); 3280 3281 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level); 3282 if (error) 3283 goto error0; 3284 3285 /* Now put the new data in, bump numrecs and log it. */ 3286 xfs_btree_copy_keys(cur, kp, key, 1); 3287 xfs_btree_copy_ptrs(cur, pp, ptrp, 1); 3288 numrecs++; 3289 xfs_btree_set_numrecs(block, numrecs); 3290 xfs_btree_log_ptrs(cur, bp, ptr, numrecs); 3291 xfs_btree_log_keys(cur, bp, ptr, numrecs); 3292 #ifdef DEBUG 3293 if (ptr < numrecs) { 3294 ASSERT(cur->bc_ops->keys_inorder(cur, kp, 3295 xfs_btree_key_addr(cur, ptr + 1, block))); 3296 } 3297 #endif 3298 } else { 3299 /* It's a leaf. make a hole in the records */ 3300 union xfs_btree_rec *rp; 3301 3302 rp = xfs_btree_rec_addr(cur, ptr, block); 3303 3304 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1); 3305 3306 /* Now put the new data in, bump numrecs and log it. */ 3307 xfs_btree_copy_recs(cur, rp, rec, 1); 3308 xfs_btree_set_numrecs(block, ++numrecs); 3309 xfs_btree_log_recs(cur, bp, ptr, numrecs); 3310 #ifdef DEBUG 3311 if (ptr < numrecs) { 3312 ASSERT(cur->bc_ops->recs_inorder(cur, rp, 3313 xfs_btree_rec_addr(cur, ptr + 1, block))); 3314 } 3315 #endif 3316 } 3317 3318 /* Log the new number of records in the btree header. */ 3319 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); 3320 3321 /* 3322 * If we just inserted into a new tree block, we have to 3323 * recalculate nkey here because nkey is out of date. 3324 * 3325 * Otherwise we're just updating an existing block (having shoved 3326 * some records into the new tree block), so use the regular key 3327 * update mechanism. 3328 */ 3329 if (bp && bp->b_bn != old_bn) { 3330 xfs_btree_get_keys(cur, block, lkey); 3331 } else if (xfs_btree_needs_key_update(cur, optr)) { 3332 error = xfs_btree_update_keys(cur, level); 3333 if (error) 3334 goto error0; 3335 } 3336 3337 /* 3338 * If we are tracking the last record in the tree and 3339 * we are at the far right edge of the tree, update it. 3340 */ 3341 if (xfs_btree_is_lastrec(cur, block, level)) { 3342 cur->bc_ops->update_lastrec(cur, block, rec, 3343 ptr, LASTREC_INSREC); 3344 } 3345 3346 /* 3347 * Return the new block number, if any. 3348 * If there is one, give back a record value and a cursor too. 3349 */ 3350 *ptrp = nptr; 3351 if (!xfs_btree_ptr_is_null(cur, &nptr)) { 3352 xfs_btree_copy_keys(cur, key, lkey, 1); 3353 *curp = ncur; 3354 } 3355 3356 *stat = 1; 3357 return 0; 3358 3359 error0: 3360 return error; 3361 } 3362 3363 /* 3364 * Insert the record at the point referenced by cur. 3365 * 3366 * A multi-level split of the tree on insert will invalidate the original 3367 * cursor. All callers of this function should assume that the cursor is 3368 * no longer valid and revalidate it. 3369 */ 3370 int 3371 xfs_btree_insert( 3372 struct xfs_btree_cur *cur, 3373 int *stat) 3374 { 3375 int error; /* error return value */ 3376 int i; /* result value, 0 for failure */ 3377 int level; /* current level number in btree */ 3378 union xfs_btree_ptr nptr; /* new block number (split result) */ 3379 struct xfs_btree_cur *ncur; /* new cursor (split result) */ 3380 struct xfs_btree_cur *pcur; /* previous level's cursor */ 3381 union xfs_btree_key bkey; /* key of block to insert */ 3382 union xfs_btree_key *key; 3383 union xfs_btree_rec rec; /* record to insert */ 3384 3385 level = 0; 3386 ncur = NULL; 3387 pcur = cur; 3388 key = &bkey; 3389 3390 xfs_btree_set_ptr_null(cur, &nptr); 3391 3392 /* Make a key out of the record data to be inserted, and save it. */ 3393 cur->bc_ops->init_rec_from_cur(cur, &rec); 3394 cur->bc_ops->init_key_from_rec(key, &rec); 3395 3396 /* 3397 * Loop going up the tree, starting at the leaf level. 3398 * Stop when we don't get a split block, that must mean that 3399 * the insert is finished with this level. 3400 */ 3401 do { 3402 /* 3403 * Insert nrec/nptr into this level of the tree. 3404 * Note if we fail, nptr will be null. 3405 */ 3406 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key, 3407 &ncur, &i); 3408 if (error) { 3409 if (pcur != cur) 3410 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR); 3411 goto error0; 3412 } 3413 3414 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3415 error = -EFSCORRUPTED; 3416 goto error0; 3417 } 3418 level++; 3419 3420 /* 3421 * See if the cursor we just used is trash. 3422 * Can't trash the caller's cursor, but otherwise we should 3423 * if ncur is a new cursor or we're about to be done. 3424 */ 3425 if (pcur != cur && 3426 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) { 3427 /* Save the state from the cursor before we trash it */ 3428 if (cur->bc_ops->update_cursor) 3429 cur->bc_ops->update_cursor(pcur, cur); 3430 cur->bc_nlevels = pcur->bc_nlevels; 3431 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR); 3432 } 3433 /* If we got a new cursor, switch to it. */ 3434 if (ncur) { 3435 pcur = ncur; 3436 ncur = NULL; 3437 } 3438 } while (!xfs_btree_ptr_is_null(cur, &nptr)); 3439 3440 *stat = i; 3441 return 0; 3442 error0: 3443 return error; 3444 } 3445 3446 /* 3447 * Try to merge a non-leaf block back into the inode root. 3448 * 3449 * Note: the killroot names comes from the fact that we're effectively 3450 * killing the old root block. But because we can't just delete the 3451 * inode we have to copy the single block it was pointing to into the 3452 * inode. 3453 */ 3454 STATIC int 3455 xfs_btree_kill_iroot( 3456 struct xfs_btree_cur *cur) 3457 { 3458 int whichfork = cur->bc_private.b.whichfork; 3459 struct xfs_inode *ip = cur->bc_private.b.ip; 3460 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 3461 struct xfs_btree_block *block; 3462 struct xfs_btree_block *cblock; 3463 union xfs_btree_key *kp; 3464 union xfs_btree_key *ckp; 3465 union xfs_btree_ptr *pp; 3466 union xfs_btree_ptr *cpp; 3467 struct xfs_buf *cbp; 3468 int level; 3469 int index; 3470 int numrecs; 3471 int error; 3472 #ifdef DEBUG 3473 union xfs_btree_ptr ptr; 3474 #endif 3475 int i; 3476 3477 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 3478 ASSERT(cur->bc_nlevels > 1); 3479 3480 /* 3481 * Don't deal with the root block needs to be a leaf case. 3482 * We're just going to turn the thing back into extents anyway. 