xref: /openbmc/linux/fs/xfs/libxfs/xfs_btree.c (revision df85bc14)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 
25 /*
26  * Cursor allocation zone.
27  */
28 kmem_zone_t	*xfs_btree_cur_zone;
29 
30 /*
31  * Btree magic numbers.
32  */
33 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
34 	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
35 	  XFS_FIBT_MAGIC, 0 },
36 	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
37 	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
38 	  XFS_REFC_CRC_MAGIC }
39 };
40 
41 uint32_t
42 xfs_btree_magic(
43 	int			crc,
44 	xfs_btnum_t		btnum)
45 {
46 	uint32_t		magic = xfs_magics[crc][btnum];
47 
48 	/* Ensure we asked for crc for crc-only magics. */
49 	ASSERT(magic != 0);
50 	return magic;
51 }
52 
53 /*
54  * Check a long btree block header.  Return the address of the failing check,
55  * or NULL if everything is ok.
56  */
57 xfs_failaddr_t
58 __xfs_btree_check_lblock(
59 	struct xfs_btree_cur	*cur,
60 	struct xfs_btree_block	*block,
61 	int			level,
62 	struct xfs_buf		*bp)
63 {
64 	struct xfs_mount	*mp = cur->bc_mp;
65 	xfs_btnum_t		btnum = cur->bc_btnum;
66 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
67 
68 	if (crc) {
69 		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
70 			return __this_address;
71 		if (block->bb_u.l.bb_blkno !=
72 		    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
73 			return __this_address;
74 		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
75 			return __this_address;
76 	}
77 
78 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
79 		return __this_address;
80 	if (be16_to_cpu(block->bb_level) != level)
81 		return __this_address;
82 	if (be16_to_cpu(block->bb_numrecs) >
83 	    cur->bc_ops->get_maxrecs(cur, level))
84 		return __this_address;
85 	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
86 	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
87 			level + 1))
88 		return __this_address;
89 	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
90 	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
91 			level + 1))
92 		return __this_address;
93 
94 	return NULL;
95 }
96 
97 /* Check a long btree block header. */
98 static int
99 xfs_btree_check_lblock(
100 	struct xfs_btree_cur	*cur,
101 	struct xfs_btree_block	*block,
102 	int			level,
103 	struct xfs_buf		*bp)
104 {
105 	struct xfs_mount	*mp = cur->bc_mp;
106 	xfs_failaddr_t		fa;
107 
108 	fa = __xfs_btree_check_lblock(cur, block, level, bp);
109 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
110 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
111 		if (bp)
112 			trace_xfs_btree_corrupt(bp, _RET_IP_);
113 		return -EFSCORRUPTED;
114 	}
115 	return 0;
116 }
117 
118 /*
119  * Check a short btree block header.  Return the address of the failing check,
120  * or NULL if everything is ok.
121  */
122 xfs_failaddr_t
123 __xfs_btree_check_sblock(
124 	struct xfs_btree_cur	*cur,
125 	struct xfs_btree_block	*block,
126 	int			level,
127 	struct xfs_buf		*bp)
128 {
129 	struct xfs_mount	*mp = cur->bc_mp;
130 	xfs_btnum_t		btnum = cur->bc_btnum;
131 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
132 
133 	if (crc) {
134 		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
135 			return __this_address;
136 		if (block->bb_u.s.bb_blkno !=
137 		    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
138 			return __this_address;
139 	}
140 
141 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
142 		return __this_address;
143 	if (be16_to_cpu(block->bb_level) != level)
144 		return __this_address;
145 	if (be16_to_cpu(block->bb_numrecs) >
146 	    cur->bc_ops->get_maxrecs(cur, level))
147 		return __this_address;
148 	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
149 	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
150 			level + 1))
151 		return __this_address;
152 	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
153 	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
154 			level + 1))
155 		return __this_address;
156 
157 	return NULL;
158 }
159 
160 /* Check a short btree block header. */
161 STATIC int
162 xfs_btree_check_sblock(
163 	struct xfs_btree_cur	*cur,
164 	struct xfs_btree_block	*block,
165 	int			level,
166 	struct xfs_buf		*bp)
167 {
168 	struct xfs_mount	*mp = cur->bc_mp;
169 	xfs_failaddr_t		fa;
170 
171 	fa = __xfs_btree_check_sblock(cur, block, level, bp);
172 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
173 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
174 		if (bp)
175 			trace_xfs_btree_corrupt(bp, _RET_IP_);
176 		return -EFSCORRUPTED;
177 	}
178 	return 0;
179 }
180 
181 /*
182  * Debug routine: check that block header is ok.
183  */
184 int
185 xfs_btree_check_block(
186 	struct xfs_btree_cur	*cur,	/* btree cursor */
187 	struct xfs_btree_block	*block,	/* generic btree block pointer */
188 	int			level,	/* level of the btree block */
189 	struct xfs_buf		*bp)	/* buffer containing block, if any */
190 {
191 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
192 		return xfs_btree_check_lblock(cur, block, level, bp);
193 	else
194 		return xfs_btree_check_sblock(cur, block, level, bp);
195 }
196 
197 /* Check that this long pointer is valid and points within the fs. */
198 bool
199 xfs_btree_check_lptr(
200 	struct xfs_btree_cur	*cur,
201 	xfs_fsblock_t		fsbno,
202 	int			level)
203 {
204 	if (level <= 0)
205 		return false;
206 	return xfs_verify_fsbno(cur->bc_mp, fsbno);
207 }
208 
209 /* Check that this short pointer is valid and points within the AG. */
210 bool
211 xfs_btree_check_sptr(
212 	struct xfs_btree_cur	*cur,
213 	xfs_agblock_t		agbno,
214 	int			level)
215 {
216 	if (level <= 0)
217 		return false;
218 	return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.agno, agbno);
219 }
220 
221 /*
222  * Check that a given (indexed) btree pointer at a certain level of a
223  * btree is valid and doesn't point past where it should.
224  */
225 static int
226 xfs_btree_check_ptr(
227 	struct xfs_btree_cur	*cur,
228 	union xfs_btree_ptr	*ptr,
229 	int			index,
230 	int			level)
231 {
232 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
233 		if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
234 				level))
235 			return 0;
236 		xfs_err(cur->bc_mp,
237 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
238 				cur->bc_ino.ip->i_ino,
239 				cur->bc_ino.whichfork, cur->bc_btnum,
240 				level, index);
241 	} else {
242 		if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
243 				level))
244 			return 0;
245 		xfs_err(cur->bc_mp,
246 "AG %u: Corrupt btree %d pointer at level %d index %d.",
247 				cur->bc_ag.agno, cur->bc_btnum,
248 				level, index);
249 	}
250 
251 	return -EFSCORRUPTED;
252 }
253 
254 #ifdef DEBUG
255 # define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
256 #else
257 # define xfs_btree_debug_check_ptr(...)	(0)
258 #endif
259 
260 /*
261  * Calculate CRC on the whole btree block and stuff it into the
262  * long-form btree header.
263  *
264  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
265  * it into the buffer so recovery knows what the last modification was that made
266  * it to disk.
267  */
268 void
269 xfs_btree_lblock_calc_crc(
270 	struct xfs_buf		*bp)
271 {
272 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
273 	struct xfs_buf_log_item	*bip = bp->b_log_item;
274 
275 	if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
276 		return;
277 	if (bip)
278 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
279 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
280 }
281 
282 bool
283 xfs_btree_lblock_verify_crc(
284 	struct xfs_buf		*bp)
285 {
286 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
287 	struct xfs_mount	*mp = bp->b_mount;
288 
289 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
290 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
291 			return false;
292 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
293 	}
294 
295 	return true;
296 }
297 
298 /*
299  * Calculate CRC on the whole btree block and stuff it into the
300  * short-form btree header.
301  *
302  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
303  * it into the buffer so recovery knows what the last modification was that made
304  * it to disk.
305  */
306 void
307 xfs_btree_sblock_calc_crc(
308 	struct xfs_buf		*bp)
309 {
310 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
311 	struct xfs_buf_log_item	*bip = bp->b_log_item;
312 
313 	if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
314 		return;
315 	if (bip)
316 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
317 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
318 }
319 
320 bool
321 xfs_btree_sblock_verify_crc(
322 	struct xfs_buf		*bp)
323 {
324 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
325 	struct xfs_mount	*mp = bp->b_mount;
326 
327 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
328 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
329 			return false;
330 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
331 	}
332 
333 	return true;
334 }
335 
336 static int
337 xfs_btree_free_block(
338 	struct xfs_btree_cur	*cur,
339 	struct xfs_buf		*bp)
340 {
341 	int			error;
342 
343 	error = cur->bc_ops->free_block(cur, bp);
344 	if (!error) {
345 		xfs_trans_binval(cur->bc_tp, bp);
346 		XFS_BTREE_STATS_INC(cur, free);
347 	}
348 	return error;
349 }
350 
351 /*
352  * Delete the btree cursor.
353  */
354 void
355 xfs_btree_del_cursor(
356 	xfs_btree_cur_t	*cur,		/* btree cursor */
357 	int		error)		/* del because of error */
358 {
359 	int		i;		/* btree level */
360 
361 	/*
362 	 * Clear the buffer pointers, and release the buffers.
363 	 * If we're doing this in the face of an error, we
364 	 * need to make sure to inspect all of the entries
365 	 * in the bc_bufs array for buffers to be unlocked.
366 	 * This is because some of the btree code works from
367 	 * level n down to 0, and if we get an error along
368 	 * the way we won't have initialized all the entries
369 	 * down to 0.
370 	 */
371 	for (i = 0; i < cur->bc_nlevels; i++) {
372 		if (cur->bc_bufs[i])
373 			xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
374 		else if (!error)
375 			break;
376 	}
377 	/*
378 	 * Can't free a bmap cursor without having dealt with the
379 	 * allocated indirect blocks' accounting.
380 	 */
381 	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
382 	       cur->bc_ino.allocated == 0);
383 	/*
384 	 * Free the cursor.
385 	 */
386 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
387 		kmem_free((void *)cur->bc_ops);
388 	kmem_cache_free(xfs_btree_cur_zone, cur);
389 }
390 
391 /*
392  * Duplicate the btree cursor.
393  * Allocate a new one, copy the record, re-get the buffers.
394  */
395 int					/* error */
396 xfs_btree_dup_cursor(
397 	xfs_btree_cur_t	*cur,		/* input cursor */
398 	xfs_btree_cur_t	**ncur)		/* output cursor */
399 {
400 	struct xfs_buf	*bp;		/* btree block's buffer pointer */
401 	int		error;		/* error return value */
402 	int		i;		/* level number of btree block */
403 	xfs_mount_t	*mp;		/* mount structure for filesystem */
404 	xfs_btree_cur_t	*new;		/* new cursor value */
405 	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
406 
407 	tp = cur->bc_tp;
408 	mp = cur->bc_mp;
409 
410 	/*
411 	 * Allocate a new cursor like the old one.
412 	 */
413 	new = cur->bc_ops->dup_cursor(cur);
414 
415 	/*
416 	 * Copy the record currently in the cursor.
417 	 */
418 	new->bc_rec = cur->bc_rec;
419 
420 	/*
421 	 * For each level current, re-get the buffer and copy the ptr value.
422 	 */
423 	for (i = 0; i < new->bc_nlevels; i++) {
424 		new->bc_ptrs[i] = cur->bc_ptrs[i];
425 		new->bc_ra[i] = cur->bc_ra[i];
426 		bp = cur->bc_bufs[i];
427 		if (bp) {
428 			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
429 						   XFS_BUF_ADDR(bp), mp->m_bsize,
430 						   0, &bp,
431 						   cur->bc_ops->buf_ops);
432 			if (error) {
433 				xfs_btree_del_cursor(new, error);
434 				*ncur = NULL;
435 				return error;
436 			}
437 		}
438 		new->bc_bufs[i] = bp;
439 	}
440 	*ncur = new;
441 	return 0;
442 }
443 
444 /*
445  * XFS btree block layout and addressing:
446  *
447  * There are two types of blocks in the btree: leaf and non-leaf blocks.
448  *
449  * The leaf record start with a header then followed by records containing
450  * the values.  A non-leaf block also starts with the same header, and
451  * then first contains lookup keys followed by an equal number of pointers
452  * to the btree blocks at the previous level.
453  *
454  *		+--------+-------+-------+-------+-------+-------+-------+
455  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
456  *		+--------+-------+-------+-------+-------+-------+-------+
457  *
458  *		+--------+-------+-------+-------+-------+-------+-------+
459  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
460  *		+--------+-------+-------+-------+-------+-------+-------+
461  *
462  * The header is called struct xfs_btree_block for reasons better left unknown
463  * and comes in different versions for short (32bit) and long (64bit) block
464  * pointers.  The record and key structures are defined by the btree instances
465  * and opaque to the btree core.  The block pointers are simple disk endian
466  * integers, available in a short (32bit) and long (64bit) variant.
467  *
468  * The helpers below calculate the offset of a given record, key or pointer
469  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
470  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
471  * inside the btree block is done using indices starting at one, not zero!
472  *
473  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
474  * overlapping intervals.  In such a tree, records are still sorted lowest to
475  * highest and indexed by the smallest key value that refers to the record.
476  * However, nodes are different: each pointer has two associated keys -- one
477  * indexing the lowest key available in the block(s) below (the same behavior
478  * as the key in a regular btree) and another indexing the highest key
479  * available in the block(s) below.  Because records are /not/ sorted by the
480  * highest key, all leaf block updates require us to compute the highest key
481  * that matches any record in the leaf and to recursively update the high keys
482  * in the nodes going further up in the tree, if necessary.  Nodes look like
483  * this:
484  *
485  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
486  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
487  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
488  *
489  * To perform an interval query on an overlapped tree, perform the usual
490  * depth-first search and use the low and high keys to decide if we can skip
491  * that particular node.  If a leaf node is reached, return the records that
492  * intersect the interval.  Note that an interval query may return numerous
493  * entries.  For a non-overlapped tree, simply search for the record associated
494  * with the lowest key and iterate forward until a non-matching record is
495  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
496  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
497  * more detail.
498  *
499  * Why do we care about overlapping intervals?  Let's say you have a bunch of
500  * reverse mapping records on a reflink filesystem:
501  *
502  * 1: +- file A startblock B offset C length D -----------+
503  * 2:      +- file E startblock F offset G length H --------------+
504  * 3:      +- file I startblock F offset J length K --+
505  * 4:                                                        +- file L... --+
506  *
507  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
508  * we'd simply increment the length of record 1.  But how do we find the record
509  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
510  * record 3 because the keys are ordered first by startblock.  An interval
511  * query would return records 1 and 2 because they both overlap (B+D-1), and
512  * from that we can pick out record 1 as the appropriate left neighbor.
513  *
514  * In the non-overlapped case you can do a LE lookup and decrement the cursor
515  * because a record's interval must end before the next record.
516  */
517 
518 /*
519  * Return size of the btree block header for this btree instance.
520  */
521 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
522 {
523 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
524 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
525 			return XFS_BTREE_LBLOCK_CRC_LEN;
526 		return XFS_BTREE_LBLOCK_LEN;
527 	}
528 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
529 		return XFS_BTREE_SBLOCK_CRC_LEN;
530 	return XFS_BTREE_SBLOCK_LEN;
531 }
532 
533 /*
534  * Return size of btree block pointers for this btree instance.
535  */
536 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
537 {
538 	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
539 		sizeof(__be64) : sizeof(__be32);
540 }
541 
542 /*
543  * Calculate offset of the n-th record in a btree block.
544  */
545 STATIC size_t
546 xfs_btree_rec_offset(
547 	struct xfs_btree_cur	*cur,
548 	int			n)
549 {
550 	return xfs_btree_block_len(cur) +
551 		(n - 1) * cur->bc_ops->rec_len;
552 }
553 
554 /*
555  * Calculate offset of the n-th key in a btree block.
556  */
557 STATIC size_t
558 xfs_btree_key_offset(
559 	struct xfs_btree_cur	*cur,
560 	int			n)
561 {
562 	return xfs_btree_block_len(cur) +
563 		(n - 1) * cur->bc_ops->key_len;
564 }
565 
566 /*
567  * Calculate offset of the n-th high key in a btree block.
568  */
569 STATIC size_t
570 xfs_btree_high_key_offset(
571 	struct xfs_btree_cur	*cur,
572 	int			n)
573 {
574 	return xfs_btree_block_len(cur) +
575 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
576 }
577 
578 /*
579  * Calculate offset of the n-th block pointer in a btree block.
580  */
581 STATIC size_t
582 xfs_btree_ptr_offset(
583 	struct xfs_btree_cur	*cur,
584 	int			n,
585 	int			level)
586 {
587 	return xfs_btree_block_len(cur) +
588 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
589 		(n - 1) * xfs_btree_ptr_len(cur);
590 }
591 
592 /*
593  * Return a pointer to the n-th record in the btree block.
594  */
595 union xfs_btree_rec *
596 xfs_btree_rec_addr(
597 	struct xfs_btree_cur	*cur,
598 	int			n,
599 	struct xfs_btree_block	*block)
600 {
601 	return (union xfs_btree_rec *)
602 		((char *)block + xfs_btree_rec_offset(cur, n));
603 }
604 
605 /*
606  * Return a pointer to the n-th key in the btree block.
607  */
608 union xfs_btree_key *
609 xfs_btree_key_addr(
610 	struct xfs_btree_cur	*cur,
611 	int			n,
612 	struct xfs_btree_block	*block)
613 {
614 	return (union xfs_btree_key *)
615 		((char *)block + xfs_btree_key_offset(cur, n));
616 }
617 
618 /*
619  * Return a pointer to the n-th high key in the btree block.
620  */
621 union xfs_btree_key *
622 xfs_btree_high_key_addr(
623 	struct xfs_btree_cur	*cur,
624 	int			n,
625 	struct xfs_btree_block	*block)
626 {
627 	return (union xfs_btree_key *)
628 		((char *)block + xfs_btree_high_key_offset(cur, n));
629 }
630 
631 /*
632  * Return a pointer to the n-th block pointer in the btree block.
633  */
634 union xfs_btree_ptr *
635 xfs_btree_ptr_addr(
636 	struct xfs_btree_cur	*cur,
637 	int			n,
638 	struct xfs_btree_block	*block)
639 {
640 	int			level = xfs_btree_get_level(block);
641 
642 	ASSERT(block->bb_level != 0);
643 
644 	return (union xfs_btree_ptr *)
645 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
646 }
647 
648 struct xfs_ifork *
649 xfs_btree_ifork_ptr(
650 	struct xfs_btree_cur	*cur)
651 {
652 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
653 
654 	if (cur->bc_flags & XFS_BTREE_STAGING)
655 		return cur->bc_ino.ifake->if_fork;
656 	return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork);
657 }
658 
659 /*
660  * Get the root block which is stored in the inode.