3483 */ 3484 level = cur->bc_nlevels - 1; 3485 if (level == 1) 3486 goto out0; 3487 3488 /* 3489 * Give up if the root has multiple children. 3490 */ 3491 block = xfs_btree_get_iroot(cur); 3492 if (xfs_btree_get_numrecs(block) != 1) 3493 goto out0; 3494 3495 cblock = xfs_btree_get_block(cur, level - 1, &cbp); 3496 numrecs = xfs_btree_get_numrecs(cblock); 3497 3498 /* 3499 * Only do this if the next level will fit. 3500 * Then the data must be copied up to the inode, 3501 * instead of freeing the root you free the next level. 3502 */ 3503 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level)) 3504 goto out0; 3505 3506 XFS_BTREE_STATS_INC(cur, killroot); 3507 3508 #ifdef DEBUG 3509 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); 3510 ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); 3511 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 3512 ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); 3513 #endif 3514 3515 index = numrecs - cur->bc_ops->get_maxrecs(cur, level); 3516 if (index) { 3517 xfs_iroot_realloc(cur->bc_private.b.ip, index, 3518 cur->bc_private.b.whichfork); 3519 block = ifp->if_broot; 3520 } 3521 3522 be16_add_cpu(&block->bb_numrecs, index); 3523 ASSERT(block->bb_numrecs == cblock->bb_numrecs); 3524 3525 kp = xfs_btree_key_addr(cur, 1, block); 3526 ckp = xfs_btree_key_addr(cur, 1, cblock); 3527 xfs_btree_copy_keys(cur, kp, ckp, numrecs); 3528 3529 pp = xfs_btree_ptr_addr(cur, 1, block); 3530 cpp = xfs_btree_ptr_addr(cur, 1, cblock); 3531 3532 for (i = 0; i < numrecs; i++) { 3533 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1); 3534 if (error) 3535 return error; 3536 } 3537 3538 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs); 3539 3540 error = xfs_btree_free_block(cur, cbp); 3541 if (error) 3542 return error; 3543 3544 cur->bc_bufs[level - 1] = NULL; 3545 be16_add_cpu(&block->bb_level, -1); 3546 xfs_trans_log_inode(cur->bc_tp, ip, 3547 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork)); 3548 cur->bc_nlevels--; 3549 out0: 3550 return 0; 3551 } 3552 3553 /* 3554 * Kill the current root node, and replace it with it's only child node. 3555 */ 3556 STATIC int 3557 xfs_btree_kill_root( 3558 struct xfs_btree_cur *cur, 3559 struct xfs_buf *bp, 3560 int level, 3561 union xfs_btree_ptr *newroot) 3562 { 3563 int error; 3564 3565 XFS_BTREE_STATS_INC(cur, killroot); 3566 3567 /* 3568 * Update the root pointer, decreasing the level by 1 and then 3569 * free the old root. 3570 */ 3571 cur->bc_ops->set_root(cur, newroot, -1); 3572 3573 error = xfs_btree_free_block(cur, bp); 3574 if (error) 3575 return error; 3576 3577 cur->bc_bufs[level] = NULL; 3578 cur->bc_ra[level] = 0; 3579 cur->bc_nlevels--; 3580 3581 return 0; 3582 } 3583 3584 STATIC int 3585 xfs_btree_dec_cursor( 3586 struct xfs_btree_cur *cur, 3587 int level, 3588 int *stat) 3589 { 3590 int error; 3591 int i; 3592 3593 if (level > 0) { 3594 error = xfs_btree_decrement(cur, level, &i); 3595 if (error) 3596 return error; 3597 } 3598 3599 *stat = 1; 3600 return 0; 3601 } 3602 3603 /* 3604 * Single level of the btree record deletion routine. 3605 * Delete record pointed to by cur/level. 3606 * Remove the record from its block then rebalance the tree. 3607 * Return 0 for error, 1 for done, 2 to go on to the next level. 3608 */ 3609 STATIC int /* error */ 3610 xfs_btree_delrec( 3611 struct xfs_btree_cur *cur, /* btree cursor */ 3612 int level, /* level removing record from */ 3613 int *stat) /* fail/done/go-on */ 3614 { 3615 struct xfs_btree_block *block; /* btree block */ 3616 union xfs_btree_ptr cptr; /* current block ptr */ 3617 struct xfs_buf *bp; /* buffer for block */ 3618 int error; /* error return value */ 3619 int i; /* loop counter */ 3620 union xfs_btree_ptr lptr; /* left sibling block ptr */ 3621 struct xfs_buf *lbp; /* left buffer pointer */ 3622 struct xfs_btree_block *left; /* left btree block */ 3623 int lrecs = 0; /* left record count */ 3624 int ptr; /* key/record index */ 3625 union xfs_btree_ptr rptr; /* right sibling block ptr */ 3626 struct xfs_buf *rbp; /* right buffer pointer */ 3627 struct xfs_btree_block *right; /* right btree block */ 3628 struct xfs_btree_block *rrblock; /* right-right btree block */ 3629 struct xfs_buf *rrbp; /* right-right buffer pointer */ 3630 int rrecs = 0; /* right record count */ 3631 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 3632 int numrecs; /* temporary numrec count */ 3633 3634 tcur = NULL; 3635 3636 /* Get the index of the entry being deleted, check for nothing there. */ 3637 ptr = cur->bc_ptrs[level]; 3638 if (ptr == 0) { 3639 *stat = 0; 3640 return 0; 3641 } 3642 3643 /* Get the buffer & block containing the record or key/ptr. */ 3644 block = xfs_btree_get_block(cur, level, &bp); 3645 numrecs = xfs_btree_get_numrecs(block); 3646 3647 #ifdef DEBUG 3648 error = xfs_btree_check_block(cur, block, level, bp); 3649 if (error) 3650 goto error0; 3651 #endif 3652 3653 /* Fail if we're off the end of the block. */ 3654 if (ptr > numrecs) { 3655 *stat = 0; 3656 return 0; 3657 } 3658 3659 XFS_BTREE_STATS_INC(cur, delrec); 3660 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr); 3661 3662 /* Excise the entries being deleted. */ 3663 if (level > 0) { 3664 /* It's a nonleaf. operate on keys and ptrs */ 3665 union xfs_btree_key *lkp; 3666 union xfs_btree_ptr *lpp; 3667 3668 lkp = xfs_btree_key_addr(cur, ptr + 1, block); 3669 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block); 3670 3671 for (i = 0; i < numrecs - ptr; i++) { 3672 error = xfs_btree_debug_check_ptr(cur, lpp, i, level); 3673 if (error) 3674 goto error0; 3675 } 3676 3677 if (ptr < numrecs) { 3678 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr); 3679 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr); 3680 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1); 3681 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1); 3682 } 3683 } else { 3684 /* It's a leaf. operate on records */ 3685 if (ptr < numrecs) { 3686 xfs_btree_shift_recs(cur, 3687 xfs_btree_rec_addr(cur, ptr + 1, block), 3688 -1, numrecs - ptr); 3689 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1); 3690 } 3691 } 3692 3693 /* 3694 * Decrement and log the number of entries in the block. 