661  *
662  * For now this btree implementation assumes the btree root is always
663  * stored in the if_broot field of an inode fork.
664  */
665 STATIC struct xfs_btree_block *
666 xfs_btree_get_iroot(
667 	struct xfs_btree_cur	*cur)
668 {
669 	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
670 
671 	return (struct xfs_btree_block *)ifp->if_broot;
672 }
673 
674 /*
675  * Retrieve the block pointer from the cursor at the given level.
676  * This may be an inode btree root or from a buffer.
677  */
678 struct xfs_btree_block *		/* generic btree block pointer */
679 xfs_btree_get_block(
680 	struct xfs_btree_cur	*cur,	/* btree cursor */
681 	int			level,	/* level in btree */
682 	struct xfs_buf		**bpp)	/* buffer containing the block */
683 {
684 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
685 	    (level == cur->bc_nlevels - 1)) {
686 		*bpp = NULL;
687 		return xfs_btree_get_iroot(cur);
688 	}
689 
690 	*bpp = cur->bc_bufs[level];
691 	return XFS_BUF_TO_BLOCK(*bpp);
692 }
693 
694 /*
695  * Change the cursor to point to the first record at the given level.
696  * Other levels are unaffected.
697  */
698 STATIC int				/* success=1, failure=0 */
699 xfs_btree_firstrec(
700 	xfs_btree_cur_t		*cur,	/* btree cursor */
701 	int			level)	/* level to change */
702 {
703 	struct xfs_btree_block	*block;	/* generic btree block pointer */
704 	struct xfs_buf		*bp;	/* buffer containing block */
705 
706 	/*
707 	 * Get the block pointer for this level.
708 	 */
709 	block = xfs_btree_get_block(cur, level, &bp);
710 	if (xfs_btree_check_block(cur, block, level, bp))
711 		return 0;
712 	/*
713 	 * It's empty, there is no such record.
714 	 */
715 	if (!block->bb_numrecs)
716 		return 0;
717 	/*
718 	 * Set the ptr value to 1, that's the first record/key.
719 	 */
720 	cur->bc_ptrs[level] = 1;
721 	return 1;
722 }
723 
724 /*
725  * Change the cursor to point to the last record in the current block
726  * at the given level.  Other levels are unaffected.
727  */
728 STATIC int				/* success=1, failure=0 */
729 xfs_btree_lastrec(
730 	xfs_btree_cur_t		*cur,	/* btree cursor */
731 	int			level)	/* level to change */
732 {
733 	struct xfs_btree_block	*block;	/* generic btree block pointer */
734 	struct xfs_buf		*bp;	/* buffer containing block */
735 
736 	/*
737 	 * Get the block pointer for this level.
738 	 */
739 	block = xfs_btree_get_block(cur, level, &bp);
740 	if (xfs_btree_check_block(cur, block, level, bp))
741 		return 0;
742 	/*
743 	 * It's empty, there is no such record.
744 	 */
745 	if (!block->bb_numrecs)
746 		return 0;
747 	/*
748 	 * Set the ptr value to numrecs, that's the last record/key.
749 	 */
750 	cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
751 	return 1;
752 }
753 
754 /*
755  * Compute first and last byte offsets for the fields given.
756  * Interprets the offsets table, which contains struct field offsets.
757  */
758 void
759 xfs_btree_offsets(
760 	int64_t		fields,		/* bitmask of fields */
761 	const short	*offsets,	/* table of field offsets */
762 	int		nbits,		/* number of bits to inspect */
763 	int		*first,		/* output: first byte offset */
764 	int		*last)		/* output: last byte offset */
765 {
766 	int		i;		/* current bit number */
767 	int64_t		imask;		/* mask for current bit number */
768 
769 	ASSERT(fields != 0);
770 	/*
771 	 * Find the lowest bit, so the first byte offset.
772 	 */
773 	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
774 		if (imask & fields) {
775 			*first = offsets[i];
776 			break;
777 		}
778 	}
779 	/*
780 	 * Find the highest bit, so the last byte offset.
781 	 */
782 	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
783 		if (imask & fields) {
784 			*last = offsets[i + 1] - 1;
785 			break;
786 		}
787 	}
788 }
789 
790 /*
791  * Get a buffer for the block, return it read in.
792  * Long-form addressing.
793  */
794 int
795 xfs_btree_read_bufl(
796 	struct xfs_mount	*mp,		/* file system mount point */
797 	struct xfs_trans	*tp,		/* transaction pointer */
798 	xfs_fsblock_t		fsbno,		/* file system block number */
799 	struct xfs_buf		**bpp,		/* buffer for fsbno */
800 	int			refval,		/* ref count value for buffer */
801 	const struct xfs_buf_ops *ops)
802 {
803 	struct xfs_buf		*bp;		/* return value */
804 	xfs_daddr_t		d;		/* real disk block address */
805 	int			error;
806 
807 	if (!xfs_verify_fsbno(mp, fsbno))
808 		return -EFSCORRUPTED;
809 	d = XFS_FSB_TO_DADDR(mp, fsbno);
810 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
811 				   mp->m_bsize, 0, &bp, ops);
812 	if (error)
813 		return error;
814 	if (bp)
815 		xfs_buf_set_ref(bp, refval);
816 	*bpp = bp;
817 	return 0;
818 }
819 
820 /*
821  * Read-ahead the block, don't wait for it, don't return a buffer.
822  * Long-form addressing.
823  */
824 /* ARGSUSED */
825 void
826 xfs_btree_reada_bufl(
827 	struct xfs_mount	*mp,		/* file system mount point */
828 	xfs_fsblock_t		fsbno,		/* file system block number */
829 	xfs_extlen_t		count,		/* count of filesystem blocks */
830 	const struct xfs_buf_ops *ops)
831 {
832 	xfs_daddr_t		d;
833 
834 	ASSERT(fsbno != NULLFSBLOCK);
835 	d = XFS_FSB_TO_DADDR(mp, fsbno);
836 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
837 }
838 
839 /*
840  * Read-ahead the block, don't wait for it, don't return a buffer.
841  * Short-form addressing.
842  */
843 /* ARGSUSED */
844 void
845 xfs_btree_reada_bufs(
846 	struct xfs_mount	*mp,		/* file system mount point */
847 	xfs_agnumber_t		agno,		/* allocation group number */
848 	xfs_agblock_t		agbno,		/* allocation group block number */
849 	xfs_extlen_t		count,		/* count of filesystem blocks */
850 	const struct xfs_buf_ops *ops)
851 {
852 	xfs_daddr_t		d;
853 
854 	ASSERT(agno != NULLAGNUMBER);
855 	ASSERT(agbno != NULLAGBLOCK);
856 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
857 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
858 }
859 
860 STATIC int
861 xfs_btree_readahead_lblock(
862 	struct xfs_btree_cur	*cur,
863 	int			lr,
864 	struct xfs_btree_block	*block)
865 {
866 	int			rval = 0;
867 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
868 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
869 
870 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
871 		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
872 				     cur->bc_ops->buf_ops);
873 		rval++;
874 	}
875 
876 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
877 		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
878 				     cur->bc_ops->buf_ops);
879 		rval++;
880 	}
881 
882 	return rval;
883 }
884 
885 STATIC int
886 xfs_btree_readahead_sblock(
887 	struct xfs_btree_cur	*cur,
888 	int			lr,
889 	struct xfs_btree_block *block)
890 {
891 	int			rval = 0;
892 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
893 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
894 
895 
896 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
897 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno,
898 				     left, 1, cur->bc_ops->buf_ops);
899 		rval++;
900 	}
901 
902 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
903 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno,
904 				     right, 1, cur->bc_ops->buf_ops);
905 		rval++;
906 	}
907 
908 	return rval;
909 }
910 
911 /*
912  * Read-ahead btree blocks, at the given level.
913  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
914  */
915 STATIC int
916 xfs_btree_readahead(
917 	struct xfs_btree_cur	*cur,		/* btree cursor */
918 	int			lev,		/* level in btree */
919 	int			lr)		/* left/right bits */
920 {
921 	struct xfs_btree_block	*block;
922 
923 	/*
924 	 * No readahead needed if we are at the root level and the
925 	 * btree root is stored in the inode.
926 	 */
927 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
928 	    (lev == cur->bc_nlevels - 1))
929 		return 0;
930 
931 	if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
932 		return 0;
933 
934 	cur->bc_ra[lev] |= lr;
935 	block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
936 
937 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
938 		return xfs_btree_readahead_lblock(cur, lr, block);
939 	return xfs_btree_readahead_sblock(cur, lr, block);
940 }
941 
942 STATIC int
943 xfs_btree_ptr_to_daddr(
944 	struct xfs_btree_cur	*cur,
945 	union xfs_btree_ptr	*ptr,
946 	xfs_daddr_t		*daddr)
947 {
948 	xfs_fsblock_t		fsbno;
949 	xfs_agblock_t		agbno;
950 	int			error;
951 
952 	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
953 	if (error)
954 		return error;
955 
956 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
957 		fsbno = be64_to_cpu(ptr->l);
958 		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
959 	} else {
960 		agbno = be32_to_cpu(ptr->s);
961 		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.agno,
962 				agbno);
963 	}
964 
965 	return 0;
966 }
967 
968 /*
969  * Readahead @count btree blocks at the given @ptr location.
970  *
971  * We don't need to care about long or short form btrees here as we have a
972  * method of converting the ptr directly to a daddr available to us.
973  */
974 STATIC void
975 xfs_btree_readahead_ptr(
976 	struct xfs_btree_cur	*cur,
977 	union xfs_btree_ptr	*ptr,
978 	xfs_extlen_t		count)
979 {
980 	xfs_daddr_t		daddr;
981 
982 	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
983 		return;
984 	xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
985 			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
986 }
987 
988 /*
989  * Set the buffer for level "lev" in the cursor to bp, releasing
990  * any previous buffer.
991  */
992 STATIC void
993 xfs_btree_setbuf(
994 	xfs_btree_cur_t		*cur,	/* btree cursor */
995 	int			lev,	/* level in btree */
996 	struct xfs_buf		*bp)	/* new buffer to set */
997 {
998 	struct xfs_btree_block	*b;	/* btree block */
999 
1000 	if (cur->bc_bufs[lev])
1001 		xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1002 	cur->bc_bufs[lev] = bp;
1003 	cur->bc_ra[lev] = 0;
1004 
1005 	b = XFS_BUF_TO_BLOCK(bp);
1006 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1007 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1008 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1009 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1010 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1011 	} else {
1012 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1013 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1014 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1015 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1016 	}
1017 }
1018 
1019 bool
1020 xfs_btree_ptr_is_null(
1021 	struct xfs_btree_cur	*cur,
1022 	union xfs_btree_ptr	*ptr)
1023 {
1024 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1025 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1026 	else
1027 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1028 }
1029 
1030 void
1031 xfs_btree_set_ptr_null(
1032 	struct xfs_btree_cur	*cur,
1033 	union xfs_btree_ptr	*ptr)
1034 {
1035 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1036 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1037 	else
1038 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1039 }
1040 
1041 /*
1042  * Get/set/init sibling pointers
1043  */
1044 void
1045 xfs_btree_get_sibling(
1046 	struct xfs_btree_cur	*cur,
1047 	struct xfs_btree_block	*block,
1048 	union xfs_btree_ptr	*ptr,
1049 	int			lr)
1050 {
1051 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1052 
1053 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1054 		if (lr == XFS_BB_RIGHTSIB)
1055 			ptr->l = block->bb_u.l.bb_rightsib;
1056 		else
1057 			ptr->l = block->bb_u.l.bb_leftsib;
1058 	} else {
1059 		if (lr == XFS_BB_RIGHTSIB)
1060 			ptr->s = block->bb_u.s.bb_rightsib;
1061 		else
1062 			ptr->s = block->bb_u.s.bb_leftsib;
1063 	}
1064 }
1065 
1066 void
1067 xfs_btree_set_sibling(
1068 	struct xfs_btree_cur	*cur,
1069 	struct xfs_btree_block	*block,
1070 	union xfs_btree_ptr	*ptr,
1071 	int			lr)
1072 {
1073 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1074 
1075 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1076 		if (lr == XFS_BB_RIGHTSIB)
1077 			block->bb_u.l.bb_rightsib = ptr->l;
1078 		else
1079 			block->bb_u.l.bb_leftsib = ptr->l;
1080 	} else {
1081 		if (lr == XFS_BB_RIGHTSIB)
1082 			block->bb_u.s.bb_rightsib = ptr->s;
1083 		else
1084 			block->bb_u.s.bb_leftsib = ptr->s;
1085 	}
1086 }
1087 
1088 void
1089 xfs_btree_init_block_int(
1090 	struct xfs_mount	*mp,
1091 	struct xfs_btree_block	*buf,
1092 	xfs_daddr_t		blkno,
1093 	xfs_btnum_t		btnum,
1094 	__u16			level,
1095 	__u16			numrecs,
1096 	__u64			owner,
1097 	unsigned int		flags)
1098 {
1099 	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
1100 	__u32			magic = xfs_btree_magic(crc, btnum);
1101 
1102 	buf->bb_magic = cpu_to_be32(magic);
1103 	buf->bb_level = cpu_to_be16(level);
1104 	buf->bb_numrecs = cpu_to_be16(numrecs);
1105 
1106 	if (flags & XFS_BTREE_LONG_PTRS) {
1107 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1108 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1109 		if (crc) {
1110 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1111 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1112 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1113 			buf->bb_u.l.bb_pad = 0;
1114 			buf->bb_u.l.bb_lsn = 0;
1115 		}
1116 	} else {
1117 		/* owner is a 32 bit value on short blocks */
1118 		__u32 __owner = (__u32)owner;
1119 
1120 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1121 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1122 		if (crc) {
1123 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1124 			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1125 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1126 			buf->bb_u.s.bb_lsn = 0;
1127 		}
1128 	}
1129 }
1130 
1131 void
1132 xfs_btree_init_block(
1133 	struct xfs_mount *mp,
1134 	struct xfs_buf	*bp,
1135 	xfs_btnum_t	btnum,
1136 	__u16		level,
1137 	__u16		numrecs,
1138 	__u64		owner)
1139 {
1140 	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1141 				 btnum, level, numrecs, owner, 0);
1142 }
1143 
1144 void
1145 xfs_btree_init_block_cur(
1146 	struct xfs_btree_cur	*cur,
1147 	struct xfs_buf		*bp,
1148 	int			level,
1149 	int			numrecs)
1150 {
1151 	__u64			owner;
1152 
1153 	/*
1154 	 * we can pull the owner from the cursor right now as the different
1155 	 * owners align directly with the pointer size of the btree. This may
1156 	 * change in future, but is safe for current users of the generic btree
1157 	 * code.
1158 	 */
1159 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1160 		owner = cur->bc_ino.ip->i_ino;
1161 	else
1162 		owner = cur->bc_ag.agno;
1163 
1164 	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1165 				 cur->bc_btnum, level, numrecs,
1166 				 owner, cur->bc_flags);
1167 }
1168 
1169 /*
1170  * Return true if ptr is the last record in the btree and
1171  * we need to track updates to this record.  The decision
1172  * will be further refined in the update_lastrec method.
1173  */
1174 STATIC int
1175 xfs_btree_is_lastrec(
1176 	struct xfs_btree_cur	*cur,
1177 	struct xfs_btree_block	*block,
1178 	int			level)
1179 {
1180 	union xfs_btree_ptr	ptr;
1181 
1182 	if (level > 0)
1183 		return 0;
1184 	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1185 		return 0;
1186 
1187 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1188 	if (!xfs_btree_ptr_is_null(cur, &ptr))
1189 		return 0;
1190 	return 1;
1191 }
1192 
1193 STATIC void
1194 xfs_btree_buf_to_ptr(
1195 	struct xfs_btree_cur	*cur,
1196 	struct xfs_buf		*bp,
1197 	union xfs_btree_ptr	*ptr)
1198 {
1199 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1200 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1201 					XFS_BUF_ADDR(bp)));
1202 	else {
1203 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1204 					XFS_BUF_ADDR(bp)));
1205 	}
1206 }
1207 
1208 STATIC void
1209 xfs_btree_set_refs(
1210 	struct xfs_btree_cur	*cur,
1211 	struct xfs_buf		*bp)
1212 {
1213 	switch (cur->bc_btnum) {
1214 	case XFS_BTNUM_BNO:
1215 	case XFS_BTNUM_CNT:
1216 		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1217 		break;
1218 	case XFS_BTNUM_INO:
1219 	case XFS_BTNUM_FINO:
1220 		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1221 		break;
1222 	case XFS_BTNUM_BMAP:
1223 		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1224 		break;
1225 	case XFS_BTNUM_RMAP:
1226 		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1227 		break;
1228 	case XFS_BTNUM_REFC:
1229 		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1230 		break;
1231 	default:
1232 		ASSERT(0);
1233 	}
1234 }
1235 
1236 int
1237 xfs_btree_get_buf_block(
1238 	struct xfs_btree_cur	*cur,
1239 	union xfs_btree_ptr	*ptr,
1240 	struct xfs_btree_block	**block,
1241 	struct xfs_buf		**bpp)
1242 {
1243 	struct xfs_mount	*mp = cur->bc_mp;
1244 	xfs_daddr_t		d;
1245 	int			error;
1246 
1247 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1248 	if (error)
1249 		return error;
1250 	error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1251 			0, bpp);
1252 	if (error)
1253 		return error;
1254 
1255 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1256 	*block = XFS_BUF_TO_BLOCK(*bpp);
1257 	return 0;
1258 }
1259 
1260 /*
1261  * Read in the buffer at the given ptr and return the buffer and
1262  * the block pointer within the buffer.
1263  */
1264 STATIC int
1265 xfs_btree_read_buf_block(
1266 	struct xfs_btree_cur	*cur,
1267 	union xfs_btree_ptr	*ptr,
1268 	int			flags,
1269 	struct xfs_btree_block	**block,
1270 	struct xfs_buf		**bpp)
1271 {
1272 	struct xfs_mount	*mp = cur->bc_mp;
1273 	xfs_daddr_t		d;
1274 	int			error;
1275 
1276 	/* need to sort out how callers deal with failures first */
1277 	ASSERT(!(flags & XBF_TRYLOCK));
1278 
1279 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1280 	if (error)
1281 		return error;
1282 	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1283 				   mp->m_bsize, flags, bpp,
1284 				   cur->bc_ops->buf_ops);
1285 	if (error)
1286 		return error;
1287 
1288 	xfs_btree_set_refs(cur, *bpp);
1289 	*block = XFS_BUF_TO_BLOCK(*bpp);
1290 	return 0;
1291 }
1292 
1293 /*
1294  * Copy keys from one btree block to another.