3695 */ 3696 xfs_btree_set_numrecs(block, --numrecs); 3697 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); 3698 3699 /* 3700 * If we are tracking the last record in the tree and 3701 * we are at the far right edge of the tree, update it. 3702 */ 3703 if (xfs_btree_is_lastrec(cur, block, level)) { 3704 cur->bc_ops->update_lastrec(cur, block, NULL, 3705 ptr, LASTREC_DELREC); 3706 } 3707 3708 /* 3709 * We're at the root level. First, shrink the root block in-memory. 3710 * Try to get rid of the next level down. If we can't then there's 3711 * nothing left to do. 3712 */ 3713 if (level == cur->bc_nlevels - 1) { 3714 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) { 3715 xfs_iroot_realloc(cur->bc_private.b.ip, -1, 3716 cur->bc_private.b.whichfork); 3717 3718 error = xfs_btree_kill_iroot(cur); 3719 if (error) 3720 goto error0; 3721 3722 error = xfs_btree_dec_cursor(cur, level, stat); 3723 if (error) 3724 goto error0; 3725 *stat = 1; 3726 return 0; 3727 } 3728 3729 /* 3730 * If this is the root level, and there's only one entry left, 3731 * and it's NOT the leaf level, then we can get rid of this 3732 * level. 3733 */ 3734 if (numrecs == 1 && level > 0) { 3735 union xfs_btree_ptr *pp; 3736 /* 3737 * pp is still set to the first pointer in the block. 3738 * Make it the new root of the btree. 3739 */ 3740 pp = xfs_btree_ptr_addr(cur, 1, block); 3741 error = xfs_btree_kill_root(cur, bp, level, pp); 3742 if (error) 3743 goto error0; 3744 } else if (level > 0) { 3745 error = xfs_btree_dec_cursor(cur, level, stat); 3746 if (error) 3747 goto error0; 3748 } 3749 *stat = 1; 3750 return 0; 3751 } 3752 3753 /* 3754 * If we deleted the leftmost entry in the block, update the 3755 * key values above us in the tree. 3756 */ 3757 if (xfs_btree_needs_key_update(cur, ptr)) { 3758 error = xfs_btree_update_keys(cur, level); 3759 if (error) 3760 goto error0; 3761 } 3762 3763 /* 3764 * If the number of records remaining in the block is at least 3765 * the minimum, we're done. 3766 */ 3767 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) { 3768 error = xfs_btree_dec_cursor(cur, level, stat); 3769 if (error) 3770 goto error0; 3771 return 0; 3772 } 3773 3774 /* 3775 * Otherwise, we have to move some records around to keep the 3776 * tree balanced. Look at the left and right sibling blocks to 3777 * see if we can re-balance by moving only one record. 3778 */ 3779 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 3780 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB); 3781 3782 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) { 3783 /* 3784 * One child of root, need to get a chance to copy its contents 3785 * into the root and delete it. Can't go up to next level, 3786 * there's nothing to delete there. 3787 */ 3788 if (xfs_btree_ptr_is_null(cur, &rptr) && 3789 xfs_btree_ptr_is_null(cur, &lptr) && 3790 level == cur->bc_nlevels - 2) { 3791 error = xfs_btree_kill_iroot(cur); 3792 if (!error) 3793 error = xfs_btree_dec_cursor(cur, level, stat); 3794 if (error) 3795 goto error0; 3796 return 0; 3797 } 3798 } 3799 3800 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) || 3801 !xfs_btree_ptr_is_null(cur, &lptr)); 3802 3803 /* 3804 * Duplicate the cursor so our btree manipulations here won't 3805 * disrupt the next level up. 3806 */ 3807 error = xfs_btree_dup_cursor(cur, &tcur); 3808 if (error) 3809 goto error0; 3810 3811 /* 3812 * If there's a right sibling, see if it's ok to shift an entry 3813 * out of it. 3814 */ 3815 if (!xfs_btree_ptr_is_null(cur, &rptr)) { 3816 /* 3817 * Move the temp cursor to the last entry in the next block. 3818 * Actually any entry but the first would suffice. 3819 */ 3820 i = xfs_btree_lastrec(tcur, level); 3821 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3822 error = -EFSCORRUPTED; 3823 goto error0; 3824 } 3825 3826 error = xfs_btree_increment(tcur, level, &i); 3827 if (error) 3828 goto error0; 3829 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3830 error = -EFSCORRUPTED; 3831 goto error0; 3832 } 3833 3834 i = xfs_btree_lastrec(tcur, level); 3835 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3836 error = -EFSCORRUPTED; 3837 goto error0; 3838 } 3839 3840 /* Grab a pointer to the block. */ 3841 right = xfs_btree_get_block(tcur, level, &rbp); 3842 #ifdef DEBUG 3843 error = xfs_btree_check_block(tcur, right, level, rbp); 3844 if (error) 3845 goto error0; 3846 #endif 3847 /* Grab the current block number, for future use. */ 3848 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB); 3849 3850 /* 3851 * If right block is full enough so that removing one entry 3852 * won't make it too empty, and left-shifting an entry out 3853 * of right to us works, we're done. 3854 */ 3855 if (xfs_btree_get_numrecs(right) - 1 >= 3856 cur->bc_ops->get_minrecs(tcur, level)) { 3857 error = xfs_btree_lshift(tcur, level, &i); 3858 if (error) 3859 goto error0; 3860 if (i) { 3861 ASSERT(xfs_btree_get_numrecs(block) >= 3862 cur->bc_ops->get_minrecs(tcur, level)); 3863 3864 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3865 tcur = NULL; 3866 3867 error = xfs_btree_dec_cursor(cur, level, stat); 3868 if (error) 3869 goto error0; 3870 return 0; 3871 } 3872 } 3873 3874 /* 3875 * Otherwise, grab the number of records in right for 3876 * future reference, and fix up the temp cursor to point 3877 * to our block again (last record). 3878 */ 3879 rrecs = xfs_btree_get_numrecs(right); 3880 if (!xfs_btree_ptr_is_null(cur, &lptr)) { 3881 i = xfs_btree_firstrec(tcur, level); 3882 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3883 error = -EFSCORRUPTED; 3884 goto error0; 3885 } 3886 3887 error = xfs_btree_decrement(tcur, level, &i); 3888 if (error) 3889 goto error0; 3890 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3891 error = -EFSCORRUPTED; 3892 goto error0; 3893 } 3894 } 3895 } 3896 3897 /* 3898 * If there's a left sibling, see if it's ok to shift an entry 3899 * out of it. 3900 */ 3901 if (!xfs_btree_ptr_is_null(cur, &lptr)) { 3902 /* 3903 * Move the temp cursor to the first entry in the 3904 * previous block. 