1295  */
1296 void
1297 xfs_btree_copy_keys(
1298 	struct xfs_btree_cur	*cur,
1299 	union xfs_btree_key	*dst_key,
1300 	union xfs_btree_key	*src_key,
1301 	int			numkeys)
1302 {
1303 	ASSERT(numkeys >= 0);
1304 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1305 }
1306 
1307 /*
1308  * Copy records from one btree block to another.
1309  */
1310 STATIC void
1311 xfs_btree_copy_recs(
1312 	struct xfs_btree_cur	*cur,
1313 	union xfs_btree_rec	*dst_rec,
1314 	union xfs_btree_rec	*src_rec,
1315 	int			numrecs)
1316 {
1317 	ASSERT(numrecs >= 0);
1318 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1319 }
1320 
1321 /*
1322  * Copy block pointers from one btree block to another.
1323  */
1324 void
1325 xfs_btree_copy_ptrs(
1326 	struct xfs_btree_cur	*cur,
1327 	union xfs_btree_ptr	*dst_ptr,
1328 	const union xfs_btree_ptr *src_ptr,
1329 	int			numptrs)
1330 {
1331 	ASSERT(numptrs >= 0);
1332 	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1333 }
1334 
1335 /*
1336  * Shift keys one index left/right inside a single btree block.
1337  */
1338 STATIC void
1339 xfs_btree_shift_keys(
1340 	struct xfs_btree_cur	*cur,
1341 	union xfs_btree_key	*key,
1342 	int			dir,
1343 	int			numkeys)
1344 {
1345 	char			*dst_key;
1346 
1347 	ASSERT(numkeys >= 0);
1348 	ASSERT(dir == 1 || dir == -1);
1349 
1350 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1351 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1352 }
1353 
1354 /*
1355  * Shift records one index left/right inside a single btree block.
1356  */
1357 STATIC void
1358 xfs_btree_shift_recs(
1359 	struct xfs_btree_cur	*cur,
1360 	union xfs_btree_rec	*rec,
1361 	int			dir,
1362 	int			numrecs)
1363 {
1364 	char			*dst_rec;
1365 
1366 	ASSERT(numrecs >= 0);
1367 	ASSERT(dir == 1 || dir == -1);
1368 
1369 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1370 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1371 }
1372 
1373 /*
1374  * Shift block pointers one index left/right inside a single btree block.
1375  */
1376 STATIC void
1377 xfs_btree_shift_ptrs(
1378 	struct xfs_btree_cur	*cur,
1379 	union xfs_btree_ptr	*ptr,
1380 	int			dir,
1381 	int			numptrs)
1382 {
1383 	char			*dst_ptr;
1384 
1385 	ASSERT(numptrs >= 0);
1386 	ASSERT(dir == 1 || dir == -1);
1387 
1388 	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1389 	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1390 }
1391 
1392 /*
1393  * Log key values from the btree block.
1394  */
1395 STATIC void
1396 xfs_btree_log_keys(
1397 	struct xfs_btree_cur	*cur,
1398 	struct xfs_buf		*bp,
1399 	int			first,
1400 	int			last)
1401 {
1402 
1403 	if (bp) {
1404 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1405 		xfs_trans_log_buf(cur->bc_tp, bp,
1406 				  xfs_btree_key_offset(cur, first),
1407 				  xfs_btree_key_offset(cur, last + 1) - 1);
1408 	} else {
1409 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1410 				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1411 	}
1412 }
1413 
1414 /*
1415  * Log record values from the btree block.
1416  */
1417 void
1418 xfs_btree_log_recs(
1419 	struct xfs_btree_cur	*cur,
1420 	struct xfs_buf		*bp,
1421 	int			first,
1422 	int			last)
1423 {
1424 
1425 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1426 	xfs_trans_log_buf(cur->bc_tp, bp,
1427 			  xfs_btree_rec_offset(cur, first),
1428 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1429 
1430 }
1431 
1432 /*
1433  * Log block pointer fields from a btree block (nonleaf).
1434  */
1435 STATIC void
1436 xfs_btree_log_ptrs(
1437 	struct xfs_btree_cur	*cur,	/* btree cursor */
1438 	struct xfs_buf		*bp,	/* buffer containing btree block */
1439 	int			first,	/* index of first pointer to log */
1440 	int			last)	/* index of last pointer to log */
1441 {
1442 
1443 	if (bp) {
1444 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1445 		int			level = xfs_btree_get_level(block);
1446 
1447 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1448 		xfs_trans_log_buf(cur->bc_tp, bp,
1449 				xfs_btree_ptr_offset(cur, first, level),
1450 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1451 	} else {
1452 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1453 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1454 	}
1455 
1456 }
1457 
1458 /*
1459  * Log fields from a btree block header.
1460  */
1461 void
1462 xfs_btree_log_block(
1463 	struct xfs_btree_cur	*cur,	/* btree cursor */
1464 	struct xfs_buf		*bp,	/* buffer containing btree block */
1465 	int			fields)	/* mask of fields: XFS_BB_... */
1466 {
1467 	int			first;	/* first byte offset logged */
1468 	int			last;	/* last byte offset logged */
1469 	static const short	soffsets[] = {	/* table of offsets (short) */
1470 		offsetof(struct xfs_btree_block, bb_magic),
1471 		offsetof(struct xfs_btree_block, bb_level),
1472 		offsetof(struct xfs_btree_block, bb_numrecs),
1473 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1474 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1475 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1476 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1477 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1478 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1479 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1480 		XFS_BTREE_SBLOCK_CRC_LEN
1481 	};
1482 	static const short	loffsets[] = {	/* table of offsets (long) */
1483 		offsetof(struct xfs_btree_block, bb_magic),
1484 		offsetof(struct xfs_btree_block, bb_level),
1485 		offsetof(struct xfs_btree_block, bb_numrecs),
1486 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1487 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1488 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1489 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1490 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1491 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1492 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1493 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1494 		XFS_BTREE_LBLOCK_CRC_LEN
1495 	};
1496 
1497 	if (bp) {
1498 		int nbits;
1499 
1500 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1501 			/*
1502 			 * We don't log the CRC when updating a btree
1503 			 * block but instead recreate it during log
1504 			 * recovery.  As the log buffers have checksums
1505 			 * of their own this is safe and avoids logging a crc
1506 			 * update in a lot of places.
1507 			 */
1508 			if (fields == XFS_BB_ALL_BITS)
1509 				fields = XFS_BB_ALL_BITS_CRC;
1510 			nbits = XFS_BB_NUM_BITS_CRC;
1511 		} else {
1512 			nbits = XFS_BB_NUM_BITS;
1513 		}
1514 		xfs_btree_offsets(fields,
1515 				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1516 					loffsets : soffsets,
1517 				  nbits, &first, &last);
1518 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1519 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1520 	} else {
1521 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1522 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1523 	}
1524 }
1525 
1526 /*
1527  * Increment cursor by one record at the level.
1528  * For nonzero levels the leaf-ward information is untouched.
1529  */
1530 int						/* error */
1531 xfs_btree_increment(
1532 	struct xfs_btree_cur	*cur,
1533 	int			level,
1534 	int			*stat)		/* success/failure */
1535 {
1536 	struct xfs_btree_block	*block;
1537 	union xfs_btree_ptr	ptr;
1538 	struct xfs_buf		*bp;
1539 	int			error;		/* error return value */
1540 	int			lev;
1541 
1542 	ASSERT(level < cur->bc_nlevels);
1543 
1544 	/* Read-ahead to the right at this level. */
1545 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1546 
1547 	/* Get a pointer to the btree block. */
1548 	block = xfs_btree_get_block(cur, level, &bp);
1549 
1550 #ifdef DEBUG
1551 	error = xfs_btree_check_block(cur, block, level, bp);
1552 	if (error)
1553 		goto error0;
1554 #endif
1555 
1556 	/* We're done if we remain in the block after the increment. */
1557 	if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1558 		goto out1;
1559 
1560 	/* Fail if we just went off the right edge of the tree. */
1561 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1562 	if (xfs_btree_ptr_is_null(cur, &ptr))
1563 		goto out0;
1564 
1565 	XFS_BTREE_STATS_INC(cur, increment);
1566 
1567 	/*
1568 	 * March up the tree incrementing pointers.
1569 	 * Stop when we don't go off the right edge of a block.
1570 	 */
1571 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1572 		block = xfs_btree_get_block(cur, lev, &bp);
1573 
1574 #ifdef DEBUG
1575 		error = xfs_btree_check_block(cur, block, lev, bp);
1576 		if (error)
1577 			goto error0;
1578 #endif
1579 
1580 		if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1581 			break;
1582 
1583 		/* Read-ahead the right block for the next loop. */
1584 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1585 	}
1586 
1587 	/*
1588 	 * If we went off the root then we are either seriously
1589 	 * confused or have the tree root in an inode.
1590 	 */
1591 	if (lev == cur->bc_nlevels) {
1592 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1593 			goto out0;
1594 		ASSERT(0);
1595 		error = -EFSCORRUPTED;
1596 		goto error0;
1597 	}
1598 	ASSERT(lev < cur->bc_nlevels);
1599 
1600 	/*
1601 	 * Now walk back down the tree, fixing up the cursor's buffer
1602 	 * pointers and key numbers.
1603 	 */
1604 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1605 		union xfs_btree_ptr	*ptrp;
1606 
1607 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1608 		--lev;
1609 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1610 		if (error)
1611 			goto error0;
1612 
1613 		xfs_btree_setbuf(cur, lev, bp);
1614 		cur->bc_ptrs[lev] = 1;
1615 	}
1616 out1:
1617 	*stat = 1;
1618 	return 0;
1619 
1620 out0:
1621 	*stat = 0;
1622 	return 0;
1623 
1624 error0:
1625 	return error;
1626 }
1627 
1628 /*
1629  * Decrement cursor by one record at the level.
1630  * For nonzero levels the leaf-ward information is untouched.
1631  */
1632 int						/* error */
1633 xfs_btree_decrement(
1634 	struct xfs_btree_cur	*cur,
1635 	int			level,
1636 	int			*stat)		/* success/failure */
1637 {
1638 	struct xfs_btree_block	*block;
1639 	struct xfs_buf		*bp;
1640 	int			error;		/* error return value */
1641 	int			lev;
1642 	union xfs_btree_ptr	ptr;
1643 
1644 	ASSERT(level < cur->bc_nlevels);
1645 
1646 	/* Read-ahead to the left at this level. */
1647 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1648 
1649 	/* We're done if we remain in the block after the decrement. */
1650 	if (--cur->bc_ptrs[level] > 0)
1651 		goto out1;
1652 
1653 	/* Get a pointer to the btree block. */
1654 	block = xfs_btree_get_block(cur, level, &bp);
1655 
1656 #ifdef DEBUG
1657 	error = xfs_btree_check_block(cur, block, level, bp);
1658 	if (error)
1659 		goto error0;
1660 #endif
1661 
1662 	/* Fail if we just went off the left edge of the tree. */
1663 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1664 	if (xfs_btree_ptr_is_null(cur, &ptr))
1665 		goto out0;
1666 
1667 	XFS_BTREE_STATS_INC(cur, decrement);
1668 
1669 	/*
1670 	 * March up the tree decrementing pointers.
1671 	 * Stop when we don't go off the left edge of a block.
1672 	 */
1673 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1674 		if (--cur->bc_ptrs[lev] > 0)
1675 			break;
1676 		/* Read-ahead the left block for the next loop. */
1677 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1678 	}
1679 
1680 	/*
1681 	 * If we went off the root then we are seriously confused.
1682 	 * or the root of the tree is in an inode.
1683 	 */
1684 	if (lev == cur->bc_nlevels) {
1685 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1686 			goto out0;
1687 		ASSERT(0);
1688 		error = -EFSCORRUPTED;
1689 		goto error0;
1690 	}
1691 	ASSERT(lev < cur->bc_nlevels);
1692 
1693 	/*
1694 	 * Now walk back down the tree, fixing up the cursor's buffer
1695 	 * pointers and key numbers.
1696 	 */
1697 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1698 		union xfs_btree_ptr	*ptrp;
1699 
1700 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1701 		--lev;
1702 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1703 		if (error)
1704 			goto error0;
1705 		xfs_btree_setbuf(cur, lev, bp);
1706 		cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1707 	}
1708 out1:
1709 	*stat = 1;
1710 	return 0;
1711 
1712 out0:
1713 	*stat = 0;
1714 	return 0;
1715 
1716 error0:
1717 	return error;
1718 }
1719 
1720 int
1721 xfs_btree_lookup_get_block(
1722 	struct xfs_btree_cur	*cur,	/* btree cursor */
1723 	int			level,	/* level in the btree */
1724 	union xfs_btree_ptr	*pp,	/* ptr to btree block */
1725 	struct xfs_btree_block	**blkp) /* return btree block */
1726 {
1727 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1728 	xfs_daddr_t		daddr;
1729 	int			error = 0;
1730 
1731 	/* special case the root block if in an inode */
1732 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1733 	    (level == cur->bc_nlevels - 1)) {
1734 		*blkp = xfs_btree_get_iroot(cur);
1735 		return 0;
1736 	}
1737 
1738 	/*
1739 	 * If the old buffer at this level for the disk address we are
1740 	 * looking for re-use it.
1741 	 *
1742 	 * Otherwise throw it away and get a new one.
1743 	 */
1744 	bp = cur->bc_bufs[level];
1745 	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1746 	if (error)
1747 		return error;
1748 	if (bp && XFS_BUF_ADDR(bp) == daddr) {
1749 		*blkp = XFS_BUF_TO_BLOCK(bp);
1750 		return 0;
1751 	}
1752 
1753 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1754 	if (error)
1755 		return error;
1756 
1757 	/* Check the inode owner since the verifiers don't. */
1758 	if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1759 	    !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1760 	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1761 	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1762 			cur->bc_ino.ip->i_ino)
1763 		goto out_bad;
1764 
1765 	/* Did we get the level we were looking for? */
1766 	if (be16_to_cpu((*blkp)->bb_level) != level)
1767 		goto out_bad;
1768 
1769 	/* Check that internal nodes have at least one record. */
1770 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1771 		goto out_bad;
1772 
1773 	xfs_btree_setbuf(cur, level, bp);
1774 	return 0;
1775 
1776 out_bad:
1777 	*blkp = NULL;
1778 	xfs_buf_mark_corrupt(bp);
1779 	xfs_trans_brelse(cur->bc_tp, bp);
1780 	return -EFSCORRUPTED;
1781 }
1782 
1783 /*
1784  * Get current search key.  For level 0 we don't actually have a key
1785  * structure so we make one up from the record.  For all other levels
1786  * we just return the right key.
1787  */
1788 STATIC union xfs_btree_key *
1789 xfs_lookup_get_search_key(
1790 	struct xfs_btree_cur	*cur,
1791 	int			level,
1792 	int			keyno,
1793 	struct xfs_btree_block	*block,
1794 	union xfs_btree_key	*kp)
1795 {
1796 	if (level == 0) {
1797 		cur->bc_ops->init_key_from_rec(kp,
1798 				xfs_btree_rec_addr(cur, keyno, block));
1799 		return kp;
1800 	}
1801 
1802 	return xfs_btree_key_addr(cur, keyno, block);
1803 }
1804 
1805 /*
1806  * Lookup the record.  The cursor is made to point to it, based on dir.
1807  * stat is set to 0 if can't find any such record, 1 for success.
1808  */
1809 int					/* error */
1810 xfs_btree_lookup(
1811 	struct xfs_btree_cur	*cur,	/* btree cursor */
1812 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1813 	int			*stat)	/* success/failure */
1814 {
1815 	struct xfs_btree_block	*block;	/* current btree block */
1816 	int64_t			diff;	/* difference for the current key */
1817 	int			error;	/* error return value */
1818 	int			keyno;	/* current key number */
1819 	int			level;	/* level in the btree */
1820 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1821 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1822 
1823 	XFS_BTREE_STATS_INC(cur, lookup);
1824 
1825 	/* No such thing as a zero-level tree. */
1826 	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1827 		return -EFSCORRUPTED;
1828 
1829 	block = NULL;
1830 	keyno = 0;
1831 
1832 	/* initialise start pointer from cursor */
1833 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1834 	pp = &ptr;
1835 
1836 	/*
1837 	 * Iterate over each level in the btree, starting at the root.
1838 	 * For each level above the leaves, find the key we need, based
1839 	 * on the lookup record, then follow the corresponding block
1840 	 * pointer down to the next level.
1841 	 */
1842 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1843 		/* Get the block we need to do the lookup on. */
1844 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1845 		if (error)
1846 			goto error0;
1847 
1848 		if (diff == 0) {
1849 			/*
1850 			 * If we already had a key match at a higher level, we
1851 			 * know we need to use the first entry in this block.
1852 			 */
1853 			keyno = 1;
1854 		} else {
1855 			/* Otherwise search this block. Do a binary search. */
1856 
1857 			int	high;	/* high entry number */
1858 			int	low;	/* low entry number */
1859 
1860 			/* Set low and high entry numbers, 1-based. */
1861 			low = 1;
1862 			high = xfs_btree_get_numrecs(block);
1863 			if (!high) {
1864 				/* Block is empty, must be an empty leaf. */
1865 				if (level != 0 || cur->bc_nlevels != 1) {
1866 					XFS_CORRUPTION_ERROR(__func__,
1867 							XFS_ERRLEVEL_LOW,
1868 							cur->bc_mp, block,
1869 							sizeof(*block));
1870 					return -EFSCORRUPTED;
1871 				}
1872 
1873 				cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1874 				*stat = 0;
1875 				return 0;
1876 			}
1877 
1878 			/* Binary search the block. */
1879 			while (low <= high) {
1880 				union xfs_btree_key	key;
1881 				union xfs_btree_key	*kp;
1882 
1883 				XFS_BTREE_STATS_INC(cur, compare);
1884 
1885 				/* keyno is average of low and high. */
1886 				keyno = (low + high) >> 1;
1887 
1888 				/* Get current search key */
1889 				kp = xfs_lookup_get_search_key(cur, level,
1890 						keyno, block, &key);
1891 
1892 				/*
1893 				 * Compute difference to get next direction:
1894 				 *  - less than, move right
1895 				 *  - greater than, move left
1896 				 *  - equal, we're done
1897 				 */
1898 				diff = cur->bc_ops->key_diff(cur, kp);
1899 				if (diff < 0)
1900 					low = keyno + 1;
1901 				else if (diff > 0)
1902 					high = keyno - 1;
1903 				else
1904 					break;
1905 			}
1906 		}
1907 
1908 		/*
1909 		 * If there are more levels, set up for the next level
1910 		 * by getting the block number and filling in the cursor.
1911 		 */
1912 		if (level > 0) {
1913 			/*
1914 			 * If we moved left, need the previous key number,
1915 			 * unless there isn't one.
1916 			 */
1917 			if (diff > 0 && --keyno < 1)
1918 				keyno = 1;
1919 			pp = xfs_btree_ptr_addr(cur, keyno, block);
1920 
1921 			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1922 			if (error)
1923 				goto error0;
1924 
1925 			cur->bc_ptrs[level] = keyno;
1926 		}
1927 	}
1928 
1929 	/* Done with the search. See if we need to adjust the results. */
1930 	if (dir != XFS_LOOKUP_LE && diff < 0) {
1931 		keyno++;
1932 		/*
1933 		 * If ge search and we went off the end of the block, but it's
1934 		 * not the last block, we're in the wrong block.
1935 		 */
1936 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1937 		if (dir == XFS_LOOKUP_GE &&
1938 		    keyno > xfs_btree_get_numrecs(block) &&
1939 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
1940 			int	i;
1941 
1942 			cur->bc_ptrs[0] = keyno;
1943 			error = xfs_btree_increment(cur, 0, &i);
1944 			if (error)
1945 				goto error0;
1946 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1947 				return -EFSCORRUPTED;
1948 			*stat = 1;
1949 			return 0;
1950 		}
1951 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
1952 		keyno--;
1953 	cur->bc_ptrs[0] = keyno;
1954 
1955 	/* Return if we succeeded or not. */
1956 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1957 		*stat = 0;
1958 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
1959 		*stat = 1;
1960 	else
1961 		*stat = 0;
1962 	return 0;
1963 
1964 error0:
1965 	return error;
1966 }
1967 
1968 /* Find the high key storage area from a regular key. */
1969 union xfs_btree_key *
1970 xfs_btree_high_key_from_key(
1971 	struct xfs_btree_cur	*cur,
1972 	union xfs_btree_key	*key)
1973 {
1974 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1975 	return (union xfs_btree_key *)((char *)key +
1976 			(cur->bc_ops->key_len / 2));
1977 }
1978 
1979 /* Determine the low (and high if overlapped) keys of a leaf block */
1980 STATIC void
1981 xfs_btree_get_leaf_keys(
1982 	struct xfs_btree_cur	*cur,
1983 	struct xfs_btree_block	*block,
1984 	union xfs_btree_key	*key)
1985 {
1986 	union xfs_btree_key	max_hkey;
1987 	union xfs_btree_key	hkey;
1988 	union xfs_btree_rec	*rec;
1989 	union xfs_btree_key	*high;
1990 	int			n;
1991 
1992 	rec = xfs_btree_rec_addr(cur, 1, block);
1993 	cur->bc_ops->init_key_from_rec(key, rec);
1994 
1995 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1996 
1997 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1998 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1999 			rec = xfs_btree_rec_addr(cur, n, block);
2000 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2001 			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2002 					> 0)
2003 				max_hkey = hkey;
2004 		}
2005 
2006 		high = xfs_btree_high_key_from_key(cur, key);
2007 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2008 	}
2009 }
2010 
2011 /* Determine the low (and high if overlapped) keys of a node block */
2012 STATIC void
2013 xfs_btree_get_node_keys(
2014 	struct xfs_btree_cur	*cur,
2015 	struct xfs_btree_block	*block,
2016 	union xfs_btree_key	*key)
2017 {
2018 	union xfs_btree_key	*hkey;
2019 	union xfs_btree_key	*max_hkey;
2020 	union xfs_btree_key	*high;
2021 	int			n;
2022 
2023 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2024 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2025 				cur->bc_ops->key_len / 2);
2026 
2027 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2028 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2029 			hkey = xfs_btree_high_key_addr(cur, n, block);
2030 			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2031 				max_hkey = hkey;
2032 		}
2033 
2034 		high = xfs_btree_high_key_from_key(cur, key);
2035 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2036 	} else {
2037 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2038 				cur->bc_ops->key_len);
2039 	}
2040 }
2041 
2042 /* Derive the keys for any btree block. */
2043 void
2044 xfs_btree_get_keys(
2045 	struct xfs_btree_cur	*cur,
2046 	struct xfs_btree_block	*block,
2047 	union xfs_btree_key	*key)
2048 {
2049 	if (be16_to_cpu(block->bb_level) == 0)
2050 		xfs_btree_get_leaf_keys(cur, block, key);
2051 	else
2052 		xfs_btree_get_node_keys(cur, block, key);
2053 }
2054 
2055 /*
2056  * Decide if we need to update the parent keys of a btree block.  For
2057  * a standard btree this is only necessary if we're updating the first
2058  * record/key.  For an overlapping btree, we must always update the
2059  * keys because the highest key can be in any of the records or keys
2060  * in the block.
2061  */
2062 static inline bool
2063 xfs_btree_needs_key_update(
2064 	struct xfs_btree_cur	*cur,
2065 	int			ptr)
2066 {
2067 	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2068 }
2069 
2070 /*
2071  * Update the low and high parent keys of the given level, progressing
2072  * towards the root.  If force_all is false, stop if the keys for a given
2073  * level do not need updating.
2074  */
2075 STATIC int
2076 __xfs_btree_updkeys(
2077 	struct xfs_btree_cur	*cur,
2078 	int			level,
2079 	struct xfs_btree_block	*block,
2080 	struct xfs_buf		*bp0,
2081 	bool			force_all)
2082 {
2083 	union xfs_btree_key	key;	/* keys from current level */
2084 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2085 	union xfs_btree_key	*hkey;
2086 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2087 	union xfs_btree_key	*nhkey;
2088 	struct xfs_buf		*bp;
2089 	int			ptr;
2090 
2091 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2092 
2093 	/* Exit if there aren't any parent levels to update. */
2094 	if (level + 1 >= cur->bc_nlevels)
2095 		return 0;
2096 
2097 	trace_xfs_btree_updkeys(cur, level, bp0);
2098 
2099 	lkey = &key;
2100 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2101 	xfs_btree_get_keys(cur, block, lkey);
2102 	for (level++; level < cur->bc_nlevels; level++) {
2103 #ifdef DEBUG
2104 		int		error;
2105 #endif
2106 		block = xfs_btree_get_block(cur, level, &bp);
2107 		trace_xfs_btree_updkeys(cur, level, bp);
2108 #ifdef DEBUG
2109 		error = xfs_btree_check_block(cur, block, level, bp);
2110 		if (error)
2111 			return error;
2112 #endif
2113 		ptr = cur->bc_ptrs[level];
2114 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2115 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2116 		if (!force_all &&
2117 		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2118 		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2119 			break;
2120 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2121 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2122 		if (level + 1 >= cur->bc_nlevels)
2123 			break;
2124 		xfs_btree_get_node_keys(cur, block, lkey);
2125 	}
2126 
2127 	return 0;
2128 }
2129 
2130 /* Update all the keys from some level in cursor back to the root. */
2131 STATIC int
2132 xfs_btree_updkeys_force(
2133 	struct xfs_btree_cur	*cur,
2134 	int			level)
2135 {
2136 	struct xfs_buf		*bp;
2137 	struct xfs_btree_block	*block;
2138 
2139 	block = xfs_btree_get_block(cur, level, &bp);
2140 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2141 }
2142 
2143 /*
2144  * Update the parent keys of the given level, progressing towards the root.
2145  */
2146 STATIC int
2147 xfs_btree_update_keys(
2148 	struct xfs_btree_cur	*cur,
2149 	int			level)
2150 {
2151 	struct xfs_btree_block	*block;
2152 	struct xfs_buf		*bp;
2153 	union xfs_btree_key	*kp;
2154 	union xfs_btree_key	key;
2155 	int			ptr;
2156 
2157 	ASSERT(level >= 0);
2158 
2159 	block = xfs_btree_get_block(cur, level, &bp);
2160 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2161 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2162 
2163 	/*
2164 	 * Go up the tree from this level toward the root.
2165 	 * At each level, update the key value to the value input.
2166 	 * Stop when we reach a level where the cursor isn't pointing
2167 	 * at the first entry in the block.
2168 	 */
2169 	xfs_btree_get_keys(cur, block, &key);
2170 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2171 #ifdef DEBUG
2172 		int		error;
2173 #endif
2174 		block = xfs_btree_get_block(cur, level, &bp);
2175 #ifdef DEBUG
2176 		error = xfs_btree_check_block(cur, block, level, bp);
2177 		if (error)
2178 			return error;
2179 #endif
2180 		ptr = cur->bc_ptrs[level];
2181 		kp = xfs_btree_key_addr(cur, ptr, block);
2182 		xfs_btree_copy_keys(cur, kp, &key, 1);
2183 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2184 	}
2185 
2186 	return 0;
2187 }
2188 
2189 /*
2190  * Update the record referred to by cur to the value in the
2191  * given record. This either works (return 0) or gets an
2192  * EFSCORRUPTED error.
2193  */
2194 int
2195 xfs_btree_update(
2196 	struct xfs_btree_cur	*cur,
2197 	union xfs_btree_rec	*rec)
2198 {
2199 	struct xfs_btree_block	*block;
2200 	struct xfs_buf		*bp;
2201 	int			error;
2202 	int			ptr;
2203 	union xfs_btree_rec	*rp;
2204 
2205 	/* Pick up the current block. */
2206 	block = xfs_btree_get_block(cur, 0, &bp);
2207 
2208 #ifdef DEBUG
2209 	error = xfs_btree_check_block(cur, block, 0, bp);
2210 	if (error)
2211 		goto error0;
2212 #endif
2213 	/* Get the address of the rec to be updated. */
2214 	ptr = cur->bc_ptrs[0];
2215 	rp = xfs_btree_rec_addr(cur, ptr, block);
2216 
2217 	/* Fill in the new contents and log them. */
2218 	xfs_btree_copy_recs(cur, rp, rec, 1);
2219 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2220 
2221 	/*
2222 	 * If we are tracking the last record in the tree and
2223 	 * we are at the far right edge of the tree, update it.
2224 	 */
2225 	if (xfs_btree_is_lastrec(cur, block, 0)) {
2226 		cur->bc_ops->update_lastrec(cur, block, rec,
2227 					    ptr, LASTREC_UPDATE);
2228 	}
2229 
2230 	/* Pass new key value up to our parent. */
2231 	if (xfs_btree_needs_key_update(cur, ptr)) {
2232 		error = xfs_btree_update_keys(cur, 0);
2233 		if (error)
2234 			goto error0;
2235 	}
2236 
2237 	return 0;
2238 
2239 error0:
2240 	return error;
2241 }
2242 
2243 /*
2244  * Move 1 record left from cur/level if possible.
2245  * Update cur to reflect the new path.
2246  */
2247 STATIC int					/* error */
2248 xfs_btree_lshift(
2249 	struct xfs_btree_cur	*cur,
2250 	int			level,
2251 	int			*stat)		/* success/failure */
2252 {
2253 	struct xfs_buf		*lbp;		/* left buffer pointer */
2254 	struct xfs_btree_block	*left;		/* left btree block */
2255 	int			lrecs;		/* left record count */
2256 	struct xfs_buf		*rbp;		/* right buffer pointer */
2257 	struct xfs_btree_block	*right;		/* right btree block */
2258 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2259 	int			rrecs;		/* right record count */
2260 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2261 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2262 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2263 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2264 	int			error;		/* error return value */
2265 	int			i;
2266 
2267 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2268 	    level == cur->bc_nlevels - 1)
2269 		goto out0;
2270 
2271 	/* Set up variables for this block as "right". */
2272 	right = xfs_btree_get_block(cur, level, &rbp);
2273 
2274 #ifdef DEBUG
2275 	error = xfs_btree_check_block(cur, right, level, rbp);
2276 	if (error)
2277 		goto error0;
2278 #endif
2279 
2280 	/* If we've got no left sibling then we can't shift an entry left. */
2281 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2282 	if (xfs_btree_ptr_is_null(cur, &lptr))
2283 		goto out0;
2284 
2285 	/*
2286 	 * If the cursor entry is the one that would be moved, don't
2287 	 * do it... it's too complicated.
2288 	 */
2289 	if (cur->bc_ptrs[level] <= 1)
2290 		goto out0;
2291 
2292 	/* Set up the left neighbor as "left". */
2293 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2294 	if (error)
2295 		goto error0;
2296 
2297 	/* If it's full, it can't take another entry. */
2298 	lrecs = xfs_btree_get_numrecs(left);
2299 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2300 		goto out0;
2301 
2302 	rrecs = xfs_btree_get_numrecs(right);
2303 
2304 	/*
2305 	 * We add one entry to the left side and remove one for the right side.
2306 	 * Account for it here, the changes will be updated on disk and logged
2307 	 * later.
2308 	 */
2309 	lrecs++;
2310 	rrecs--;
2311 
2312 	XFS_BTREE_STATS_INC(cur, lshift);
2313 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2314 
2315 	/*
2316 	 * If non-leaf, copy a key and a ptr to the left block.
2317 	 * Log the changes to the left block.
2318 	 */
2319 	if (level > 0) {
2320 		/* It's a non-leaf.  Move keys and pointers. */
2321 		union xfs_btree_key	*lkp;	/* left btree key */
2322 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2323 
2324 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2325 		rkp = xfs_btree_key_addr(cur, 1, right);
2326 
2327 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2328 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2329 
2330 		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2331 		if (error)
2332 			goto error0;
2333 
2334 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2335 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2336 
2337 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2338 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2339 
2340 		ASSERT(cur->bc_ops->keys_inorder(cur,
2341 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2342 	} else {
2343 		/* It's a leaf.  Move records.  */
2344 		union xfs_btree_rec	*lrp;	/* left record pointer */
2345 
2346 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2347 		rrp = xfs_btree_rec_addr(cur, 1, right);
2348 
2349 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2350 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2351 
2352 		ASSERT(cur->bc_ops->recs_inorder(cur,
2353 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2354 	}
2355 
2356 	xfs_btree_set_numrecs(left, lrecs);
2357 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2358 
2359 	xfs_btree_set_numrecs(right, rrecs);
2360 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2361 
2362 	/*
2363 	 * Slide the contents of right down one entry.
2364 	 */
2365 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2366 	if (level > 0) {
2367 		/* It's a nonleaf. operate on keys and ptrs */
2368 		for (i = 0; i < rrecs; i++) {
2369 			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2370 			if (error)
2371 				goto error0;
2372 		}
2373 
2374 		xfs_btree_shift_keys(cur,
2375 				xfs_btree_key_addr(cur, 2, right),
2376 				-1, rrecs);
2377 		xfs_btree_shift_ptrs(cur,
2378 				xfs_btree_ptr_addr(cur, 2, right),
2379 				-1, rrecs);
2380 
2381 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2382 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2383 	} else {
2384 		/* It's a leaf. operate on records */
2385 		xfs_btree_shift_recs(cur,
2386 			xfs_btree_rec_addr(cur, 2, right),
2387 			-1, rrecs);
2388 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2389 	}
2390 
2391 	/*
2392 	 * Using a temporary cursor, update the parent key values of the
2393 	 * block on the left.
2394 	 */
2395 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2396 		error = xfs_btree_dup_cursor(cur, &tcur);
2397 		if (error)
2398 			goto error0;
2399 		i = xfs_btree_firstrec(tcur, level);
2400 		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2401 			error = -EFSCORRUPTED;
2402 			goto error0;
2403 		}
2404 
2405 		error = xfs_btree_decrement(tcur, level, &i);
2406 		if (error)
2407 			goto error1;
2408 
2409 		/* Update the parent high keys of the left block, if needed. */
2410 		error = xfs_btree_update_keys(tcur, level);
2411 		if (error)
2412 			goto error1;
2413 
2414 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2415 	}
2416 
2417 	/* Update the parent keys of the right block. */
2418 	error = xfs_btree_update_keys(cur, level);
2419 	if (error)
2420 		goto error0;
2421 
2422 	/* Slide the cursor value left one. */
2423 	cur->bc_ptrs[level]--;
2424 
2425 	*stat = 1;
2426 	return 0;
2427 
2428 out0:
2429 	*stat = 0;
2430 	return 0;
2431 
2432 error0:
2433 	return error;
2434 
2435 error1:
2436 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2437 	return error;
2438 }
2439 
2440 /*
2441  * Move 1 record right from cur/level if possible.
2442  * Update cur to reflect the new path.
2443  */
2444 STATIC int					/* error */
2445 xfs_btree_rshift(
2446 	struct xfs_btree_cur	*cur,
2447 	int			level,
2448 	int			*stat)		/* success/failure */
2449 {
2450 	struct xfs_buf		*lbp;		/* left buffer pointer */
2451 	struct xfs_btree_block	*left;		/* left btree block */
2452 	struct xfs_buf		*rbp;		/* right buffer pointer */
2453 	struct xfs_btree_block	*right;		/* right btree block */
2454 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2455 	union xfs_btree_ptr	rptr;		/* right block pointer */
2456 	union xfs_btree_key	*rkp;		/* right btree key */
2457 	int			rrecs;		/* right record count */
2458 	int			lrecs;		/* left record count */
2459 	int			error;		/* error return value */
2460 	int			i;		/* loop counter */
2461 
2462 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2463 	    (level == cur->bc_nlevels - 1))
2464 		goto out0;
2465 
2466 	/* Set up variables for this block as "left". */
2467 	left = xfs_btree_get_block(cur, level, &lbp);
2468 
2469 #ifdef DEBUG
2470 	error = xfs_btree_check_block(cur, left, level, lbp);
2471 	if (error)
2472 		goto error0;
2473 #endif
2474 
2475 	/* If we've got no right sibling then we can't shift an entry right. */
2476 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2477 	if (xfs_btree_ptr_is_null(cur, &rptr))
2478 		goto out0;
2479 
2480 	/*
2481 	 * If the cursor entry is the one that would be moved, don't
2482 	 * do it... it's too complicated.
2483 	 */
2484 	lrecs = xfs_btree_get_numrecs(left);
2485 	if (cur->bc_ptrs[level] >= lrecs)
2486 		goto out0;
2487 
2488 	/* Set up the right neighbor as "right". */
2489 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2490 	if (error)
2491 		goto error0;
2492 
2493 	/* If it's full, it can't take another entry. */
2494 	rrecs = xfs_btree_get_numrecs(right);
2495 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2496 		goto out0;
2497 
2498 	XFS_BTREE_STATS_INC(cur, rshift);
2499 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2500 
2501 	/*
2502 	 * Make a hole at the start of the right neighbor block, then
2503 	 * copy the last left block entry to the hole.