3905 */ 3906 i = xfs_btree_firstrec(tcur, level); 3907 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3908 error = -EFSCORRUPTED; 3909 goto error0; 3910 } 3911 3912 error = xfs_btree_decrement(tcur, level, &i); 3913 if (error) 3914 goto error0; 3915 i = xfs_btree_firstrec(tcur, level); 3916 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3917 error = -EFSCORRUPTED; 3918 goto error0; 3919 } 3920 3921 /* Grab a pointer to the block. */ 3922 left = xfs_btree_get_block(tcur, level, &lbp); 3923 #ifdef DEBUG 3924 error = xfs_btree_check_block(cur, left, level, lbp); 3925 if (error) 3926 goto error0; 3927 #endif 3928 /* Grab the current block number, for future use. */ 3929 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB); 3930 3931 /* 3932 * If left block is full enough so that removing one entry 3933 * won't make it too empty, and right-shifting an entry out 3934 * of left to us works, we're done. 3935 */ 3936 if (xfs_btree_get_numrecs(left) - 1 >= 3937 cur->bc_ops->get_minrecs(tcur, level)) { 3938 error = xfs_btree_rshift(tcur, level, &i); 3939 if (error) 3940 goto error0; 3941 if (i) { 3942 ASSERT(xfs_btree_get_numrecs(block) >= 3943 cur->bc_ops->get_minrecs(tcur, level)); 3944 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3945 tcur = NULL; 3946 if (level == 0) 3947 cur->bc_ptrs[0]++; 3948 3949 *stat = 1; 3950 return 0; 3951 } 3952 } 3953 3954 /* 3955 * Otherwise, grab the number of records in right for 3956 * future reference. 3957 */ 3958 lrecs = xfs_btree_get_numrecs(left); 3959 } 3960 3961 /* Delete the temp cursor, we're done with it. */ 3962 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3963 tcur = NULL; 3964 3965 /* If here, we need to do a join to keep the tree balanced. */ 3966 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr)); 3967 3968 if (!xfs_btree_ptr_is_null(cur, &lptr) && 3969 lrecs + xfs_btree_get_numrecs(block) <= 3970 cur->bc_ops->get_maxrecs(cur, level)) { 3971 /* 3972 * Set "right" to be the starting block, 3973 * "left" to be the left neighbor. 3974 */ 3975 rptr = cptr; 3976 right = block; 3977 rbp = bp; 3978 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 3979 if (error) 3980 goto error0; 3981 3982 /* 3983 * If that won't work, see if we can join with the right neighbor block. 3984 */ 3985 } else if (!xfs_btree_ptr_is_null(cur, &rptr) && 3986 rrecs + xfs_btree_get_numrecs(block) <= 3987 cur->bc_ops->get_maxrecs(cur, level)) { 3988 /* 3989 * Set "left" to be the starting block, 3990 * "right" to be the right neighbor. 3991 */ 3992 lptr = cptr; 3993 left = block; 3994 lbp = bp; 3995 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 3996 if (error) 3997 goto error0; 3998 3999 /* 4000 * Otherwise, we can't fix the imbalance. 4001 * Just return. This is probably a logic error, but it's not fatal. 4002 */ 4003 } else { 4004 error = xfs_btree_dec_cursor(cur, level, stat); 4005 if (error) 4006 goto error0; 4007 return 0; 4008 } 4009 4010 rrecs = xfs_btree_get_numrecs(right); 4011 lrecs = xfs_btree_get_numrecs(left); 4012 4013 /* 4014 * We're now going to join "left" and "right" by moving all the stuff 4015 * in "right" to "left" and deleting "right". 4016 */ 4017 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 4018 if (level > 0) { 4019 /* It's a non-leaf. Move keys and pointers. */ 4020 union xfs_btree_key *lkp; /* left btree key */ 4021 union xfs_btree_ptr *lpp; /* left address pointer */ 4022 union xfs_btree_key *rkp; /* right btree key */ 4023 union xfs_btree_ptr *rpp; /* right address pointer */ 4024 4025 lkp = xfs_btree_key_addr(cur, lrecs + 1, left); 4026 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left); 4027 rkp = xfs_btree_key_addr(cur, 1, right); 4028 rpp = xfs_btree_ptr_addr(cur, 1, right); 4029 4030 for (i = 1; i < rrecs; i++) { 4031 error = xfs_btree_debug_check_ptr(cur, rpp, i, level); 4032 if (error) 4033 goto error0; 4034 } 4035 4036 xfs_btree_copy_keys(cur, lkp, rkp, rrecs); 4037 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs); 4038 4039 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs); 4040 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs); 4041 } else { 4042 /* It's a leaf. Move records. */ 4043 union xfs_btree_rec *lrp; /* left record pointer */ 4044 union xfs_btree_rec *rrp; /* right record pointer */ 4045 4046 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left); 4047 rrp = xfs_btree_rec_addr(cur, 1, right); 4048 4049 xfs_btree_copy_recs(cur, lrp, rrp, rrecs); 4050 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs); 4051 } 4052 4053 XFS_BTREE_STATS_INC(cur, join); 4054 4055 /* 4056 * Fix up the number of records and right block pointer in the 4057 * surviving block, and log it. 4058 */ 4059 xfs_btree_set_numrecs(left, lrecs + rrecs); 4060 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB), 4061 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); 4062 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); 4063 4064 /* If there is a right sibling, point it to the remaining block. */ 4065 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); 4066 if (!xfs_btree_ptr_is_null(cur, &cptr)) { 4067 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp); 4068 if (error) 4069 goto error0; 4070 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB); 4071 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); 4072 } 4073 4074 /* Free the deleted block. */ 4075 error = xfs_btree_free_block(cur, rbp); 4076 if (error) 4077 goto error0; 4078 4079 /* 4080 * If we joined with the left neighbor, set the buffer in the 4081 * cursor to the left block, and fix up the index. 4082 */ 4083 if (bp != lbp) { 4084 cur->bc_bufs[level] = lbp; 4085 cur->bc_ptrs[level] += lrecs; 4086 cur->bc_ra[level] = 0; 4087 } 4088 /* 4089 * If we joined with the right neighbor and there's a level above 4090 * us, increment the cursor at that level. 