2504 	 */
2505 	if (level > 0) {
2506 		/* It's a nonleaf. make a hole in the keys and ptrs */
2507 		union xfs_btree_key	*lkp;
2508 		union xfs_btree_ptr	*lpp;
2509 		union xfs_btree_ptr	*rpp;
2510 
2511 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2512 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2513 		rkp = xfs_btree_key_addr(cur, 1, right);
2514 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2515 
2516 		for (i = rrecs - 1; i >= 0; i--) {
2517 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2518 			if (error)
2519 				goto error0;
2520 		}
2521 
2522 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2523 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2524 
2525 		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2526 		if (error)
2527 			goto error0;
2528 
2529 		/* Now put the new data in, and log it. */
2530 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2531 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2532 
2533 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2534 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2535 
2536 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2537 			xfs_btree_key_addr(cur, 2, right)));
2538 	} else {
2539 		/* It's a leaf. make a hole in the records */
2540 		union xfs_btree_rec	*lrp;
2541 		union xfs_btree_rec	*rrp;
2542 
2543 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2544 		rrp = xfs_btree_rec_addr(cur, 1, right);
2545 
2546 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2547 
2548 		/* Now put the new data in, and log it. */
2549 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2550 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2551 	}
2552 
2553 	/*
2554 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2555 	 */
2556 	xfs_btree_set_numrecs(left, --lrecs);
2557 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2558 
2559 	xfs_btree_set_numrecs(right, ++rrecs);
2560 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2561 
2562 	/*
2563 	 * Using a temporary cursor, update the parent key values of the
2564 	 * block on the right.
2565 	 */
2566 	error = xfs_btree_dup_cursor(cur, &tcur);
2567 	if (error)
2568 		goto error0;
2569 	i = xfs_btree_lastrec(tcur, level);
2570 	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2571 		error = -EFSCORRUPTED;
2572 		goto error0;
2573 	}
2574 
2575 	error = xfs_btree_increment(tcur, level, &i);
2576 	if (error)
2577 		goto error1;
2578 
2579 	/* Update the parent high keys of the left block, if needed. */
2580 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2581 		error = xfs_btree_update_keys(cur, level);
2582 		if (error)
2583 			goto error1;
2584 	}
2585 
2586 	/* Update the parent keys of the right block. */
2587 	error = xfs_btree_update_keys(tcur, level);
2588 	if (error)
2589 		goto error1;
2590 
2591 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2592 
2593 	*stat = 1;
2594 	return 0;
2595 
2596 out0:
2597 	*stat = 0;
2598 	return 0;
2599 
2600 error0:
2601 	return error;
2602 
2603 error1:
2604 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2605 	return error;
2606 }
2607 
2608 /*
2609  * Split cur/level block in half.
2610  * Return new block number and the key to its first
2611  * record (to be inserted into parent).
2612  */
2613 STATIC int					/* error */
2614 __xfs_btree_split(
2615 	struct xfs_btree_cur	*cur,
2616 	int			level,
2617 	union xfs_btree_ptr	*ptrp,
2618 	union xfs_btree_key	*key,
2619 	struct xfs_btree_cur	**curp,
2620 	int			*stat)		/* success/failure */
2621 {
2622 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2623 	struct xfs_buf		*lbp;		/* left buffer pointer */
2624 	struct xfs_btree_block	*left;		/* left btree block */
2625 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2626 	struct xfs_buf		*rbp;		/* right buffer pointer */
2627 	struct xfs_btree_block	*right;		/* right btree block */
2628 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2629 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2630 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2631 	int			lrecs;
2632 	int			rrecs;
2633 	int			src_index;
2634 	int			error;		/* error return value */
2635 	int			i;
2636 
2637 	XFS_BTREE_STATS_INC(cur, split);
2638 
2639 	/* Set up left block (current one). */
2640 	left = xfs_btree_get_block(cur, level, &lbp);
2641 
2642 #ifdef DEBUG
2643 	error = xfs_btree_check_block(cur, left, level, lbp);
2644 	if (error)
2645 		goto error0;
2646 #endif
2647 
2648 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2649 
2650 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2651 	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2652 	if (error)
2653 		goto error0;
2654 	if (*stat == 0)
2655 		goto out0;
2656 	XFS_BTREE_STATS_INC(cur, alloc);
2657 
2658 	/* Set up the new block as "right". */
2659 	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2660 	if (error)
2661 		goto error0;
2662 
2663 	/* Fill in the btree header for the new right block. */
2664 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2665 
2666 	/*
2667 	 * Split the entries between the old and the new block evenly.
2668 	 * Make sure that if there's an odd number of entries now, that
2669 	 * each new block will have the same number of entries.
2670 	 */
2671 	lrecs = xfs_btree_get_numrecs(left);
2672 	rrecs = lrecs / 2;
2673 	if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2674 		rrecs++;
2675 	src_index = (lrecs - rrecs + 1);
2676 
2677 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2678 
2679 	/* Adjust numrecs for the later get_*_keys() calls. */
2680 	lrecs -= rrecs;
2681 	xfs_btree_set_numrecs(left, lrecs);
2682 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2683 
2684 	/*
2685 	 * Copy btree block entries from the left block over to the
2686 	 * new block, the right. Update the right block and log the
2687 	 * changes.
2688 	 */
2689 	if (level > 0) {
2690 		/* It's a non-leaf.  Move keys and pointers. */
2691 		union xfs_btree_key	*lkp;	/* left btree key */
2692 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2693 		union xfs_btree_key	*rkp;	/* right btree key */
2694 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2695 
2696 		lkp = xfs_btree_key_addr(cur, src_index, left);
2697 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2698 		rkp = xfs_btree_key_addr(cur, 1, right);
2699 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2700 
2701 		for (i = src_index; i < rrecs; i++) {
2702 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2703 			if (error)
2704 				goto error0;
2705 		}
2706 
2707 		/* Copy the keys & pointers to the new block. */
2708 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2709 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2710 
2711 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2712 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2713 
2714 		/* Stash the keys of the new block for later insertion. */
2715 		xfs_btree_get_node_keys(cur, right, key);
2716 	} else {
2717 		/* It's a leaf.  Move records.  */
2718 		union xfs_btree_rec	*lrp;	/* left record pointer */
2719 		union xfs_btree_rec	*rrp;	/* right record pointer */
2720 
2721 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2722 		rrp = xfs_btree_rec_addr(cur, 1, right);
2723 
2724 		/* Copy records to the new block. */
2725 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2726 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2727 
2728 		/* Stash the keys of the new block for later insertion. */
2729 		xfs_btree_get_leaf_keys(cur, right, key);
2730 	}
2731 
2732 	/*
2733 	 * Find the left block number by looking in the buffer.
2734 	 * Adjust sibling pointers.
2735 	 */
2736 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2737 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2738 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2739 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2740 
2741 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2742 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2743 
2744 	/*
2745 	 * If there's a block to the new block's right, make that block
2746 	 * point back to right instead of to left.
2747 	 */
2748 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2749 		error = xfs_btree_read_buf_block(cur, &rrptr,
2750 							0, &rrblock, &rrbp);
2751 		if (error)
2752 			goto error0;
2753 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2754 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2755 	}
2756 
2757 	/* Update the parent high keys of the left block, if needed. */
2758 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2759 		error = xfs_btree_update_keys(cur, level);
2760 		if (error)
2761 			goto error0;
2762 	}
2763 
2764 	/*
2765 	 * If the cursor is really in the right block, move it there.
2766 	 * If it's just pointing past the last entry in left, then we'll
2767 	 * insert there, so don't change anything in that case.
2768 	 */
2769 	if (cur->bc_ptrs[level] > lrecs + 1) {
2770 		xfs_btree_setbuf(cur, level, rbp);
2771 		cur->bc_ptrs[level] -= lrecs;
2772 	}
2773 	/*
2774 	 * If there are more levels, we'll need another cursor which refers
2775 	 * the right block, no matter where this cursor was.
2776 	 */
2777 	if (level + 1 < cur->bc_nlevels) {
2778 		error = xfs_btree_dup_cursor(cur, curp);
2779 		if (error)
2780 			goto error0;
2781 		(*curp)->bc_ptrs[level + 1]++;
2782 	}
2783 	*ptrp = rptr;
2784 	*stat = 1;
2785 	return 0;
2786 out0:
2787 	*stat = 0;
2788 	return 0;
2789 
2790 error0:
2791 	return error;
2792 }
2793 
2794 struct xfs_btree_split_args {
2795 	struct xfs_btree_cur	*cur;
2796 	int			level;
2797 	union xfs_btree_ptr	*ptrp;
2798 	union xfs_btree_key	*key;
2799 	struct xfs_btree_cur	**curp;
2800 	int			*stat;		/* success/failure */
2801 	int			result;
2802 	bool			kswapd;	/* allocation in kswapd context */
2803 	struct completion	*done;
2804 	struct work_struct	work;
2805 };
2806 
2807 /*
2808  * Stack switching interfaces for allocation
2809  */
2810 static void
2811 xfs_btree_split_worker(
2812 	struct work_struct	*work)
2813 {
2814 	struct xfs_btree_split_args	*args = container_of(work,
2815 						struct xfs_btree_split_args, work);
2816 	unsigned long		pflags;
2817 	unsigned long		new_pflags = PF_MEMALLOC_NOFS;
2818 
2819 	/*
2820 	 * we are in a transaction context here, but may also be doing work
2821 	 * in kswapd context, and hence we may need to inherit that state
2822 	 * temporarily to ensure that we don't block waiting for memory reclaim
2823 	 * in any way.
2824 	 */
2825 	if (args->kswapd)
2826 		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2827 
2828 	current_set_flags_nested(&pflags, new_pflags);
2829 
2830 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2831 					 args->key, args->curp, args->stat);
2832 	complete(args->done);
2833 
2834 	current_restore_flags_nested(&pflags, new_pflags);
2835 }
2836 
2837 /*
2838  * BMBT split requests often come in with little stack to work on. Push
2839  * them off to a worker thread so there is lots of stack to use. For the other
2840  * btree types, just call directly to avoid the context switch overhead here.
2841  */
2842 STATIC int					/* error */
2843 xfs_btree_split(
2844 	struct xfs_btree_cur	*cur,
2845 	int			level,
2846 	union xfs_btree_ptr	*ptrp,
2847 	union xfs_btree_key	*key,
2848 	struct xfs_btree_cur	**curp,
2849 	int			*stat)		/* success/failure */
2850 {
2851 	struct xfs_btree_split_args	args;
2852 	DECLARE_COMPLETION_ONSTACK(done);
2853 
2854 	if (cur->bc_btnum != XFS_BTNUM_BMAP)
2855 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2856 
2857 	args.cur = cur;
2858 	args.level = level;
2859 	args.ptrp = ptrp;
2860 	args.key = key;
2861 	args.curp = curp;
2862 	args.stat = stat;
2863 	args.done = &done;
2864 	args.kswapd = current_is_kswapd();
2865 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2866 	queue_work(xfs_alloc_wq, &args.work);
2867 	wait_for_completion(&done);
2868 	destroy_work_on_stack(&args.work);
2869 	return args.result;
2870 }
2871 
2872 
2873 /*
2874  * Copy the old inode root contents into a real block and make the
2875  * broot point to it.
2876  */
2877 int						/* error */
2878 xfs_btree_new_iroot(
2879 	struct xfs_btree_cur	*cur,		/* btree cursor */
2880 	int			*logflags,	/* logging flags for inode */
2881 	int			*stat)		/* return status - 0 fail */
2882 {
2883 	struct xfs_buf		*cbp;		/* buffer for cblock */
2884 	struct xfs_btree_block	*block;		/* btree block */
2885 	struct xfs_btree_block	*cblock;	/* child btree block */
2886 	union xfs_btree_key	*ckp;		/* child key pointer */
2887 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2888 	union xfs_btree_key	*kp;		/* pointer to btree key */
2889 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2890 	union xfs_btree_ptr	nptr;		/* new block addr */
2891 	int			level;		/* btree level */
2892 	int			error;		/* error return code */
2893 	int			i;		/* loop counter */
2894 
2895 	XFS_BTREE_STATS_INC(cur, newroot);
2896 
2897 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2898 
2899 	level = cur->bc_nlevels - 1;
2900 
2901 	block = xfs_btree_get_iroot(cur);
2902 	pp = xfs_btree_ptr_addr(cur, 1, block);
2903 
2904 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2905 	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2906 	if (error)
2907 		goto error0;
2908 	if (*stat == 0)
2909 		return 0;
2910 
2911 	XFS_BTREE_STATS_INC(cur, alloc);
2912 
2913 	/* Copy the root into a real block. */
2914 	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2915 	if (error)
2916 		goto error0;
2917 
2918 	/*
2919 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
2920 	 * In that case have to also ensure the blkno remains correct
2921 	 */
2922 	memcpy(cblock, block, xfs_btree_block_len(cur));
2923 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2924 		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2925 			cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2926 		else
2927 			cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2928 	}
2929 
2930 	be16_add_cpu(&block->bb_level, 1);
2931 	xfs_btree_set_numrecs(block, 1);
2932 	cur->bc_nlevels++;
2933 	cur->bc_ptrs[level + 1] = 1;
2934 
2935 	kp = xfs_btree_key_addr(cur, 1, block);
2936 	ckp = xfs_btree_key_addr(cur, 1, cblock);
2937 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2938 
2939 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2940 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2941 		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2942 		if (error)
2943 			goto error0;
2944 	}
2945 
2946 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2947 
2948 	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2949 	if (error)
2950 		goto error0;
2951 
2952 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2953 
2954 	xfs_iroot_realloc(cur->bc_ino.ip,
2955 			  1 - xfs_btree_get_numrecs(cblock),
2956 			  cur->bc_ino.whichfork);
2957 
2958 	xfs_btree_setbuf(cur, level, cbp);
2959 
2960 	/*
2961 	 * Do all this logging at the end so that
2962 	 * the root is at the right level.
2963 	 */
2964 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2965 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2966 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2967 
2968 	*logflags |=
2969 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
2970 	*stat = 1;
2971 	return 0;
2972 error0:
2973 	return error;
2974 }
2975 
2976 /*
2977  * Allocate a new root block, fill it in.
2978  */
2979 STATIC int				/* error */
2980 xfs_btree_new_root(
2981 	struct xfs_btree_cur	*cur,	/* btree cursor */
2982 	int			*stat)	/* success/failure */
2983 {
2984 	struct xfs_btree_block	*block;	/* one half of the old root block */
2985 	struct xfs_buf		*bp;	/* buffer containing block */
2986 	int			error;	/* error return value */
2987 	struct xfs_buf		*lbp;	/* left buffer pointer */
2988 	struct xfs_btree_block	*left;	/* left btree block */
2989 	struct xfs_buf		*nbp;	/* new (root) buffer */
2990 	struct xfs_btree_block	*new;	/* new (root) btree block */
2991 	int			nptr;	/* new value for key index, 1 or 2 */
2992 	struct xfs_buf		*rbp;	/* right buffer pointer */
2993 	struct xfs_btree_block	*right;	/* right btree block */
2994 	union xfs_btree_ptr	rptr;
2995 	union xfs_btree_ptr	lptr;
2996 
2997 	XFS_BTREE_STATS_INC(cur, newroot);
2998 
2999 	/* initialise our start point from the cursor */
3000 	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3001 
3002 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3003 	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3004 	if (error)
3005 		goto error0;
3006 	if (*stat == 0)
3007 		goto out0;
3008 	XFS_BTREE_STATS_INC(cur, alloc);
3009 
3010 	/* Set up the new block. */
3011 	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3012 	if (error)
3013 		goto error0;
3014 
3015 	/* Set the root in the holding structure  increasing the level by 1. */
3016 	cur->bc_ops->set_root(cur, &lptr, 1);
3017 
3018 	/*
3019 	 * At the previous root level there are now two blocks: the old root,
3020 	 * and the new block generated when it was split.  We don't know which
3021 	 * one the cursor is pointing at, so we set up variables "left" and
3022 	 * "right" for each case.
3023 	 */
3024 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3025 
3026 #ifdef DEBUG
3027 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3028 	if (error)
3029 		goto error0;
3030 #endif
3031 
3032 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3033 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3034 		/* Our block is left, pick up the right block. */
3035 		lbp = bp;
3036 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3037 		left = block;
3038 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3039 		if (error)
3040 			goto error0;
3041 		bp = rbp;
3042 		nptr = 1;
3043 	} else {
3044 		/* Our block is right, pick up the left block. */
3045 		rbp = bp;
3046 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3047 		right = block;
3048 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3049 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3050 		if (error)
3051 			goto error0;
3052 		bp = lbp;
3053 		nptr = 2;
3054 	}
3055 
3056 	/* Fill in the new block's btree header and log it. */
3057 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3058 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3059 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3060 			!xfs_btree_ptr_is_null(cur, &rptr));
3061 
3062 	/* Fill in the key data in the new root. */
3063 	if (xfs_btree_get_level(left) > 0) {
3064 		/*
3065 		 * Get the keys for the left block's keys and put them directly
3066 		 * in the parent block.  Do the same for the right block.
3067 		 */
3068 		xfs_btree_get_node_keys(cur, left,
3069 				xfs_btree_key_addr(cur, 1, new));
3070 		xfs_btree_get_node_keys(cur, right,
3071 				xfs_btree_key_addr(cur, 2, new));
3072 	} else {
3073 		/*
3074 		 * Get the keys for the left block's records and put them
3075 		 * directly in the parent block.  Do the same for the right
3076 		 * block.