4091 */ 4092 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) || 4093 (level + 1 < cur->bc_nlevels)) { 4094 error = xfs_btree_increment(cur, level + 1, &i); 4095 if (error) 4096 goto error0; 4097 } 4098 4099 /* 4100 * Readjust the ptr at this level if it's not a leaf, since it's 4101 * still pointing at the deletion point, which makes the cursor 4102 * inconsistent. If this makes the ptr 0, the caller fixes it up. 4103 * We can't use decrement because it would change the next level up. 4104 */ 4105 if (level > 0) 4106 cur->bc_ptrs[level]--; 4107 4108 /* 4109 * We combined blocks, so we have to update the parent keys if the 4110 * btree supports overlapped intervals. However, bc_ptrs[level + 1] 4111 * points to the old block so that the caller knows which record to 4112 * delete. Therefore, the caller must be savvy enough to call updkeys 4113 * for us if we return stat == 2. The other exit points from this 4114 * function don't require deletions further up the tree, so they can 4115 * call updkeys directly. 4116 */ 4117 4118 /* Return value means the next level up has something to do. */ 4119 *stat = 2; 4120 return 0; 4121 4122 error0: 4123 if (tcur) 4124 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 4125 return error; 4126 } 4127 4128 /* 4129 * Delete the record pointed to by cur. 4130 * The cursor refers to the place where the record was (could be inserted) 4131 * when the operation returns. 4132 */ 4133 int /* error */ 4134 xfs_btree_delete( 4135 struct xfs_btree_cur *cur, 4136 int *stat) /* success/failure */ 4137 { 4138 int error; /* error return value */ 4139 int level; 4140 int i; 4141 bool joined = false; 4142 4143 /* 4144 * Go up the tree, starting at leaf level. 4145 * 4146 * If 2 is returned then a join was done; go to the next level. 4147 * Otherwise we are done. 4148 */ 4149 for (level = 0, i = 2; i == 2; level++) { 4150 error = xfs_btree_delrec(cur, level, &i); 4151 if (error) 4152 goto error0; 4153 if (i == 2) 4154 joined = true; 4155 } 4156 4157 /* 4158 * If we combined blocks as part of deleting the record, delrec won't 4159 * have updated the parent high keys so we have to do that here. 4160 */ 4161 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) { 4162 error = xfs_btree_updkeys_force(cur, 0); 4163 if (error) 4164 goto error0; 4165 } 4166 4167 if (i == 0) { 4168 for (level = 1; level < cur->bc_nlevels; level++) { 4169 if (cur->bc_ptrs[level] == 0) { 4170 error = xfs_btree_decrement(cur, level, &i); 4171 if (error) 4172 goto error0; 4173 break; 4174 } 4175 } 4176 } 4177 4178 *stat = i; 4179 return 0; 4180 error0: 4181 return error; 4182 } 4183 4184 /* 4185 * Get the data from the pointed-to record. 4186 */ 4187 int /* error */ 4188 xfs_btree_get_rec( 4189 struct xfs_btree_cur *cur, /* btree cursor */ 4190 union xfs_btree_rec **recp, /* output: btree record */ 4191 int *stat) /* output: success/failure */ 4192 { 4193 struct xfs_btree_block *block; /* btree block */ 4194 struct xfs_buf *bp; /* buffer pointer */ 4195 int ptr; /* record number */ 4196 #ifdef DEBUG 4197 int error; /* error return value */ 4198 #endif 4199 4200 ptr = cur->bc_ptrs[0]; 4201 block = xfs_btree_get_block(cur, 0, &bp); 4202 4203 #ifdef DEBUG 4204 error = xfs_btree_check_block(cur, block, 0, bp); 4205 if (error) 4206 return error; 4207 #endif 4208 4209 /* 4210 * Off the right end or left end, return failure. 4211 */ 4212 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) { 4213 *stat = 0; 4214 return 0; 4215 } 4216 4217 /* 4218 * Point to the record and extract its data. 4219 */ 4220 *recp = xfs_btree_rec_addr(cur, ptr, block); 4221 *stat = 1; 4222 return 0; 4223 } 4224 4225 /* Visit a block in a btree. */ 4226 STATIC int 4227 xfs_btree_visit_block( 4228 struct xfs_btree_cur *cur, 4229 int level, 4230 xfs_btree_visit_blocks_fn fn, 4231 void *data) 4232 { 4233 struct xfs_btree_block *block; 4234 struct xfs_buf *bp; 4235 union xfs_btree_ptr rptr; 4236 int error; 4237 4238 /* do right sibling readahead */ 4239 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); 4240 block = xfs_btree_get_block(cur, level, &bp); 4241 4242 /* process the block */ 4243 error = fn(cur, level, data); 4244 if (error) 4245 return error; 4246 4247 /* now read rh sibling block for next iteration */ 4248 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 4249 if (xfs_btree_ptr_is_null(cur, &rptr)) 4250 return -ENOENT; 4251 4252 return xfs_btree_lookup_get_block(cur, level, &rptr, &block); 4253 } 4254 4255 4256 /* Visit every block in a btree. */ 4257 int 4258 xfs_btree_visit_blocks( 4259 struct xfs_btree_cur *cur, 4260 xfs_btree_visit_blocks_fn fn, 4261 unsigned int flags, 4262 void *data) 4263 { 4264 union xfs_btree_ptr lptr; 4265 int level; 4266 struct xfs_btree_block *block = NULL; 4267 int error = 0; 4268 4269 cur->bc_ops->init_ptr_from_cur(cur, &lptr); 4270 4271 /* for each level */ 4272 for (level = cur->bc_nlevels - 1; level >= 0; level--) { 4273 /* grab the left hand block */ 4274 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block); 4275 if (error) 4276 return error; 4277 4278 /* readahead the left most block for the next level down */ 4279 if (level > 0) { 4280 union xfs_btree_ptr *ptr; 4281 4282 ptr = xfs_btree_ptr_addr(cur, 1, block); 4283 xfs_btree_readahead_ptr(cur, ptr, 1); 4284 4285 /* save for the next iteration of the loop */ 4286 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1); 4287 4288 if (!(flags & XFS_BTREE_VISIT_LEAVES)) 4289 continue; 4290 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) { 4291 continue; 4292 } 4293 4294 /* for each buffer in the level */ 4295 do { 4296 error = xfs_btree_visit_block(cur, level, fn, data); 4297 } while (!error); 4298 4299 if (error != -ENOENT) 4300 return error; 4301 } 4302 4303 return 0; 4304 } 4305 4306 /* 4307 * Change the owner of a btree. 