3077 		 */
3078 		xfs_btree_get_leaf_keys(cur, left,
3079 			xfs_btree_key_addr(cur, 1, new));
3080 		xfs_btree_get_leaf_keys(cur, right,
3081 			xfs_btree_key_addr(cur, 2, new));
3082 	}
3083 	xfs_btree_log_keys(cur, nbp, 1, 2);
3084 
3085 	/* Fill in the pointer data in the new root. */
3086 	xfs_btree_copy_ptrs(cur,
3087 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3088 	xfs_btree_copy_ptrs(cur,
3089 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3090 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3091 
3092 	/* Fix up the cursor. */
3093 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3094 	cur->bc_ptrs[cur->bc_nlevels] = nptr;
3095 	cur->bc_nlevels++;
3096 	*stat = 1;
3097 	return 0;
3098 error0:
3099 	return error;
3100 out0:
3101 	*stat = 0;
3102 	return 0;
3103 }
3104 
3105 STATIC int
3106 xfs_btree_make_block_unfull(
3107 	struct xfs_btree_cur	*cur,	/* btree cursor */
3108 	int			level,	/* btree level */
3109 	int			numrecs,/* # of recs in block */
3110 	int			*oindex,/* old tree index */
3111 	int			*index,	/* new tree index */
3112 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3113 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3114 	union xfs_btree_key	*key,	/* key of new block */
3115 	int			*stat)
3116 {
3117 	int			error = 0;
3118 
3119 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3120 	    level == cur->bc_nlevels - 1) {
3121 		struct xfs_inode *ip = cur->bc_ino.ip;
3122 
3123 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3124 			/* A root block that can be made bigger. */
3125 			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3126 			*stat = 1;
3127 		} else {
3128 			/* A root block that needs replacing */
3129 			int	logflags = 0;
3130 
3131 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3132 			if (error || *stat == 0)
3133 				return error;
3134 
3135 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3136 		}
3137 
3138 		return 0;
3139 	}
3140 
3141 	/* First, try shifting an entry to the right neighbor. */
3142 	error = xfs_btree_rshift(cur, level, stat);
3143 	if (error || *stat)
3144 		return error;
3145 
3146 	/* Next, try shifting an entry to the left neighbor. */
3147 	error = xfs_btree_lshift(cur, level, stat);
3148 	if (error)
3149 		return error;
3150 
3151 	if (*stat) {
3152 		*oindex = *index = cur->bc_ptrs[level];
3153 		return 0;
3154 	}
3155 
3156 	/*
3157 	 * Next, try splitting the current block in half.
3158 	 *
3159 	 * If this works we have to re-set our variables because we
3160 	 * could be in a different block now.
3161 	 */
3162 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3163 	if (error || *stat == 0)
3164 		return error;
3165 
3166 
3167 	*index = cur->bc_ptrs[level];
3168 	return 0;
3169 }
3170 
3171 /*
3172  * Insert one record/level.  Return information to the caller
3173  * allowing the next level up to proceed if necessary.
3174  */
3175 STATIC int
3176 xfs_btree_insrec(
3177 	struct xfs_btree_cur	*cur,	/* btree cursor */
3178 	int			level,	/* level to insert record at */
3179 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3180 	union xfs_btree_rec	*rec,	/* record to insert */
3181 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3182 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3183 	int			*stat)	/* success/failure */
3184 {
3185 	struct xfs_btree_block	*block;	/* btree block */
3186 	struct xfs_buf		*bp;	/* buffer for block */
3187 	union xfs_btree_ptr	nptr;	/* new block ptr */
3188 	struct xfs_btree_cur	*ncur;	/* new btree cursor */
3189 	union xfs_btree_key	nkey;	/* new block key */
3190 	union xfs_btree_key	*lkey;
3191 	int			optr;	/* old key/record index */
3192 	int			ptr;	/* key/record index */
3193 	int			numrecs;/* number of records */
3194 	int			error;	/* error return value */
3195 	int			i;
3196 	xfs_daddr_t		old_bn;
3197 
3198 	ncur = NULL;
3199 	lkey = &nkey;
3200 
3201 	/*
3202 	 * If we have an external root pointer, and we've made it to the
3203 	 * root level, allocate a new root block and we're done.
3204 	 */
3205 	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3206 	    (level >= cur->bc_nlevels)) {
3207 		error = xfs_btree_new_root(cur, stat);
3208 		xfs_btree_set_ptr_null(cur, ptrp);
3209 
3210 		return error;
3211 	}
3212 
3213 	/* If we're off the left edge, return failure. */
3214 	ptr = cur->bc_ptrs[level];
3215 	if (ptr == 0) {
3216 		*stat = 0;
3217 		return 0;
3218 	}
3219 
3220 	optr = ptr;
3221 
3222 	XFS_BTREE_STATS_INC(cur, insrec);
3223 
3224 	/* Get pointers to the btree buffer and block. */
3225 	block = xfs_btree_get_block(cur, level, &bp);
3226 	old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3227 	numrecs = xfs_btree_get_numrecs(block);
3228 
3229 #ifdef DEBUG
3230 	error = xfs_btree_check_block(cur, block, level, bp);
3231 	if (error)
3232 		goto error0;
3233 
3234 	/* Check that the new entry is being inserted in the right place. */
3235 	if (ptr <= numrecs) {
3236 		if (level == 0) {
3237 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3238 				xfs_btree_rec_addr(cur, ptr, block)));
3239 		} else {
3240 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3241 				xfs_btree_key_addr(cur, ptr, block)));
3242 		}
3243 	}
3244 #endif
3245 
3246 	/*
3247 	 * If the block is full, we can't insert the new entry until we
3248 	 * make the block un-full.
3249 	 */
3250 	xfs_btree_set_ptr_null(cur, &nptr);
3251 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3252 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3253 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3254 		if (error || *stat == 0)
3255 			goto error0;
3256 	}
3257 
3258 	/*
3259 	 * The current block may have changed if the block was
3260 	 * previously full and we have just made space in it.
3261 	 */
3262 	block = xfs_btree_get_block(cur, level, &bp);
3263 	numrecs = xfs_btree_get_numrecs(block);
3264 
3265 #ifdef DEBUG
3266 	error = xfs_btree_check_block(cur, block, level, bp);
3267 	if (error)
3268 		return error;
3269 #endif
3270 
3271 	/*
3272 	 * At this point we know there's room for our new entry in the block
3273 	 * we're pointing at.
3274 	 */
3275 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3276 
3277 	if (level > 0) {
3278 		/* It's a nonleaf. make a hole in the keys and ptrs */
3279 		union xfs_btree_key	*kp;
3280 		union xfs_btree_ptr	*pp;
3281 
3282 		kp = xfs_btree_key_addr(cur, ptr, block);
3283 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3284 
3285 		for (i = numrecs - ptr; i >= 0; i--) {
3286 			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3287 			if (error)
3288 				return error;
3289 		}
3290 
3291 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3292 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3293 
3294 		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3295 		if (error)
3296 			goto error0;
3297 
3298 		/* Now put the new data in, bump numrecs and log it. */
3299 		xfs_btree_copy_keys(cur, kp, key, 1);
3300 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3301 		numrecs++;
3302 		xfs_btree_set_numrecs(block, numrecs);
3303 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3304 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3305 #ifdef DEBUG
3306 		if (ptr < numrecs) {
3307 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3308 				xfs_btree_key_addr(cur, ptr + 1, block)));
3309 		}
3310 #endif
3311 	} else {
3312 		/* It's a leaf. make a hole in the records */
3313 		union xfs_btree_rec             *rp;
3314 
3315 		rp = xfs_btree_rec_addr(cur, ptr, block);
3316 
3317 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3318 
3319 		/* Now put the new data in, bump numrecs and log it. */
3320 		xfs_btree_copy_recs(cur, rp, rec, 1);
3321 		xfs_btree_set_numrecs(block, ++numrecs);
3322 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3323 #ifdef DEBUG
3324 		if (ptr < numrecs) {
3325 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3326 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3327 		}
3328 #endif
3329 	}
3330 
3331 	/* Log the new number of records in the btree header. */
3332 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3333 
3334 	/*
3335 	 * If we just inserted into a new tree block, we have to
3336 	 * recalculate nkey here because nkey is out of date.
3337 	 *
3338 	 * Otherwise we're just updating an existing block (having shoved
3339 	 * some records into the new tree block), so use the regular key
3340 	 * update mechanism.
3341 	 */
3342 	if (bp && bp->b_bn != old_bn) {
3343 		xfs_btree_get_keys(cur, block, lkey);
3344 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3345 		error = xfs_btree_update_keys(cur, level);
3346 		if (error)
3347 			goto error0;
3348 	}
3349 
3350 	/*
3351 	 * If we are tracking the last record in the tree and
3352 	 * we are at the far right edge of the tree, update it.
3353 	 */
3354 	if (xfs_btree_is_lastrec(cur, block, level)) {
3355 		cur->bc_ops->update_lastrec(cur, block, rec,
3356 					    ptr, LASTREC_INSREC);
3357 	}
3358 
3359 	/*
3360 	 * Return the new block number, if any.
3361 	 * If there is one, give back a record value and a cursor too.
3362 	 */
3363 	*ptrp = nptr;
3364 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3365 		xfs_btree_copy_keys(cur, key, lkey, 1);
3366 		*curp = ncur;
3367 	}
3368 
3369 	*stat = 1;
3370 	return 0;
3371 
3372 error0:
3373 	return error;
3374 }
3375 
3376 /*
3377  * Insert the record at the point referenced by cur.
3378  *
3379  * A multi-level split of the tree on insert will invalidate the original
3380  * cursor.  All callers of this function should assume that the cursor is
3381  * no longer valid and revalidate it.
3382  */
3383 int
3384 xfs_btree_insert(
3385 	struct xfs_btree_cur	*cur,
3386 	int			*stat)
3387 {
3388 	int			error;	/* error return value */
3389 	int			i;	/* result value, 0 for failure */
3390 	int			level;	/* current level number in btree */
3391 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3392 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3393 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3394 	union xfs_btree_key	bkey;	/* key of block to insert */
3395 	union xfs_btree_key	*key;
3396 	union xfs_btree_rec	rec;	/* record to insert */
3397 
3398 	level = 0;
3399 	ncur = NULL;
3400 	pcur = cur;
3401 	key = &bkey;
3402 
3403 	xfs_btree_set_ptr_null(cur, &nptr);
3404 
3405 	/* Make a key out of the record data to be inserted, and save it. */
3406 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3407 	cur->bc_ops->init_key_from_rec(key, &rec);
3408 
3409 	/*
3410 	 * Loop going up the tree, starting at the leaf level.
3411 	 * Stop when we don't get a split block, that must mean that
3412 	 * the insert is finished with this level.
3413 	 */
3414 	do {
3415 		/*
3416 		 * Insert nrec/nptr into this level of the tree.
3417 		 * Note if we fail, nptr will be null.
3418 		 */
3419 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3420 				&ncur, &i);
3421 		if (error) {
3422 			if (pcur != cur)
3423 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3424 			goto error0;
3425 		}
3426 
3427 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3428 			error = -EFSCORRUPTED;
3429 			goto error0;
3430 		}
3431 		level++;
3432 
3433 		/*
3434 		 * See if the cursor we just used is trash.
3435 		 * Can't trash the caller's cursor, but otherwise we should
3436 		 * if ncur is a new cursor or we're about to be done.
3437 		 */
3438 		if (pcur != cur &&
3439 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3440 			/* Save the state from the cursor before we trash it */
3441 			if (cur->bc_ops->update_cursor)
3442 				cur->bc_ops->update_cursor(pcur, cur);
3443 			cur->bc_nlevels = pcur->bc_nlevels;
3444 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3445 		}
3446 		/* If we got a new cursor, switch to it. */
3447 		if (ncur) {
3448 			pcur = ncur;
3449 			ncur = NULL;
3450 		}
3451 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3452 
3453 	*stat = i;
3454 	return 0;
3455 error0:
3456 	return error;
3457 }
3458 
3459 /*
3460  * Try to merge a non-leaf block back into the inode root.
3461  *
3462  * Note: the killroot names comes from the fact that we're effectively
3463  * killing the old root block.  But because we can't just delete the
3464  * inode we have to copy the single block it was pointing to into the
3465  * inode.
3466  */
3467 STATIC int
3468 xfs_btree_kill_iroot(
3469 	struct xfs_btree_cur	*cur)
3470 {
3471 	int			whichfork = cur->bc_ino.whichfork;
3472 	struct xfs_inode	*ip = cur->bc_ino.ip;
3473 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
3474 	struct xfs_btree_block	*block;
3475 	struct xfs_btree_block	*cblock;
3476 	union xfs_btree_key	*kp;
3477 	union xfs_btree_key	*ckp;
3478 	union xfs_btree_ptr	*pp;
3479 	union xfs_btree_ptr	*cpp;
3480 	struct xfs_buf		*cbp;
3481 	int			level;
3482 	int			index;
3483 	int			numrecs;
3484 	int			error;
3485 #ifdef DEBUG
3486 	union xfs_btree_ptr	ptr;
3487 #endif
3488 	int			i;
3489 
3490 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3491 	ASSERT(cur->bc_nlevels > 1);
3492 
3493 	/*
3494 	 * Don't deal with the root block needs to be a leaf case.
3495 	 * We're just going to turn the thing back into extents anyway.
3496 	 */
3497 	level = cur->bc_nlevels - 1;
3498 	if (level == 1)
3499 		goto out0;
3500 
3501 	/*
3502 	 * Give up if the root has multiple children.
3503 	 */
3504 	block = xfs_btree_get_iroot(cur);
3505 	if (xfs_btree_get_numrecs(block) != 1)
3506 		goto out0;
3507 
3508 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3509 	numrecs = xfs_btree_get_numrecs(cblock);
3510 
3511 	/*
3512 	 * Only do this if the next level will fit.
3513 	 * Then the data must be copied up to the inode,
3514 	 * instead of freeing the root you free the next level.
3515 	 */
3516 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3517 		goto out0;
3518 
3519 	XFS_BTREE_STATS_INC(cur, killroot);
3520 
3521 #ifdef DEBUG
3522 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3523 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3524 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3525 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3526 #endif
3527 
3528 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3529 	if (index) {
3530 		xfs_iroot_realloc(cur->bc_ino.ip, index,
3531 				  cur->bc_ino.whichfork);
3532 		block = ifp->if_broot;
3533 	}
3534 
3535 	be16_add_cpu(&block->bb_numrecs, index);
3536 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3537 
3538 	kp = xfs_btree_key_addr(cur, 1, block);
3539 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3540 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3541 
3542 	pp = xfs_btree_ptr_addr(cur, 1, block);
3543 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3544 
3545 	for (i = 0; i < numrecs; i++) {
3546 		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3547 		if (error)
3548 			return error;
3549 	}
3550 
3551 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3552 
3553 	error = xfs_btree_free_block(cur, cbp);
3554 	if (error)
3555 		return error;
3556 
3557 	cur->bc_bufs[level - 1] = NULL;
3558 	be16_add_cpu(&block->bb_level, -1);
3559 	xfs_trans_log_inode(cur->bc_tp, ip,
3560 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3561 	cur->bc_nlevels--;
3562 out0:
3563 	return 0;
3564 }
3565 
3566 /*
3567  * Kill the current root node, and replace it with it's only child node.
3568  */
3569 STATIC int
3570 xfs_btree_kill_root(
3571 	struct xfs_btree_cur	*cur,
3572 	struct xfs_buf		*bp,
3573 	int			level,
3574 	union xfs_btree_ptr	*newroot)
3575 {
3576 	int			error;
3577 
3578 	XFS_BTREE_STATS_INC(cur, killroot);
3579 
3580 	/*
3581 	 * Update the root pointer, decreasing the level by 1 and then
3582 	 * free the old root.
3583 	 */
3584 	cur->bc_ops->set_root(cur, newroot, -1);
3585 
3586 	error = xfs_btree_free_block(cur, bp);
3587 	if (error)
3588 		return error;
3589 
3590 	cur->bc_bufs[level] = NULL;
3591 	cur->bc_ra[level] = 0;
3592 	cur->bc_nlevels--;
3593 
3594 	return 0;
3595 }
3596 
3597 STATIC int
3598 xfs_btree_dec_cursor(
3599 	struct xfs_btree_cur	*cur,
3600 	int			level,
3601 	int			*stat)
3602 {
3603 	int			error;
3604 	int			i;
3605 
3606 	if (level > 0) {
3607 		error = xfs_btree_decrement(cur, level, &i);
3608 		if (error)
3609 			return error;
3610 	}
3611 
3612 	*stat = 1;
3613 	return 0;
3614 }
3615 
3616 /*
3617  * Single level of the btree record deletion routine.
3618  * Delete record pointed to by cur/level.
3619  * Remove the record from its block then rebalance the tree.
3620  * Return 0 for error, 1 for done, 2 to go on to the next level.
3621  */
3622 STATIC int					/* error */
3623 xfs_btree_delrec(
3624 	struct xfs_btree_cur	*cur,		/* btree cursor */
3625 	int			level,		/* level removing record from */
3626 	int			*stat)		/* fail/done/go-on */
3627 {
3628 	struct xfs_btree_block	*block;		/* btree block */
3629 	union xfs_btree_ptr	cptr;		/* current block ptr */
3630 	struct xfs_buf		*bp;		/* buffer for block */
3631 	int			error;		/* error return value */
3632 	int			i;		/* loop counter */
3633 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3634 	struct xfs_buf		*lbp;		/* left buffer pointer */
3635 	struct xfs_btree_block	*left;		/* left btree block */
3636 	int			lrecs = 0;	/* left record count */
3637 	int			ptr;		/* key/record index */
3638 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3639 	struct xfs_buf		*rbp;		/* right buffer pointer */
3640 	struct xfs_btree_block	*right;		/* right btree block */
3641 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3642 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3643 	int			rrecs = 0;	/* right record count */
3644 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3645 	int			numrecs;	/* temporary numrec count */
3646 
3647 	tcur = NULL;
3648 
3649 	/* Get the index of the entry being deleted, check for nothing there. */
3650 	ptr = cur->bc_ptrs[level];
3651 	if (ptr == 0) {
3652 		*stat = 0;
3653 		return 0;
3654 	}
3655 
3656 	/* Get the buffer & block containing the record or key/ptr. */
3657 	block = xfs_btree_get_block(cur, level, &bp);
3658 	numrecs = xfs_btree_get_numrecs(block);
3659 
3660 #ifdef DEBUG
3661 	error = xfs_btree_check_block(cur, block, level, bp);
3662 	if (error)
3663 		goto error0;
3664 #endif
3665 
3666 	/* Fail if we're off the end of the block. */
3667 	if (ptr > numrecs) {
3668 		*stat = 0;
3669 		return 0;
3670 	}
3671 
3672 	XFS_BTREE_STATS_INC(cur, delrec);
3673 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3674 
3675 	/* Excise the entries being deleted. */
3676 	if (level > 0) {
3677 		/* It's a nonleaf. operate on keys and ptrs */
3678 		union xfs_btree_key	*lkp;
3679 		union xfs_btree_ptr	*lpp;
3680 
3681 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3682 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3683 
3684 		for (i = 0; i < numrecs - ptr; i++) {
3685 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3686 			if (error)
3687 				goto error0;
3688 		}
3689 
3690 		if (ptr < numrecs) {
3691 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3692 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3693 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3694 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3695 		}
3696 	} else {
3697 		/* It's a leaf. operate on records */
3698 		if (ptr < numrecs) {
3699 			xfs_btree_shift_recs(cur,
3700 				xfs_btree_rec_addr(cur, ptr + 1, block),
3701 				-1, numrecs - ptr);
3702 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3703 		}
3704 	}
3705 
3706 	/*
3707 	 * Decrement and log the number of entries in the block.