4308 * 4309 * The mechanism we use here is ordered buffer logging. Because we don't know 4310 * how many buffers were are going to need to modify, we don't really want to 4311 * have to make transaction reservations for the worst case of every buffer in a 4312 * full size btree as that may be more space that we can fit in the log.... 4313 * 4314 * We do the btree walk in the most optimal manner possible - we have sibling 4315 * pointers so we can just walk all the blocks on each level from left to right 4316 * in a single pass, and then move to the next level and do the same. We can 4317 * also do readahead on the sibling pointers to get IO moving more quickly, 4318 * though for slow disks this is unlikely to make much difference to performance 4319 * as the amount of CPU work we have to do before moving to the next block is 4320 * relatively small. 4321 * 4322 * For each btree block that we load, modify the owner appropriately, set the 4323 * buffer as an ordered buffer and log it appropriately. We need to ensure that 4324 * we mark the region we change dirty so that if the buffer is relogged in 4325 * a subsequent transaction the changes we make here as an ordered buffer are 4326 * correctly relogged in that transaction. If we are in recovery context, then 4327 * just queue the modified buffer as delayed write buffer so the transaction 4328 * recovery completion writes the changes to disk. 4329 */ 4330 struct xfs_btree_block_change_owner_info { 4331 uint64_t new_owner; 4332 struct list_head *buffer_list; 4333 }; 4334 4335 static int 4336 xfs_btree_block_change_owner( 4337 struct xfs_btree_cur *cur, 4338 int level, 4339 void *data) 4340 { 4341 struct xfs_btree_block_change_owner_info *bbcoi = data; 4342 struct xfs_btree_block *block; 4343 struct xfs_buf *bp; 4344 4345 /* modify the owner */ 4346 block = xfs_btree_get_block(cur, level, &bp); 4347 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 4348 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner)) 4349 return 0; 4350 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner); 4351 } else { 4352 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner)) 4353 return 0; 4354 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner); 4355 } 4356 4357 /* 4358 * If the block is a root block hosted in an inode, we might not have a 4359 * buffer pointer here and we shouldn't attempt to log the change as the 4360 * information is already held in the inode and discarded when the root 4361 * block is formatted into the on-disk inode fork. We still change it, 4362 * though, so everything is consistent in memory. 4363 */ 4364 if (!bp) { 4365 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 4366 ASSERT(level == cur->bc_nlevels - 1); 4367 return 0; 4368 } 4369 4370 if (cur->bc_tp) { 4371 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) { 4372 xfs_btree_log_block(cur, bp, XFS_BB_OWNER); 4373 return -EAGAIN; 4374 } 4375 } else { 4376 xfs_buf_delwri_queue(bp, bbcoi->buffer_list); 4377 } 4378 4379 return 0; 4380 } 4381 4382 int 4383 xfs_btree_change_owner( 4384 struct xfs_btree_cur *cur, 4385 uint64_t new_owner, 4386 struct list_head *buffer_list) 4387 { 4388 struct xfs_btree_block_change_owner_info bbcoi; 4389 4390 bbcoi.new_owner = new_owner; 4391 bbcoi.buffer_list = buffer_list; 4392 4393 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner, 4394 XFS_BTREE_VISIT_ALL, &bbcoi); 4395 } 4396 4397 /* Verify the v5 fields of a long-format btree block. */ 4398 xfs_failaddr_t 4399 xfs_btree_lblock_v5hdr_verify( 4400 struct xfs_buf *bp, 4401 uint64_t owner) 4402 { 4403 struct xfs_mount *mp = bp->b_mount; 4404 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4405 4406 if (!xfs_sb_version_hascrc(&mp->m_sb)) 4407 return __this_address; 4408 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) 4409 return __this_address; 4410 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn)) 4411 return __this_address; 4412 if (owner != XFS_RMAP_OWN_UNKNOWN && 4413 be64_to_cpu(block->bb_u.l.bb_owner) != owner) 4414 return __this_address; 4415 return NULL; 4416 } 4417 4418 /* Verify a long-format btree block. */ 4419 xfs_failaddr_t 4420 xfs_btree_lblock_verify( 4421 struct xfs_buf *bp, 4422 unsigned int max_recs) 4423 { 4424 struct xfs_mount *mp = bp->b_mount; 4425 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4426 4427 /* numrecs verification */ 4428 if (be16_to_cpu(block->bb_numrecs) > max_recs) 4429 return __this_address; 4430 4431 /* sibling pointer verification */ 4432 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) && 4433 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib))) 4434 return __this_address; 4435 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) && 4436 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib))) 4437 return __this_address; 4438 4439 return NULL; 4440 } 4441 4442 /** 4443 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format 4444 * btree block 4445 * 4446 * @bp: buffer containing the btree block 4447 */ 4448 xfs_failaddr_t 4449 xfs_btree_sblock_v5hdr_verify( 4450 struct xfs_buf *bp) 4451 { 4452 struct xfs_mount *mp = bp->b_mount; 4453 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4454 struct xfs_perag *pag = bp->b_pag; 4455 4456 if (!xfs_sb_version_hascrc(&mp->m_sb)) 4457 return __this_address; 4458 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 4459 return __this_address; 4460 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn)) 4461 return __this_address; 4462 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno) 4463 return __this_address; 4464 return NULL; 4465 } 4466 4467 /** 4468 * xfs_btree_sblock_verify() -- verify a short-format btree block 4469 * 4470 * @bp: buffer containing the btree block 4471 * @max_recs: maximum records allowed in this btree node 4472 */ 4473 xfs_failaddr_t 4474 xfs_btree_sblock_verify( 4475 struct xfs_buf *bp, 4476 unsigned int max_recs) 4477 { 4478 struct xfs_mount *mp = bp->b_mount; 4479 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4480 xfs_agblock_t agno; 4481 4482 /* numrecs verification */ 4483 if (be16_to_cpu(block->bb_numrecs) > max_recs) 4484 return __this_address; 4485 4486 /* sibling pointer verification */ 4487 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp)); 4488 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) && 4489 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib))) 4490 return __this_address; 4491 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) && 4492 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib))) 4493 return __this_address; 4494 4495 return NULL; 4496 } 4497 4498 /* 4499 * Calculate the number of btree levels needed to store a given number of 4500 * records in a short-format btree. 