3708 	 */
3709 	xfs_btree_set_numrecs(block, --numrecs);
3710 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3711 
3712 	/*
3713 	 * If we are tracking the last record in the tree and
3714 	 * we are at the far right edge of the tree, update it.
3715 	 */
3716 	if (xfs_btree_is_lastrec(cur, block, level)) {
3717 		cur->bc_ops->update_lastrec(cur, block, NULL,
3718 					    ptr, LASTREC_DELREC);
3719 	}
3720 
3721 	/*
3722 	 * We're at the root level.  First, shrink the root block in-memory.
3723 	 * Try to get rid of the next level down.  If we can't then there's
3724 	 * nothing left to do.
3725 	 */
3726 	if (level == cur->bc_nlevels - 1) {
3727 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3728 			xfs_iroot_realloc(cur->bc_ino.ip, -1,
3729 					  cur->bc_ino.whichfork);
3730 
3731 			error = xfs_btree_kill_iroot(cur);
3732 			if (error)
3733 				goto error0;
3734 
3735 			error = xfs_btree_dec_cursor(cur, level, stat);
3736 			if (error)
3737 				goto error0;
3738 			*stat = 1;
3739 			return 0;
3740 		}
3741 
3742 		/*
3743 		 * If this is the root level, and there's only one entry left,
3744 		 * and it's NOT the leaf level, then we can get rid of this
3745 		 * level.
3746 		 */
3747 		if (numrecs == 1 && level > 0) {
3748 			union xfs_btree_ptr	*pp;
3749 			/*
3750 			 * pp is still set to the first pointer in the block.
3751 			 * Make it the new root of the btree.
3752 			 */
3753 			pp = xfs_btree_ptr_addr(cur, 1, block);
3754 			error = xfs_btree_kill_root(cur, bp, level, pp);
3755 			if (error)
3756 				goto error0;
3757 		} else if (level > 0) {
3758 			error = xfs_btree_dec_cursor(cur, level, stat);
3759 			if (error)
3760 				goto error0;
3761 		}
3762 		*stat = 1;
3763 		return 0;
3764 	}
3765 
3766 	/*
3767 	 * If we deleted the leftmost entry in the block, update the
3768 	 * key values above us in the tree.
3769 	 */
3770 	if (xfs_btree_needs_key_update(cur, ptr)) {
3771 		error = xfs_btree_update_keys(cur, level);
3772 		if (error)
3773 			goto error0;
3774 	}
3775 
3776 	/*
3777 	 * If the number of records remaining in the block is at least
3778 	 * the minimum, we're done.
3779 	 */
3780 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3781 		error = xfs_btree_dec_cursor(cur, level, stat);
3782 		if (error)
3783 			goto error0;
3784 		return 0;
3785 	}
3786 
3787 	/*
3788 	 * Otherwise, we have to move some records around to keep the
3789 	 * tree balanced.  Look at the left and right sibling blocks to
3790 	 * see if we can re-balance by moving only one record.
3791 	 */
3792 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3793 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3794 
3795 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3796 		/*
3797 		 * One child of root, need to get a chance to copy its contents
3798 		 * into the root and delete it. Can't go up to next level,
3799 		 * there's nothing to delete there.
3800 		 */
3801 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3802 		    xfs_btree_ptr_is_null(cur, &lptr) &&
3803 		    level == cur->bc_nlevels - 2) {
3804 			error = xfs_btree_kill_iroot(cur);
3805 			if (!error)
3806 				error = xfs_btree_dec_cursor(cur, level, stat);
3807 			if (error)
3808 				goto error0;
3809 			return 0;
3810 		}
3811 	}
3812 
3813 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3814 	       !xfs_btree_ptr_is_null(cur, &lptr));
3815 
3816 	/*
3817 	 * Duplicate the cursor so our btree manipulations here won't
3818 	 * disrupt the next level up.
3819 	 */
3820 	error = xfs_btree_dup_cursor(cur, &tcur);
3821 	if (error)
3822 		goto error0;
3823 
3824 	/*
3825 	 * If there's a right sibling, see if it's ok to shift an entry
3826 	 * out of it.
3827 	 */
3828 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3829 		/*
3830 		 * Move the temp cursor to the last entry in the next block.
3831 		 * Actually any entry but the first would suffice.
3832 		 */
3833 		i = xfs_btree_lastrec(tcur, level);
3834 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3835 			error = -EFSCORRUPTED;
3836 			goto error0;
3837 		}
3838 
3839 		error = xfs_btree_increment(tcur, level, &i);
3840 		if (error)
3841 			goto error0;
3842 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3843 			error = -EFSCORRUPTED;
3844 			goto error0;
3845 		}
3846 
3847 		i = xfs_btree_lastrec(tcur, level);
3848 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3849 			error = -EFSCORRUPTED;
3850 			goto error0;
3851 		}
3852 
3853 		/* Grab a pointer to the block. */
3854 		right = xfs_btree_get_block(tcur, level, &rbp);
3855 #ifdef DEBUG
3856 		error = xfs_btree_check_block(tcur, right, level, rbp);
3857 		if (error)
3858 			goto error0;
3859 #endif
3860 		/* Grab the current block number, for future use. */
3861 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3862 
3863 		/*
3864 		 * If right block is full enough so that removing one entry
3865 		 * won't make it too empty, and left-shifting an entry out
3866 		 * of right to us works, we're done.
3867 		 */
3868 		if (xfs_btree_get_numrecs(right) - 1 >=
3869 		    cur->bc_ops->get_minrecs(tcur, level)) {
3870 			error = xfs_btree_lshift(tcur, level, &i);
3871 			if (error)
3872 				goto error0;
3873 			if (i) {
3874 				ASSERT(xfs_btree_get_numrecs(block) >=
3875 				       cur->bc_ops->get_minrecs(tcur, level));
3876 
3877 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3878 				tcur = NULL;
3879 
3880 				error = xfs_btree_dec_cursor(cur, level, stat);
3881 				if (error)
3882 					goto error0;
3883 				return 0;
3884 			}
3885 		}
3886 
3887 		/*
3888 		 * Otherwise, grab the number of records in right for
3889 		 * future reference, and fix up the temp cursor to point
3890 		 * to our block again (last record).
3891 		 */
3892 		rrecs = xfs_btree_get_numrecs(right);
3893 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3894 			i = xfs_btree_firstrec(tcur, level);
3895 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3896 				error = -EFSCORRUPTED;
3897 				goto error0;
3898 			}
3899 
3900 			error = xfs_btree_decrement(tcur, level, &i);
3901 			if (error)
3902 				goto error0;
3903 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3904 				error = -EFSCORRUPTED;
3905 				goto error0;
3906 			}
3907 		}
3908 	}
3909 
3910 	/*
3911 	 * If there's a left sibling, see if it's ok to shift an entry
3912 	 * out of it.
3913 	 */
3914 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3915 		/*
3916 		 * Move the temp cursor to the first entry in the
3917 		 * previous block.
3918 		 */
3919 		i = xfs_btree_firstrec(tcur, level);
3920 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3921 			error = -EFSCORRUPTED;
3922 			goto error0;
3923 		}
3924 
3925 		error = xfs_btree_decrement(tcur, level, &i);
3926 		if (error)
3927 			goto error0;
3928 		i = xfs_btree_firstrec(tcur, level);
3929 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3930 			error = -EFSCORRUPTED;
3931 			goto error0;
3932 		}
3933 
3934 		/* Grab a pointer to the block. */
3935 		left = xfs_btree_get_block(tcur, level, &lbp);
3936 #ifdef DEBUG
3937 		error = xfs_btree_check_block(cur, left, level, lbp);
3938 		if (error)
3939 			goto error0;
3940 #endif
3941 		/* Grab the current block number, for future use. */
3942 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3943 
3944 		/*
3945 		 * If left block is full enough so that removing one entry
3946 		 * won't make it too empty, and right-shifting an entry out
3947 		 * of left to us works, we're done.
3948 		 */
3949 		if (xfs_btree_get_numrecs(left) - 1 >=
3950 		    cur->bc_ops->get_minrecs(tcur, level)) {
3951 			error = xfs_btree_rshift(tcur, level, &i);
3952 			if (error)
3953 				goto error0;
3954 			if (i) {
3955 				ASSERT(xfs_btree_get_numrecs(block) >=
3956 				       cur->bc_ops->get_minrecs(tcur, level));
3957 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3958 				tcur = NULL;
3959 				if (level == 0)
3960 					cur->bc_ptrs[0]++;
3961 
3962 				*stat = 1;
3963 				return 0;
3964 			}
3965 		}
3966 
3967 		/*
3968 		 * Otherwise, grab the number of records in right for
3969 		 * future reference.
3970 		 */
3971 		lrecs = xfs_btree_get_numrecs(left);
3972 	}
3973 
3974 	/* Delete the temp cursor, we're done with it. */
3975 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3976 	tcur = NULL;
3977 
3978 	/* If here, we need to do a join to keep the tree balanced. */
3979 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3980 
3981 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3982 	    lrecs + xfs_btree_get_numrecs(block) <=
3983 			cur->bc_ops->get_maxrecs(cur, level)) {
3984 		/*
3985 		 * Set "right" to be the starting block,
3986 		 * "left" to be the left neighbor.
3987 		 */
3988 		rptr = cptr;
3989 		right = block;
3990 		rbp = bp;
3991 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3992 		if (error)
3993 			goto error0;
3994 
3995 	/*
3996 	 * If that won't work, see if we can join with the right neighbor block.
3997 	 */
3998 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
3999 		   rrecs + xfs_btree_get_numrecs(block) <=
4000 			cur->bc_ops->get_maxrecs(cur, level)) {
4001 		/*
4002 		 * Set "left" to be the starting block,
4003 		 * "right" to be the right neighbor.
4004 		 */
4005 		lptr = cptr;
4006 		left = block;
4007 		lbp = bp;
4008 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4009 		if (error)
4010 			goto error0;
4011 
4012 	/*
4013 	 * Otherwise, we can't fix the imbalance.
4014 	 * Just return.  This is probably a logic error, but it's not fatal.
4015 	 */
4016 	} else {
4017 		error = xfs_btree_dec_cursor(cur, level, stat);
4018 		if (error)
4019 			goto error0;
4020 		return 0;
4021 	}
4022 
4023 	rrecs = xfs_btree_get_numrecs(right);
4024 	lrecs = xfs_btree_get_numrecs(left);
4025 
4026 	/*
4027 	 * We're now going to join "left" and "right" by moving all the stuff
4028 	 * in "right" to "left" and deleting "right".
4029 	 */
4030 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4031 	if (level > 0) {
4032 		/* It's a non-leaf.  Move keys and pointers. */
4033 		union xfs_btree_key	*lkp;	/* left btree key */
4034 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4035 		union xfs_btree_key	*rkp;	/* right btree key */
4036 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4037 
4038 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4039 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4040 		rkp = xfs_btree_key_addr(cur, 1, right);
4041 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4042 
4043 		for (i = 1; i < rrecs; i++) {
4044 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4045 			if (error)
4046 				goto error0;
4047 		}
4048 
4049 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4050 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4051 
4052 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4053 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4054 	} else {
4055 		/* It's a leaf.  Move records.  */
4056 		union xfs_btree_rec	*lrp;	/* left record pointer */
4057 		union xfs_btree_rec	*rrp;	/* right record pointer */
4058 
4059 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4060 		rrp = xfs_btree_rec_addr(cur, 1, right);
4061 
4062 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4063 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4064 	}
4065 
4066 	XFS_BTREE_STATS_INC(cur, join);
4067 
4068 	/*
4069 	 * Fix up the number of records and right block pointer in the
4070 	 * surviving block, and log it.
4071 	 */
4072 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4073 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4074 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4075 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4076 
4077 	/* If there is a right sibling, point it to the remaining block. */
4078 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4079 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4080 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4081 		if (error)
4082 			goto error0;
4083 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4084 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4085 	}
4086 
4087 	/* Free the deleted block. */
4088 	error = xfs_btree_free_block(cur, rbp);
4089 	if (error)
4090 		goto error0;
4091 
4092 	/*
4093 	 * If we joined with the left neighbor, set the buffer in the
4094 	 * cursor to the left block, and fix up the index.
4095 	 */
4096 	if (bp != lbp) {
4097 		cur->bc_bufs[level] = lbp;
4098 		cur->bc_ptrs[level] += lrecs;
4099 		cur->bc_ra[level] = 0;
4100 	}
4101 	/*
4102 	 * If we joined with the right neighbor and there's a level above
4103 	 * us, increment the cursor at that level.
4104 	 */
4105 	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4106 		   (level + 1 < cur->bc_nlevels)) {
4107 		error = xfs_btree_increment(cur, level + 1, &i);
4108 		if (error)
4109 			goto error0;
4110 	}
4111 
4112 	/*
4113 	 * Readjust the ptr at this level if it's not a leaf, since it's
4114 	 * still pointing at the deletion point, which makes the cursor
4115 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4116 	 * We can't use decrement because it would change the next level up.
4117 	 */
4118 	if (level > 0)
4119 		cur->bc_ptrs[level]--;
4120 
4121 	/*
4122 	 * We combined blocks, so we have to update the parent keys if the
4123 	 * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4124 	 * points to the old block so that the caller knows which record to
4125 	 * delete.  Therefore, the caller must be savvy enough to call updkeys
4126 	 * for us if we return stat == 2.  The other exit points from this
4127 	 * function don't require deletions further up the tree, so they can
4128 	 * call updkeys directly.
4129 	 */
4130 
4131 	/* Return value means the next level up has something to do. */
4132 	*stat = 2;
4133 	return 0;
4134 
4135 error0:
4136 	if (tcur)
4137 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4138 	return error;
4139 }
4140 
4141 /*
4142  * Delete the record pointed to by cur.
4143  * The cursor refers to the place where the record was (could be inserted)
4144  * when the operation returns.
4145  */
4146 int					/* error */
4147 xfs_btree_delete(
4148 	struct xfs_btree_cur	*cur,
4149 	int			*stat)	/* success/failure */
4150 {
4151 	int			error;	/* error return value */
4152 	int			level;
4153 	int			i;
4154 	bool			joined = false;
4155 
4156 	/*
4157 	 * Go up the tree, starting at leaf level.
4158 	 *
4159 	 * If 2 is returned then a join was done; go to the next level.
4160 	 * Otherwise we are done.
4161 	 */
4162 	for (level = 0, i = 2; i == 2; level++) {
4163 		error = xfs_btree_delrec(cur, level, &i);
4164 		if (error)
4165 			goto error0;
4166 		if (i == 2)
4167 			joined = true;
4168 	}
4169 
4170 	/*
4171 	 * If we combined blocks as part of deleting the record, delrec won't
4172 	 * have updated the parent high keys so we have to do that here.
4173 	 */
4174 	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4175 		error = xfs_btree_updkeys_force(cur, 0);
4176 		if (error)
4177 			goto error0;
4178 	}
4179 
4180 	if (i == 0) {
4181 		for (level = 1; level < cur->bc_nlevels; level++) {
4182 			if (cur->bc_ptrs[level] == 0) {
4183 				error = xfs_btree_decrement(cur, level, &i);
4184 				if (error)
4185 					goto error0;
4186 				break;
4187 			}
4188 		}
4189 	}
4190 
4191 	*stat = i;
4192 	return 0;
4193 error0:
4194 	return error;
4195 }
4196 
4197 /*
4198  * Get the data from the pointed-to record.
4199  */
4200 int					/* error */
4201 xfs_btree_get_rec(
4202 	struct xfs_btree_cur	*cur,	/* btree cursor */
4203 	union xfs_btree_rec	**recp,	/* output: btree record */
4204 	int			*stat)	/* output: success/failure */
4205 {
4206 	struct xfs_btree_block	*block;	/* btree block */
4207 	struct xfs_buf		*bp;	/* buffer pointer */
4208 	int			ptr;	/* record number */
4209 #ifdef DEBUG
4210 	int			error;	/* error return value */
4211 #endif
4212 
4213 	ptr = cur->bc_ptrs[0];
4214 	block = xfs_btree_get_block(cur, 0, &bp);
4215 
4216 #ifdef DEBUG
4217 	error = xfs_btree_check_block(cur, block, 0, bp);
4218 	if (error)
4219 		return error;
4220 #endif
4221 
4222 	/*
4223 	 * Off the right end or left end, return failure.
4224 	 */
4225 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4226 		*stat = 0;
4227 		return 0;
4228 	}
4229 
4230 	/*
4231 	 * Point to the record and extract its data.
4232 	 */
4233 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4234 	*stat = 1;
4235 	return 0;
4236 }
4237 
4238 /* Visit a block in a btree. */
4239 STATIC int
4240 xfs_btree_visit_block(
4241 	struct xfs_btree_cur		*cur,
4242 	int				level,
4243 	xfs_btree_visit_blocks_fn	fn,
4244 	void				*data)
4245 {
4246 	struct xfs_btree_block		*block;
4247 	struct xfs_buf			*bp;
4248 	union xfs_btree_ptr		rptr;
4249 	int				error;
4250 
4251 	/* do right sibling readahead */
4252 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4253 	block = xfs_btree_get_block(cur, level, &bp);
4254 
4255 	/* process the block */
4256 	error = fn(cur, level, data);
4257 	if (error)
4258 		return error;
4259 
4260 	/* now read rh sibling block for next iteration */
4261 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4262 	if (xfs_btree_ptr_is_null(cur, &rptr))
4263 		return -ENOENT;
4264 
4265 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4266 }
4267 
4268 
4269 /* Visit every block in a btree. */
4270 int
4271 xfs_btree_visit_blocks(
4272 	struct xfs_btree_cur		*cur,
4273 	xfs_btree_visit_blocks_fn	fn,
4274 	unsigned int			flags,
4275 	void				*data)
4276 {
4277 	union xfs_btree_ptr		lptr;
4278 	int				level;
4279 	struct xfs_btree_block		*block = NULL;
4280 	int				error = 0;
4281 
4282 	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4283 
4284 	/* for each level */
4285 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4286 		/* grab the left hand block */
4287 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4288 		if (error)
4289 			return error;
4290 
4291 		/* readahead the left most block for the next level down */
4292 		if (level > 0) {
4293 			union xfs_btree_ptr     *ptr;
4294 
4295 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4296 			xfs_btree_readahead_ptr(cur, ptr, 1);
4297 
4298 			/* save for the next iteration of the loop */
4299 			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4300 
4301 			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4302 				continue;
4303 		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4304 			continue;
4305 		}
4306 
4307 		/* for each buffer in the level */
4308 		do {
4309 			error = xfs_btree_visit_block(cur, level, fn, data);
4310 		} while (!error);
4311 
4312 		if (error != -ENOENT)
4313 			return error;
4314 	}
4315 
4316 	return 0;
4317 }
4318 
4319 /*
4320  * Change the owner of a btree.