4501 */ 4502 uint 4503 xfs_btree_compute_maxlevels( 4504 uint *limits, 4505 unsigned long len) 4506 { 4507 uint level; 4508 unsigned long maxblocks; 4509 4510 maxblocks = (len + limits[0] - 1) / limits[0]; 4511 for (level = 1; maxblocks > 1; level++) 4512 maxblocks = (maxblocks + limits[1] - 1) / limits[1]; 4513 return level; 4514 } 4515 4516 /* 4517 * Query a regular btree for all records overlapping a given interval. 4518 * Start with a LE lookup of the key of low_rec and return all records 4519 * until we find a record with a key greater than the key of high_rec. 4520 */ 4521 STATIC int 4522 xfs_btree_simple_query_range( 4523 struct xfs_btree_cur *cur, 4524 union xfs_btree_key *low_key, 4525 union xfs_btree_key *high_key, 4526 xfs_btree_query_range_fn fn, 4527 void *priv) 4528 { 4529 union xfs_btree_rec *recp; 4530 union xfs_btree_key rec_key; 4531 int64_t diff; 4532 int stat; 4533 bool firstrec = true; 4534 int error; 4535 4536 ASSERT(cur->bc_ops->init_high_key_from_rec); 4537 ASSERT(cur->bc_ops->diff_two_keys); 4538 4539 /* 4540 * Find the leftmost record. The btree cursor must be set 4541 * to the low record used to generate low_key. 4542 */ 4543 stat = 0; 4544 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat); 4545 if (error) 4546 goto out; 4547 4548 /* Nothing? See if there's anything to the right. */ 4549 if (!stat) { 4550 error = xfs_btree_increment(cur, 0, &stat); 4551 if (error) 4552 goto out; 4553 } 4554 4555 while (stat) { 4556 /* Find the record. */ 4557 error = xfs_btree_get_rec(cur, &recp, &stat); 4558 if (error || !stat) 4559 break; 4560 4561 /* Skip if high_key(rec) < low_key. */ 4562 if (firstrec) { 4563 cur->bc_ops->init_high_key_from_rec(&rec_key, recp); 4564 firstrec = false; 4565 diff = cur->bc_ops->diff_two_keys(cur, low_key, 4566 &rec_key); 4567 if (diff > 0) 4568 goto advloop; 4569 } 4570 4571 /* Stop if high_key < low_key(rec). */ 4572 cur->bc_ops->init_key_from_rec(&rec_key, recp); 4573 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key); 4574 if (diff > 0) 4575 break; 4576 4577 /* Callback */ 4578 error = fn(cur, recp, priv); 4579 if (error) 4580 break; 4581 4582 advloop: 4583 /* Move on to the next record. */ 4584 error = xfs_btree_increment(cur, 0, &stat); 4585 if (error) 4586 break; 4587 } 4588 4589 out: 4590 return error; 4591 } 4592 4593 /* 4594 * Query an overlapped interval btree for all records overlapping a given 4595 * interval. This function roughly follows the algorithm given in 4596 * "Interval Trees" of _Introduction to Algorithms_, which is section 4597 * 14.3 in the 2nd and 3rd editions. 4598 * 4599 * First, generate keys for the low and high records passed in. 4600 * 4601 * For any leaf node, generate the high and low keys for the record. 4602 * If the record keys overlap with the query low/high keys, pass the 4603 * record to the function iterator. 4604 * 4605 * For any internal node, compare the low and high keys of each 4606 * pointer against the query low/high keys. If there's an overlap, 4607 * follow the pointer. 4608 * 4609 * As an optimization, we stop scanning a block when we find a low key 4610 * that is greater than the query's high key. 4611 */ 4612 STATIC int 4613 xfs_btree_overlapped_query_range( 4614 struct xfs_btree_cur *cur, 4615 union xfs_btree_key *low_key, 4616 union xfs_btree_key *high_key, 4617 xfs_btree_query_range_fn fn, 4618 void *priv) 4619 { 4620 union xfs_btree_ptr ptr; 4621 union xfs_btree_ptr *pp; 4622 union xfs_btree_key rec_key; 4623 union xfs_btree_key rec_hkey; 4624 union xfs_btree_key *lkp; 4625 union xfs_btree_key *hkp; 4626 union xfs_btree_rec *recp; 4627 struct xfs_btree_block *block; 4628 int64_t ldiff; 4629 int64_t hdiff; 4630 int level; 4631 struct xfs_buf *bp; 4632 int i; 4633 int error; 4634 4635 /* Load the root of the btree. */ 4636 level = cur->bc_nlevels - 1; 4637 cur->bc_ops->init_ptr_from_cur(cur, &ptr); 4638 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block); 4639 if (error) 4640 return error; 4641 xfs_btree_get_block(cur, level, &bp); 4642 trace_xfs_btree_overlapped_query_range(cur, level, bp); 4643 #ifdef DEBUG 4644 error = xfs_btree_check_block(cur, block, level, bp); 4645 if (error) 4646 goto out; 4647 #endif 4648 cur->bc_ptrs[level] = 1; 4649 4650 while (level < cur->bc_nlevels) { 4651 block = xfs_btree_get_block(cur, level, &bp); 4652 4653 /* End of node, pop back towards the root. */ 4654 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) { 4655 pop_up: 4656 if (level < cur->bc_nlevels - 1) 4657 cur->bc_ptrs[level + 1]++; 4658 level++; 4659 continue; 4660 } 4661 4662 if (level == 0) { 4663 /* Handle a leaf node. */ 4664 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block); 4665 4666 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp); 4667 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey, 4668 low_key); 4669 4670 cur->bc_ops->init_key_from_rec(&rec_key, recp); 4671 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, 4672 &rec_key); 4673 4674 /* 4675 * If (record's high key >= query's low key) and 4676 * (query's high key >= record's low key), then 4677 * this record overlaps the query range; callback. 4678 */ 4679 if (ldiff >= 0 && hdiff >= 0) { 4680 error = fn(cur, recp, priv); 4681 if (error) 4682 break; 4683 } else if (hdiff < 0) { 4684 /* Record is larger than high key; pop. */ 4685 goto pop_up; 4686 } 4687 cur->bc_ptrs[level]++; 4688 continue; 4689 } 4690 4691 /* Handle an internal node. */ 4692 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block); 4693 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block); 4694 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block); 4695 4696 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key); 4697 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp); 4698 4699 /* 4700 * If (pointer's high key >= query's low key) and 4701 * (query's high key >= pointer's low key), then 4702 * this record overlaps the query range; follow pointer. 