4321  *
4322  * The mechanism we use here is ordered buffer logging. Because we don't know
4323  * how many buffers were are going to need to modify, we don't really want to
4324  * have to make transaction reservations for the worst case of every buffer in a
4325  * full size btree as that may be more space that we can fit in the log....
4326  *
4327  * We do the btree walk in the most optimal manner possible - we have sibling
4328  * pointers so we can just walk all the blocks on each level from left to right
4329  * in a single pass, and then move to the next level and do the same. We can
4330  * also do readahead on the sibling pointers to get IO moving more quickly,
4331  * though for slow disks this is unlikely to make much difference to performance
4332  * as the amount of CPU work we have to do before moving to the next block is
4333  * relatively small.
4334  *
4335  * For each btree block that we load, modify the owner appropriately, set the
4336  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4337  * we mark the region we change dirty so that if the buffer is relogged in
4338  * a subsequent transaction the changes we make here as an ordered buffer are
4339  * correctly relogged in that transaction.  If we are in recovery context, then
4340  * just queue the modified buffer as delayed write buffer so the transaction
4341  * recovery completion writes the changes to disk.
4342  */
4343 struct xfs_btree_block_change_owner_info {
4344 	uint64_t		new_owner;
4345 	struct list_head	*buffer_list;
4346 };
4347 
4348 static int
4349 xfs_btree_block_change_owner(
4350 	struct xfs_btree_cur	*cur,
4351 	int			level,
4352 	void			*data)
4353 {
4354 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4355 	struct xfs_btree_block	*block;
4356 	struct xfs_buf		*bp;
4357 
4358 	/* modify the owner */
4359 	block = xfs_btree_get_block(cur, level, &bp);
4360 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4361 		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4362 			return 0;
4363 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4364 	} else {
4365 		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4366 			return 0;
4367 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4368 	}
4369 
4370 	/*
4371 	 * If the block is a root block hosted in an inode, we might not have a
4372 	 * buffer pointer here and we shouldn't attempt to log the change as the
4373 	 * information is already held in the inode and discarded when the root
4374 	 * block is formatted into the on-disk inode fork. We still change it,
4375 	 * though, so everything is consistent in memory.
4376 	 */
4377 	if (!bp) {
4378 		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4379 		ASSERT(level == cur->bc_nlevels - 1);
4380 		return 0;
4381 	}
4382 
4383 	if (cur->bc_tp) {
4384 		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4385 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4386 			return -EAGAIN;
4387 		}
4388 	} else {
4389 		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4390 	}
4391 
4392 	return 0;
4393 }
4394 
4395 int
4396 xfs_btree_change_owner(
4397 	struct xfs_btree_cur	*cur,
4398 	uint64_t		new_owner,
4399 	struct list_head	*buffer_list)
4400 {
4401 	struct xfs_btree_block_change_owner_info	bbcoi;
4402 
4403 	bbcoi.new_owner = new_owner;
4404 	bbcoi.buffer_list = buffer_list;
4405 
4406 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4407 			XFS_BTREE_VISIT_ALL, &bbcoi);
4408 }
4409 
4410 /* Verify the v5 fields of a long-format btree block. */
4411 xfs_failaddr_t
4412 xfs_btree_lblock_v5hdr_verify(
4413 	struct xfs_buf		*bp,
4414 	uint64_t		owner)
4415 {
4416 	struct xfs_mount	*mp = bp->b_mount;
4417 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4418 
4419 	if (!xfs_sb_version_hascrc(&mp->m_sb))
4420 		return __this_address;
4421 	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4422 		return __this_address;
4423 	if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4424 		return __this_address;
4425 	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4426 	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4427 		return __this_address;
4428 	return NULL;
4429 }
4430 
4431 /* Verify a long-format btree block. */
4432 xfs_failaddr_t
4433 xfs_btree_lblock_verify(
4434 	struct xfs_buf		*bp,
4435 	unsigned int		max_recs)
4436 {
4437 	struct xfs_mount	*mp = bp->b_mount;
4438 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4439 
4440 	/* numrecs verification */
4441 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4442 		return __this_address;
4443 
4444 	/* sibling pointer verification */
4445 	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4446 	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4447 		return __this_address;
4448 	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4449 	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4450 		return __this_address;
4451 
4452 	return NULL;
4453 }
4454 
4455 /**
4456  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4457  *				      btree block
4458  *
4459  * @bp: buffer containing the btree block
4460  */
4461 xfs_failaddr_t
4462 xfs_btree_sblock_v5hdr_verify(
4463 	struct xfs_buf		*bp)
4464 {
4465 	struct xfs_mount	*mp = bp->b_mount;
4466 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4467 	struct xfs_perag	*pag = bp->b_pag;
4468 
4469 	if (!xfs_sb_version_hascrc(&mp->m_sb))
4470 		return __this_address;
4471 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4472 		return __this_address;
4473 	if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4474 		return __this_address;
4475 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4476 		return __this_address;
4477 	return NULL;
4478 }
4479 
4480 /**
4481  * xfs_btree_sblock_verify() -- verify a short-format btree block
4482  *
4483  * @bp: buffer containing the btree block
4484  * @max_recs: maximum records allowed in this btree node
4485  */
4486 xfs_failaddr_t
4487 xfs_btree_sblock_verify(
4488 	struct xfs_buf		*bp,
4489 	unsigned int		max_recs)
4490 {
4491 	struct xfs_mount	*mp = bp->b_mount;
4492 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4493 	xfs_agblock_t		agno;
4494 
4495 	/* numrecs verification */
4496 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4497 		return __this_address;
4498 
4499 	/* sibling pointer verification */
4500 	agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4501 	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4502 	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4503 		return __this_address;
4504 	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4505 	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4506 		return __this_address;
4507 
4508 	return NULL;
4509 }
4510 
4511 /*
4512  * Calculate the number of btree levels needed to store a given number of
4513  * records in a short-format btree.
4514  */
4515 uint
4516 xfs_btree_compute_maxlevels(
4517 	uint			*limits,
4518 	unsigned long		len)
4519 {
4520 	uint			level;
4521 	unsigned long		maxblocks;
4522 
4523 	maxblocks = (len + limits[0] - 1) / limits[0];
4524 	for (level = 1; maxblocks > 1; level++)
4525 		maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4526 	return level;
4527 }
4528 
4529 /*
4530  * Query a regular btree for all records overlapping a given interval.
4531  * Start with a LE lookup of the key of low_rec and return all records
4532  * until we find a record with a key greater than the key of high_rec.
4533  */
4534 STATIC int
4535 xfs_btree_simple_query_range(
4536 	struct xfs_btree_cur		*cur,
4537 	union xfs_btree_key		*low_key,
4538 	union xfs_btree_key		*high_key,
4539 	xfs_btree_query_range_fn	fn,
4540 	void				*priv)
4541 {
4542 	union xfs_btree_rec		*recp;
4543 	union xfs_btree_key		rec_key;
4544 	int64_t				diff;
4545 	int				stat;
4546 	bool				firstrec = true;
4547 	int				error;
4548 
4549 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4550 	ASSERT(cur->bc_ops->diff_two_keys);
4551 
4552 	/*
4553 	 * Find the leftmost record.  The btree cursor must be set
4554 	 * to the low record used to generate low_key.
4555 	 */
4556 	stat = 0;
4557 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4558 	if (error)
4559 		goto out;
4560 
4561 	/* Nothing?  See if there's anything to the right. */
4562 	if (!stat) {
4563 		error = xfs_btree_increment(cur, 0, &stat);
4564 		if (error)
4565 			goto out;
4566 	}
4567 
4568 	while (stat) {
4569 		/* Find the record. */
4570 		error = xfs_btree_get_rec(cur, &recp, &stat);
4571 		if (error || !stat)
4572 			break;
4573 
4574 		/* Skip if high_key(rec) < low_key. */
4575 		if (firstrec) {
4576 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4577 			firstrec = false;
4578 			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4579 					&rec_key);
4580 			if (diff > 0)
4581 				goto advloop;
4582 		}
4583 
4584 		/* Stop if high_key < low_key(rec). */
4585 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4586 		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4587 		if (diff > 0)
4588 			break;
4589 
4590 		/* Callback */
4591 		error = fn(cur, recp, priv);
4592 		if (error)
4593 			break;
4594 
4595 advloop:
4596 		/* Move on to the next record. */
4597 		error = xfs_btree_increment(cur, 0, &stat);
4598 		if (error)
4599 			break;
4600 	}
4601 
4602 out:
4603 	return error;
4604 }
4605 
4606 /*
4607  * Query an overlapped interval btree for all records overlapping a given
4608  * interval.  This function roughly follows the algorithm given in
4609  * "Interval Trees" of _Introduction to Algorithms_, which is section
4610  * 14.3 in the 2nd and 3rd editions.
4611  *
4612  * First, generate keys for the low and high records passed in.
4613  *
4614  * For any leaf node, generate the high and low keys for the record.
4615  * If the record keys overlap with the query low/high keys, pass the
4616  * record to the function iterator.
4617  *
4618  * For any internal node, compare the low and high keys of each
4619  * pointer against the query low/high keys.  If there's an overlap,
4620  * follow the pointer.
4621  *
4622  * As an optimization, we stop scanning a block when we find a low key
4623  * that is greater than the query's high key.
4624  */
4625 STATIC int
4626 xfs_btree_overlapped_query_range(
4627 	struct xfs_btree_cur		*cur,
4628 	union xfs_btree_key		*low_key,
4629 	union xfs_btree_key		*high_key,
4630 	xfs_btree_query_range_fn	fn,
4631 	void				*priv)
4632 {
4633 	union xfs_btree_ptr		ptr;
4634 	union xfs_btree_ptr		*pp;
4635 	union xfs_btree_key		rec_key;
4636 	union xfs_btree_key		rec_hkey;
4637 	union xfs_btree_key		*lkp;
4638 	union xfs_btree_key		*hkp;
4639 	union xfs_btree_rec		*recp;
4640 	struct xfs_btree_block		*block;
4641 	int64_t				ldiff;
4642 	int64_t				hdiff;
4643 	int				level;
4644 	struct xfs_buf			*bp;
4645 	int				i;
4646 	int				error;
4647 
4648 	/* Load the root of the btree. */
4649 	level = cur->bc_nlevels - 1;
4650 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4651 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4652 	if (error)
4653 		return error;
4654 	xfs_btree_get_block(cur, level, &bp);
4655 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4656 #ifdef DEBUG
4657 	error = xfs_btree_check_block(cur, block, level, bp);
4658 	if (error)
4659 		goto out;
4660 #endif
4661 	cur->bc_ptrs[level] = 1;
4662 
4663 	while (level < cur->bc_nlevels) {
4664 		block = xfs_btree_get_block(cur, level, &bp);
4665 
4666 		/* End of node, pop back towards the root. */
4667 		if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4668 pop_up:
4669 			if (level < cur->bc_nlevels - 1)
4670 				cur->bc_ptrs[level + 1]++;
4671 			level++;
4672 			continue;
4673 		}
4674 
4675 		if (level == 0) {
4676 			/* Handle a leaf node. */
4677 			recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4678 
4679 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4680 			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4681 					low_key);
4682 
4683 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4684 			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4685 					&rec_key);
4686 
4687 			/*
4688 			 * If (record's high key >= query's low key) and
4689 			 *    (query's high key >= record's low key), then
4690 			 * this record overlaps the query range; callback.
4691 			 */
4692 			if (ldiff >= 0 && hdiff >= 0) {
4693 				error = fn(cur, recp, priv);
4694 				if (error)
4695 					break;
4696 			} else if (hdiff < 0) {
4697 				/* Record is larger than high key; pop. */
4698 				goto pop_up;
4699 			}
4700 			cur->bc_ptrs[level]++;
4701 			continue;
4702 		}
4703 
4704 		/* Handle an internal node. */
4705 		lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4706 		hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4707 		pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4708 
4709 		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4710 		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4711 
4712 		/*
4713 		 * If (pointer's high key >= query's low key) and
4714 		 *    (query's high key >= pointer's low key), then
4715 		 * this record overlaps the query range; follow pointer.
4716 		 */
4717 		if (ldiff >= 0 && hdiff >= 0) {
4718 			level--;
4719 			error = xfs_btree_lookup_get_block(cur, level, pp,
4720 					&block);
4721 			if (error)
4722 				goto out;
4723 			xfs_btree_get_block(cur, level, &bp);
4724 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4725 #ifdef DEBUG
4726 			error = xfs_btree_check_block(cur, block, level, bp);
4727 			if (error)
4728 				goto out;
4729 #endif
4730 			cur->bc_ptrs[level] = 1;
4731 			continue;
4732 		} else if (hdiff < 0) {
4733 			/* The low key is larger than the upper range; pop. */
4734 			goto pop_up;
4735 		}
4736 		cur->bc_ptrs[level]++;
4737 	}
4738 
4739 out:
4740 	/*
4741 	 * If we don't end this function with the cursor pointing at a record
4742 	 * block, a subsequent non-error cursor deletion will not release
4743 	 * node-level buffers, causing a buffer leak.  This is quite possible
4744 	 * with a zero-results range query, so release the buffers if we
4745 	 * failed to return any results.
4746 	 */
4747 	if (cur->bc_bufs[0] == NULL) {
4748 		for (i = 0; i < cur->bc_nlevels; i++) {
4749 			if (cur->bc_bufs[i]) {
4750 				xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4751 				cur->bc_bufs[i] = NULL;
4752 				cur->bc_ptrs[i] = 0;
4753 				cur->bc_ra[i] = 0;
4754 			}
4755 		}
4756 	}
4757 
4758 	return error;
4759 }
4760 
4761 /*
4762  * Query a btree for all records overlapping a given interval of keys.  The
4763  * supplied function will be called with each record found; return one of the
4764  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4765  * code.  This function returns -ECANCELED, zero, or a negative error code.
4766  */
4767 int
4768 xfs_btree_query_range(
4769 	struct xfs_btree_cur		*cur,
4770 	union xfs_btree_irec		*low_rec,
4771 	union xfs_btree_irec		*high_rec,
4772 	xfs_btree_query_range_fn	fn,
4773 	void				*priv)
4774 {
4775 	union xfs_btree_rec		rec;
4776 	union xfs_btree_key		low_key;
4777 	union xfs_btree_key		high_key;
4778 
4779 	/* Find the keys of both ends of the interval. */
4780 	cur->bc_rec = *high_rec;
4781 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4782 	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4783 
4784 	cur->bc_rec = *low_rec;
4785 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4786 	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4787 
4788 	/* Enforce low key < high key. */
4789 	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4790 		return -EINVAL;
4791 
4792 	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4793 		return xfs_btree_simple_query_range(cur, &low_key,
4794 				&high_key, fn, priv);
4795 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4796 			fn, priv);
4797 }
4798 
4799 /* Query a btree for all records. */
4800 int
4801 xfs_btree_query_all(
4802 	struct xfs_btree_cur		*cur,
4803 	xfs_btree_query_range_fn	fn,
4804 	void				*priv)
4805 {
4806 	union xfs_btree_key		low_key;
4807 	union xfs_btree_key		high_key;
4808 
4809 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4810 	memset(&low_key, 0, sizeof(low_key));
4811 	memset(&high_key, 0xFF, sizeof(high_key));
4812 
4813 	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4814 }
4815 
4816 /*
4817  * Calculate the number of blocks needed to store a given number of records
4818  * in a short-format (per-AG metadata) btree.
4819  */
4820 unsigned long long
4821 xfs_btree_calc_size(
4822 	uint			*limits,
4823 	unsigned long long	len)
4824 {
4825 	int			level;
4826 	int			maxrecs;
4827 	unsigned long long	rval;
4828 
4829 	maxrecs = limits[0];
4830 	for (level = 0, rval = 0; len > 1; level++) {
4831 		len += maxrecs - 1;
4832 		do_div(len, maxrecs);
4833 		maxrecs = limits[1];
4834 		rval += len;
4835 	}
4836 	return rval;
4837 }
4838 
4839 static int
4840 xfs_btree_count_blocks_helper(
4841 	struct xfs_btree_cur	*cur,
4842 	int			level,
4843 	void			*data)
4844 {
4845 	xfs_extlen_t		*blocks = data;
4846 	(*blocks)++;
4847 
4848 	return 0;
4849 }
4850 
4851 /* Count the blocks in a btree and return the result in *blocks. */
4852 int
4853 xfs_btree_count_blocks(
4854 	struct xfs_btree_cur	*cur,
4855 	xfs_extlen_t		*blocks)
4856 {
4857 	*blocks = 0;
4858 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4859 			XFS_BTREE_VISIT_ALL, blocks);
4860 }
4861 
4862 /* Compare two btree pointers. */
4863 int64_t
4864 xfs_btree_diff_two_ptrs(
4865 	struct xfs_btree_cur		*cur,
4866 	const union xfs_btree_ptr	*a,
4867 	const union xfs_btree_ptr	*b)
4868 {
4869 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4870 		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4871 	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4872 }
4873 
4874 /* If there's an extent, we're done. */
4875 STATIC int
4876 xfs_btree_has_record_helper(
4877 	struct xfs_btree_cur		*cur,
4878 	union xfs_btree_rec		*rec,
4879 	void				*priv)
4880 {
4881 	return -ECANCELED;
4882 }
4883 
4884 /* Is there a record covering a given range of keys? */
4885 int
4886 xfs_btree_has_record(
4887 	struct xfs_btree_cur	*cur,
4888 	union xfs_btree_irec	*low,
4889 	union xfs_btree_irec	*high,
4890 	bool			*exists)
4891 {
4892 	int			error;
4893 
4894 	error = xfs_btree_query_range(cur, low, high,
4895 			&xfs_btree_has_record_helper, NULL);
4896 	if (error == -ECANCELED) {
4897 		*exists = true;
4898 		return 0;
4899 	}
4900 	*exists = false;
4901 	return error;
4902 }
4903 
4904 /* Are there more records in this btree? */
4905 bool
4906 xfs_btree_has_more_records(
4907 	struct xfs_btree_cur	*cur)
4908 {
4909 	struct xfs_btree_block	*block;
4910 	struct xfs_buf		*bp;
4911 
4912 	block = xfs_btree_get_block(cur, 0, &bp);
4913 
4914 	/* There are still records in this block. */
4915 	if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4916 		return true;
4917 
4918 	/* There are more record blocks. */
4919 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4920 		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4921 	else
4922 		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4923 }
4924