4703 */ 4704 if (ldiff >= 0 && hdiff >= 0) { 4705 level--; 4706 error = xfs_btree_lookup_get_block(cur, level, pp, 4707 &block); 4708 if (error) 4709 goto out; 4710 xfs_btree_get_block(cur, level, &bp); 4711 trace_xfs_btree_overlapped_query_range(cur, level, bp); 4712 #ifdef DEBUG 4713 error = xfs_btree_check_block(cur, block, level, bp); 4714 if (error) 4715 goto out; 4716 #endif 4717 cur->bc_ptrs[level] = 1; 4718 continue; 4719 } else if (hdiff < 0) { 4720 /* The low key is larger than the upper range; pop. */ 4721 goto pop_up; 4722 } 4723 cur->bc_ptrs[level]++; 4724 } 4725 4726 out: 4727 /* 4728 * If we don't end this function with the cursor pointing at a record 4729 * block, a subsequent non-error cursor deletion will not release 4730 * node-level buffers, causing a buffer leak. This is quite possible 4731 * with a zero-results range query, so release the buffers if we 4732 * failed to return any results. 4733 */ 4734 if (cur->bc_bufs[0] == NULL) { 4735 for (i = 0; i < cur->bc_nlevels; i++) { 4736 if (cur->bc_bufs[i]) { 4737 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]); 4738 cur->bc_bufs[i] = NULL; 4739 cur->bc_ptrs[i] = 0; 4740 cur->bc_ra[i] = 0; 4741 } 4742 } 4743 } 4744 4745 return error; 4746 } 4747 4748 /* 4749 * Query a btree for all records overlapping a given interval of keys. The 4750 * supplied function will be called with each record found; return one of the 4751 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error 4752 * code. This function returns -ECANCELED, zero, or a negative error code. 4753 */ 4754 int 4755 xfs_btree_query_range( 4756 struct xfs_btree_cur *cur, 4757 union xfs_btree_irec *low_rec, 4758 union xfs_btree_irec *high_rec, 4759 xfs_btree_query_range_fn fn, 4760 void *priv) 4761 { 4762 union xfs_btree_rec rec; 4763 union xfs_btree_key low_key; 4764 union xfs_btree_key high_key; 4765 4766 /* Find the keys of both ends of the interval. */ 4767 cur->bc_rec = *high_rec; 4768 cur->bc_ops->init_rec_from_cur(cur, &rec); 4769 cur->bc_ops->init_key_from_rec(&high_key, &rec); 4770 4771 cur->bc_rec = *low_rec; 4772 cur->bc_ops->init_rec_from_cur(cur, &rec); 4773 cur->bc_ops->init_key_from_rec(&low_key, &rec); 4774 4775 /* Enforce low key < high key. */ 4776 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0) 4777 return -EINVAL; 4778 4779 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING)) 4780 return xfs_btree_simple_query_range(cur, &low_key, 4781 &high_key, fn, priv); 4782 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key, 4783 fn, priv); 4784 } 4785 4786 /* Query a btree for all records. */ 4787 int 4788 xfs_btree_query_all( 4789 struct xfs_btree_cur *cur, 4790 xfs_btree_query_range_fn fn, 4791 void *priv) 4792 { 4793 union xfs_btree_key low_key; 4794 union xfs_btree_key high_key; 4795 4796 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec)); 4797 memset(&low_key, 0, sizeof(low_key)); 4798 memset(&high_key, 0xFF, sizeof(high_key)); 4799 4800 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv); 4801 } 4802 4803 /* 4804 * Calculate the number of blocks needed to store a given number of records 4805 * in a short-format (per-AG metadata) btree. 4806 */ 4807 unsigned long long 4808 xfs_btree_calc_size( 4809 uint *limits, 4810 unsigned long long len) 4811 { 4812 int level; 4813 int maxrecs; 4814 unsigned long long rval; 4815 4816 maxrecs = limits[0]; 4817 for (level = 0, rval = 0; len > 1; level++) { 4818 len += maxrecs - 1; 4819 do_div(len, maxrecs); 4820 maxrecs = limits[1]; 4821 rval += len; 4822 } 4823 return rval; 4824 } 4825 4826 static int 4827 xfs_btree_count_blocks_helper( 4828 struct xfs_btree_cur *cur, 4829 int level, 4830 void *data) 4831 { 4832 xfs_extlen_t *blocks = data; 4833 (*blocks)++; 4834 4835 return 0; 4836 } 4837 4838 /* Count the blocks in a btree and return the result in *blocks. */ 4839 int 4840 xfs_btree_count_blocks( 4841 struct xfs_btree_cur *cur, 4842 xfs_extlen_t *blocks) 4843 { 4844 *blocks = 0; 4845 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper, 4846 XFS_BTREE_VISIT_ALL, blocks); 4847 } 4848 4849 /* Compare two btree pointers. */ 4850 int64_t 4851 xfs_btree_diff_two_ptrs( 4852 struct xfs_btree_cur *cur, 4853 const union xfs_btree_ptr *a, 4854 const union xfs_btree_ptr *b) 4855 { 4856 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 4857 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l); 4858 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s); 4859 } 4860 4861 /* If there's an extent, we're done. */ 4862 STATIC int 4863 xfs_btree_has_record_helper( 4864 struct xfs_btree_cur *cur, 4865 union xfs_btree_rec *rec, 4866 void *priv) 4867 { 4868 return -ECANCELED; 4869 } 4870 4871 /* Is there a record covering a given range of keys? */ 4872 int 4873 xfs_btree_has_record( 4874 struct xfs_btree_cur *cur, 4875 union xfs_btree_irec *low, 4876 union xfs_btree_irec *high, 4877 bool *exists) 4878 { 4879 int error; 4880 4881 error = xfs_btree_query_range(cur, low, high, 4882 &xfs_btree_has_record_helper, NULL); 4883 if (error == -ECANCELED) { 4884 *exists = true; 4885 return 0; 4886 } 4887 *exists = false; 4888 return error; 4889 } 4890 4891 /* Are there more records in this btree? */ 4892 bool 4893 xfs_btree_has_more_records( 4894 struct xfs_btree_cur *cur) 4895 { 4896 struct xfs_btree_block *block; 4897 struct xfs_buf *bp; 4898 4899 block = xfs_btree_get_block(cur, 0, &bp); 4900 4901 /* There are still records in this block. */ 4902 if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block)) 4903 return true; 4904 4905 /* There are more record blocks. */ 4906 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 4907 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK); 4908 else 4909 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK); 4910 } 4911